AD9822JRSZRL [ADI]

Complete 14-Bit CCD/CIS Signal Processor; 完整的14位CCD / CIS信号处理器
AD9822JRSZRL
型号: AD9822JRSZRL
厂家: ADI    ADI
描述:

Complete 14-Bit CCD/CIS Signal Processor
完整的14位CCD / CIS信号处理器

商用集成电路 光电二极管 CD
文件: 总20页 (文件大小:474K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Complete 14-Bit  
CCD/CIS Signal Processor  
AD9822  
GENERAL DESCRIPTION  
FEATURES  
14-bit 15 MSPS ADC  
The AD9822 is a complete analog signal processor for CCD  
imaging applications. It features a 3-channel architecture designed  
to sample and condition the outputs of trilinear color CCD  
arrays. Each channel consists of an input clamp, correlated double  
sampler (CDS), offset DAC, and programmable gain amplifier  
(PGA) multiplexed to a high performance 14-bit ADC.  
No missing codes guaranteed  
3-channel operation up to 15 MSPS  
1-channel operation up to 12.5 MSPS  
Correlated double sampling  
1–6× programmable gain  
350 mV programmable offset  
Input clamp circuitry  
Internal voltage reference  
Multiplexed byte-wide output (8 + 6 format)  
3-wire serial digital interface  
3 V/5 V digital I/O compatibility  
28-Lead SOIC or SSOP  
Low power CMOS: 385 mW (typ)  
Power-down mode: <1 mW  
The CDS amplifiers may be disabled for use with sensors such  
as contact image sensors (CIS) and CMOS active pixel sensors,  
which do not require CDS.  
The 14-bit digital output is multiplexed into an 8-bit output  
word that is accessed using two read cycles. The internal  
registers are programmed through a 3-wire serial interface and  
provide adjustment of the gain, offset, and operating mode.  
The AD9822 operates from a single 5 V power supply,  
consumes 385 mW of power typically, and is packaged in a  
28-lead SOIC or SSOP.  
APPLICATIONS  
Flatbed document scanners  
Film scanners  
Digital color copiers  
Multifunction peripherals  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
AVSS  
CDS  
CML  
CAPT  
CAPB  
AVDD  
AVSS  
DRVDD  
DRVSS  
AD9822  
VINR  
VING  
PGA  
OEB  
BAND GAP  
REFERENCE  
9-BIT  
DAC  
14  
8
14:8  
MUX  
14-BIT  
ADC  
3:1  
MUX  
DOUT  
CDS  
CDS  
PGA  
PGA  
9-BIT  
DAC  
CONFIGURATION  
REGISTER  
MUX  
REGISTER  
SCLK  
VINB  
DIGITAL  
RED  
GREEN  
BLUE  
CONTROL  
INTERFACE  
SLOAD  
SDATA  
6
9
9-BIT  
DAC  
GAIN  
REGISTERS  
INPUT  
CLAMP  
BIAS  
RED  
GREEN  
BLUE  
OFFSET  
OFFSET  
REGISTERS  
CDSCLK1 CDSCLK2  
ADCCLK  
Figure 1.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
AD9822  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
1-Channel CDS Mode ............................................................... 12  
1-Channel SHA Mode ............................................................... 12  
Internal Register Descriptions.................................................. 13  
Circuit Operation ........................................................................... 15  
Analog Inputs—CDS Mode...................................................... 15  
External Input Coupling Capacitors........................................ 15  
Analog Inputs—SHA Mode...................................................... 16  
Programmable Gain AmplifierS (PGA).................................. 16  
Applications..................................................................................... 17  
Circuit and Layout Recommendations ................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
Analog Specifications................................................................... 3  
Digital Specifications ................................................................... 4  
Timing Specifications .................................................................. 5  
Absolute Maximum Ratings............................................................ 6  
Thermal Characteristics .............................................................. 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Terminology ...................................................................................... 8  
Functional Description .................................................................. 12  
3-Channel CDS Mode................................................................ 12  
3-Channel SHA Mode................................................................ 12  
REVISION HISTORY  
2/05—Rev. A to Rev. B  
Changes to Format .............................................................Universal  
Changes to Ordering Guide .......................................................... 18  
Updated Outline Dimensions....................................................... 18  
12/99—Rev. 0 to Rev. A  
Rev. B | Page 2 of 20  
AD9822  
SPECIFICATIONS  
ANALOG SPECIFICATIONS  
TMIN to TMAX, AVDD = 5 V, DRVDD = 5 V, CDS mode, fADCCLK = 15 MHz, fCDSCLK1 = fCDSCLK2 = 5 MHz, PGA gain = 1, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
MAXIMUM CONVERSION RATE  
3-Channel Mode with CDS  
1-Channel Mode with CDS  
ACCURACY (ENTIRE SIGNAL PATH)  
ADC Resolution  
Integral Nonlinearity (INL)  
INL @ 6 MHz  
Differential Nonlinearity (DNL)  
DNL @ 6 MHz  
15  
12.5  
MSPS  
MSPS  
14  
Bits  
LSB  
LSB  
LSB  
LSB  
Bits  
Bits  
mV  
−17.0/+3.5  
−10.5/+1.5  
−0.65/+0.75  
−0.6/+0.65  
14  
−1.0  
+1.1  
No Missing Codes  
No Missing Codes @ 6 MHz  
Offset Error  
14  
−240  
−1.4  
−19  
+3.5  
+200  
+6.9  
Gain Error  
% FSR  
ANALOG INPUTS  
Input Signal Range1  
Allowable Reset Transient1  
Input Limits2  
2.0  
1.0  
V p-p  
V
V
AVSS − 0.3  
AVDD + 0.3  
Input Capacitance  
Input Bias Current  
10  
10  
pF  
nA  
AMPLIFIERS  
PGA Gain at Minimum  
PGA Gain at Maximum  
PGA Gain Resolution2  
PGA Gain Monotonicity  
Programmable Offset at Minimum  
Programmable Offset at Maximum  
Programmable Offset Resolution  
Programmable Offset Monotonicity  
NOISE AND CROSSTALK  
Total Output Noise @ PGA Minimum  
Total Output Noise @ PGA Maximum  
Channel-to-Channel Crosstalk @ 6 MHz  
POWER SUPPLY REJECTION  
AVDD = 5 V 0.25 V  
DIFFERENTIAL VREF (@ 25°C)  
CAPT to CAPB (2 V ADC Full-Scale Range)  
TEMPERATURE RANGE  
Operating  
1
5.7  
64  
Guaranteed  
−350  
+350  
512  
Guaranteed  
V/V  
V/V  
Steps  
mV  
mV  
Steps  
1.5  
6.0  
<1  
LSB rms  
LSB rms  
LSB  
0.063  
1.0  
0.9  
% FSR  
V
0.94  
1.06  
0
−65  
+70  
+150  
°C  
°C  
Storage  
POWER SUPPLIES  
AVDD  
DRVDD  
4.75  
3.0  
5.0  
5.0  
5.25  
5.25  
V
V
OPERATING CURRENT  
AVDD  
DRVDD  
73  
4
150  
mA  
mA  
µA  
Power-Down Mode Current  
Rev. B | Page 3 of 20  
 
AD9822  
Parameter  
Min  
Typ  
Max  
Unit  
POWER DISSIPATION  
3-Channel Mode  
3-Channel Mode @ 6 MHz  
1-Channel Mode  
385  
335  
300  
250  
450  
410  
mW  
mW  
mW  
mW  
1-Channel Mode @ 6 MHz  
1 Linear input signal range is from 2 V to 4 V when the CCD’s reference level is clamped to 4 V by the AD9822’s input clamp.  
4V SET BY INPUT CLAMP (3V OPTION ALSO AVAILABLE)  
1V TYP  
2V p-p MAX INPUT SIGNAL RANGE  
RESET TRANSIENT  
5.7  
2 The PGA gain is approximately linear-in-dB and follows the equation: Gain =  
[
]
where G is the register value. See Figure 15.  
63 G  
1 + 4.7  
63  
DIGITAL SPECIFICATIONS  
TMIN to TMAX, AVDD = 5 V, DRVDD = 5 V, CDS mode, fADCCLK = 15 MHz, fCDSCLK1 = fCDSCLK2 = 5 MHz, CL = 10 pF, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
LOGIC INPUTS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
VIH  
VIL  
IIH  
IIL  
CIN  
2.0  
V
V
µA  
µA  
pF  
0.8  
10  
10  
10  
LOGIC OUTPUTS  
High Level Output Voltage  
Low Level Output Voltage  
High Level Output Current  
Low Level Output Current  
VOH  
VOL  
IOH  
4.5  
V
V
µA  
µA  
0.1  
50  
50  
IOL  
Rev. B | Page 4 of 20  
 
AD9822  
TIMING SPECIFICATIONS  
TMIN to TMAX, AVDD = 5 V, DRVDD = 5 V.  
Table 3.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
CLOCK PARAMETERS  
3-Channel Pixel Rate  
1-Channel Pixel Rate  
ADCCLK Pulse Width  
CDSCLK1 Pulse Width  
tPRA  
tPRB  
tADCLK  
tC1  
tC2  
tC1C2  
tADC2  
tC2ADR  
tC2ADF  
tC2C1  
tADC1  
tAD  
67  
80  
30  
10  
10  
0
0
0
30  
30  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CDSCLK2 Pulse Width  
CDSCLK1 Falling to CDSCLK2 Rising  
ADCCLK Falling to CDSCLK2 Rising  
CDSCLK2 Rising to ADCCLK Rising  
CDSCLK2 Falling to ADCCLK Falling  
CDSCLK2 Falling to CDSCLK1 Rising  
ADCCLK Falling to CDSCLK1 Rising  
Aperture Delay for CDS Clocks  
SERIAL INTERFACE  
40  
40  
2
Maximum SCLK Frequency  
SLOAD to SCLK Setup Time  
SCLK to SLOAD Hold Time  
SDATA to SCLK Rising Setup Time  
SCLK Rising to SDATA Hold Time  
SCLK Falling to SDATA Valid  
DATA OUTPUT  
fSCLK  
tLS  
tLH  
tDS  
tDH  
tRDV  
10  
10  
10  
10  
10  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
Output Delay  
tOD  
tDV  
tHZ  
8
10  
10  
3 (Fixed)  
ns  
ns  
ns  
Cycles  
Three-State to Data Valid  
Output Enable High to Three-State  
Latency (Pipeline Delay)  
Rev. B | Page 5 of 20  
 
AD9822  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
With  
Respect  
To  
THERMAL CHARACTERISTICS  
28-Lead 300 Mil SOIC  
Parameter  
Min Max  
−0.3 AVDD + 0.3  
−0.3 AVDD + 0.3  
−0.5 +6.5  
−0.5 +6.5  
−0.3 +0.3  
−0.3 DRVDD + 0.3  
150  
Unit  
V
V
V
V
V
V
°C  
°C  
°C  
θJA = 71.4°C/W  
VIN, CAPT, CAPB  
Digital Inputs  
AVDD  
DRVDD  
AVSS  
Digital Outputs  
Junction Temperature  
Storage Temperature  
Lead Temperature  
(10 sec)  
AVSS  
AVSS  
AVSS  
DRVSS  
DRVSS  
DRVSS  
θJC = 23°C/W  
28-Lead 5.3 mm SSOP  
θJA = 109°C/W  
θJC = 39°C/W  
−65 +150  
300  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or other  
conditions above those indicated in the operational sections of  
this specification is not implied. Exposure to absolute maximum  
ratings for extended periods may affect device reliability.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. B | Page 6 of 20  
 
AD9822  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
CDSCLK1  
CDSCLK2  
ADCCLK  
OEB  
1
2
3
4
5
6
7
8
9
28 AVDD  
27 AVSS  
26 VINR  
25 OFFSET  
24 VING  
23 CML  
DRVDD  
DRVSS  
(MSB) D7  
D6  
AD9822  
TOP VIEW  
(Not to Scale)  
22 VINB  
21 CAPT  
20 CAPB  
19 AVSS  
18 AVDD  
17 SLOAD  
16 SCLK  
15 SDATA  
D5  
D4 10  
D3 11  
D2 12  
D1 13  
(LSB) D0 14  
Figure 2. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
CDSCLK1  
CDSCLK2  
ADCCLK  
OEB  
Type1  
DI  
DI  
DI  
Description  
1
2
3
4
CDS Reference Level Sampling Clock.  
CDS Data Level Sampling Clock.  
ADC Sampling Clock.  
DI  
Output Enable, Active Low.  
5
6
7
8
DRVDD  
DRVSS  
D7 (MSB)  
D6  
D5  
D4  
D3  
D2  
D1  
D0 (LSB)  
SDATA  
SCLK  
SLOAD  
AVDD  
AVSS  
CAPB  
CAPT  
VINB  
CML  
VING  
OFFSET  
VINR  
AVSS  
P
P
Digital Output Driver Supply.  
Digital Output Driver Ground.  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DI/DO  
DI  
Data Output MSB. ADC DB13 High Byte, ADC DB5 Low Byte.  
Data Output. ADC DB12 High Byte, ADC DB4 Low Byte.  
Data Output. ADC DB11 High Byte, ADC DB3 Low Byte.  
Data Output. ADC DB10 High Byte, ADC DB2 Low Byte.  
Data Output. ADC DB9 High Byte, ADC DB1 Low Byte.  
Data Output. ADC DB8 High Byte, ADC DB0 Low Byte.  
Data Output. ADC DB7 High Byte, Don’t Care Low Byte.  
Data Output LSB. ADC DB6 High Byte, Don’t Care Low Byte.  
Serial Interface Data Input/Output.  
Serial Interface Clock Input.  
Serial Interface Load Pulse.  
5 V Analog Supply.  
Analog Ground.  
ADC Bottom Reference Voltage Decoupling.  
ADC Top Reference Voltage Decoupling.  
Analog Input, Blue Channel.  
Internal Bias Level Decoupling.  
Analog Input, Green Channel.  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
DI  
P
P
AO  
AO  
AI  
AO  
AI  
AO  
AI  
P
Clamp Bias Level Decoupling.  
Analog Input, Red Channel.  
Analog Ground.  
5 V Analog Supply.  
AVDD  
P
1 Type: AI = Analog Input, AO = Analog Output, DI = Digital Input, DO = Digital Output, P = Power.  
Rev. B | Page 7 of 20  
 
AD9822  
TERMINOLOGY  
Integral Nonlinearity (INL)  
Input Referred Noise  
Integral nonlinearity error refers to the deviation of each  
individual code from a line drawn from zero scale through  
positive full scale. The point used as zero scale occurs ½ LSB  
before the first code transition. Positive full scale is defined as a  
level 1 ½ LSB beyond the last code transition. The deviation is  
measured from the middle of each particular code to the true  
straight line.  
The rms output noise is measured using histogram techniques.  
The ADC output codes’ standard deviation is calculated in LSB  
and converted to an equivalent voltage, using the relationship  
1 LSB = 4 V/16384 = 244 mV. The noise is then referred to the  
input of the AD9822 by dividing by the PGA gain.  
Channel-to-Channel Crosstalk  
In an ideal 3-channel system, the signal in one channel will not  
influence the signal level of another channel. The channel-to-  
channel crosstalk specification is a measure of the change that  
occurs in one channel as the other two channels are varied. In  
the AD9822, one channel is grounded and the other two  
channels are exercised with full-scale input signals. The  
change in the output codes from the first channel is measured  
and compared with the result when all three channels are  
grounded. The difference is the channel-to-channel crosstalk,  
stated in LSB.  
Differential Nonlinearity (DNL)  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value; therefore,  
every code must have a finite width. No missing codes  
guaranteed to 14-bit resolution indicates that all 16384 codes,  
respectively, must be present over all operating ranges.  
Offset Error  
The first ADC code transition should occur at a level ½ LSB  
above the nominal zero-scale voltage. The offset error is the  
deviation of the actual first code transition level from the ideal  
level.  
Aperture Delay  
The time delay that occurs from when a sampling edge is  
applied to the AD9822 until the actual sample of the input  
signal is held. Both CDSCLK1 and CDSCLK2 sample the input  
signal during the transition from high to low; therefore, the  
aperture delay is measured from each clocks falling edge to the  
instant the actual internal sample is taken.  
Gain Error  
The last code transition should occur for an analog value  
1 ½ LSB below the nominal full-scale voltage. Gain error is the  
deviation of the actual difference between the first and last code  
transitions and the ideal difference between the first and last  
code transitions.  
Power Supply Rejection  
It specifies the maximum full-scale change that occurs from  
the initial value when the supplies are varied over the  
specified limits.  
Rev. B | Page 8 of 20  
 
AD9822  
ANALOG  
INPUTS  
PIXEL  
(N + 2)  
tAD  
PIXEL N (R, G, B)  
tAD  
PIXEL (N + 1)  
tC1  
tC2C1  
tPRA  
CDSCLK1  
CDSCLK2  
tC1C2  
tC2  
tC2ADF  
tADCLK  
tADC1  
tADC2  
tC2ADR  
ADCCLK  
tOD  
R (N– 2) G (N– 2) G (N– 2) B (N– 2) B (N– 2) R (N– 1) R (N– 1) G (N– 1) G (N– 1) B (N– 1) B (N– 1) R (N)  
tADCLK  
OUTPUT  
DATA  
R (N)  
G (N)  
G (N)  
D<7:0>  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
Figure 3. 3-Channel CDS Mode Timing  
ANALOG  
INPUTS  
PIXEL N  
PIXEL (N + 1)  
PIXEL (N + 2)  
tAD  
tAD  
tC2C1  
tPRB  
tC1  
CDSCLK1  
CDSCLK2  
tC2  
tC1C2  
tADC1  
tC2ADF  
tC2ADR  
tADCLK  
ADCCLK  
tADCLK  
tOD  
OUTPUT  
DATA  
D<7:0>  
PIXEL  
(N – 4)  
PIXEL  
(N – 4)  
PIXEL  
(N – 3)  
PIXEL  
(N – 3)  
PIXEL  
(N – 2)  
PIXEL  
(N – 2)  
HIGH BYTE  
LOW BYTE  
HIGH BYTE  
LOW BYTE  
HIGH BYTE  
LOW BYTE  
Figure 4. 1-Channel CDS Mode Timing  
Rev. B | Page 9 of 20  
 
 
AD9822  
PIXEL N (R, G, B)  
tAD  
PIXEL (N + 1)  
ANALOG  
INPUTS  
tPRA  
tC2  
tC2ADF  
CDSCLK2  
ADCCLK  
tADCLK  
tADC2  
tC2ADR  
tOD  
tADCLK  
OUTPUT  
DATA  
R (N– 2) G (N– 2) G (N– 2) B (N– 2) B (N– 2) R (N– 1) R (N– 1) G (N– 1) G (N– 1) B (N– 1) B (N– 1) R (N)  
R (N)  
G (N)  
G (N)  
D<7:0>  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
Figure 5. 3-Channel SHA Mode Timing  
PIXEL N  
tAD  
ANALOG  
INPUTS  
tPRB  
tC2  
CDSCLK2  
ADCCLK  
tC2ADR  
tC2ADF  
tADCLK  
tOD  
tADCLK  
OUTPUT  
DATA  
D<7:0>  
PIXEL (N – 4)  
HIGH BYTE  
PIXEL (N – 4)  
LOW BYTE  
PIXEL (N – 3)  
HIGH BYTE  
PIXEL (N – 3)  
LOW BYTE  
PIXEL (N – 2)  
HIGH BYTE  
PIXEL (N – 2)  
LOW BYTE  
Figure 6. 1-Channel SHA Mode Timing  
Rev. B | Page 10 of 20  
 
 
AD9822  
ADCCLK  
tOD  
tOD  
LOW  
BYTE  
N + 1  
LOW  
BYTE  
N + 2  
HIGH  
BYTE  
N + 3  
OUTPUT  
DATA  
<D7:D0>  
HIGH BYTE  
DB13–DB6  
LOW BYTE  
DB5–DB0  
HIGH BYTE  
N + 1  
PIXEL N  
PIXEL N  
tHZ  
tDV  
OEB  
Figure 7. Digital Output Data Timing  
R/Wb  
A2  
A1  
A0  
XX  
XX  
XX  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDATA  
tDH  
tDS  
SCLK  
tLS  
tLH  
SLOAD  
Figure 8. Serial Write Operation Timing  
SDATA  
SCLK  
R/Wb  
tDH  
A2  
A1  
A0  
XX  
XX  
XX  
D8  
D7  
tRDV  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
tDS  
tLH  
tLS  
SLOAD  
Figure 9. Serial Read Operation Timing  
Rev. B | Page 11 of 20  
AD9822  
FUNCTIONAL DESCRIPTION  
The AD9822 can be operated in four different modes: 3-channel  
CDS mode, 3-channel SHA mode, 1-channel CDS mode, and  
1-channel SHA mode. Each mode is selected by programming  
the configuration register through the serial interface. For more  
information on CDS or SHA mode operation, see the Circuit  
Operation section.  
The input signal is sampled with respect to the voltage applied  
to the OFFSET pin (see Figure 12). With the OFFSET pin  
grounded, a 0 V input corresponds to the ADCs zero-scale  
output. The OFFSET pin may also be used as a coarse offset  
adjust pin. A voltage applied to this pin is subtracted from the  
voltages applied to the red, green, and blue inputs in the first  
amplifier stage of the AD9822. The input clamp is disabled in  
this mode. For more information, see the Circuit Operation  
section.  
3-CHANNEL CDS MODE  
In 3-channel CDS mode, the AD9822 simultaneously samples  
the red, green, and blue input voltages from the CCD outputs.  
The sampling points for each CDS are controlled by CDSCLK1  
and CDSCLK2 (see Figure 10 and Figure 11). CDSCLK1s  
falling edge samples the reference level of the CCD waveform,  
and CDSCLK2s falling edge samples the data level of the CCD  
waveform. Each CDS amplifier outputs the difference between  
the CCDs reference and data levels. The output voltage of each  
CDS amplifier is then level-shifted by an offset DAC. The  
voltages are scaled by the three PGAs before being multiplexed  
through the 14-bit ADC. The ADC sequentially samples the  
PGA outputs on the falling edges of ADCCLK.  
Timing for this mode is shown in Figure 5. CDSCLK1  
should be grounded in this mode. Although not required,  
it is recommended that the falling edge of CDSCLK2 occur  
coincident with or before the rising edge of ADCCLK. The  
rising edge of CDSCLK2 should not occur before the previous  
falling edge of ADCCLK, as shown by tADC2. The output data  
latency is three ADCCLK cycles.  
The offset and gain values for the red, green, and blue channels  
are programmed using the serial interface. The order in which  
the channels are switched through the multiplexer is selected by  
programming the MUX register.  
The offset and gain values for the red, green, and blue channels  
are programmed using the serial interface. The order in which  
the channels are switched through the multiplexer is selected by  
programming the MUX register.  
1-CHANNEL CDS MODE  
This mode operates in the same way as the 3-channel CDS  
mode. The difference is that the multiplexer remains fixed in  
this mode; therefore, only the channel specified in the MUX  
register is processed.  
Timing for this mode is shown in Figure 3. It is recommended  
that the falling edge of CDSCLK2 occur coincident with or  
before the rising edge of ADCCLK. However, this is not  
required to satisfy the minimum timing constraints. The rising  
edge of CDSCLK2 should not occur before the previous falling  
edge of ADCCLK, as shown by tADC2. The output data latency is  
three clock cycles.  
Timing for this mode is shown in Figure 4.  
1-CHANNEL SHA MODE  
This mode operates in the same way as the 3-channel SHA  
mode, except the multiplexer remains stationary. Only the  
channel specified in the MUX register is processed.  
3-CHANNEL SHA MODE  
In 3-channel SHA mode, the AD9822 simultaneously samples  
the red, green, and blue input voltages. The sampling point is  
controlled by CDSCLK2. CDSCLK2s falling edge samples the  
input waveforms on each channel. The output voltages from the  
three SHAs are modified by the offset DACs and then scaled by  
the three PGAs. The outputs of the PGAs are then multiplexed  
through the 14-bit ADC. The ADC sequentially samples the  
PGA outputs on the falling edges of ADCCLK.  
The input signal is sampled with respect to the voltage applied  
to the OFFSET pin. With the OFFSET pin grounded, a 0 V input  
corresponds to the ADC’s zero-scale output. The OFFSET pin  
may also be used as a coarse offset adjust pin. A voltage applied  
to this pin is subtracted from the voltages applied to the red,  
green, and blue inputs in the first amplifier stage of the AD9822.  
The input clamp is disabled in this mode. For more information,  
see the Circuit Operation section.  
Timing for this mode is shown in Figure 6. CDSCLK1 should be  
grounded in this mode of operation.  
Rev. B | Page 12 of 20  
 
AD9822  
INTERNAL REGISTER DESCRIPTIONS  
Table 6. Internal Register Map  
Register Name  
Address  
Data Bits  
D4  
A2  
0
0
0
0
A1  
0
0
1
1
A0  
0
1
0
1
D8  
0
0
0
0
D7  
D6  
VREF  
Red  
0
0
0
D
D3  
D2  
D1  
0
0
D0  
0
0
Configuration  
MUX  
Red PGA  
Green PGA  
Blue PGA  
0
3Ch/1Ch  
Green  
MSB  
MSB  
MSB  
CDS On  
Blue  
Clamp  
0
Pwr Dn  
0
RGB/BGR  
0
0
0
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
1
0
0
0
Red Offset  
Green Offset  
Blue Offset  
1
1
1
0
1
1
1
0
1
MSB  
MSB  
MSB  
Configuration Register  
The Configuration Register controls the AD9822s operating mode and bias levels. Bits D8, D1, and D0 should always be set low. Bit D7  
sets the full-scale voltage range of the AD9822s ADC to either 4 V (high) or 2 V (low). Bit D6 controls the internal voltage reference. If the  
AD9822s internal voltage reference is used, this bit is set high. Setting Bit D6 low disables the internal voltage reference, allowing an  
external voltage reference to be used. Bit D5 configures the AD9822 for either the 3-channel (high) or 1-channel (low) mode of operation.  
Setting Bit D4 high enables the CDS mode of operation and setting this bit low enables the SHA mode of operation. Bit D3 sets the dc bias  
level of the AD9822s input clamp. This bit should always be set high for the 4 V clamp bias, unless a CCD with a reset feedthrough  
transient exceeding 2 V is used. If the 3 V clamp bias level is used, the peak-to-peak input signal range to the AD9822 is reduced to 3 V  
maximum. Bit D2 controls the power-down mode. Setting Bit D2 high places the AD9822 into a very low power “sleep” mode. All register  
contents are retained while the AD9822 is in the power-down state.  
Table 7. Configuration Register Settings  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Set to 0 Set to 0 Internal VREF  
1 = Enabled1  
No. of Channels  
1 = 3-Ch Mode1  
0 = 1-Ch Mode  
CDS Operation  
1 = CDS Mode1  
0 = SHA Mode  
Input Clamp Bias  
1 = 4 V1  
0 = 3 V  
Power-Down  
Set to 0 Set to 0  
1 = On  
0 = Off (Normal)1  
0 = Disabled  
1 Power-on default value.  
MUX Register  
The MUX register controls the sampling channel order in the AD9822. Bits D8, D3, D2, D1, and D0 should always be set low. Bit D7 is  
used when operating in 3-channel mode. Setting Bit D7 high sequences the MUX to sample the red channel first, then the green channel,  
and then the blue channel. When in this mode, the CDSCLK2 pulse always resets the MUX to sample the red channel first (see Figure 3).  
When Bit D7 is set low, the channel order is reversed to blue first, green second, and red third. The CDSCLK2 pulse always resets the  
MUX to sample the blue channel first. Bits D6, D5, and D4 are used when operating in 1-channel mode. Bit D6 is set high to sample the  
red channel. Bit D5 is set high to sample the green channel. Bit D4 is set high to sample the blue channel. The MUX remains stationary  
during 1-channel mode.  
Table 8. MUX Register Settings  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Set to 0  
3-Channel Select  
1 = R-G-B1  
0 = B-G-R  
1-Channel Select  
1 = RED1  
0 = Off  
1-Channel Select  
1 = GREEN  
0 = Off1  
1-Channel Select  
1 = BLUE  
0 = Off1  
Set to 0  
Set to 0  
Set to 0  
Set to 0  
1 Power-on default value.  
Rev. B | Page 13 of 20  
 
 
 
AD9822  
PGA Gain Registers  
There are three PGA registers for individually programming the gain in the red, green, and blue channels. Bits D8, D7, and D6 in each  
register must be set low, and Bits D5 through D0 control the gain range in 64 increments. See Figure 15 for the PGA gain vs. the PGA  
register code. The coding for the PGA registers is straight binary, with an all 0s word corresponding to the minimum gain setting (1×)  
and an all 1s word corresponding to the maximum gain setting (5.7×).  
Table 9. PGA Gain Register Settings  
D8  
D7  
D6  
D5  
MSB  
0
D4  
D3  
D2  
D1  
D0  
LSB  
01  
Set to 0  
Set to 0  
Set to 0  
Gain (V/V)  
Gain (dB)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1.0  
0.0  
0
1
1.013  
0.12  
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
1
5.4  
5.7  
14.6  
15.1  
1 Power-on default value.  
Offset Registers  
There are three PGA registers for individually programming the offset in the red, green, and blue channels. Bits D8 through D0 control  
the offset range from −350 mV to +350 mV in 512 increments. The coding for the offset registers is sign magnitude, with D8 as the sign  
bit. Table 10 shows the offset range as a function of the Bits D8 through D0.  
Table 10. Offset Register Settings  
D8 (MSB)  
D7  
D6  
D5  
0
0
D4  
0
0
D3  
0
0
D2  
0
0
D1  
0
0
D0 (LSB)  
Offset (mV)  
0
0
0
0
0
0
01  
0
+1.2  
1
0
1
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
+350  
0
−1.2  
1
1
1
1
1
1
1
1
1
−350  
1 Power-on default value.  
Rev. B | Page 14 of 20  
 
 
 
AD9822  
CIRCUIT OPERATION  
ANALOG INPUTS—CDS MODE  
EXTERNAL INPUT COUPLING CAPACITORS  
Figure 10 shows the analog input configuration for the CDS  
mode of operation. Figure 11 shows the internal timing for the  
sampling switches. The CCD reference level is sampled when  
CDSCLK1 transitions from high to low, opening S1. The CCD  
data level is sampled when CDSCLK2 transitions from high to  
low, opening S2. S3 is then closed, generating a differential  
output voltage representing the difference between the two  
sampled levels.  
The recommended value for the input coupling capacitors is  
0.1 µF. While it is possible to use a smaller capacitor, this larger  
value is chosen for several reasons:  
Signal Attenuation: The input coupling capacitor creates a  
capacitive divider with a CMOS integrated circuits input  
capacitance, attenuating the CCD signal level. CIN should be  
large relative to the ICs 10 pF input capacitance in order to  
minimize this effect.  
The input clamp is controlled by CDSCLK1. When CDSCLK1 is  
high, S4 closes and the internal bias voltage is connected to the  
analog input. The bias voltage charges the external 0.1 µF input  
capacitor, level-shifting the CCD signal into the AD9822s input  
common-mode range. The time constant of the input clamp is  
determined by the internal 5 kΩ resistance and the external  
0.1 µF input capacitance.  
Linearity: Some of the input capacitance of a CMOS IC is  
junction capacitance, which varies nonlinearly with applied  
voltage. If the input coupling capacitor is too small, the  
attenuation of the CCD signal varies nonlinearly with signal  
level. This degrades the system linearity performance.  
Sampling Errors: The internal 2 pF sample capacitors have a  
“memory” of the previously sampled pixel. There is a charge  
redistribution error between CIN and the internal sample  
capacitors for larger pixel-to-pixel voltage swings. As the  
value of CIN is reduced, the resulting error in the sampled  
voltage increases. With a CIN value of 0.1 µF, the charge  
redistribution error is less than 1 LSB for a full-scale, pixel-to-  
pixel voltage swing.  
AD9822  
S1  
2pF  
VINR  
CCD SIGNAL  
CML  
CML  
C
IN  
0.1µF  
S3  
5kΩ  
S2  
2pF  
AVDD  
S4  
1.7kΩ  
2.2kΩ  
6.9kΩ  
OFFSET  
4V  
3V  
INPUT CLAMP LEVEL  
IS SELECTED IN THE  
CONFIGURATION  
REGISTER.  
+
1µF  
0.1µF  
Figure 10. CDS Mode Input Configuration (All Three Channels are Identical)  
S1, S4 CLOSED  
S1, S4 OPEN  
S1, S4 CLOSED  
CDSCLK1  
CDSCLK2  
S2 CLOSED  
S2 CLOSED  
S2 OPEN  
S3 CLOSED  
S3 CLOSED  
Q3  
S3 OPEN  
(INTERNAL)  
Figure 11. CDS Mode Internal Switch Timing  
Rev. B | Page 15 of 20  
 
 
 
 
AD9822  
AD9822  
ANALOG INPUTS—SHA MODE  
VINR  
VING  
VINB  
Figure 12 shows the analog input configuration for the SHA  
mode of operation. Figure 13 shows the internal timing for the  
sampling switches. The input signal is sampled when CDSCLK2  
transitions from high to low, opening S1. The voltage on the  
OFFSET pin is also sampled on the falling edge of CDSCLK2,  
when S2 opens. S3 is then closed, generating a differential  
output voltage representing the difference between the sampled  
input voltage and the OFFSET voltage. The input clamp is  
disabled during SHA mode operation.  
RED  
GREEN  
BLUE  
SHA  
SHA  
SHA  
RED-OFFSET  
GREEN-OFFSET  
BLUE-OFFSET  
VREF FROM  
CIS MODULE  
AVDD  
OFFSET  
R1  
DC OFFSET  
R2  
0.1µF  
AD9822  
S1  
2pF  
2pF  
VINR  
OFFSET  
VING  
CML  
RED  
CML  
INPUT SIGNAL  
S3  
S2  
Figure 14. SHA Mode Used with External DC Offset  
OPTIONAL DC OFFSET  
(OR CONNECT TO GND)  
PROGRAMMABLE GAIN AMPLIFIERS (PGA)  
The AD9822 uses one PGA for each channel. Each PGA has a  
gain range from 1× (0 dB) to 5.8× (15.5 dB), adjustable in  
64 steps. Figure 15 shows the PGA gain as a function of the  
PGA register code. Although the gain curve is approximately  
linear-in-dB, the gain in V/V varies nonlinearly with register  
code, following the equation  
GREEN  
BLUE  
VINB  
5.7  
Figure 12. SHA Mode Input Configuration (All Three Channels are Identical)  
Gain =  
63 G  
S1, S2 CLOSED  
S1, S2 OPEN  
S1, S2 CLOSED  
1 + 4.7  
CDSCLK2  
63  
S3 CLOSED  
S3 CLOSED  
where G is the decimal value of the gain register contents and  
Q3  
S3 OPEN  
varies from 0 to 63.  
(INTERNAL)  
Figure 13. SHA Mode Internal Switch Timing  
15  
12  
9
5.7  
5.0  
4.0  
3.0  
2.0  
1.0  
Figure 14 shows how the OFFSET pin may be used in a CIS  
application for coarse offset adjustment. Many CIS signals have  
dc offsets ranging from several hundred millivolts to more than  
1 V. By connecting the appropriate dc voltage to the OFFSET  
pin, the CIS signal is restored to 0. After the large dc offset is  
removed, the signal can be scaled using the PGA to maximize  
the ADCs dynamic range.  
6
3
0
0
4
8
12 16 20 24 28 32 36 40 44 48 52 56 60 63  
PGA REGISTER VALUE (Decimal)  
Figure 15. PGA Gain Transfer Function  
Rev. B | Page 16 of 20  
 
 
 
 
 
AD9822  
APPLICATIONS  
CDSCLK2 should occur coincident with or before the rising  
CIRCUIT AND LAYOUT RECOMMENDATIONS  
edge of ADCCLK (see Figure 3 through Figure 6 for timing).  
All 0.1 µF decoupling capacitors should be located as close as  
possible to the AD9822 pins. When operating in single-channel  
mode, the unused analog inputs should be grounded.  
Figure 16 shows the recommended circuit configuration for  
3-channel CDS mode operation. The recommended input  
coupling capacitor value is 0.1 µF (see the Circuit Operation  
section). A single ground plane is recommended for the  
AD9822. A separate power supply may be used for DRVDD,  
the digital driver supply, but this supply pin should still be  
decoupled to the same ground plane as the rest of the AD9822.  
The loading of the digital outputs should be minimized, either  
by using short traces to the digital ASIC or by using external  
digital buffers. To minimize the effect of digital transients  
during major output code transitions, the falling edge of  
Figure 17 shows the recommended circuit configuration for  
3-channel SHA mode. All of the above considerations also apply  
for this configuration, except that the analog input signals are  
directly connected to the AD9822 without the use of coupling  
capacitors. The analog input signals must already be dc-biased  
between 0 V and 2 V (see the Circuit Operation section).  
0.1µF  
5V  
RED INPUT  
3
CLOCK INPUTS  
0.1µF  
0.1µF  
CDSCLK1  
CDSCLK2  
ADCCLK  
OEB  
AVDD  
AVSS  
VINR  
1
2
3
4
5
6
7
8
9
28  
27  
26  
25  
24  
23  
GREEN INPUT  
0.1µF  
BLUE INPUT  
5V/3V  
OFFSET  
VING  
DRVDD  
0.1µF  
10µF  
1.0µF  
0.1µF  
0.1µF  
AD9822  
DRVSS  
D7 (MSB)  
D6  
CML  
0.1µF  
0.1µF  
VINB 22  
CAPT 21  
CAPB 20  
AVSS 19  
AVDD 18  
SLOAD 17  
SCLK 16  
SDATA 15  
+
0.1µF  
0.1µF  
D5  
10 D4  
11 D3  
12 D2  
13 D1  
5V  
14 D0 (LSB)  
8
3
DATA OUTPUTS  
SERIAL INTERFACE  
Figure 16. Recommended Circuit Configuration, 3-Channel CDS Mode  
5V  
RED INPUT  
3
CLOCK INPUTS  
0.1µF  
CDSCLK1  
CDSCLK2  
ADCCLK  
OEB  
AVDD  
AVSS  
1
2
3
4
5
6
7
8
9
28  
27  
26  
25  
24  
GREEN INPUT  
BLUE INPUT  
VINR  
5V/3V  
OFFSET  
VING  
DRVDD  
0.1µF  
0.1µF  
AD9822  
DRVSS  
D7 (MSB)  
D6  
CML 23  
VINB 22  
0.1µF  
+
CAPT 21  
CAPB 20  
AVSS 19  
AVDD 18  
SLOAD 17  
SCLK 16  
SDATA 15  
0.1µF  
0.1µF  
10µF  
0.1µF  
D5  
10 D4  
11 D3  
12 D2  
13 D1  
5V  
14 D0 (LSB)  
8
3
DATA OUTPUTS  
SERIAL INTERFACE  
Figure 17. Recommended Circuit Configuration, 3-Channel SHA Mode (Analog Inputs Sampled with Respect to Ground)  
Rev. B | Page 17 of 20  
 
 
 
AD9822  
OUTLINE DIMENSIONS  
18.10 (0.7126)  
17.70 (0.6969)  
28  
1
15  
14  
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
2.65 (0.1043)  
2.35 (0.0925)  
0.75 (0.0295)  
0.25 (0.0098)  
× 45°  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
1.27 (0.0500)  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COPLANARITY  
0.10  
BSC  
COMPLIANT TO JEDEC STANDARDS MS-013AE  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 18. 28-Lead Standard Small Outline Package [SOIC]  
Wide Body (R-28)  
Dimensions shown in millimeters and (inches)  
10.50  
10.20  
9.90  
28  
15  
14  
5.60 8.20  
5.30 7.80  
5.00 7.40  
1
PIN 1  
1.85  
1.75  
1.65  
COPLANARITY  
0.10  
2.00 MAX  
0.25  
0.09  
8°  
4°  
0°  
0.65  
BSC  
0.95  
0.75  
0.55  
0.38  
0.22  
0.05 MIN  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-150AH  
Figure 19. 28-Lead Shrink Small Outline Package [SSOP]  
(RS-28)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD9822JR  
Temperature Range  
0°C to 70°C  
Package Description  
28-Lead SOIC  
Package Options  
R-28  
AD9822JRRL  
AD9822JRS  
AD9822JRSRL  
AD9822JRSZ1  
AD9822JRSZRL1  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
28-Lead SOIC  
R-28  
RS-28  
RS-28  
RS-28  
28-Lead SSOP  
28-Lead SSOP  
28-Lead SSOP  
28-Lead SSOP  
0°C to 70°C  
RS-28  
1 Z = Pb-free part.  
Rev. B | Page 18 of 20  
 
 
 
AD9822  
NOTES  
Rev. B | Page 19 of 20  
AD9822  
NOTES  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C00623–0–2/05(B)  
Rev. B | Page 20 of 20  

相关型号:

AD9822JRZ

Complete 14-Bit CCD/CIS Signal Processor
ADI

AD9823

Correlated Double Sampler (CDS)
ADI

AD9823BRUZ

Correlated Double Sampler (CDS)
ADI

AD9823KRUZ

Correlated Double Sampler (CDS)
ADI

AD9824

Complete 14-Bit 30 MSPS CCD Signal Processor
ADI

AD9824KCP

Complete 14-Bit 30 MSPS CCD Signal Processor
ADI

AD9824KCPRL

IC SPECIALTY ANALOG CIRCUIT, QCC48, LFCSP-48, Analog IC:Other
ADI

AD9824KCPZ

Complete 14-Bit 30 MSPS CCD Signal Processor
ADI

AD9824KCPZRL

Complete 14-Bit 30 MSPS CCD Signal Processor
ADI

AD9826

Complete 16-Bit Imaging Signal Processor
ADI

AD9826KRS

Complete 16-Bit Imaging Signal Processor
ADI

AD9826KRS

SPECIALTY CONSUMER CIRCUIT, PDSO28, 5.30 MM, SSOP-28
ROCHESTER