AD9824KCPRL [ADI]

IC SPECIALTY ANALOG CIRCUIT, QCC48, LFCSP-48, Analog IC:Other;
AD9824KCPRL
型号: AD9824KCPRL
厂家: ADI    ADI
描述:

IC SPECIALTY ANALOG CIRCUIT, QCC48, LFCSP-48, Analog IC:Other

文件: 总24页 (文件大小:419K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Complete 14-Bit 30 MSPS  
CCD Signal Processor  
a
AD9824  
PRODUCT DESCRIPTION  
FEATURES  
The AD9824 is a complete analog signal processor for CCD  
applications. It features a 30 MHz single-channel architecture  
designed to sample and condition the outputs of interlaced and  
progressive scan area CCD arrays. The AD9824’s signal chain  
consists of an input clamp, a correlated double sampler (CDS),  
PxGA, a digitally controlled VGA, a black level clamp, and a  
14-bit A/D converter. Additional input modes are also pro-  
vided for processing analog video signals.  
14-Bit 30 MSPS A/D Converter  
30 MSPS Correlated Double Sampler (CDS)  
4 dB 6 dB 6-Bit Pixel Gain Amplifier (PxGA®)  
2 dB to 36 dB 10-Bit Variable Gain Amplifier (VGA)  
Low Noise Clamp Circuits  
Analog Preblanking Function  
Auxiliary Inputs with VGA and Input Clamp  
3-Wire Serial Digital Interface  
3 V Single-Supply Operation  
Low Power: 153 mW @ 3 V Supply  
Space-Saving 48-Lead LFCSP Package  
The internal registers are programmed through a 3-wire  
serial digital interface. Programmable features include gain  
adjustment, black level adjustment, input configuration, and  
power-down modes.  
APPLICATIONS  
High Performance Digital Still Cameras  
Industrial/Scientific Imaging  
The AD9824 operates from a single 3 V power supply, typically  
dissipates 153 mW, and is packaged in a 48-lead LFCSP.  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
AVSS  
HD  
VD  
VRT  
VRB  
PBLK  
DRVDD  
DRVSS  
COLOR  
BAND GAP  
STEERING  
REFERENCE  
4dB 6dB  
PxGA  
2dB~36dB  
VGA  
CDS  
CCDIN  
14  
2:1  
MUX  
ADC  
CLP  
DOUT  
CLP  
6
CLPDM  
AUX1IN  
10  
CLPOB  
2:1  
MUX  
BUF  
AUX2IN  
BLK CLAMP  
LEVEL  
8
CONTROL  
REGISTERS  
CLP  
DVDD  
DVSS  
DIGITAL  
INTERFACE  
INTERNAL  
TIMING  
AD9824  
SL  
SCK  
SDATA  
SHP  
SHD DATACLK  
PxGA is a registered trademark of Analog Devices, Inc.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
AD9824–SPECIFICATIONS  
GENERAL SPECIFICATIONS (TMIN to TMAX, AVDD = DVDD = 3.0 V, fDATACLK = 30 MHz, unless otherwise noted.)  
Parameter  
Min  
Typ  
Max  
Unit  
TEMPERATURE RANGE  
Operating  
Storage  
–20  
–65  
+85  
+150  
°C  
°C  
POWER SUPPLY VOLTAGE  
Analog, Digital, Digital Driver  
2.7  
3.6  
V
POWER CONSUMPTION  
Normal Operation  
Power-Down Modes  
Standby  
(Specified Under Each Mode of Operation)  
5
0.5  
mW  
mW  
Total Power-Down  
MAXIMUM CLOCK RATE  
30  
14  
MHz  
A/D CONVERTER  
Resolution  
Bits  
Differential Nonlinearity (DNL)  
No Missing Codes  
Full-Scale Input Voltage  
Data Output Coding  
0.5  
2.0  
1.0  
LSB  
Bits Guaranteed  
V
14  
Straight Binary  
VOLTAGE REFERENCE  
Reference Top Voltage (VRT)  
Reference Bottom Voltage (VRB)  
2.0  
1.0  
V
V
Specifications subject to change without notice.  
DIGITAL SPECIFICATIONS  
(DRVDD = 2.7 V, CL = 20 pF, unless otherwise noted.)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
LOGIC INPUTS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
VIH  
VIL  
IIH  
IIL  
CIN  
2.1  
V
V
µA  
µA  
pF  
0.6  
10  
10  
10  
LOGIC OUTPUTS  
High Level Output Voltage, IOH = 2 mA  
Low Level Output Voltage, IOL = 2 mA  
VOH  
VOL  
2.2  
V
V
0.5  
Specifications subject to change without notice.  
–2–  
REV. 0  
AD9824  
(TMIN to TMAX, AVDD = DVDD = 3.0 V, fDATACLK = fSHP = fSHD = 30 MHz, unless otherwise noted.)  
CCD-MODE SPECIFICATIONS  
Parameter  
OWER CONSUMPTION  
Min  
Typ Max  
Unit  
mW  
Notes  
P
153  
See TPC 1 for Power Curves  
MAXIMUM CLOCK RATE  
30  
MHz  
CDS  
Gain  
0
500  
dB  
Allowable CCD Reset Transient1  
Max Input Range Before Saturation1  
Max CCD Black Pixel Amplitude1  
mV  
V p-p  
mV  
See Input Waveform in Footnote 1  
PxGA Gain at 4 dB  
1.0  
200  
PIXEL GAIN AMPLIFIER (PxGA)  
Max Input Range  
Max Output Range  
1.0  
1.6  
V p-p  
V p-p  
Steps  
Gain Control Resolution  
64  
Gain Monotonicity  
Guaranteed  
Gain Range (Two’s Complement Coding)  
Min Gain (PxGA Gain Code 32)  
Max Gain (PxGA Gain Code 31)  
See Figure 28 for PxGA Gain Curve  
–2.5  
9.5  
dB  
dB  
VARIABLE GAIN AMPLIFIER (VGA)  
Max Input Range  
Max Output Range  
Gain Control Resolution  
Gain Monotonicity  
1.6  
2.0  
V p-p  
V p-p  
Steps  
1024  
Guaranteed  
Gain Range  
Low Gain (VGA Gain Code 77)  
Max Gain (VGA Gain Code 1023)  
See Figure 29 for VGA Gain Curve  
Measured at ADC Output  
2
36  
dB  
dB  
BLACK LEVEL CLAMP  
Clamp Level Resolution  
Clamp Level  
256  
Steps  
Min Clamp Level  
Max Clamp Level  
0
LSB  
LSB  
1020  
SYSTEM PERFORMANCE  
Gain Accuracy2  
Low Gain (VGA Code 77)  
Max Gain (VGA Code 1023)  
Peak Nonlinearity, 500 mV Input Signal  
Total Output Noise  
Specifications Include Entire Signal Chain  
Gain = (0.0353 × Code) +3.3  
5.5  
38.2  
6
6.5  
40.2  
dB  
dB  
%
LSB rms  
dB  
39.4  
0.1  
2.0  
40  
12 dB Gain Applied  
AC Grounded Input, 6 dB Gain Applied  
Measured with Step Change on Supply  
Power Supply Rejection (PSR)  
POWER-UP RECOVERY TIME  
Reference Standby Mode  
Total Shutdown Mode  
Normal Clock Signals Applied  
1
3
15  
ms  
ms  
ms  
Power-Off Condition  
NOTES  
1Input signal characteristics defined as follows:  
500mV TYP  
RESET TRANSIENT  
200mV MAX  
OPTICAL BLACK PIXEL  
1V MAX  
INPUT SIGNAL RANGE  
2PxGA gain fixed at Code 63 (3.3 dB).  
Specifications subject to change without notice.  
–3–  
REV. 0  
AD9824–SPECIFICATIONS  
(TMIN to TMAX, AVDD = DVDD = 3.0 V, fDATACLK = 30 MHz, unless otherwise noted.)  
AUX1-MODE SPECIFICATIONS  
Parameter  
Min  
Typ  
Max  
Unit  
mW  
POWER CONSUMPTION  
MAXIMUM CLOCK RATE  
120  
30  
MHz  
INPUT BUFFER  
Gain  
Max Input Range  
0
dB  
V p-p  
1.0  
2.0  
VGA  
Max Output Range  
Gain Control Resolution  
Gain (Selected Using VGA Gain Register)  
Min Gain  
V p-p  
Steps  
1023  
0
36  
dB  
dB  
Max Gain  
Specifications subject to change without notice.  
AUX2-MODE SPECIFICATIONS (TMIN to TMAX, AVDD = DVDD = 3.0 V, fDATACLK = 30 MHz, unless otherwise noted.)  
Parameter  
Min  
Typ  
Max  
Unit  
mW  
POWER CONSUMPTION  
MAXIMUM CLOCK RATE  
INPUT BUFFER  
120  
30  
MHz  
(Same as AUX1-MODE)  
512  
VGA  
Max Output Range  
Gain Control Resolution  
Gain (Selected Using VGA Gain Register)  
Min Gain  
2.0  
V p-p  
Steps  
0
dB  
dB  
Max Gain  
18  
ACTIVE CLAMP  
Clamp Level Resolution  
Clamp Level (Measured at ADC Output)  
Min Clamp Level  
256  
Steps  
0
LSB  
LSB  
Max Clamp Level  
1020  
Specifications subject to change without notice.  
–4–  
REV. 0  
AD9824  
(CL = 20 pF, fSAMP = 30 MHz, CCD-Mode Timing in Figures 5 and 6, AUX-Mode Timing in Figure 7,  
Serial Timing in Figures 21–24.)  
TIMING SPECIFICATIONS  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
SAMPLE CLOCKS  
DATACLK, SHP, SHD Clock Period  
DATACLK High/Low Pulsewidth  
SHP Pulsewidth  
SHD Pulsewidth  
CLPDM Pulsewidth  
tCP  
33  
13  
5
5
4
2
0
15  
33  
ns  
ns  
ns  
ns  
Pixels  
Pixels  
ns  
ns  
ns  
tADC  
tSHP  
tSHD  
tCDM  
tCOB  
tS1  
16.7  
8.3  
8.3  
10  
CLPOB Pulsewidth  
*
20  
SHP Rising Edge to SHD Falling Edge  
SHP Rising Edge to SHD Rising Edge  
Internal Clock Delay  
8.3  
16.7  
3.0  
tS2  
tID  
Inhibited Clock Period  
tINH  
10  
ns  
DATA OUTPUTS  
Output Delay  
Output Hold Time  
Pipeline Delay  
tOD  
tH  
13  
7.6  
9
16  
ns  
ns  
Cycles  
7.0  
SERIAL INTERFACE  
Maximum SCK Frequency  
SL to SCK Setup Time  
SCK to SL Hold Time  
SDATA Valid to SCK Rising Edge Setup  
SCK Falling Edge to SDATA Valid Hold  
SCK Falling Edge to SDATA Valid Read  
fSCLK  
tLS  
tLH  
tDS  
tDH  
tDV  
10  
10  
10  
10  
10  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
*
Minimum CLPOB pulsewidth is for functional operation only. Wider typical pulses are recommended to achieve low noise clamp performance.  
Specifications subject to change without notice.  
ORDERING GUIDE  
ABSOLUTE MAXIMUM RATINGS  
With  
Respect  
To  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
Parameter  
Min Max  
Unit  
AD9824KCP –20°C to +85°C LFCSP  
CP-48  
AVDD1, AVDD2  
DVDD1, DVDD2  
DRVDD  
AVSS  
DVSS  
DRVSS –0.3 +3.9  
–0.3 +3.9  
–0.3 +3.9  
V
V
V
V
V
V
V
V
THERMAL CHARACTERISTICS  
Thermal Resistance  
48-Lead LFCSP Package  
Digital Outputs  
DRVSS –0.3 DRVDD + 0.3  
SHP, SHD, DATACLK  
CLPOB, CLPDM, PBLK  
SCK, SL, SDATA  
VRT, VRB, CMLEVEL  
BYP1-3, CCDIN  
Junction Temperature  
Lead Temperature (10 sec)  
DVSS  
DVSS  
DVSS  
AVSS  
AVSS  
–0.3 DVDD + 0.3  
–0.3 DVDD + 0.3  
–0.3 DVDD + 0.3  
–0.3 AVDD + 0.3  
–0.3 AVDD + 0.3  
150  
θ
JA = 26°C/W*  
θ
JA is measured using a 4-layer PCB with the exposed paddle  
*
soldered to the board.  
V
°C  
°C  
300  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD9824 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. 0  
–5–  
AD9824  
PIN CONFIGURATIONS  
48 47 46 45 44 43 42 41 40 39 38 37  
1
2
D2  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
AUX1IN  
AVSS  
AUX2IN  
AVDD2  
BYP3  
PIN 1  
IDENTIFIER  
D3  
3
D4  
D5  
4
5
D6  
AD9824  
6
D7  
NC  
TOP VIEW  
7
D8  
CCDIN  
BYP2  
(Not to Scale)  
8
D9  
9
D10  
BYP1  
10  
11  
12  
D11  
AVDD1  
AVSS  
AVSS  
D12  
(MSB) D13  
13 14 15 16 17 18 19 20 21 22 23 24  
NC = NO CONNECT  
PIN FUNCTION DESCRIPTIONS  
Pin Number  
Name  
Type  
Description  
1–12  
13  
14  
15, 41  
16  
17  
18  
19  
20  
21  
D2–D13  
DRVDD  
DRVSS  
DVSS  
DATACLK  
DVDD1  
HD  
PBLK  
CLPOB  
SHP  
SHD  
CLPDM  
VD  
AVSS  
AVDD1  
BYP1  
DO  
P
P
P
DI  
P
DI  
DI  
DI  
DI  
DI  
DI  
DI  
P
Digital Data Outputs. Pin 12 (D13) is MSB.  
Digital Output Driver Supply  
Digital Output Driver Ground  
Digital Ground  
Digital Data Output Latch Clock  
Digital Supply 1  
Horizontal Drive. Used with VD for color steering control.  
Preblanking Clock Input  
Black Level Clamp Clock Input  
CDS Sampling Clock for CCD’s Reference Level  
CDS Sampling Clock for CCD’s Data Level  
Input Clamp Clock Input  
Vertical Drive. Used with HD for color steering control.  
Analog Ground  
Analog Supply 1  
Internal Bias Level Decoupling  
Internal Bias Level Decoupling  
Analog Input for CCD Signal  
Internally Not Connected  
Internal Bias Level Decoupling  
Analog Supply 2  
22  
23  
24  
25, 26, 35  
27  
28  
29  
30  
31  
32  
33  
34  
36  
37  
38  
39  
40  
42  
43  
44  
P
AO  
AO  
AI  
NC  
AO  
P
AI  
AI  
NC  
AO  
AO  
P
NC  
DI  
DI  
DI  
DI  
DI  
BYP2  
CCDIN  
NC  
BYP3  
AVDD2  
AUX2IN  
AUX1IN  
NC  
VRT  
VRB  
DVDD2  
NC  
STBY  
SL  
SDATA  
SCK  
D0–D1  
Analog Input  
Analog Input  
Internally Not Connected  
A/D Converter Top Reference Voltage Decoupling  
A/D Converter Bottom Reference Voltage Decoupling  
Digital Supply 2  
Internally Not Connected  
Standby Mode, Active High. Same as total power-down mode.  
Serial Digital Interface Load Pulse  
Serial Digital Interface Data  
Serial Digital Interface Clock  
Digital Data Outputs. Pin 47 (D0) is LSB.  
45  
46  
47, 48  
TYPE: AI = Analog Input, AO = Analog Output, DI = Digital Input, DO = Digital Output, P = Power  
–6–  
REV. 0  
AD9824  
chain at the specified gain setting. The output noise can be  
converted to an equivalent voltage using the relationship  
1 LSB = (ADC Full Scale/2N codes) where N is the bit resolution  
of the ADC. For the AD9824, 1 LSB is 125 µV.  
DEFINITIONS OF SPECIFICATIONS  
Differential Nonlinearity (DNL)  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. Thus, every code  
must have a finite width. No missing codes guaranteed to 14-bit  
resolution indicates that all 16,384 codes, respectively, must  
be present over all operating conditions.  
Power Supply Rejection (PSR)  
The PSR is measured with a step change applied to the supply  
pins. This represents a high frequency disturbance on the  
AD9824’s power supply. The PSR specification is calculated  
from the change in the data outputs for a given step change in  
the supply voltage.  
Peak Nonlinearity  
Peak nonlinearity, a full signal chain specification, refers to the  
peak deviation of the output of the AD9824 from a true straight  
line. The point used as “zero scale” occurs 1/2 LSB before the  
first code transition. “Positive full scale” is defined as a Level 1,  
1/2 LSB beyond the last code transition. The deviation is measured  
from the middle of each particular output code to the true straight  
line. The error is then expressed as a percentage of the 2 V ADC  
full-scale signal. The input signal is always appropriately gained up  
to fill the ADC’s full-scale range.  
Internal Delay for SHP/SHD  
The internal delay (also called aperture delay) is the time delay  
that occurs from when a sampling edge is applied to the AD9824  
until the actual sample of the input signal is held. Both SHP and  
SHD sample the input signal during the transition from low to  
high, so the internal delay is measured from each clock’s rising  
edge to the instant the actual internal sample is taken.  
Total Output Noise  
The rms output noise is measured using histogram techniques.  
The standard deviation of the ADC output codes is calculated  
in LSB and represents the rms noise level of the total signal  
EQUIVALENT INPUT CIRCUITS  
DVDD  
ACVDD  
330ꢁ  
ACVSS  
ACVSS  
DVSS  
Figure 3. CCDIN (Pin 30)  
Figure 1. Digital Inputs—SHP, SHD, DATACLK, CLPOB,  
CLPDM, HD, VD, PBLK, SCK, and SL  
DRVDD  
DVDD  
DATA  
DVDD  
DVDD  
DATA IN  
THREE-  
STATE  
330ꢁ  
DOUT  
DATA OUT  
RNW  
DVSS  
DVSS  
DVSS  
DVSS  
DRVSS  
Figure 4. SDATA (Pin 45)  
Figure 2. Data Outputs—D0–D13  
REV. 0  
–7–  
–Typical Performance Characteristics  
AD9824  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
190  
180  
170  
V
= 3.3V  
DD  
160  
150  
140  
130  
V
= 3.0V  
= 2.7V  
DD  
V
DD  
120  
110  
100  
10  
0
255  
511  
767  
1023  
20  
30  
VGA GAIN CODE – LSB  
SAMPLE RATE – MHz  
TPC 1. Power vs. Sample Rate  
TPC 3. Output Noise vs. VGA Gain  
0.5  
0.25  
0
–0.25  
–0.5  
2000 4000  
6000 8000  
16000  
10000 12000 14000  
0
TPC 2. Typical DNL Performance  
–8–  
REV. 0  
AD9824  
CCD MODE AND AUX MODE TIMING  
CCD  
SIGNAL  
N
N+1  
N+2  
N+9  
N+10  
tID  
tID  
SHP  
tS1  
tS2  
tCP  
SHD  
tINH  
DATACLK  
tOD  
tH  
OUTPUT  
DATA  
N–10  
N–9  
N–8  
N–1  
N
NOTES  
1. RECOMMENDED PLACEMENT FOR DATACLK RISING EDGE IS BETWEEN THE SHD RISING EDGE AND NEXT SHP FALLING EDGE.  
2. CCD SIGNAL IS SAMPLED AT SHP AND SHD RISING EDGES.  
Figure 5. CCD Mode Timing  
HORIZONTAL  
BLANKING  
EFFECTIVE PIXELS  
OPTICAL BLACK PIXELS  
DUMMY PIXELS  
EFFECTIVE PIXELS  
CCD  
SIGNAL  
CLPOB  
CLPDM  
PBLK  
OUTPUT  
DATA  
EFFECTIVE PIXEL DATA  
OB PIXEL DATA  
DUMMY BLACK  
EFFECTIVE DATA  
NOTES  
1. CLPOB AND CLPDM WILL OVERWRITE PBLK. PBLK WILL NOT AFFECT CLAMP OPERATION IF OVERLAPPING CLPDM AND/OR CLPOB.  
2. PBLK SIGNAL IS OPTIONAL.  
3. DIGITAL OUTPUT DATA WILL BE ALL ZEROS DURING PBLK. OUTPUT DATA LATENCY IS 9 DATACLK CYCLES.  
Figure 6. Typical CCD Mode Line Clamp Timing  
N+9  
N
N+1  
N+8  
tID  
N+2  
VIDEO  
SIGNAL  
tCP  
DATACLK  
tOD  
tH  
OUTPUT  
DATA  
N–10  
N–9  
N–8  
N–1  
N
Figure 7. AUX Mode Timing  
–9–  
REV. 0  
AD9824  
PIXEL GAIN AMPLIFIER (PxGA) TIMING  
FRAME N  
FRAME N+1  
0101...  
LINE 2  
VD  
0101...  
LINE 0  
2323...  
LINE 1  
0101...  
LINE 2  
0101...  
LINE 0  
2323...  
LINE 1  
LINE M–1  
LINE M  
LINE M–1  
LINE M  
HD  
*0 = GAIN0, 1 = GAIN1, 2 = GAIN2, 3 = GAIN3  
Figure 8. PxGA Mode 1 (Mosaic Separate) Frame/Line Gain Register Sequence  
5 PIXEL MIN  
VD  
HD  
3ns MIN  
GAIN0  
3ns MIN  
SHP  
GAIN3  
GAINX  
GAIN1  
GAIN0  
GAINX  
GAIN2  
PxGA GAIN  
NOTES  
1. MINIMUM PULSEWIDTH FOR HD AND VD IS 5 PIXEL CYCLES.  
2. BOTH VD AND HD ARE INTERNALLY UPDATED AT SHP RISING EDGES. MINIMUM SETUP TIME IS 3 ns.  
3. EVERY HD RISING EDGE WITH A PREVIOUS VD RISING EDGE WILL RESET TO 0101.  
4. EVERY HD RISING EDGE WITHOUT A PREVIOUS VD RISING EDGE WILL ALTERNATE BETWEEN 0101... AND 2323.  
Figure 9. PxGA Mode 1 (Mosaic Separate) Detailed Timing  
EVEN FIELD  
ODD FIELD  
VD  
0101...  
LINE 2  
0101...  
LINE 0  
2323...  
LINE 1  
0101...  
LINE 0  
2323...  
LINE 1  
0101...  
LINE 2  
LINE M–1  
LINE M  
LINE M–1  
LINE M  
HD  
*0 = GAIN0, 1 = GAIN1, 2 = GAIN2, 3 = GAIN3  
Figure 10. PxGA Mode 2 (Interlace) Frame/Line Gain Register Sequence  
VD  
HD  
5 PIXEL MIN  
3ns MIN  
GAIN0  
3ns MIN  
SHP  
PxGA  
GAIN  
GAINX  
GAIN1  
GAIN0  
GAIN2  
GAIN3  
GAINX  
NOTES  
1. BOTH VD AND HD ARE INTERNALLY UPDATED AT SHP RISING EDGES.  
2. EVERY HD RISING EDGE WITH A PREVIOUS VD RISING OR FALLING EDGE WILL RESET TO 0101.  
3. EVERY HD RISING EDGE WITHOUT A PREVIOUS VD RISING EDGE WILL ALTERNATE BETWEEN 0101... AND 2323.  
Figure 11. PxGA Mode 2 (Interlace) Detailed Timing  
–10–  
REV. 0  
AD9824  
LINE N  
LINE N+1  
VD  
HD  
012012012...  
...01201  
012012012...  
*0 = GAIN0, 1 = GAIN1, 2 = GAIN2  
Figure 12. PxGA Mode 3 (3-Color) Frame/Line Gain Register Sequence  
5 PIXEL MIN  
5 PIXEL MIN  
3ns MIN  
VD  
HD  
SHP  
PxGA GAIN  
GAIN1  
GAIN2  
GAIN0  
GAIN0  
GAIN1  
GAINX  
GAIN0  
GAINX  
NOTES  
1. BOTH VD AND HD ARE INTERNALLY UPDATED AT SHP RISING EDGES.  
2. EVERY HD RISING EDGE WITH A PREVIOUS VD RISING EDGE WILL RESET TO 012012.  
Figure 13. PxGA Mode 3 (3-Color) Detailed Timing  
LINE N  
LINE N+1  
VD  
01230123012...  
...01230  
012301230123...  
HD  
*0 = GAIN0, 1 = GAIN1, 2 = GAIN2, 3 = GAIN3  
Figure 14. PxGA Mode 4 (4-Color) Frame/Line Gain Register Sequence  
5 PIXEL MIN  
5 PIXEL MIN  
3ns MIN  
VD  
HD  
SHP  
PxGA GAIN  
GAIN1  
GAIN2  
GAIN0  
GAIN0  
GAIN1  
GAINX  
GAIN0  
GAINX  
NOTES  
1. BOTH VD AND HD ARE INTERNALLY UPDATED AT SHP RISING EDGES.  
2. EVERY HD RISING EDGE WITH A PREVIOUS VD RISING EDGE WILL RESET TO 01230123.  
Figure 15. PxGA Mode 4 (4-Color) Detailed Timing  
REV. 0  
–11–  
AD9824  
ODD FIELD  
VD  
EVEN FIELD  
0101...  
2323...  
LINE 2  
2323...  
LINE 0  
2323...  
LINE 1  
0101...  
LINE 0  
0101...  
LINE 1  
LINE 2  
LINE M–1  
LINE M  
LINE M–1  
LINE M  
HD  
*0 = GAIN0, 1 = GAIN1, 2 = GAIN2, 3 = GAIN3  
Figure 16. PxGA Mode 5 (VD Selected) Frame/Line Gain Register Sequence  
VD  
HD  
5 PIXEL MIN  
3ns MIN  
3ns MIN  
SHP  
GAIN3  
GAINX  
GAIN0  
GAIN1  
GAIN0  
GAINX  
GAIN2  
PxGA GAIN  
NOTES  
1. BOTH VD AND HD ARE INTERNALLY UPDATED AT SHP RISING EDGES.  
2. EVERY HD RISING EDGE WITH A PREVIOUS VD FALLING EDGE WILL RESET TO 0101.  
3. EVERY HD RISING EDGE WITH A PREVIOUS VD RISING EDGE WILL RESET TO 2323.  
4. EVERY HD RISING EDGE WITHOUT A PREVIOUS VD RISING EDGE WILL REPEAT EITHER 0101... (EVEN) OR 2323... (ODD).  
Figure 17. PxGA Mode 5 (VD Selected) Detailed Timing  
FRAME N  
0101...  
FRAME N+1  
0101...  
LINE 2  
VD  
0101...  
LINE 0  
1212...  
LINE 1  
0101...  
LINE 0  
1212...  
LINE 1  
LINE 2  
LINE M–1  
LINE M  
LINE M–1  
LINE M  
HD  
* 0 = GAIN0, 1 = GAIN1, 2 = GAIN2  
Figure 18. PxGA Mode 6 (Mosaic Repeat) Frame/Line Gain Register Sequence  
5 PIXEL MIN  
VD  
HD  
3ns MIN  
GAIN0  
3ns MIN  
SHP  
GAINX  
GAIN1  
GAIN0  
GAINX  
GAIN1  
GAIN2  
PxGA GAIN  
NOTES  
1. MINIMUM PULSEWIDTH FOR HD AND VD IS 5 PIXEL CYCLES.  
2. BOTH VD AND HD ARE INTERNALLY UPDATED AT SHP RISING EDGES. MINIMUM SETUP TIME IS 3 ns.  
3. EVERY HD RISING EDGE WITH A PREVIOUS VD RISING EDGE WILL RESET TO 0101.  
4. EVERY HD RISING EDGE WITHOUT A PREVIOUS VD RISING EDGE WILL ALTERNATE BETWEEN 0101... AND 1212.  
Figure 19. PxGA Mode 6 (Mosaic Repeat) Detailed Timing  
–12–  
REV. 0  
AD9824  
VD  
HD  
3ns MIN  
3ns MIN  
SHP  
PxGA GAIN  
GAIN1  
GAIN0  
GAIN2  
GAIN3  
GAIN0  
NOTES  
1. BOTH VD AND HD ARE INTERNALLY UPDATED AT SHP RISING EDGES.  
2. VD = 0 AND HD = 0 SELECTS GAIN0.  
3. VD = 0 AND HD = 1 SELECTS GAIN1.  
4. VD = 1 AND HD = 0 SELECTS GAIN2.  
5. VD = 1 AND HD = 1 SELECTS GAIN3.  
Figure 20. PxGA Mode 7 (User-Specified) Detailed Timing  
REV. 0  
–13–  
AD9824  
SERIAL INTERFACE TIMING AND INTERNAL REGISTER DESCRIPTION  
Table I. Internal Register Map  
Register  
Name  
Address  
A0 A1 A2  
Data Bits  
D4 D5  
D0 D1 D2  
D3  
D6  
D7  
D8  
D9  
D10  
Operation  
0 0 0  
Channel Select Power-Down  
CCD/AUX1/2 Modes  
Software OB Clamp  
01  
12  
01  
01  
01  
Reset  
On/Off  
VGA Gain  
Clamp Level  
Control  
1 0  
0
LSB  
LSB  
MSB  
X
X
X
X
0
1
1
0
MSB  
01  
X
1
0
Color Steering Mode  
Selection  
PxGA  
Clock Polarity Select for  
01  
Three-  
State  
On/Off SHP/SHD/CLP/DATA  
PxGA Gain0  
PxGA Gain1  
PxGA Gain2  
0
1
0
1
0
0
1
1
1
1
1
1
LSB  
LSB  
LSB  
LSB  
MSB  
MSB  
MSB  
MSB  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
PxGA Gain3  
NOTES  
1Internal use only. Must be set to zero.  
2Must be set to one.  
RNW  
TEST BIT  
0
SDATA  
SCK  
A0  
A1  
A2  
0
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
tDS  
tDH  
tLS  
tLH  
SL  
NOTES  
1. SDATA BITS ARE INTERNALLY LATCHED ON THE RISING EDGES OF SCK.  
2. RNW = READ-NOT-WRITE. SET LOW FOR WRITE OPERATION.  
3. TEST BITS = INTERNAL USE ONLY. MUST BE SET LOW.  
4. SYSTEM UPDATE OF LOADED REGISTERS OCCURS ON SL RISING EDGE.  
Figure 21. Serial Write Operation  
RNW  
1
TEST BIT  
0
SDATA  
SCK  
A0  
A1  
0
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
tDS  
tDH  
tDV  
tLS  
tLH  
SL  
NOTES  
1. RNW = READ-NOT-WRITE. SET HIGH FOR READ OPERATION.  
2. TEST BITS = INTERNAL USE ONLY. MUST BE SET LOW.  
3. SERIAL DATA FROM THE SELECTED REGISTER IS VALID STARTING AFTER THE 5TH SCK FALLING EDGE AND IS UPDATED ON  
SCK FALLING EDGES.  
Figure 22. Serial Readback Operation  
–14–  
REV. 0  
AD9824  
11 BITS  
OPERATION  
10 BITS  
8 BITS  
10 BITS  
CONTROL  
6 BITS  
6 BITS  
6 BITS  
6 BITS  
PxGA GAIN3  
ACG GAIN CLAMP LEVEL  
PxGA GAIN0 PxGA GAIN1 PxGA GAIN2  
RNW A0  
A1 A2  
...  
...  
...  
...  
...  
...  
...  
...  
SDATA  
0
0
0
0
0
D9 D0  
D10 D0  
D9  
D7 D0  
D0  
D5 D0  
D0  
D5  
D0  
D5  
D5  
D0  
...  
...  
...  
...  
...  
...  
...  
...  
SCK  
SL  
2
3
4
5
6
16 17  
26 27  
34 35  
44 45  
50 51  
56 57  
62 63  
68  
1
...  
NOTES  
1. ANY NUMBER OF ADJACENT REGISTERS MAY BE LOADED SEQUENTIALLY, BEGINNING WITH THE LOWEST ADDRESS AND INCREMENTING ONE ADDRESS AT A TIME.  
2. WHEN SEQUENTIALLY LOADING MULTIPLE REGISTERS, THE EXACT REGISTER LENGTH (SHOWN ABOVE) MUST BE USED FOR EACH REGISTER.  
3. ALL LOADED REGISTERS WILL BE SIMULTANEOUSLY UPDATED WITH THE RISING EDGE OF SL.  
Figure 23. Continuous Serial Write Operation to All Registers  
PxGA GAIN3  
PxGA GAIN1  
D2  
PxGA GAIN2  
PxGA GAIN0  
D2 D3  
A2  
1
RNW A0  
A1  
0
...  
...  
0
0
0
D0  
D1  
D4  
D5  
D0  
D1  
D3  
D4  
D5  
D0  
D5  
D0  
D5  
SDATA  
SCK  
SL  
...  
...  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
23  
24  
29  
...  
Figure 24. Continuous Serial Write Operation to All PxGA Gain Registers  
Table II. Operation Register Contents (Default Value x000)  
Optical Black Clamp  
D5  
Reset  
D4  
Power-Down Modes  
D3 D2  
Channel Selection  
D1 D0  
D10 D9 D8 D7 D6  
01  
01  
01  
12  
01  
0
1
Enable Clamping  
Disable Clamping  
0 Normal  
1 Reset All Registers  
to Default  
0
0
1
1
0
1
0
1
Normal Power  
Test Only  
Standby  
0
0
1
1
0
1
0
1
CCD Mode  
AUX1 Mode  
AUX2 Mode  
Test Only  
Total Power-Down  
NOTES  
1
Must be set to zero.  
Set to one.  
2
Table III. VGA Gain Register Contents (Default Value x000)  
MSB  
D9  
LSB  
D0  
D10  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Gain (dB)  
X
0
0
0
1
0
1
1
1
1
1
1
1
2.0  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
35.965  
36.0  
REV. 0  
–15–  
AD9824  
Table IV. Clamp Level Register Contents (Default Value x080)  
MSB  
D7  
LSB  
D0  
D10  
D9  
D8  
D6  
D5  
D4  
D3  
D2  
D1  
Clamp Level (LSB)  
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
4
8
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1016  
1020  
Table V. Control Register Contents (Default Value x000)  
Data Out  
DATACLK  
D8 D7 D6  
CLP/PBLK  
D5  
SHP/SHD  
D4  
PxGA  
Color Steering Modes  
D2 D1 D0  
D10 D9  
0 Enable  
1 Three-State  
D32  
X
01 01 0 Rising Edge Trigger 0 Active Low 0 Active Low 0 Disable 0  
0
0
1
1
0
0
1
1
0 Steering Disabled  
1 Mosaic Separate  
0 Interlace  
1 3-Color  
0 4-Color  
1 VD Selected  
0 Mosaic Repeat  
1 User Specified  
1 Falling Edge Trigger 1 Active High 1 Active High 1 Enable  
0
0
0
1
1
1
1
NOTES  
1 Must be set to zero.  
2 When D3 = 0 (PxGA disabled), the PxGA gain is fixed to Code 63 (3.3dB).  
Table VI. PxGA Gain Registers for Gain0, Gain1, Gain2, Gain3 (Default Value x000)  
MSB  
D5  
LSB  
D0  
D10  
D9  
D8  
D7  
D6  
D4  
D3  
D2  
D1  
Gain (dB)*  
X
X
X
X
X
0
1
1
1
1
1
+9.5  
0
1
0
1
0
1
0
1
0
1
0
1
+3.5  
+3.3  
1
0
0
0
0
0
–2.5  
*Control Register Bit D3 must be set high (PxGA Enable) to use the PxGA Gain Registers.  
–16–  
REV. 0  
AD9824  
CIRCUIT DESCRIPTION AND OPERATION  
The AD9824 signal processing chain is shown in Figure 25.  
Each processing step is essential in achieving a high quality image  
from the raw CCD pixel data.  
gain change on the system black level. Another advantage of  
removing this offset at the input stage is to maximize system  
headroom. Some area CCDs have large black level offset volt-  
ages, which, if not corrected at the input stage, can significantly  
reduce the available headroom in the internal circuitry when  
higher VGA gain settings are used.  
DC Restore  
To reduce the large dc offset of the CCD output signal, a dc  
restore circuit is used with an external 0.1 µF series coupling  
capacitor. This restores the dc level of the CCD signal to approxi-  
mately 1.5 V to be compatible with the 3 V single supply of  
the AD9824.  
Horizontal timing is shown in Figure 6. It is recommended  
that the CLPDM pulse be used during valid CCD dark pixels.  
CLPDM may be used during the optical black pixels, either  
together with CLPOB or separately. The CLPDM pulse should  
be a minimum of 4 pixels wide.  
Correlated Double Sampler  
The CDS circuit samples each CCD pixel twice to extract the  
video information and reject low frequency noise. The timing  
shown in Figure 5 illustrates how the two CDS clocks, SHP  
and SHD, are used to sample the reference level and data level  
of the CCD signal, respectively. The CCD signal is sampled on  
the rising edges of SHP and SHD. Placement of these two clock  
signals is critical in achieving the best performance from the CCD.  
An internal SHP/SHD delay (tID) of 3 ns is caused by internal  
propagation delays.  
PxGA  
The PxGA provides separate gain adjustment for the individual  
color pixels. A programmable gain amplifier with four separate  
values, the PxGA has the capability to “multiplex” its gain value  
on a pixel-to-pixel basis. This allows lower output color pixels to  
be gained up to match higher output color pixels. Also, the PxGA  
may be used to adjust the colors for white balance, reducing the  
amount of digital processing that is needed. The four different gain  
values are switched according to the color steering circuitry.  
Seven different color steering modes for different types of CCD  
color filter arrays are programmed in the AD9824’s Control Regis-  
ter. For example, mosaic separate steering mode accommodates  
the popular “Bayer” arrangement of red, green, and blue filters  
(see Figure 26).  
Input Clamp  
A line-rate input clamping circuit is used to remove the CCD’s  
optical black offset. This offset exists in the CCD’s shielded black  
reference pixels. Unlike some AFE architectures, the AD9824  
removes this offset in the input stage to minimize the effect of a  
VD  
3
PxGA MODE  
SELECTION  
COLOR  
STEERING  
HD  
2
GAIN0  
GAIN1  
GAIN2  
GAIN3  
PxGA GAIN  
REGISTERS  
4:1  
MUX  
DC RESTORE  
CDS  
INTERNAL  
6
V
REF  
2V FULL SCALE  
2dB TO 36dB  
VGA  
0.1F  
14  
CCDIN  
14-BIT  
ADC  
DOUT  
PxGA  
–2dB TO +10dB  
CLPOB  
OPTICAL BLACK  
CLAMP  
8-BIT  
DAC  
INPUT OFFSET  
CLAMP  
10  
CLPDM  
DIGITAL  
FILTERING  
VGA GAIN  
REGISTER  
8
CLAMP LEVEL  
REGISTER  
Figure 25. CCD Mode Block Diagram  
REV. 0  
–17–  
AD9824  
Variable Gain Amplifier  
MOSAIC SEPARATE COLOR  
STEERING MODE  
CCD: PROGRESSIVE BAYER  
The VGA stage provides a gain range of 2 dB to 36 dB, program-  
mable with 10-bit resolution through the serial digital interface.  
Combined with approximately 4 dB from the PxGA stage, the  
total gain range for the AD9824 is 6 dB to 40 dB. The minimum  
gain of 6 dB is needed to match -a 1 V input signal with the  
ADC full-scale range of 2 V. When compared to 1 V full-scale  
systems (such as ADI’s AD9803), the equivalent gain range is  
0 dB to 34 dB.  
Gr  
LINE0  
LINE1  
LINE2  
GAIN0, GAIN1, GAIN0, GAIN1...  
GAIN2, GAIN3, GAIN2, GAIN3...  
GAIN0, GAIN1, GAIN0, GAIN1...  
R
Gb  
R
Gr  
B
R
Gb  
R
B
Gr  
Gr  
B
Gb  
Gb  
B
Figure 26. CCD Color Filter Example: Progressive Scan  
The VGA gain curve follows a “linear-in-dB” shape. The exact  
VGA gain can be calculated for any gain register value by using  
the following equation:  
CCD: INTERLACED BAYER  
EVEN FIELD  
VD SELECTED COLOR  
STEERING MODE  
Gr  
Gr  
Gr  
Gr  
LINE0  
LINE1  
LINE2  
GAIN0, GAIN1, GAIN0, GAIN1...  
GAIN0, GAIN1, GAIN0, GAIN1...  
GAIN0, GAIN1, GAIN0, GAIN1...  
R
R
R
R
Gr  
Gr  
Gr  
Gr  
R
R
R
R
Code Range Gain Equation (dB)  
0–1023  
Gain = (0.0353)(Code)  
As shown in the CCD Mode Specifications, only the VGA gain  
range from 2 dB to 36 dB has tested and guaranteed accuracy.  
This corresponds to a VGA gain code range of 77 to 1023. The  
Gain Accuracy Specifications also include a PxGA gain of approxi-  
mately 3.3 dB, for a total gain range of 6 dB to 40 dB.  
ODD FIELD  
Gb  
B
Gb  
B
LINE0  
LINE1  
LINE2  
GAIN2, GAIN3, GAIN2, GAIN3...  
GAIN2, GAIN3, GAIN2, GAIN3...  
GAIN2, GAIN3, GAIN2, GAIN3...  
36  
30  
24  
18  
12  
6
Gb  
Gb  
B
B
Gb  
Gb  
B
B
Gb  
B
Gb  
B
Figure 27. CCD Color Filter Example: Interlaced  
The same Bayer pattern can also be interlaced, and the VD  
selected mode should be used with this type of CCD (see  
Figure 27). The color steering performs the proper multiplexing  
of the R, G, and B gain values (loaded into the PxGA gain regis-  
ters) and is synchronized by the user with vertical (VD) and  
horizontal (HD) sync pulses. For more detailed information, see  
the PxGA Timing section. The PxGA gain for each of the four  
channels is variable from –2.5 dB to +9.5 dB, controlled in 64  
steps through the serial interface. The PxGA gain curve is  
shown in Figure 28.  
0
0
127  
255  
383  
511  
639  
767  
895  
1023  
VGA GAIN REGISTER CODE  
Figure 29. VGA Gain Curve (Gain from PxGA Not Included)  
Optical Black Clamp  
The optical black clamp loop is used to remove residual offsets  
in the signal chain and to track low frequency variations in the  
CCD’s black level. During the optical black (shielded) pixel  
interval on each line, the ADC output is compared with a fixed  
black level reference, selected by the user in the clamp level  
register. The clamp level is adjustable from 0 to 1020 LSB, in  
256 steps. The resulting error signal is filtered to reduce noise,  
and the correction value is applied to the ADC input through a  
D/A converter. Normally, the optical black clamp loop is turned  
on once per horizontal line, but this loop can be updated more  
slowly to suit a particular application. If external digital clamping  
is used during the post processing, the AD9824 optical black  
clamping may be disabled using Bit D5 in the Operation Register  
(see Serial Interface Timing and Internal Register Description  
section). When the loop is disabled, the clamp level register may  
still be used to provide programmable offset adjustment.  
10  
8
6
4
2
0
–2  
–4  
32  
40  
48  
58  
0
8
16  
24  
31  
(011111)  
(100000)  
PxGA GAIN REGISTER CODE  
Horizontal timing is shown in Figure 6. The CLPOB pulse  
should be placed during the CCD’s optical black pixels. It is  
recommended that the CLPOB pulse duration be at least 20  
pixels wide to minimize clamp noise. Shorter pulsewidths may be  
used, but clamp noise may increase and the ability to track  
low frequency variations in the black level will be reduced.  
Figure 28. PxGA Gain Curve  
–18–  
REV. 0  
AD9824  
A/D Converter  
The VGA gains up the signal level with respect to the 0.4 V bias  
level. Signal levels above the bias level will be further increased  
to a higher ADC code, while signal levels below the bias level  
will be further decreased to a lower ADC code.  
The AD9824 uses high performance ADC architecture, opti-  
mized for high speed and low power. Differential nonlinearity  
(DNL) performance is typically better than 0.5 LSB, as shown in  
TPC 2. Instead of the 1 V full-scale range used by the earlier  
AD9801 and AD9803 products from Analog Devices, the  
AD9824’s ADC uses a 2 V input range. Better noise perfor-  
mance results from using a larger ADC full-scale range  
(see TPC 3).  
AUX2 Mode  
For sampling video-type waveforms, such as NTSC and PAL  
signals, the AUX2 channel provides black level clamping, gain  
adjustment, and A/D conversion. Figure 31 shows the circuit  
configuration for using the AUX2 channel input (Pin 34). An  
external 0.1 µF blocking capacitor is used with the on-chip video  
clamp circuit to level shift the input signal to a desired refer-  
ence level. The clamp circuit automatically senses the most  
negative portion of the input signal and adjusts the voltage  
across the input capacitor. This forces the black level of the  
input signal to be equal to the value programmed into the Clamp  
Level Register (see Serial Interface Timing and Internal Register  
Description). The VGA provides gain adjustment from 0 dB to  
18 dB. The same VGA Gain Register is used, but only the  
9 MSBs of the gain register are used (see Table VII.)  
AUX1 Mode  
For applications that do not require CDS, the AD9824 can be  
configured to sample ac-coupled waveforms. Figure 30 shows  
the circuit configuration for using the AUX1 channel input  
(Pin 36). A single 0.1 µF ac-coupling capacitor is needed between  
the input signal driver and the AUX1IN pin. An on-chip dc-bias  
circuit sets the average value of the input signal to approximately  
0.4 V, which is referenced to the midscale code of the ADC.  
The VGA Gain Register provides a gain range of 0 dB to 36 dB in  
this mode of operation (see VGA Gain Curve, Figure 29).  
0.4V  
0.8V  
??V  
0dB TO 36dB  
5kꢁ  
0.1F  
AUX1IN  
INPUT SIGNAL  
VGA  
ADC  
MIDSCALE  
10  
0.4V  
0.4V  
VGA GAIN  
REGISTER  
Figure 30. AUX1 Circuit Configuration  
VGA GAIN  
REGISTER  
9
0dB TO 18dB  
BUFFER  
AUX2IN  
VIDEO  
SIGNAL  
ADC  
VGA  
0.1F  
CLAMP LEVEL  
VIDEO CLAMP  
CIRCUIT  
LPF  
CLAMP LEVEL  
REGISTER  
8
Figure 31. AUX2 Circuit Configuration  
Table VII. VGA Gain Register Used for AUX2-Mode  
MSB  
D9  
LSB  
D0  
D10  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Gain (dB)  
X
0
1
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
0.0  
0.0  
1
1
1
1
1
1
1
1
1
1
18.0  
REV. 0  
–19–  
AD9824  
APPLICATIONS INFORMATION  
The AD9824’s digital output data is then processed by the  
image processing ASIC. The internal registers of the AD9824—  
used to control gain, offset level, and other functions—are  
programmed by the ASIC or microprocessor through a 3-wire  
serial digital interface. A system timing generator provides the  
clock signals for both the CCD and the AFE.  
The AD9824 is a complete analog front end (AFE) product for  
digital still camera and camcorder applications. As shown in  
Figure 32, the CCD image (pixel) data is buffered and sent to  
the AD9824 analog input through a series input capacitor.  
The AD9824 performs the dc restoration, CDS, gain adjust-  
ment, black level correction, and analog-to-digital conversion.  
DIGITAL  
OUTPUTS  
CCD  
V
AD9824  
OUT  
ADC  
0.1F  
OUT  
DIGITAL IMAGE  
PROCESSING  
ASIC  
SERIAL  
INTERFACE  
CCDIN  
REGISTER-  
DATA  
BUFFER  
V-DRIVE  
CDS/CLAMP  
TIMING  
CCD  
TIMING  
TIMING  
GENERATOR  
Figure 32. System Applications Diagram  
–20–  
REV. 0  
AD9824  
3V  
ANALOG SUPPLY  
0.1F  
1.0F  
1.0F  
3
SERIAL  
INTERFACE  
48 47 46 45 44 43 42 41 40 39 38 37  
D2  
AUX1IN  
AVSS  
AUX2IN  
AVDD2  
BYP3  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PIN 1  
IDENTIFIER  
D3  
2
3
0.1F  
0.1F  
D4  
D5  
3V  
ANALOG SUPPLY  
4
D6  
5
D7  
AD9824  
NC  
6
D8  
TOP VIEW  
CCDIN  
BYP2  
7
CCD SIGNAL  
(Not to Scale)  
D9  
0.1F  
8
D10  
BYP1  
0.1F  
0.1F  
9
D11  
AVDD1  
AVSS  
AVSS  
10  
11  
12  
D12  
3V  
(MSB) D13  
ANALOG SUPPLY  
0.1F  
14  
DATA  
OUTPUTS  
13 14 15 16 17 18 19 20 21 22 23 24  
NC = NO CONNECT  
3V  
DRIVER  
SUPPLY  
0.1F  
8
CLOCK  
INPUTS  
0.1F  
3V  
ANALOG SUPPLY  
Figure 33. Recommended Circuit Configuration for CCD-Mode  
Internal Power-On Reset Circuitry  
their respective ground pins. All decoupling capacitors should  
be located as close as possible to the package pins. A single clean  
power supply is recommended for the AD9824, but a separate  
digital driver supply may be used for DRVDD (Pin 13). DRVDD  
should always be decoupled to DRVSS (Pin 14), which should  
be connected to the analog ground plane. Advantages of using  
a separate digital driver supply include using a lower voltage  
(2.7 V) to match levels with a 2.7 V ASIC, and reducing digital  
power dissipation and potential noise coupling. If the digital  
outputs (Pins 1–12) must drive a load larger than 20 pF, buff-  
ering is recommended to reduce digital code transition noise.  
Alternatively, placing series resistors close to the digital out-  
put pins may also help reduce noise.  
After power-on, the AD9824 will automatically reset all internal  
registers and perform internal calibration procedures. This takes  
approximately 1 ms to complete. During this time, normal  
clock signals and serial write operations may occur. However,  
serial register writes will be ignored until the internal reset opera-  
tion is completed.  
Grounding and Decoupling Recommendations  
As shown in Figure 33, a single ground plane is recommended  
for the AD9824. This ground plane should be as continuous as  
possible, particularly around Pins 25 through 39. This will  
ensure that all analog decoupling capacitors provide the lowest  
possible impedance path between the power and bypass pins and  
REV. 0  
–21–  
AD9824  
OUTLINE DIMENSIONS  
Dimensions shown in millimeters and (inches)  
48-Lead Frame Chip Scale Package LFCSP  
7 x 7 mm Body  
(CP-48)  
0.60 (0.0236)  
0.42 (0.0165)  
0.24 (0.0094)  
0.30 (0.0118)  
0.23 (0.0091)  
0.18 (0.0071)  
4  
7.00 (0.2756)  
BSC SQ  
37  
36  
48  
1
PIN 1  
INDICATOR  
5.45 (0.2146)  
5.30 (0.2087) SQ  
5.15 (0.2028)  
6.75 (0.2657)  
BSC SQ  
BOTTOM  
VIEW  
TOP  
VIEW  
1
2
25  
24  
0.50 (0.0197)  
0.40 (0.0157)  
0.30 (0.0118)  
0.70 (0.0315) MAX  
0.65 (0.0276) NOM  
13  
5.50 (0.2165)  
REF  
12MAX  
0.90 (0.0354) MAX  
0.85 (0.0335) NOM  
0.05 (0.0020)  
0.01 (0.0004)  
0.00 (0.0000)  
COPLANARITY  
0.20 (0.0079)  
REF  
0.50 (0.0197)  
BSC  
SEATING  
PLANE  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MO-220  
–22–  
REV. 0  
–23–  
–24–  

相关型号:

AD9824KCPZ

Complete 14-Bit 30 MSPS CCD Signal Processor
ADI

AD9824KCPZRL

Complete 14-Bit 30 MSPS CCD Signal Processor
ADI

AD9826

Complete 16-Bit Imaging Signal Processor
ADI

AD9826KRS

Complete 16-Bit Imaging Signal Processor
ADI

AD9826KRS

SPECIALTY CONSUMER CIRCUIT, PDSO28, 5.30 MM, SSOP-28
ROCHESTER

AD9826KRSRL

IC SPECIALTY CONSUMER CIRCUIT, PDSO28, 5.30 MM, SSOP-28, Consumer IC:Other
ADI

AD9826KRSZ

Complete 16-Bit Imaging Signal Processor
ADI

AD9826KRSZ

SPECIALTY CONSUMER CIRCUIT, PDSO28, 5.30 MM, ROHS COMPLIANT, SSOP-28
ROCHESTER

AD9826KRSZRL

Complete 16-Bit Imaging Signal Processor
ADI

AD9826KRSZRL

SPECIALTY CONSUMER CIRCUIT, PDSO28, 5.30 MM, SSOP-28
ROCHESTER

AD9826_12

Complete 16-Bit Imaging Signal Processor
ADI

AD9830

CMOS Complete DDS
ADI