AD9814KRRL [ADI]

IC SPECIALTY ANALOG CIRCUIT, PDSO28, 0.300 INCH, SOIC-28, Analog IC:Other;
AD9814KRRL
型号: AD9814KRRL
厂家: ADI    ADI
描述:

IC SPECIALTY ANALOG CIRCUIT, PDSO28, 0.300 INCH, SOIC-28, Analog IC:Other

CD
文件: 总15页 (文件大小:163K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Complete 14-Bit  
CCD/CIS Signal Processor  
a
AD9814  
FEATURES  
PRODUCT DESCRIPTION  
14-Bit 10 MSPS A/D Converter  
No Missing Codes Guaranteed  
3-Channel Operation Up to 10 MSPS  
1-Channel Operation Up to 7 MSPS  
Correlated Double Sampling  
1-6x Programmable Gain  
The AD9814 is a complete analog signal processor for CCD  
imaging applications. It features a 3-channel architecture de-  
signed to sample and condition the outputs of trilinear color  
CCD arrays. Each channel consists of an input clamp, Corre-  
lated Double Sampler (CDS), offset DAC and Programmable  
Gain Amplifier (PGA), multiplexed to a high performance 14-  
bit A/D converter.  
؎300 mV Programmable Offset  
Input Clamp Circuitry  
The CDS amplifiers may be disabled for use with sensors such  
as Contact Image Sensors (CIS) and CMOS active pixel sen-  
sors, which do not require CDS.  
Internal Voltage Reference  
Multiplexed Byte-Wide Output (8+6 Format)  
3-Wire Serial Digital Interface  
+3/+5 V Digital I/O Compatibility  
28-Lead SOIC Package  
The 14-bit digital output is multiplexed into an 8-bit output  
word that is accessed using two read cycles. The internal regis-  
ters are programmed through a 3-wire serial interface, and pro-  
vide adjustment of the gain, offset, and operating mode.  
Low Power CMOS: 330 mW (Typ)  
Power-Down Mode: <1 mW  
The AD9814 operates from a single +5 V power supply, typi-  
cally consumes 330 mW of power, and is packaged in a 28-lead  
SOIC.  
APPLICATIONS  
Flatbed Document Scanners  
Film Scanners  
Digital Color Copiers  
Multifunction Peripherals  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
AVSS  
CML  
CAPT  
CAPB  
AVDD  
AVSS  
DRVDD DRVSS  
CDS  
PGA  
VINR  
VING  
AD9814  
OEB  
BANDGAP  
9-BIT  
DAC  
REFERENCE  
14  
8
14:8  
MUX  
3:1  
MUX  
14-BIT  
ADC  
DOUT  
CDS  
CDS  
PGA  
9-BIT  
DAC  
CONFIGURATION  
REGISTER  
MUX  
REGISTER  
SCLK  
PGA  
VINB  
DIGITAL  
CONTROL  
INTERFACE  
RED  
GREEN  
BLUE  
SLOAD  
SDATA  
6
9-BIT  
DAC  
GAIN  
REGISTERS  
RED  
GREEN  
BLUE  
INPUT  
CLAMP  
BIAS  
9
OFFSET  
OFFSET  
REGISTERS  
CDSCLK1 CDSCLK2  
ADCCLK  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1999  
AD9814–SPECIFICATIONS  
2 MHz, PGA Gain = 1, Input Range = 4 V, unless otherwise noted.)  
ANALOG SPECIFICATIONS (TMIN to TMAX, AVDD = +5 V, DRVDD = +5 V, 3-Channel CDS Mode, fADCCLK = 6 MHz, fCDSCLK1 = fCDSCLK2  
=
J-Grade  
Typ  
K-Grade  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Units  
CONVERSION RATE  
3-Channel Mode with CDS  
1-Channel Mode with CDS  
6
6
10  
7
6
6
10  
7
MSPS  
MSPS  
ACCURACY (Entire Signal Path)  
ADC Resolution  
14  
14  
Bits  
Integral Nonlinearity1 (INL)  
INL @ 10 MHz  
+2.5/–6.0  
+4.0/–7.0  
+0.6/–0.5  
+0.8/–0.6  
+2.5/–6.0 ±11.0  
+4.0/–7.0  
+0.6/–0.5 ±1.0  
+0.8/–0.6  
LSB  
LSB  
LSB  
LSB  
Bits  
Differential Nonlinearity (DNL)  
DNL @ 10 MHz  
No Missing Codes Guaranteed  
Offset Error  
13  
14  
–12  
2.2  
–12  
2.2  
±104  
±5.3  
mV  
% FSR  
Gain Error2  
ANALOG INPUTS  
Input Signal Range3  
Allowable Reset Transient3  
Input Limits4  
4.0  
1.0  
4.0  
1.0  
V p-p  
V
V
AVSS – 0.3  
AVDD + 0.3 AVSS – 0.3  
AVDD + 0.3  
Input Capacitance  
Input Bias Current  
10  
10  
10  
10  
pF  
nA  
AMPLIFIERS  
PGA Gain at Minimum  
1
1
V/V  
PGA Gain at Maximum  
PGA Resolution  
5.8  
64  
5.8  
64  
V/V  
Steps  
PGA Monotonicity  
Guaranteed  
–300  
+300  
512  
Guaranteed  
Guaranteed  
–300  
+300  
512  
Guaranteed  
Programmable Offset at Minimum  
Programmable Offset at Maximum  
Programmable Offset Resolution  
Programmable Offset Monotonicity  
mV  
mV  
Steps  
NOISE AND CROSSTALK  
Input Referred Noise @ PGA Min  
Total Output Noise @ PGA Min  
Input Referred Noise @ PGA Max  
Total Output Noise @ PGA Max  
Channel-Channel Crosstalk  
130  
0.55  
84  
2.0  
<1  
130  
0.55  
84  
2.0  
<1  
µV rms  
LSB rms  
µV rms  
LSB rms  
LSB  
POWER SUPPLY REJECTION  
AVDD = +5 V ± 0.25 V  
0.07  
0.07  
0.3  
% FSR  
Differential VREF (@ +25°C)  
CAPT-CAPB (4 V Input Range)  
CAPT-CAPB (2 V Input Range)  
2.0  
1.0  
1.9  
0.94  
2.0  
1.0  
2.1  
1.06  
V
V
TEMPERATURE RANGE  
Operating  
Storage  
0
–65  
+70  
+150  
0
–65  
+70  
+150  
°C  
°C  
POWER SUPPLIES  
AVDD  
DRVDD  
+4.75  
+3.0  
+5.0  
+5.0  
+5.25  
+5.25  
+4.75  
+3.0  
+5.0  
+5.0  
+5.25  
+5.25  
V
V
Total Operating Current  
AVDD  
DRVDD  
Power-Down Mode Current  
Power Dissipation  
Power Dissipation @ 10 MHz  
Power Dissipation (1-Channel Mode)  
64  
64  
80  
10  
mA  
mA  
µA  
mW  
mW  
mW  
1.8  
150  
330  
355  
220  
1.8  
150  
330  
355  
220  
450  
265  
–2–  
REV. 0  
AD9814  
NOTES  
1The Integral Nonlinearity in measured using the “fixed endpoint” method, NOT using a “best-fit” calculation. See Definitions of Specifications.  
2The Gain Error specification is dominated by the tolerance of the internal differential voltage reference.  
3Linear input signal range is from 0 V to 4 V when the CCD’s reference level is clamped to 4 V by the AD9814’s input clamp. A larger reset transient can be tolerated  
by using the 3 V clamp level instead of the nominal 4 V clamp level. Linear input signal range will be from 0 V to 3 V when using the 3 V clamp level.  
4V SET BY INPUT CLAMP (3V OPTION ALSO AVAILABLE)  
1V TYP  
RESET TRANSIENT  
4V p-p MAX INPUT SIGNAL RANGE  
GND  
4The input limits are defined as the maximum tolerable voltage levels into the AD9814. These levels are not intended to be in the linear input range of the device.  
Signals beyond the input limits will turn on the overvoltage protection diodes.  
5.8  
5The PGA Gain is approximately “linear in dB” and follows the equation: Gain = [  
]
where G is the register value. See Figure 13.  
63 – G  
1 + 4.8[  
]
Specifications subject to change without notice.  
63  
(TMIN to TMAX, AVDD = +5 V, DRVDD = +5 V, CDS Mode, fADCCLK = 6 MHz, fCDSCLK1 = fCDSCLK2 = 2 MHz,  
DIGITAL SPECIFICATIONS CL = 10 pF, unless otherwise noted.)  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
LOGIC INPUTS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
VIH  
VIL  
IIH  
2.6  
V
0.8  
V
10  
10  
10  
µA  
µA  
pF  
IIL  
CIN  
LOGIC OUTPUTS  
High Level Output Voltage  
Low Level Output Voltage  
High Level Output Current  
Low Level Output Current  
VOH  
VOL  
IOH  
IOL  
4.5  
V
0.1  
V
50  
50  
µA  
µA  
Specifications subject to change without notice.  
TIMING SPECIFICATIONS (TMIN to TMAX, AVDD = +5 V, DRVDD = +5 V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
CLOCK PARAMETERS  
3-Channel Pixel Rate  
1-Channel Pixel Rate  
ADCCLK Pulsewidth  
CDSCLK1 Pulsewidth  
CDSCLK2 Pulsewidth  
CDSCLK1 Falling to CDSCLK2 Rising  
ADCCLK Falling to CDSCLK2 Rising  
CDSCLK2 Rising to ADCCLK Rising  
CDSCLK2 Falling to ADCCLK Falling  
CDSCLK2 Falling to CDSCLK1 Rising  
ADCCLK Falling to CDSCLK1 Rising  
Aperture Delay for CDS Clocks  
tPRA  
300  
140  
45  
20  
40  
0
10  
10  
50  
50  
0
500  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tPRB  
tADCLK  
tC1  
tC2  
tC1C2  
tADC2  
tC2ADR  
tC2ADF  
tC2C1  
tADC1  
tAD  
3
SERIAL INTERFACE  
Maximum SCLK Frequency  
SLOAD to SCLK Set-Up Time  
SCLK to SLOAD Hold Time  
SDATA to SCLK Rising Set-Up Time  
SCLK Rising to SDATA Hold Time  
SCLK Falling to SDATA Valid  
fSCLK  
tLS  
tLH  
tDS  
tDH  
tRDV  
10  
10  
10  
10  
10  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
DATA OUTPUT  
Output Delay  
tOD  
tDV  
tHZ  
6
16  
5
ns  
ns  
ns  
3-State to Data Valid  
Output Enable High to 3-State  
Latency (Pipeline Delay)  
3 (Fixed)  
Cycles  
Specifications subject to change without notice.  
REV. 0  
–3–  
AD9814  
ABSOLUTE MAXIMUM RATINGS*  
PIN FUNCTION DESCRIPTIONS  
With  
Respect  
To  
Pin  
N
o. Name  
Type  
Description  
Parameter  
Min Max  
Units  
1
CDSCLK1  
DI  
CDS Reference Level Sampling  
Clock  
VIN, CAPT, CAPB  
Digital Inputs  
AVDD  
DRVDD  
AVSS  
Digital Outputs  
Junction Temperature  
Storage Temperature  
Lead Temperature  
(10 sec)  
AVSS  
AVSS  
AVSS  
DRVSS  
DRVSS  
DRVSS  
–0.3 AVDD + 0.3  
–0.3 AVDD + 0.3  
–0.5 +6.5  
–0.5 +6.5  
–0.3 +0.3  
V
V
V
V
V
V
2
3
4
5
6
7
CDSCLK2  
ADCCLK  
OEB  
DI  
DI  
DI  
P
CDS Data Level Sampling Clock  
A/D Converter Sampling Clock  
Output Enable, Active Low  
–0.3 DRVDD + 0.3  
+150  
DRVDD  
DRVSS  
D7  
Digital Output Driver Supply  
Digital Output Driver Ground  
°
°
C
C
P
–65  
+150  
DO  
Data Output MSB. ADC DB13  
High Byte, ADC DB5 Low Byte  
+300  
°C  
8
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
Data Output. ADC DB12 High  
Byte, ADC DB4 Low Byte  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum ratings  
for extended periods may affect device reliability.  
9
Data Output. ADC DB11 High  
Byte, ADC DB3 Low Byte  
10  
11  
12  
13  
14  
Data Output. ADC DB10 High  
Byte, ADC DB2 Low Byte  
ORDERING GUIDE  
Data Output. ADC DB9 High  
Byte, ADC DB1 Low Byte  
Temperature  
Range  
Package  
Description  
Model  
Data Output. ADC DB8 High  
Byte, ADC DB0 Low Byte  
AD9814JR  
AD9814KR  
0°C to +70°C  
0°C to +70°C  
28-Lead 300 Mil SOIC  
28-Lead 300 Mil SOIC  
Data Output. ADC DB7 High  
Byte, Don’t Care Low Byte  
Data Output LSB. ADC DB6  
High Byte, Don’t Care Low Byte  
THERMAL CHARACTERISTICS  
Thermal Resistance  
28-Lead 300 Mil SOIC  
θJA = 71.4°C/W  
15  
16  
17  
18  
19  
20  
SDATA  
SCLK  
SLOAD  
AVDD  
AVSS  
DI/DO  
DI  
Serial Interface Data Input/Output  
Serial Interface Clock Input  
Serial Interface Load Pulse  
+5 V Analog Supply  
DI  
θJC = 23°C/W  
P
PIN CONFIGURATION  
P
Analog Ground  
CAPB  
AO  
ADC Bottom Reference Voltage  
Decoupling  
1
2
CDSCLK1  
CDSCLK2  
ADCCLK  
OEB  
28 AVDD  
27 AVSS  
26 VINR  
21  
CAPT  
AO  
ADC Top Reference Voltage  
Decoupling  
3
4
25 OFFSET  
24 VING  
23 CML  
22  
23  
24  
25  
26  
27  
28  
VINB  
AI  
AO  
AI  
AO  
AI  
P
Analog Input, Blue Channel  
Internal Bias Level Decoupling  
Analog Input, Green Channel  
Clamp Bias Level Decoupling  
Analog Input, Red Channel  
Analog Ground  
5
DRVDD  
DRVSS  
(MSB) D7  
D6  
CML  
6
VING  
OFFSET  
VINR  
AVSS  
AD9814  
TOP VIEW  
7
22 VINB  
(Not to Scale)  
8
21 CAPT  
20 CAPB  
19 AVSS  
18 AVDD  
17 SLOAD  
16 SCLK  
15 SDATA  
9
D5  
10  
11  
12  
13  
14  
D4  
D3  
AVDD  
P
+5 V Analog Supply  
D2  
TYPE: AI = Analog Input, AO = Analog Output, DI = Digital Input, DO =  
Digital Output, P = Power.  
D1  
(LSB) D0  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD9814 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. 0  
AD9814  
INPUT REFERRED NOISE  
DEFINITIONS OF SPECIFICATIONS  
The rms output noise is measured using histogram techniques.  
The ADC output codes’ standard deviation is calculated in  
LSB, and converted to an equivalent voltage, using the relation-  
ship 1 LSB = 4 V/16384 = 244 mV. The noise is then referred  
to the input of the AD9814 by dividing by the PGA gain.  
INTEGRAL NONLINEARITY (INL)  
Integral nonlinearity error refers to the deviation of each indi-  
vidual code from a line drawn from “zero scale” through “posi-  
tive full scale.” The point used as “zero scale” occurs 1/2 LSB  
before the first code transition. “Positive full scale” is defined as  
a level 1 1/2 LSB beyond the last code transition. The deviation  
is measured from the middle of each particular code to the true  
straight line.  
CHANNEL-TO-CHANNEL CROSSTALK  
In an ideal three channel system, the signal in one channel will  
not influence the signal level of another channel. The channel-  
to-channel crosstalk specification is a measure of the change that  
occurs in one channel as the other two channels are varied. In  
the AD9814, one channel is grounded and the other two chan-  
nels are exercised with full-scale input signals. The change in the  
output codes from the first channel is measured and compared  
with the result when all three channels are grounded. The differ-  
ence is the channel-to-channel crosstalk, stated in LSB.  
DIFFERENTIAL NONLINEARITY (DNL)  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. Thus every  
code must have a finite width. No missing codes guaranteed to  
14-bit resolution indicates that all 16384 codes, respectively,  
must be present over all operating ranges.  
OFFSET ERROR  
APERTURE DELAY  
The first ADC code transition should occur at a level 1/2 LSB  
above the nominal zero scale voltage. The offset error is the  
deviation of the actual first code transition level from the ideal  
level.  
The aperture delay is the time delay that occurs from when a  
sampling edge is applied to the AD9814 until the actual sample  
of the input signal is held. Both CDSCLK1 and CDSCLK2  
sample the input signal during the transition from high to low,  
so the aperture delay is measured from each clock’s falling edge  
to the instant the actual internal sample is taken.  
GAIN ERROR  
The last code transition should occur for an analog value  
1 1/2 LSB below the nominal full-scale voltage. Gain error is  
the deviation of the actual difference between first and last code  
transitions and the ideal difference between the first and last  
code transitions.  
POWER SUPPLY REJECTION  
Power Supply Rejection specifies the maximum full-scale change  
that occurs from the initial value when the supplies are varied  
over the specified limits.  
REV. 0  
–5–  
AD9814  
ANALOG  
INPUTS  
PIXEL  
(N+2)  
tAD  
PIXEL N (R, G, B)  
tAD  
PIXEL (N+1)  
tC1  
tC2C1  
tPRA  
CDSCLK1  
CDSCLK2  
tC2  
tC1C2  
tC2ADF  
tC2ADR tADC1  
tADCLK  
tADC2  
ADCCLK  
tOD  
tADCLK  
OUTPUT  
DATA  
R (N–2) G (N–2) G (N–2) B (N–2) B (N–2) R (N–1) R (N–1) G (N–1) G (N–1) B (N–1) B (N–1) R (N)  
R (N)  
G (N)  
G (N)  
D<7:0>  
HIGH LOW HIGH LOW HIGH LOW HIGH LOW HIGH LOW HIGH LOW  
HIGH LOW  
BYTE BYTE BYTE BYTE BYTE BYTE BYTE BYTE BYTE BYTE BYTE BYTE BYTE BYTE  
Figure 1. 3-Channel CDS Mode Timing  
ANALOG  
INPUTS  
PIXEL N  
tAD  
PIXEL (N+1)  
PIXEL (N+2)  
tAD  
tC2C1  
tPRB  
tC1  
CDSCLK1  
CDSCLK2  
tC1C2  
tC2  
tADC1  
tC2ADR  
tC2ADF  
tADCLK  
ADCCLK  
tOD  
tADCLK  
OUTPUT  
DATA  
D<7:0>  
PIXEL (N–4)  
HIGH BYTE  
PIXEL (N–4)  
LOW BYTE  
PIXEL (N–3)  
HIGH BYTE  
PIXEL (N–3)  
LOW BYTE  
PIXEL (N–2)  
HIGH BYTE  
PIXEL (N–2)  
LOW BYTE  
Figure 2. 1-Channel CDS Mode Timing  
–6–  
REV. 0  
AD9814  
PIXEL N (R, G, B)  
tAD  
PIXEL (N+1)  
ANALOG  
INPUTS  
tPRA  
tC2  
tC2ADF  
tC2ADR  
CDSCLK2  
ADCCLK  
tADCLK  
tADC2  
tOD  
tADCLK  
OUTPUT  
DATA  
R (N–2) G (N–2) G (N–2) B (N–2) B (N–2) R (N–1) R (N–1) G (N–1) G (N–1) B (N–1) B (N–1) R (N)  
R (N)  
G (N)  
G (N)  
D<7:0>  
HIGH LOW HIGH LOW  
HIGH LOW HIGH LOW HIGH LOW HIGH LOW  
HIGH LOW  
BYTE BYTE BYTE BYTE BYTE BYTE BYTE BYTE BYTE BYTE BYTE BYTE BYTE BYTE  
Figure 3. 3-Channel SHA Mode Timing  
PIXEL N  
tAD  
ANALOG  
INPUTS  
tPRB  
tC2  
CDSCLK2  
ADCCLK  
tC2ADR  
tC2ADF  
tADCLK  
tOD  
tADCLK  
OUTPUT  
DATA  
D<7:0>  
PIXEL (N–4)  
HIGH BYTE  
PIXEL (N–4)  
LOW BYTE  
PIXEL (N–3)  
HIGH BYTE  
PIXEL (N–3)  
LOW BYTE  
PIXEL (N–2)  
HIGH BYTE  
PIXEL (N–2)  
LOW BYTE  
Figure 4. 1-Channel SHA Mode Timing  
REV. 0  
–7–  
AD9814  
ADCCLK  
tOD  
tOD  
OUTPUT  
DATA  
<D7:D0>  
LOW  
BYTE  
N+1  
LOW  
BYTE  
N+2  
HIGH  
BYTE  
N+3  
HIGH BYTE  
DB13–DB6  
LOW BYTE  
DB5–DB0  
HIGH BYTE  
N+1  
PIXEL N  
PIXEL N  
tHZ  
tDV  
OEB  
Figure 5. Digital Output Data Timing  
R/Wb  
A2  
XX  
SDATA  
A1  
A0  
XX  
XX  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
tDH  
tDS  
SCLK  
tLS  
tLH  
SLOAD  
Figure 6. Serial Write Operating Timing  
SDATA  
SCLK  
A2  
A1  
A0  
XX  
XX  
XX  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/Wb  
tDH  
tDS  
tRDV  
tLS  
tLH  
SLOAD  
Figure 7. Serial Read Operation Timing  
–8–  
REV. 0  
AD9814  
FUNCTIONAL DESCRIPTION  
grounded, a zero volt input corresponds to the ADC’s zero-scale  
output. The OFFSET pin may also be used as a coarse offset  
adjust pin. A voltage applied to this pin will be subtracted from  
the voltages applied to the red, green and blue inputs in the first  
amplifier stage of the AD9814. The input clamp is disabled in this  
mode. For more information, see the Circuit Operation section.  
The AD9814 can be operated in four different modes: 3-Channel  
CDS Mode, 3-Channel SHA Mode, 1-Channel CDS Mode,  
and 1-Channel SHA Mode. Each mode is selected by program-  
ming the Configuration Register through the serial interface.  
For more detail on CDS or SHA mode operation, see the  
Circuit Operation section.  
Timing for this mode is shown in Figure 2. CDSCLK1 should  
be grounded in this mode. Although not required, it is recom-  
mended that the falling edge of CDSCLK2 occur coincident  
with or before the rising edge of ADCCLK. The rising edge of  
CDSCLK2 should not occur before the previous falling edge of  
ADCCLK, as shown by tADC2. The output data latency is three  
ADCCLK cycles.  
3-Channel CDS Mode  
In 3-Channel CDS Mode, the AD9814 simultaneously samples  
the red, green and blue input voltages from the CCD outputs.  
The sampling points for each Correlated Double Sampler (CDS)  
are controlled by CDSCLK1 and CDSCLK2 (see Figures 8 and  
9). CDSCLK1’s falling edge samples the reference level of the  
CCD waveform. CDSCLK2’s falling edge samples the data  
level of the CCD waveform. Each CDS amplifier outputs the  
difference between the CCD’s reference and data levels. Next,  
the output voltage of each CDS amplifier is level-shifted by an  
Offset DAC. The voltages are then scaled by the three Program-  
mable Gain Amplifiers before being multiplexed through the  
14-bit ADC. The ADC sequentially samples the PGA outputs  
on the falling edges of ADCCLK.  
The offset and gain values for the red, green and blue channels  
are programmed using the serial interface. The order in which  
the channels are switched through the multiplexer is selected by  
programming the MUX register.  
1-Channel CDS Mode  
This mode operates in the same way as the 3-Channel CDS  
mode. The difference is that the multiplexer remains fixed in  
this mode, so only the channel specified in the MUX register is  
processed.  
The offset and gain values for the red, green and blue channels  
are programmed using the serial interface. The order in which  
the channels are switched through the multiplexer is selected by  
programming the MUX register.  
Timing for this mode is shown in Figure 3. Although not re-  
quired, it is recommended that the falling edge of CDSCLK2  
occur coincident with or before the rising edge of ADCCLK.  
Timing for this mode is shown in Figure 1. It is recommended  
that the falling edge of CDSCLK2 occur coincident with or  
before the rising edge of ADCCLK, although this is not re-  
quired to satisfy the minimum timing constraints. The rising  
edge of CDSCLK2 should not occur before the previous falling  
edge of ADCCLK, as shown by tADC2. The output data latency  
is three clock cycles.  
1-Channel SHA Mode  
This mode operates in the same way as the 3-Channel SHA  
mode, except that the multiplexer remains stationary. Only the  
channel specified in the MUX register is processed.  
The input signal is sampled with respect to the voltage applied  
to the OFFSET pin. With the OFFSET pin grounded, a zero  
volt input corresponds to the ADC’s zero scale output. The  
OFFSET pin may also be used as a coarse offset adjust pin. A  
voltage applied to this pin will be subtracted from the voltages  
applied to the red, green and blue inputs in the first amplifier  
stage of the AD9814. The input clamp is disabled in this mode.  
For more information, see the Circuit Operation section.  
3-Channel SHA Mode  
In 3-Channel SHA Mode, the AD9814 simultaneously samples  
the red, green and blue input voltages. The sampling point is  
controlled by CDSCLK2. CDSCLK2’s falling edge samples the  
input waveforms on each channel. The output voltages from the  
three SHAs are modified by the offset DACs and then scaled by  
the three PGAs. The outputs of the PGAs are then multiplexed  
through the 14-bit ADC. The ADC sequentially samples the  
PGA outputs on the falling edges of ADCCLK.  
Timing for this mode is shown in Figure 4. CDSCLK1 should  
be grounded in this mode of operation. Although not required,  
it is recommended that the falling edge of CDSCLK2 occur  
coincident with or before the rising edge of ADCCLK.  
The input signal is sampled with respect to the voltage applied  
to the OFFSET pin (see Figure 10). With the OFFSET pin  
REV. 0  
–9–  
AD9814  
INTERNAL REGISTER DESCRIPTIONS  
Table I. Internal Register Map  
Register  
Name  
Address  
A2 A1  
Data Bits  
D4  
A0  
D8  
D7  
D6  
D5  
D3  
D2  
D1  
D0  
Configuration  
MUX  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
Input Rng VREF 3Ch/1Ch CDS On  
Clamp  
0
Pwr Dn  
0
0
0
0
0
RGB/BGR Red  
Green  
MSB  
MSB  
MSB  
Blue  
0
Red PGA  
0
0
0
0
0
0
0
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
Green PGA  
Blue PGA  
Red Offset  
Green Offset  
Blue Offset  
0
0
MSB  
MSB  
MSB  
Configuration Register  
The Configuration Register controls the AD9814’s operating mode and bias levels. Bits D8, D1 and D0 should always be set low. Bit  
D7 sets the full-scale voltage range of the AD9814’s A/D converter to either 4 V (high) or 2 V (low). Bit D6 controls the internal  
voltage reference. If the AD9814’s internal voltage reference is used, this bit is set high. Setting Bit D6 low will disable the internal  
voltage reference, allowing an external voltage reference to be used. Bit D5 will configure the AD9814 for either the 3-Channel (high)  
or 1-Channel (low) mode of operation. Setting Bit D4 high will enable the CDS mode of operation, and setting this bit low will en-  
able the SHA mode of operation. Bit D3 sets the dc bias level of the AD9814’s input clamp. This bit should always be set high for  
the 4 V clamp bias, unless a CCD with a reset feedthrough transient exceeding 2 V is used. If the 3 V clamp bias level is used, the  
peak-to-peak input signal range to the AD9814 is reduced to 3 V maximum. Bit D2 controls the power-down mode. Setting Bit D2  
high will place the AD9814 into a very low power “sleep” mode. All register contents are retained while the AD9814 is in the pow-  
ered-down state.  
Table II. Configuration Register Settings  
D8 D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Set Input Range Internal VREF  
to  
0
# of Channels  
CDS Operation Input Clamp Bias  
Power-Down  
Set  
to  
0
Set  
to  
0
1 = 4 V*  
0 = 2 V  
1 = Enabled*  
0 = Disabled  
1 = 3-Ch Mode* 1 = CDS Mode* 1 = 4 V*  
0 = 1-Ch Mode 0 = SHA Mode 0 = 3 V  
1 = On  
0 = Off (Normal)*  
*Power-on default value.  
MUX Register  
The MUX Register controls the sampling channel order in the AD9814. Bits D8, D3, D2, D1, and D0 should always be set low. Bit  
D7 is used when operating in 3-Channel Mode. Setting Bit D7 high will sequence the MUX to sample the red channel first, then the  
green channel and then the blue channel. When in this mode, the CDSCLK2 pulse always resets the MUX to sample the red channel  
first (see Timing Figure 1). When Bit D7 is set low, the channel order is reversed to blue first, green second and red third. The  
CDSCLK2 pulse will always reset the MUX to sample the blue channel first. Bits D6, D5, and D4 are used when operating in  
1-Channel Mode. Bit D6 is set high to sample the red channel. Bit D5 is set high to sample the green channel. Bit D4 is set high to  
sample the blue channel. The MUX will remain stationary during 1-Channel Mode.  
Table III. MUX Register Settings  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Set  
to  
0
3-Channel Select  
1-Channel Select  
1-Channel Select  
1-Channel Select  
Set  
to  
0
Set  
to  
0
Set  
to  
0
Set  
to  
0
1 = R-G-B*  
0 = B-G-R  
1 = RED*  
0 = Off  
1 = GREEN  
0 = Off*  
1 = BLUE  
0 = Off*  
*Power-on default value.  
–10–  
REV. 0  
AD9814  
PGA Gain Registers  
There are three PGA registers for individually programming the gain in the red, green and blue channels. Bits D8, D7 and D6 in  
each register must be set low, and bits D5 through D0 control the gain range in 64 increments. See Figure 13 for a graph of the PGA  
Gain versus PGA register code. The coding for the PGA registers is straight binary, with an all “zeros” word corresponding to the  
minimum gain setting (1x) and an all “ones” word corresponding to the maximum gain setting (5.8x).  
Table IV. PGA Gain Register Settings  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Gain (V/V)  
Gain (dB)  
Set to 0  
Set to 0  
Set to 0  
MSB  
LSB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0*  
1
1.0  
1.013  
0.0  
0.12  
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
1
5.4  
5.8  
14.6  
15.25  
*Power-on default value.  
Offset Registers  
There are three PGA registers for individually programming the offset in the red, green and blue channels. Bits D8 through D0 con-  
trol the offset range from –300 mV to +300 mV in 512 increments. The coding for the offset registers is sign magnitude, with D8 as  
the sign bit. Table V shows the offset range as a function of the Bits D8 through D0.  
Table V. Offset Register Settings  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Offset (mV)  
MSB  
LSB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0*  
1
0
+1.2  
0
1
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
+300  
0
–1.2  
1
1
1
1
1
1
1
1
1
–300  
*Power-on default value.  
REV. 0  
–11–  
AD9814  
CIRCUIT OPERATION  
Analog Inputs—CDS Mode  
2. Linearity. Some of the input capacitance of a CMOS IC is  
junction capacitance, which varies nonlinearly with applied  
voltage. If the input coupling capacitor is too small, then the  
attenuation of the CCD signal will vary nonlinearly with signal  
level. This will degrade the system linearity performance.  
Figure 8 shows the analog input configuration for the CDS  
mode of operation. Figure 9 shows the internal timing for the  
sampling switches. The CCD reference level is sampled when  
CDSCLK1 transitions from high to low, opening S1. The CCD  
data level is sampled when CDSCLK2 transitions from high to  
low, opening S2. S3 is then closed, generating a differential  
output voltage representing the difference between the two sampled  
levels.  
3. Sampling Errors. The internal 4 pF sample capacitors have  
a “memory” of the previously sampled pixel. There is a  
charge redistribution error between CIN and the internal  
sample capacitors for larger pixel-to-pixel voltage swings. As  
the value of CIN is reduced, the resulting error in the sampled  
voltage will increase. With a CIN value of 0.1 µF, the charge  
redistribution error will be less than 1 LSB for a full-scale  
pixel-to-pixel voltage swing.  
The input clamp is controlled by CDSCLK1. When CDSCLK1  
is high, S4 closes and the internal bias voltage is connected to  
the analog input. The bias voltage charges the external 0.1 µF  
input capacitor, level-shifting the CCD signal into the AD9814’s  
input common-mode range. The time constant of the input  
clamp is determined by the internal 5 kresistance and the  
external 0.1 µF input capacitance.  
Analog Inputs—SHA Mode  
Figure 10 shows the analog input configuration for the SHA  
mode of operation. Figure 11 shows the internal timing for the  
sampling switches. The input signal is sampled when CDSCLK2  
transitions from high to low, opening S1. The voltage on the  
OFFSET pin is also sampled on the falling edge of CDSCLK2,  
when S2 opens. S3 is then closed, generating a differential out-  
put voltage representing the difference between the sampled  
input voltage and the OFFSET voltage. The input clamp is  
disabled during SHA mode operation.  
AD9814  
S1  
4pF  
VINR  
CCD SIGNAL  
CML  
CML  
C
IN  
0.1F  
S3  
5k⍀  
S2  
4pF  
AVDD  
AD9814  
S4  
S1  
4pF  
4pF  
1.7k⍀  
2.2k⍀  
6.9k⍀  
VINR  
CML  
RED  
CML  
INPUT SIGNAL  
OFFSET  
4V  
3V  
INPUT CLAMP LEVEL  
IS SELECTED IN THE  
CONFIGURATION  
REGISTER  
+
S3  
S2  
0.1F  
1F  
OFFSET  
VING  
OPTIONAL DC OFFSET  
(OR CONNECT TO GND)  
GREEN  
BLUE  
Figure 8. CDS-Mode Input Configuration (All Three Chan-  
nels Are Identical)  
VINB  
S1, S4 CLOSED  
S1, S4 CLOSED  
CDSCLK1  
CDSCLK2  
S1, S4 OPEN  
S2 CLOSED  
S2 CLOSED  
Figure 10. SHA-Mode Input Configuration (All Three  
Channels Are Identical)  
S2 OPEN  
S3 CLOSED  
S3 CLOSED  
Q3  
(INTERNAL)  
S3 OPEN  
S1, S2 CLOSED  
S1, S2 OPEN  
S1, S2 CLOSED  
CDSCLK2  
Figure 9. CDS-Mode Internal Switch Timing  
S3 CLOSED  
S3 CLOSED  
External Input Coupling Capacitors  
The recommended value for the input coupling capacitors is  
0.1 µF. While it is possible to use a smaller capacitor, this larger  
value is chosen for several reasons:  
Q3  
S3 OPEN  
(INTERNAL)  
1. Signal Attenuation. The input coupling capacitor creates a  
capacitive divider with a CMOS integrated circuit’s input  
capacitance, attenuating the CCD signal level. CIN should be  
large relative to the IC’s 10 pF input capacitance in order to  
minimize this effect.  
Figure 11. SHA-Mode Internal Switch Timing  
–12–  
REV. 0  
AD9814  
Figure 12 shows how the OFFSET pin may be used in a CIS  
application for coarse offset adjustment. Many CIS signals have  
dc offsets ranging from several hundred millivolts to more than  
1 V. By connecting the appropriate dc voltage to the OFFSET  
pin, the CIS signal will be restored to “zero.” After the large dc  
offset is removed, the signal can be scaled using the PGA to  
maximize the ADC’s dynamic range.  
15  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
12  
9
6
AD9814  
VINR  
RED  
3
SHA  
SHA  
SHA  
RED-OFFSET  
VING  
VINB  
0
GREEN  
BLUE  
0
4
8
12 16 20 24 28 32 36 40 44 48 52 56 60 63  
PGA REGISTER VALUE – Decimal  
GREEN-OFFSET  
BLUE-OFFSET  
Figure 13. PGA Gain Transfer Function  
VREF FROM  
CIS MODULE  
INL GRAPH  
5.0  
4.0  
AVDD  
MAX INL +1.22  
MIN INL –4.06  
OFFSET  
R1  
0.1F  
DC OFFSET  
R2  
3.0  
2.0  
1.0  
Figure 12. SHA-Mode Used with External DC Offset  
0.0  
Programmable Gain Amplifiers  
–1.0  
The AD9814 uses one Programmable Gain Amplifier (PGA) for  
each channel. Each PGA has a gain range from 1x (0 dB) to  
5.8x (15.5 dB), adjustable in 64 steps. Figure 6 shows the PGA  
gain as a function of the PGA register code. Although the gain  
curve is approximately “linear in dB”, the gain in V/V varies  
nonlinearly with register code, following the equation:  
–2.0  
–3.0  
–4.0  
–5.0  
0
2000 4000  
6000 8000 10000 12000 14000  
16383  
5.8  
DNL GRAPH  
Gain =  
1.0  
0.8  
0.6  
0.4  
MAX DNL +0.48  
MIN DNL –0.39  
63 G  
1 + 4.8  
63  
where G is the decimal value of the gain register contents, and  
varies from 0 to 63.  
0.2  
0.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
2000 4000  
6000 8000 10000 12000 14000  
16383  
Figure 14. Typical Linearity Performance  
REV. 0  
–13–  
AD9814  
APPLICATIONS INFORMATION  
Circuit and Layout Recommendations  
should occur coincident with or before the rising edge of  
ADCCLK (see Figures 1 through 4 for timing). All 0.1 µF  
decoupling capacitors should be located as close as possible to  
the AD9814 pins. When operating in single channel mode, the  
unused analog inputs should be grounded.  
The recommended circuit configuration for 3-Channel CDS  
mode operation is shown in Figure 15. The recommended input  
coupling capacitor value is 0.1 µF (see Circuit Operation section  
for more details). A single ground plane is recommended for the  
AD9814. A separate power supply may be used for DRVDD,  
the digital driver supply, but this supply pin should still be  
decoupled to the same ground plane as the rest of the AD9814.  
The loading of the digital outputs should be minimized, either  
by using short traces to the digital ASIC, or by using external  
digital buffers. To minimize the effect of digital transients during  
major output code transitions, the falling edge of CDSCLK2  
Figure 16 shows the recommended circuit configuration for 3-  
Channel SHA mode. All of the above considerations also apply  
for this configuration, except that the analog input signals are  
directly connected to the AD9814 without the use of coupling  
capacitors. The analog input signals must already be dc-biased  
between 0 V and 4 V (see the Circuit Operation section for  
more details).  
0.1F  
+5V  
RED INPUT  
3
CLOCK INPUTS  
0.1F  
0.1F  
GREEN INPUT  
1
28  
AVDD  
CDSCLK1  
CDSCLK2  
ADCCLK  
OEB  
2
3
0.1F  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
AVSS  
VINR  
BLUE INPUT  
+5V/3V  
4
OFFSET  
VING  
DRVDD AD9814  
5
0.1F  
0.1F  
1.0F  
0.1F  
0.1F  
6
DRVSS  
CML  
7
D7 (MSB)  
VINB  
+
8
D6  
D5  
D4  
D3  
D2  
CAPT  
CAPB  
AVSS  
AVDD  
0.1F  
0.1F  
10F  
0.1F  
9
10  
11  
12  
SLOAD 17  
SCLK  
+5V  
13 D1  
14  
16  
SDATA 15  
D0 (LSB)  
8
3
SERIAL INTERFACE  
DATA OUTPUTS  
Figure 15. Recommended Circuit Configuration, 3-Channel CDS Mode  
+5V  
RED INPUT  
3
CLOCK INPUTS  
0.1F  
GREEN INPUT  
1
2
CDSCLK1  
CDSCLK2  
ADCCLK  
OEB  
AVDD 28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
AVSS  
VINR  
BLUE INPUT  
3
+5V/3V  
4
OFFSET  
VING  
DRVDD AD9814  
5
0.1F  
0.1F  
6
DRVSS  
CML  
0.1F  
7
D7 (MSB)  
VINB  
+
8
D6  
D5  
D4  
D3  
D2  
CAPT  
CAPB  
AVSS  
AVDD  
0.1F  
0.1F  
10F  
0.1F  
9
10  
11  
12  
SLOAD 17  
SCLK  
+5V  
13 D1  
14  
16  
SDATA 15  
D0 (LSB)  
8
3
SERIAL INTERFACE  
DATA OUTPUTS  
Figure 16. Recommended Circuit Configuration, 3-Channel SHA Mode  
(Analog Inputs Sampled with Respect to Ground)  
–14–  
REV. 0  
AD9814  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
28-Lead, 300 Mil SOIC  
(R-28)  
0.7125 (18.10)  
0.6969 (17.70)  
28  
1
15  
0.2992 (7.60)  
0.2914 (7.40)  
0.4193 (10.65)  
0.3937 (10.00)  
14  
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
0.0098 (0.25)  
؋
 45؇  
8؇  
0؇  
0.0500  
(1.27)  
BSC  
SEATING  
PLANE  
0.0192 (0.49)  
0.0138 (0.35)  
0.0118 (0.30)  
0.0040 (0.10)  
0.0500 (1.27)  
0.0157 (0.40)  
0.0125 (0.32)  
0.0091 (0.23)  
REV. 0  
–15–  

相关型号:

AD9814S

14-Bit CCD/CIS Signal Processor
ADI

AD9816

Complete 12-Bit 6 MSPS CCD/CIS Signal Processor
ADI

AD9816-EB

Complete 12-Bit 6 MSPS CCD/CIS Signal Processor
ADI

AD9816JS

Complete 12-Bit 6 MSPS CCD/CIS Signal Processor
ADI

AD9816JS-80010

Complete 12-Bit 6 MSPS CCD/CIS Signal Processor
ADI

AD9816JSRL

暂无描述
ADI

AD9821

Complete 12-Bit 40 MSPS Imaging Signal Processor
ADI

AD9821KST

Complete 12-Bit 40 MSPS Imaging Signal Processor
ADI

AD9822

Complete 14-Bit CCD/CIS Signal Processor
ADI

AD9822JR

Complete 14-Bit CCD/CIS Signal Processor
ADI

AD9822JRRL

Complete 14-Bit CCD/CIS Signal Processor
ADI

AD9822JRS

Complete 14-Bit CCD/CIS Signal Processor
ADI