AD9816JS [ADI]

Complete 12-Bit 6 MSPS CCD/CIS Signal Processor; 完整的12位6 MSPS CCD / CIS信号处理器
AD9816JS
型号: AD9816JS
厂家: ADI    ADI
描述:

Complete 12-Bit 6 MSPS CCD/CIS Signal Processor
完整的12位6 MSPS CCD / CIS信号处理器

电信集成电路 电信电路 CD
文件: 总16页 (文件大小:174K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Complete 12-Bit 6 MSPS  
CCD/CIS Signal Processor  
a
AD9816  
PRODUCT DESCRIPTION  
FEATURES  
The AD9816 is a complete analog signal processor for CCD  
and CIS applications. Included is all the necessary circuitry to  
perform three-channel conditioning and sampling for a variety  
of imaging applications.  
12-Bit 6 MSPS A/D Converter  
No Missing Codes Guaranteed  
3-Channel or 1-Channel Operation  
Correlated Double Sampling  
8-Bit Programmable Gain  
8-Bit Offset Adjustment  
PGA Output Monitor  
Input Clamp Circuitry  
Internal Voltage Reference  
3-Wire Serial Interface  
+3.3 V/+5 V Digital Output Compatibility  
44-Lead MQFP Package  
The signal chain consists of an input clamp, correlated double  
sampler (CDS), offset adjust DAC, programmable gain ampli-  
fier and a 12-bit A/D converter. The CDS and input clamp may  
be disabled for CIS applications.  
The internal registers are programmed using a 3-wire serial  
interface and provide adjustment of the gain, offset and operat-  
ing mode.  
Low Power CMOS: 420 mW Typ  
The AD9816 operates from a +5 V supply, typically consumes  
420 mW of power and is packaged in a 44-lead MQFP.  
FUNCTIONAL BLOCK DIAGRAM  
AVDD AVSS  
CLAMP/CDS  
DVDD DVSS DRVDD DRVSS  
CAPT  
CAPB  
CML PGAOUT VREF  
1X–6X  
PGA  
AD9816  
؎100mV  
+
VINR  
VING  
OEB  
BANDGAP  
REFERENCE  
DAC  
12-BIT  
ADC  
12  
DOUT  
11:0  
+
MUX  
CLAMP/CDS  
CLAMP/CDS  
PGA  
MUX  
REGISTER  
DAC  
+
CONFIGURATION  
REGISTER  
PGA  
VINB  
8
SCLK  
8
DAC  
DIGITAL  
SLOAD  
SDATA  
R
G
B
R
G
B
CONTROL  
PORT  
GAIN  
REGISTERS  
OFFSET  
REGISTERS  
OFFSET  
CDSCLK1 CDSCLK2  
ADCCLK  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1998  
AD9816–SPECIFICATIONS  
(TMIN to TMAX with AVDD = +5.0 V, DVDD = +5.0 V, DRVDD = +5.0 V, CDS Mode, fADCCLK = 6 MHz,  
fCDSCLK1 = 2 MHz, fCDSCLK2 = 2 MHz, PGA Gain = 1, Input Range = 3 V p-p, Input Capacitor = 1200 pF, unless otherwise noted)  
ANALOG SPECIFICATIONS  
Parameter  
AD9816  
AD9816-80010  
Units  
MAXIMUM CONVERSION RATE  
3-Channel Mode with CDS  
1-Channel Mode with CDS  
6
6
6
6
MSPS min  
MSPS min  
ACCURACY (Includes Entire Signal Path)  
ADC Resolution  
12  
12  
Bits min  
Differential Nonlinearity (DNL)  
±0.4  
±1.0  
12  
±1.5  
±4.0  
2.4  
±0.75  
LSB typ  
LSB max  
Bits Guaranteed  
LSB typ  
LSB max  
No Missing Codes  
Integral Nonlinearity (INL)  
±2.5  
Offset Error  
Gain Error1  
% FSR max  
% FSR max  
4.3  
ANALOG INPUTS  
Input Voltage Range2  
0
3
0
3
V min  
V max  
V min  
V max  
pF typ  
nA typ  
Input Limits3  
AVSS – 0.3  
AVDD + 0.3  
10  
10  
AVSS – 0.3  
AVDD + 0.3  
10  
10  
Input Capacitance  
Input Current  
AMPLIFIERS  
PGA Gain Range  
1
1
V/V min  
V/V max  
Steps  
mV min  
mV max  
Steps  
5.98  
256  
–100  
+100  
256  
5.98  
256  
–100  
+100  
256  
PGA Gain Resolution  
Offset Range  
Offset Resolution  
NOISE AND CROSSTALK  
Total Output Noise at Min PGA Gain4  
Total Output Noise at Max PGA Gain4  
Channel-to-Channel Crosstalk5  
0.5  
0.8  
1
LSB rms typ  
LSB rms typ  
LSB max  
POWER SUPPLY REJECTION  
(AVDD = +5 V/±0.25 V)  
0.28  
% FSR max  
VOLTAGE REFERENCE  
0.75 V Reference Tolerance (@ +25°C)  
1.5 V Reference Tolerance (@ +25°C)  
±20  
±34  
mV max  
mV max  
TEMPERATURE RANGE  
Operating  
0
+70  
0
+70  
°C min  
°C max  
POWER SUPPLIES  
Operating Voltages  
AVDD, DVDD  
+4.75  
+5.25  
+3.3  
+5.25  
84  
+4.75  
+5.25  
+3.3  
+5.25  
84  
V min  
V max  
V min  
V max  
mA typ  
DRVDD  
Operating Current  
POWER CONSUMPTION  
420  
500  
420  
500  
mW typ  
mW max  
NOTES  
1Includes internal voltage reference error.  
2Input voltage range is the linear region over which the input signal can be processed by the input stage of the AD9816.  
3The input limits are defined as the maximum tolerable input voltage into the AD9816. This is not intended to be the linear input range of the device. Signals beyond  
the input limits will turn on the overvoltage protection diodes.  
4The total output noise is measured with the inputs of the AD9816 grounded.  
5The channel-to-channel crosstalk is measured with one input grounded, and the other two inputs at full scale.  
Specifications subject to change without notice.  
–2–  
REV. A  
AD9816  
(TMIN to TMAX with AVDD = +5.0 V, DVDD = +5.0 V, DRVDD = +5.0 V, fADCCLK = 6 MHz,  
fCDSCLK1 = 2 MHz, fCDSCLK2 = 2 MHz, CL = 10 pF unless otherwise noted)  
DIGITAL SPECIFICATIONS  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
LOGIC INPUTS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
VIH  
VIL  
IIH  
IIL  
CIN  
3.5  
V
V
µA  
µA  
pF  
1.0  
10  
10  
10  
LOGIC OUTPUTS  
High Level Output Voltage  
Low Level Output Voltage  
High Level Output Current  
Low Level Output Current  
VOH  
VOL  
IOH  
IOL  
4.5  
V
V
µA  
µA  
0.1  
50  
50  
Specifications subject to change without notice.  
(TMIN to TMAX with DVDD = +5.0 V, DRVDD = +5.0 V)  
TIMING SPECIFICATIONS  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
CLOCK PARAMETERS  
3-Channel Conversion Rate  
1-Channel Conversion Rate  
ADCCLK Pulsewidth  
CDSCLK1 Pulsewidth  
tCRA  
tCRB  
tADCLK  
tC1  
500  
160  
80  
20  
60  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CDSCLK2 Pulsewidth  
tC2  
2 tADCLK – 30  
CDSCLK1 Falling to CDSCLK2 Rising  
ADCCLK Falling to CDSCLK2 Rising  
CDSCLK2 Falling to ADCCLK Falling  
CDSCLK2 Falling to CDSCLK1 Rising  
Aperture Delay for CDS Clocks  
tC1C2  
tADC2  
tC2AD  
tC2C1  
tAD  
0
30  
10  
10  
SERIAL INTERFACE  
Maximum SCLK Frequency  
SLOAD to SCLK Set-Up Time  
SCLK to SLOAD Hold Time  
SDATA to SCLK Rising Set-Up Time  
SCLK Rising to SDATA Hold Time  
SCLK Falling to SDATA Valid  
fSCLK  
tLS  
tLH  
tDS  
tDH  
tRDV  
10  
10  
10  
10  
10  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
DATA OUTPUT  
Output Delay  
tOD  
tDV  
tHZ  
13  
15  
5
ns  
ns  
ns  
3-State to Data Valid  
Output Enable High to 3-State  
Latency (Pipeline Delay)  
3 (Fixed)  
ADCCLK Cycles  
REV. A  
–3–  
AD9816  
PIXEL (n+1)  
PIXEL (n+m)  
PIXEL n (R, G, B)  
PIXEL (n+2)  
ANALOG  
INPUTS  
tAD  
tAD  
tCRA  
tC2C1  
tC1  
CDSCLK1  
CDSCLK2  
tC1C2  
tC2  
tADCLK  
tADC2  
tC2AD  
ADCCLK  
tADCLK  
tOD  
OUTPUT  
DATA  
D11:D0  
R(n–2)  
G(n–2)  
B(n–2)  
R(n–1)  
R(n)  
G(n–1)  
B(n–1)  
B(n)  
R(n)  
G(n)  
B(n)  
R(n+1)  
R(n+2)  
PGAOUT_T  
PGAOUT_C  
G(n–1)  
B(n–1)  
G(n)  
R(n+1)  
G(n+1)  
B(n+1)  
Figure 1. 3-Channel CDS Mode Timing  
PIXEL n (R, G, B)  
PIXEL (n+1)  
PIXEL (n+2)  
PIXEL (n+m)  
ANALOG  
INPUTS  
tAD  
tC2  
tCRA  
CDSCLK2  
ADCCLK  
tADC2  
tC2AD  
tADCLK  
tADCLK  
tOD  
OUTPUT  
DATA  
D11:D0  
R(n–2)  
G(n–2)  
B(n–2)  
B(n–1)  
R(n–1)  
R(n)  
G(n–1)  
B(n–1)  
R(n)  
G(n)  
B(n)  
R(n+1)  
R(n+2)  
PGAOUT_T  
PGAOUT_C  
B(n+1)  
G(n)  
B(n)  
R(n+1)  
G(n+1)  
G(n–1)  
Figure 2. 3-Channel SHA Mode Timing  
ANALOG  
INPUTS  
PIXEL n  
PIXEL (n+m)  
PIXEL (n+1)  
PIXEL (n+2)  
tAD  
tAD  
tC1  
tCRB  
tC2C1  
CDSCLK1  
CDSCLK2  
tC2  
tC1C2  
tADC2  
tC2AD  
ADCCLK  
tOD  
tADCLK  
tADCLK  
OUTPUT  
DATA  
PIXEL (n–4)  
PIXEL (n–3)  
PIXEL (n–2)  
PIXEL (n–1)  
PIXEL (n+2)  
D11:D0  
PGAOUT_T  
PGAOUT_C  
PIXEL (n–1)  
PIXEL n  
PIXEL (n+1)  
Figure 3. 1-Channel CDS Mode Timing  
–4–  
REV. A  
AD9816  
PIXEL n  
PIXEL (n+1)  
PIXEL (n+2)  
PIXEL (n+m)  
tAD  
ANALOG  
INPUTS  
tC2  
tCRB  
CDSCLK2  
ADCCLK  
tADC2  
tC2AD  
tOD  
tADCLK  
tADCLK  
OUTPUT  
DATA  
PIXEL (n–4)  
PIXEL (n–3)  
PIXEL (n–2)  
PIXEL (n–1)  
PIXEL (n+2)  
ϽD11:D0Ͼ  
PGAOUT_T  
PGAOUT_C  
PIXEL (n–1)  
PIXEL n  
PIXEL (n+1)  
Figure 4. 1-Channel SHA Mode Timing  
EFFECTIVE PIXELS  
OPTICAL BLACK OR DUMMY PIXELS  
ANALOG  
INPUTS  
CDSCLK1  
CDSCLK2  
ADCCLK  
Figure 5. Line Clamp Timing for 3-Channel CDS Mode  
ADCCLK  
tOD  
OUTPUT  
DATA  
ϽD11:D0Ͼ  
tHZ  
tDV  
OEB  
Figure 6. Output Enable Timing  
REV. A  
–5–  
AD9816  
ABSOLUTE MAXIMUM RATINGS*  
With  
Respect  
Parameter  
To  
Min Max  
Units  
VIN, VREF  
PGA Outputs  
Clock Inputs  
AVDD  
DVDD  
DRVDD  
AVSS  
AVSS  
DVSS  
AVSS  
DVSS  
DRVSS  
DVSS  
DRVSS  
DVSS  
–0.3 AVDD + 0.3  
–0.3 AVDD + 0.3  
–0.3 DVDD + 0.3  
–0.5 +6.5  
–0.5 +6.5  
–0.5 +6.5  
V
V
V
V
V
V
V
V
V
AVSS  
–0.3 +0.3  
Digital Outputs  
Digital Inputs  
Junction Temperature  
Storage Temperature  
Lead Temperature  
(10 sec)  
–0.3 DRVDD + 0.3  
–0.3 DVDD + 0.3  
+150  
°
°
C
C
–65  
+150  
+300  
°C  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or other conditions above those indicated in the operational sections  
of this specification is not implied. Exposure to absolute maximum ratings for  
extended periods may affect device reliability.  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
AD9816JS  
AD9816JS-80010  
AD9816-EB  
0°C to +70°C  
0°C to +70°C  
44-Lead MQFP (Metric) Plastic Quad Flatpack  
44-Lead MQFP (Metric) Plastic Quad Flatpack  
Evaluation Board  
S-44  
S-44  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD9816 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–6–  
REV. A  
AD9816  
PIN FUNCTION DESCRIPTIONS  
Pin Name Type Description  
PIN CONFIGURATION  
Pin  
1
AVDD  
AVSS  
CAPT  
CAPB  
VREF  
CML  
P
+5 V Analog Supply.  
2
P
Analog Ground.  
44 43 42 41 40 39 38 37 36 35 34  
3, 4  
5, 6  
7
AO  
AO  
AO  
AO  
AI  
P
Reference Decoupling.  
Reference Decoupling.  
Internal Reference Output.  
Internal Bias Level.  
PIN 1  
IDENTIFIER  
33  
1
2
AVDD  
AVSS  
DRVSS  
32  
DB5  
31  
3
DB4  
CAPT  
CAPT  
CAPB  
CAPB  
VREF  
8
4
30  
DB3  
9
VINR  
AVSS  
VING  
AVSS  
VINB  
AVSS  
AVDD  
OFFSET  
Analog Input, Red Channel.  
Analog Ground.  
5
29  
DB2  
AD9816  
TOP VIEW  
(Not to Scale)  
28  
6
DB1  
10  
11  
12  
13  
14  
15  
16  
27  
7
DB0 (LSB)  
AI  
P
Analog Input, Green Channel.  
Analog Ground.  
26  
8
CML  
DVSS  
25  
VINR  
9
SLOAD  
24  
10  
11  
AVSS  
VING  
SDATA  
AI  
P
Analog Input, Blue Channel.  
Analog Ground.  
23  
SCLK  
12 13 14 15 16 17 18 19 20 21 22  
P
+5 V Analog Supply.  
AI  
Clamp bias level in CDS mode.  
Offset adjustment input in SHA  
mode.  
NC = NO CONNECT  
17  
18  
CDSCLK1  
CDSCLK2  
DI  
DI  
CDS Reset Level Sampling  
Clock.  
CDS Data Level Sampling  
Clock.  
19  
20  
21  
22  
23  
24  
25  
26  
27  
ADCCLK  
DVSS  
DI  
P
A/D Converter Sampling Clock.  
Digital Ground.  
DVDD  
NC  
P
+5 V Digital Supply.  
No Connect.  
SCLK  
SDATA  
SLOAD  
DVSS  
DI  
DIO  
DI  
P
Clock Input for Serial Interface.  
Serial Data Input-Output.  
Load Pulse for Serial Interface.  
Digital Ground.  
DB0  
DO  
DO  
P
Data Output (LSB).  
Data Outputs.  
28–32 DB1–DB5  
33  
34  
DRVSS  
Digital Driver Ground.  
Digital Driver Supply.  
Data Outputs.  
DRVDD  
P
35–39 DB6–DB10  
DO  
DO  
DI  
40  
41  
DB11  
OEB  
Data Output (MSB).  
Output Enable, Active Low.  
42  
43  
NC  
No Connect.  
PGAOUT_C AO  
PGAOUT_T AO  
PGA Output, Negative. This  
pin should be left unconnected  
except during evaluation.  
44  
PGA Output, Positive. This pin  
should be left unconnected  
except during evaluation.  
NOTES  
See Applications Information for circuit configurations.  
TYPE: AI = Analog Input, AO = Analog Output, DI = Digital Input,  
DO = Digital Output, DIO = Digital Input/Output, P = Power.  
REV. A  
–7–  
AD9816  
DEFINITIONS OF SPECIFICATIONS  
FUNCTIONAL DESCRIPTION  
The AD9816 can be operated in several different modes:  
3-channel CDS mode, 3-channel SHA mode, 1-channel CDS  
mode, and 1-channel SHA mode. Each mode is selected by  
programming the Configuration Register through the serial  
interface. For more detail on CDS or SHA mode operation, see  
Circuit Descriptions section.  
INTEGRAL NONLINEARITY (INL)  
Integral nonlinearity error refers to the deviation of each indi-  
vidual code from a line drawn from “zero scale” through “posi-  
tive full scale.” The point used as “zero scale” occurs 1/2 LSB  
before the first code transition. “Positive full scale” is defined as  
a level 1 1/2 LSB beyond the last code transition. The deviation  
is measured from the middle of each particular code to the true  
straight line.  
3-Channel CDS Mode  
In 3-channel CDS mode, the AD9816 simultaneously samples  
the red, green and blue input voltages from the CCD outputs.  
The sampling points for each Correlated Double Sampler (CDS)  
are controlled by CDSCLK1 and CDSCLK2. CDSCLK1’s fall-  
ing edge clamps the reference level of the CCD waveform at the  
analog inputs of the AD9816. CDSCLK2’s falling edge samples  
the data level of the CCD waveform. Each CDS amplifier out-  
puts the difference between the CCD reference and data levels.  
Next, the output voltage of each CDS amplifier is level-shifted  
by an Offset DAC. The voltages are then scaled by the three  
Programmable Gain Amplifiers before being multiplexed to the  
common 12-bit ADC. The ADC sequentially samples the PGA  
outputs on the falling edges of ADCCLK.  
DIFFERENTIAL NONLINEARITY (DNL)  
An ideal ADC exhibits code transitions which are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. Thus every  
code must have a finite width. No missing codes guaranteed to  
12-bit resolution indicates that all 4096 codes, respectively,  
must be present over all operating ranges.  
OFFSET ERROR  
The first ADC code transition should occur at a level 1/2 LSB  
above the nominal zero scale voltage. The offset error is the  
deviation of the actual first code transition level from the ideal  
level.  
Timing for this mode is shown in Figure 1, using a 2× master  
clock. Although it is not required, it is recommended that the  
falling edge of CDSCLK2 be aligned with the rising edge of  
ADCCLK. The rising edge of CDSCLK2 should not occur  
GAIN ERROR  
The last code transition should occur for an analog value  
1 1/2 LSB below the nominal full scale voltage. Gain error is  
the deviation of the actual difference between first and last code  
transitions and the ideal difference between the first and last  
code transitions.  
before the previous falling edge of ADCCLK, as shown by tADC2  
.
The maximum allowable width of CDSCLK2 will be dependent  
on the ADCCLK period, and equal to one ADCCLK period  
minus 30 ns. The output data latency is three clock cycles.  
The offset and gain values for the red, green, and blue channels  
are programmed using the serial interface. The order in which  
the channels are switched through the multiplexer is selected by  
programming the MUX register. The rising edge of CDSCLK2  
always resets the multiplexer.  
TOTAL OUTPUT NOISE  
An ideal ADC outputs only one code value for a dc input  
voltage. A real converter has noise sources that will cause a  
spread of codes at the output for a dc input voltage. The total  
output noise is measured with a grounded input and is equal to  
the standard deviation of the histogram of output codes.  
3-Channel SHA Mode  
In 3-channel SHA mode, the AD9816 simultaneously samples  
the red, green, and blue input voltages. The sample-and-hold  
amplifier’s sampling point is controlled by CDSCLK2. CDSCLK2’s  
falling edge samples the input waveforms on each channel. The  
output voltages from the three SHAs are modified by the offset  
DACs and then scaled by the three PGAs. The outputs of the  
PGAs are then multiplexed through the 12-bit ADC. The ADC  
sequentially samples the PGA outputs on the falling edges of  
ADCCLK.  
CHANNEL-TO-CHANNEL CROSSTALK  
In an ideal three-channel system, the signal in one channel will  
not influence the signal level of another channel. The channel-  
to-channel crosstalk specification is a measure of the change that  
occurs in one channel as the other two channels are varied. In  
the AD9816, one channel is grounded and the other two chan-  
nels are exercised with full-scale input signals. The change in  
the output codes from the first channel is measured and com-  
pared with the result when all three channels are grounded. The  
difference is the channel-to-channel crosstalk, stated in LSBs.  
The input signal is sampled with respect to the voltage applied  
to the OFFSET pin. With the OFFSET pin grounded, a zero  
volt input corresponds to the ADC’s zero scale output. The  
input clamp is disabled in this mode. However, the OFFSET  
pin may be used as a coarse offset adjust pin. A voltage applied  
to this pin will be subtracted from the voltages applied to the  
red, green and blue inputs in the first amplifier stage of the  
AD9816. For more information, see the Circuit Descriptions  
section.  
APERTURE DELAY  
The aperture delay is the time delay that occurs from when a  
sampling edge is applied to the AD9816 until the actual sample  
of the input signal is held. For CDSCLK1, the aperture delay  
represents the amount of time it takes for the clamp switch  
to open after CDSCLK1 transitions from high to low. For  
CDSCLK2, the aperture delay is the amount of time after the  
CDSCLK2 falling edge that the input signal is sampled.  
Timing for this mode is shown in Figure 2, using a 1× master  
clock. CDSCLK1 should be grounded in this mode. Although  
it is not required, it is recommended that the falling edge of  
CDSCLK2 be aligned with the rising edge of ADCCLK. The  
rising edge of CDSCLK2 should not occur before the previous  
falling edge of ADCCLK, as shown by tADC2. The maximum  
allowable width of CDSCLK2 will be dependent on the ADCCLK  
POWER SUPPLY REJECTION  
Power supply rejection specifies the maximum full-scale change  
that occurs from the initial value when the supplies are varied  
over the specified limits.  
–8–  
REV. A  
AD9816  
REGISTER OVERVIEW  
period, and equal to one ADCCLK period minus 30 ns. The  
output data latency is three ADCCLK cycles.  
The serial interface is used to program the eight internal regis-  
ters of the AD9816. The address bits A2–A0 determine the  
register in the AD9816 where serial data D7–D0 is written to or  
read from.  
The offset and gain values for the red, green and blue channels  
are programmed using the serial interface. The order in which  
the channels are switched through the multiplexer is selected by  
programming the MUX register. The rising edge of CDSCLK2  
always resets the multiplexer.  
The Configuration Register controls the operating mode of the  
AD9816. Bits 7 (MSB), 6 and 0 are test mode bits and should  
always be set to zero. Bit 5 is set high to enable the CDS mode.  
Setting this bit low enables the SHA mode. Set Bit 4 high to  
enable the 3 V input span. Set Bit 3 high to enable the 1.5 V  
span. Bits 2 and 1 set the channel mode. Bit 2 enables 3-chan-  
nel simultaneous sampling. Bit 1 enables single channel mode,  
with the appropriate channel set in the MUX Register. At  
power-on, this register defaults to 3-channel CDS mode with a  
3 V input span, as shown in Table I.  
1-Channel CDS Mode  
This mode operates in the same way as the 3-channel CDS  
mode. The difference is that the multiplexer remains fixed in  
this mode, so only the channel specified in the MUX register is  
processed. Because the AD9816 is still sampling all three chan-  
nels, the unused inputs should be grounded through 1200 pF  
capacitors.  
Timing for this mode is shown in Figure 3, using a 3× master  
clock. Although it is not required, it is recommended that the  
falling edge of CDSCLK2 be aligned with the rising edge of  
ADCCLK.  
7
6 5 4 3 2 1 0  
TEST MODE (LSB)  
1-CHANNEL MODE  
3-CHANNEL MODE  
1.5 V INPUT SPAN  
3 V INPUT SPAN  
CDS ENABLE  
1-Channel SHA Mode  
This mode operates the same way as the 3-channel SHA mode,  
except that the multiplexer remains stationary. Only the channel  
specified in the MUX register is processed. Because the AD9816 is  
still sampling all three channels, the unused inputs should be  
grounded.  
TEST MODE  
TEST MODE (MSB)  
Figure 7. Configuration Register  
The input signal is sampled with respect to the voltage applied  
to the OFFSET pin. With the OFFSET pin grounded, a zero  
volt input corresponds to the ADC’s zero scale output. The  
input clamp is disabled in this mode. However, the OFFSET  
pin may be used as a coarse offset adjust pin. A voltage applied  
to this pin will be subtracted from the voltages applied to the  
red, green and blue inputs in the first amplifier stage of the  
AD9816. For more information, see the Circuit Descriptions  
section.  
The MUX Register determines the order of channels that the  
multiplexer will switch to in the different modes of operation.  
Bit 7 and Bit 1 are test modes and should be set to zero. Bit 0 is  
a test mode bit and should be set high. In 3-channel mode,  
Table II shows how to set the order in which the channels are  
converted. The multiplexer is always reset on the rising edge of  
CDSCLK2. In 1-channel mode, the multiplexer is stationary,  
and only converts the channel selected in Table III. At power-  
on, this register defaults to 3-channel RGB mode.  
Timing for this mode is shown in Figure 4, using a 1× master  
clock. CDSCLK1 should be grounded in this mode of opera-  
tion. Although it is not required, it is recommended that the  
falling edge of CDSCLK2 be aligned with the rising edge of  
ADCCLK.  
7
6 5 4 3 2 1 0  
TEST MODE (LSB)  
TEST MODE  
1-CHANNEL RED  
1-CHANNEL GREEN  
1-CHANNEL BLUE  
3-CHANNEL BIT 0  
3-CHANNEL BIT 1  
TEST MODE (MSB)  
Figure 8. MUX Register  
Table I. Register Map  
Register  
A2  
A1  
A0  
Power-On Default Value  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Configuration Register  
MUX Register  
0 0 1 1 0 1 0 0 (LSB)  
0 0 1 0 0 0 0 1 (LSB)  
Undetermined  
Undetermined  
Undetermined  
Undetermined  
Undetermined  
Undetermined  
Red PGA Register  
Green PGA Register  
Blue PGA Register  
Red Offset Register  
Green Offset Register  
Blue Offset Register  
REV. A  
–9–  
AD9816  
Table II. 3-Channel Selection  
gain. The gain of the PGA increases linearly as the gain word  
increases, and can be calculated by the following equation:  
MUX Register Bits  
PGA Gain = 1 + (Gain Code/51.2)  
6
5
Channel Sequence  
where Gain Code varies from 0 to 255. For more information,  
refer to the Circuit Descriptions section.  
0
1
1
0
Red, Green, Blue  
Blue, Green, Red  
7
6 5 4 3 2 1 0  
Table III. 1-Channel Selection  
MUX Register Bits  
D0 (LSB)  
D1  
D2  
4
3
2
Channel  
D3  
0
0
1
0
1
0
1
0
0
Red  
Green  
Blue  
D4  
D5  
D6  
D7 (MSB)  
The offset is variable from –100 mV to +100 mV, and is applied  
at the output of the CDS, before the PGA. The resolution is  
8 bits, and a sign magnitude coding scheme is used. Table IV  
shows the offset voltage that corresponds to the register value.  
Figure 10. PGA Registers for Red, Green and Blue  
Channels  
SERIAL TIMING  
The 3-wire serial interface timing is shown below. To write to  
the AD9816, SLOAD is first taken low. Next, a total of 16 bits  
are sent to SDATA, which get latched into the AD9816 on the  
rising edges of SCLK. Additional SCLK pulses will be ignored.  
The first bit, R/W, should be low to specify a write operation.  
The next three bits, A2–A0, are the address bits to specify the  
destination register for the data word D7–D0. After all 16 bits  
have been clocked, SLOAD is taken high, which internally  
latches the data to the appropriate register. The read operation  
also starts by taking SLOAD low. First, a one is written to R/W,  
to specify a read operation. Next, the three Address Bits A2–A0  
are written to specify the register that will be read. On the 8th  
SCLK falling edge, SDATA will begin to output the informa-  
tion from the desired register. After all eight data bits have been  
read, SLOAD is taken back high.  
7
6 5 4 3 2 1 0  
D0 (LSB)  
D1  
D2  
D3  
D4  
D5  
D6  
D7 (MSB)  
Figure 9. Offset Registers for Red, Green and Blue  
Channels  
Table IV. Offset Adjustment  
Offset Register  
Offset Voltage  
R/Wb  
A2 A1 A0  
D7 D6 D5 D4 D3 D2 D1  
D0  
0111 1111 (LSB)  
+100 mV  
SDATA  
SCLK  
.
.
.
.
.
tDH  
tDS  
.
+0.8 mV  
0.0 mV  
0.0 mV  
–0.8 mV  
.
tLH  
tLS  
0000 0001  
0000 0000  
1000 0000  
1000 0001  
SLOAD  
Figure 11. Write Operation Timing  
.
.
.
R/Wb  
tDH  
.
.
A2 A1 A0  
D7 D6 D5 D4 D3 D2 D1  
D0  
SDATA  
SCLK  
tDS  
tRDV  
1111 1111  
–100 mV  
The PGA is used for correcting color imbalance and for fine  
adjustment of the input span before the ADC. Gain is variable  
from 1× to 6× (0 dB to 15.5 dB) with 8-bit resolution. An all  
“zeros” word (00 . . . 0) corresponds to the minimum gain, and  
an all “ones” word (11 . . . 1) corresponds to the maximum  
tLH  
tLS  
SLOAD  
Figure 12. Read Operation Timing  
–10–  
REV. A  
AD9816  
CIRCUIT DESCRIPTIONS  
Analog Input Configuration for CDS and SHA Mode  
of the AD9816 can also handle an input signal down to  
AVSS – 0.3 V without any saturation recovery issues. Although  
an input level below zero volts will be clipped to the ADC’s full-  
scale output code, the input stage can respond quickly enough  
to accurately process the next pixel that falls into the linear  
input range. Any signals below AVSS – 0.3 V will turn on the  
input protection diodes, and recovery from the saturated condi-  
tion may take up to several milliseconds.  
CDS Mode Operation  
Figure 13 shows the equivalent input circuit for the CDS mode  
of operation. The CCD signal is connected to the AD9816’s  
analog inputs through a coupling capacitor CIN. The CCD  
reference level is clamped during the CDSCLK1 pulse, when  
the clamp switch closes and connects the externally-generated  
3 V bias to the analog input. After the clamp switch opens  
(CDSCLK1 low), the CCD data level will be level shifted by  
the voltage held across CIN, and the SHA will sample the input  
signal when the CDSCLK2 pulse goes low (see Figures 1 and 3  
for CDS mode timing). In this sampling technique, the CDS  
function is effectively performed across the input capacitor, CIN.  
Input Capacitor CIN  
The recommended value for CIN is 1200 pF. This value has  
been selected to provide the best overall performance when  
considering three factors: input attenuation, linearity and signal  
droop. The value of CIN may be optimized for a particular ap-  
plication if these three factors are understood.  
This CDS method has two additional considerations. First, the  
CCD signal cannot be dc-coupled into the AD9816, because  
the input capacitor is required. Second, the input clamp of the  
AD9816 is operating as a pixel clamp, and must be asserted on  
every pixel for true CDS operation. If line clamp operation is  
desired, CDSCLK1 may be used at the start of each line to set  
the proper dc voltage on CIN. Then, during the effective pixels  
of each line, CDSCLK1 can be held low while CDSCLK2  
samples the data levels of each pixel. Figure 5 shows the timing  
for line clamp operation.  
1. Attenuation (Gain Error)  
The input voltage will be attenuated by the interaction of  
C
IN and CSTRAY. CSTRAY is less than 10 pF, which results in  
an attenuation of about 0.8% when CIN is 1200 pF. The gain  
error will increase accordingly as the value of CIN is decreased.  
2. Linearity  
The input capacitance of the AD9816 is shown in Figure 8  
as CSTRAY. A small portion of this capacitance is junction  
capacitance, which will vary nonlinearly as the input voltage  
to the AD9816 changes. When the input voltage is attenu-  
ated by the combination of CIN and CSTRAY, there will be a  
small nonlinear component caused by the input junction  
capacitance. The magnitude of the junction capacitance will  
cause a 1 LSB (0.024%) nonlinearity over the 3 V input  
range when a 1200 pF CIN is used. This nonlinearity will  
increase if a smaller CIN is used.  
AD9816  
C
IN  
I
R
VING  
11  
BIAS  
S
CCD SIGNAL  
SHA  
C
STRAY  
BUFFER  
CLAMP  
SWITCH  
3. Droop  
+5V  
The input bias current of the AD9816 is typically 10 nA and  
is constant regardless of the AD9816’s input voltage. The  
droop of the voltage across CIN can be calculated with the  
following equation:  
1.0k  
1.5k⍀  
3V  
16  
OFFSET  
0.1F  
1F  
i
dV = BIAS ×(t)  
17  
18  
CDSCLK1  
CDSCLK2  
CIN  
Figure 13. CDS Mode Input Circuit (All Channels Identical)  
where t is the time between clamp intervals. Between the  
adjacent pixels of a scanned line, this droop will be insignifi-  
cant. Between scanned lines, a 1 ms delay will produce a  
droop of about 10 mV, which can be easily clamped on the  
first pixel of the next line. If the value of CIN is reduced, the  
droop will increase accordingly.  
Input Signal Range for CDS Mode  
An input dc bias level of 3 V allows a maximum 3 V p-p signal  
swing from the CCD. Figure 14 shows a typical full-scale input  
waveform to the AD9816, illustrating the allowable input range.  
With a reference level of 3 V, the AD9816 can tolerate up to  
2 V of reset feedthrough above the reference level. The inputs  
5V MAX RESET FEEDTHROUGH  
3V REFERENCE LEVEL  
(SET BY INPUT CLAMP)  
MAX PEAK-PEAK SIGNAL  
0V MAX DATA LEVEL  
–0.3V MAX SATURATED DATA LEVEL  
Figure 14. CCD Input Signal Clamped to 3 V  
REV. A  
–11–  
AD9816  
Line Clamp  
Programmable Gain Amplifiers  
The AD9816 has three programmable amplifiers, one for each  
channel. The gain is variable from 1 V/V (0 dB) to 5.98 V/V  
(15.5 dB) in 256 increments. Figure 16 shows the PGA gain  
transfer function. The gain of the PGA can be calculated ac-  
cording to the equation:  
If a line clamp technique is implemented (see Figure 5 for  
timing), the value of CIN should be increased to more than  
1200 pF. The main requirement for line clamp is to keep the  
signal droop below 1 LSB across a scanned line. For example, if  
a CCD with 5400 effective pixels is clocked at 2 MHz, then  
t = 2.7 ms. One LSB at 12 bits with a 3 V full scale is 732 µV.  
Rearranging the above droop equation:  
Gain Code  
PGAGain =1+  
51.2  
i
CMIN  
=
BIAS ×t  
dV  
6
5
4
3
2
1
In this case, CMIN = 37 nF, and a convenient standard value of  
0.047 µF will be adequate.  
SHA Mode Operation  
When the AD9816 is configured for SHA mode operation, the  
OFFSET pin functions as an offset adjustment input. Figure  
15 shows a simplified diagram of the AD9816’s inputs when SHA  
mode is selected. A positive dc voltage may be applied to OFFSET  
which will be subtracted from all three input channels in the  
input stage of the AD9816. The maximum input voltage to the  
analog input pins or the OFFSET pin in SHA mode is 3 V.  
0
51  
102  
153  
204  
255  
The OFFSET feature is provided to allow coarse offset adjust-  
ment of the input signal. If the signal is sampled with respect to  
ground, any positive offset on the input signal will subtract from  
the dynamic range of the ADC. For example, an input signal  
that spans from 1.5 V to 2.5 V cannot utilize all of the available  
dynamic range, using either the 1.5 V or 3 V span. However, by  
applying a dc value of 1.5 V to the OFFSET pin, the input  
signal will be level-shifted down to 0 V to 1 V. This would  
allow the use of the 3 V span and a PGA gain of three to use  
the entire ADC dynamic range.  
GAIN REGISTER CODE – Decimal  
Figure 16. PGA Gain Transfer Function  
The analog outputs of the three PGAs are multiplexed to the input  
of the 12-bit ADC. The differential output of the MUX is also  
buffered and externally available at Pins 43 and 44 (PGAOUT_C  
and PGAOUT_T, respectively). The timing diagrams, Fig-  
ures 1 through 4, show the timing relationships between the  
analog inputs, CDSCLK2, ADCCLK, and PGAOUT_T and  
PGAOUT_C. The CDSCLK2 pulse resets the outputs of all  
three PGAs to an internal bias level. The first rising edge of  
ADCCLK after the rising edge of CDSCLK2 will switch the  
MUX to the red PGA output. The second ADCCLK rising  
edge switches the MUX to the green PGA output, and the third  
rising edge switches the MUX to the blue PGA output.  
If no dc offset adjustment is desired, the OFFSET pin should  
be grounded. The input signal will be sampled with respect to  
ground.  
AD9816  
PGA Outputs  
VINR  
The PGAOUT_T and PGAOUT_C signals represent the differ-  
ential input to the ADC, and are complementary. Both signals  
will reset to 3.5 V while CDSCLK2 is high. The voltage swing  
of each output is equal to one-half of the ADC’s full-scale volt-  
age, centered at 3.5 V. Table V shows the relationship between  
the analog input voltage, the PGA output voltage and the ADC  
input voltage.  
SHA  
BUFFER  
VING  
SHA  
BUFFER  
VINB  
Figure 18 shows the PGA output voltages for three different  
color pixel amplitudes. In this example, the red pixel has the  
largest amplitude, and the blue pixel has the smallest amplitude.  
Because the PGAOUT_T and PGAOUT_C outputs are inter-  
nally buffered by source followers, they are not an exact repre-  
sentation of the differential ADC input signal. PGAOUT_T and  
PGAOUT_C should only be used during evaluation; perfor-  
mance of the AD9816 is only guaranteed with these two pins  
unconnected.  
SHA  
BUFFER  
OFFSET  
12k⍀  
CDSCLK1  
CDSCLK2  
Figure 15. SHA Mode Input Circuit  
–12–  
REV. A  
AD9816  
PGAOUT_T  
PGAOUT_C  
Analog-to-Digital Converter  
The AD9816 uses a high speed 12-bit ADC core. This CMOS  
converter is designed to run at 6 MSPS with good linearity and  
noise performance. Figure 19 shows the INL and DNL perfor-  
mance of a typical AD9816 device, running at 6 MHz in 3-channel  
CDS mode using the timing shown in Figure 1. The following  
timing parameters were used: tCRA = 500 ns, tADCLK = 83 ns,  
tC1 = 20 ns, tC1C2 = 170 ns, tC1 = 80 ns, tADC2 = 3 ns, tC2AD = 83 ns,  
and tC2C1 = 230 ns.  
RED  
GREEN  
BLUE  
PGA  
PGA  
3:1  
DIFF  
MUX  
12-BIT ADC  
SELECT  
The digital outputs of the AD9816 follow a straight binary  
coding scheme. Table VI shows the digital output coding for  
the 3 V input span.  
2
ADCCLK  
MUX  
CONTROL  
CDSCLK2  
PGA  
0.2  
Figure 17. PGA/MUX Circuit Configuration  
0.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.2  
–1.4  
–1.6  
MAX INL 0.18  
MIN INL –1.46  
PIXEL n  
BLUE  
ANALOG  
INPUTS  
GREEN  
4095  
0
400  
800  
1200 1600 2000 2400 2800 3200 3600  
RED  
1.5  
1.0  
MAX DNL 0.31  
MIN DNL –0.33  
CDSCLK2  
ADCCLK  
0.5  
0.0  
–0.5  
–1.0  
4.25V  
3.5V  
RED(n)  
RESET  
RESET  
PGAOUT_T  
PGAOUT_C  
4095  
0
400  
800  
1200 1600 2000 2400 2800 3200 3600  
GREEN(n–1)  
GREEN(n)  
Figure 19. Typical Linearity Performance  
2.75V  
BLUE(n)  
BLUE(n–1)  
Table VI. Digital Output Format  
Figure 18. PGA Output Voltages (ADC Input Range = 3 V)  
Input Voltage1  
Digital Outputs  
Table V. Voltage Swing of PGA Outputs  
3.0 – 1 LSB  
3.0 – 2 LSB  
1111 1111 1111  
1111 1111 1110  
Analog  
Input  
Differential  
ADC  
Input  
0.0 + 1 LSB  
0.0  
0000 0000 0001  
0000 0000 0000  
Voltage1  
PGAOUT_T  
PGAOUT_C  
0.002  
1.502  
3.002  
0.003  
0.753  
1.503  
2.75  
3.50  
4.25  
3.125  
3.50  
3.875  
4.25  
3.50  
2.75  
3.875  
3.50  
3.125  
1.5  
0.0  
+1.5  
0.75  
0.0  
NOTE  
1Analog input voltage in CDS mode is the difference between the  
CCD’s reference and data levels.  
+0.75  
NOTES  
1Analog input voltage in CDS mode is the difference between the CCD’s refer-  
ence and data levels.  
23.0 V Input Range.  
31.5 V Input Range.  
REV. A  
–13–  
AD9816  
APPLICATIONS INFORMATION  
CDS Mode Circuit  
supply pin should still be decoupled to the same ground plane  
as the rest of the AD9816. The loading of the digital outputs  
should be minimized, either by using short traces to the digital  
ASIC, or by using external digital buffers. All 0.01 µF and  
0.1 µF decoupling capacitors should be located as close as pos-  
sible to the AD9816 pins. Also, the 1200 pF input capacitors  
should be located close the AD9816’s analog input pins.  
The recommended circuit configuration for CDS mode opera-  
tion is shown in Figure 20. The input coupling capacitor value  
of 1200 pF is recommended, but this value may be adjusted to  
suit a particular application (see Circuit Descriptions). A single  
ground plane is recommended for the AD9816. A separate power  
supply may be used for DRVDD, the digital driver supply, but this  
V
DD  
V
DD  
0.1F  
0.01F  
0.01F  
0.1F  
1
2
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
AVDD  
AVSS  
CAPT  
CAPT  
CAPB  
CAPB  
VREF  
CML  
DRVSS  
DB5  
0.1F  
DB5  
3
DB4  
DB3  
DB2  
DB1  
DB4  
+
10F  
0.1F  
0.1F  
4
DB3  
5
DB2  
AD9816  
6
DB1  
7
DB0 (LSB)  
DVSS  
SLOAD  
SDATA  
SCLK  
DB0 (LSB)  
8
+
9
VINR  
0.1F  
1.0F  
10F  
1200pF  
1200pF  
10  
11  
AVSS  
VING  
SLOAD  
SDATA  
SCLK  
RED_IN  
GREEN_IN  
BLUE_IN  
1200pF  
NC = NO CONNECT  
V
DD  
0.01F  
0.1F  
V
DD  
0.1F  
0.01F  
ADCCLK  
CDSCLK2  
CDSCLK1  
V
DD  
1k⍀  
1.0F  
0.1F  
1.5k⍀  
Figure 20. Recommended Circuit for CDS Mode  
–14–  
REV. A  
AD9816  
SHA Mode Circuit  
reference black level of the CIS can be connected to the OFF-  
SET pin, to remove the dc offset. Removing the coarse offset of  
the CIS signal will allow the dynamic range of the AD9816 to  
be maximized.  
The circuit configuration for SHA mode is identical to CDS  
mode except for two differences: the analog inputs should be  
dc-coupled, and the OFFSET pin is tied to ground or a desired  
dc voltage (see Circuit Descriptions). In CIS applications, the  
V
DD  
V
DD  
0.01F  
0.1F  
0.01F  
0.1F  
1
2
AVDD  
AVSS  
CAPT  
CAPT  
CAPB  
CAPB  
VREF  
CML  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
DRVSS  
DB5  
0.1F  
DB5  
DB4  
DB3  
DB2  
DB1  
3
DB4  
+
10F  
0.1F  
0.1F  
4
DB3  
5
DB2  
6
AD9816  
DB1  
7
DB0 (LSB)  
DVSS  
SLOAD  
SDATA  
SCLK  
DB0 (LSB)  
8
+
9
VINR  
0.1F  
10F  
1.0F  
10  
11  
SLOAD  
AVSS  
VING  
SDATA  
SCLK  
RED_IN  
GREEN_IN  
BLUE_IN  
NC = NO CONNECT  
V
DD  
0.01F  
0.1F  
V
DD  
0.1F  
0.01F  
V
DD  
ADCCLK  
CDSCLK2  
CDSCLK1  
R1  
R2  
OPTIONAL DC OFFSET  
1.0F  
0.1F  
GROUND-REFERENCED SAMPLING  
Figure 21. Recommended Circuit for SHA Mode  
REV. A  
–15–  
AD9816  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
44-Lead MQFP  
(S-44)  
0.529 (13.45)  
0.510 (12.95)  
0.096 (2.45)  
0.398 (10.1)  
MAX  
0.390(9.90)  
0.041 (1.03)  
0.029 (0.73)  
44  
34  
1
33  
SEATING  
PLANE  
0.333 (8.45)  
0.327 (8.3)  
TOP VIEW  
(PINS DOWN)  
11  
23  
0.01 (0.25) MIN  
0.009 (0.23)  
0.005 (0.13)  
12  
22  
0.018 (0.45)  
0.012 (0.30)  
0.031 (0.80)  
BSC  
0.083 (2.1)  
0.077 (1.95)  
–16–  
REV. A  

相关型号:

AD9816JS-80010

Complete 12-Bit 6 MSPS CCD/CIS Signal Processor
ADI

AD9816JSRL

暂无描述
ADI

AD9821

Complete 12-Bit 40 MSPS Imaging Signal Processor
ADI

AD9821KST

Complete 12-Bit 40 MSPS Imaging Signal Processor
ADI

AD9822

Complete 14-Bit CCD/CIS Signal Processor
ADI

AD9822JR

Complete 14-Bit CCD/CIS Signal Processor
ADI

AD9822JRRL

Complete 14-Bit CCD/CIS Signal Processor
ADI

AD9822JRS

Complete 14-Bit CCD/CIS Signal Processor
ADI

AD9822JRSRL

Complete 14-Bit CCD/CIS Signal Processor
ADI

AD9822JRSZ

Complete 14-Bit CCD/CIS Signal Processor
ADI

AD9822JRSZRL

Complete 14-Bit CCD/CIS Signal Processor
ADI

AD9822JRZ

Complete 14-Bit CCD/CIS Signal Processor
ADI