AD9731BRS [ADI]

10-Bit, 170 MSPS D/A Converter; 10位, 170 MSPS D / A转换器
AD9731BRS
型号: AD9731BRS
厂家: ADI    ADI
描述:

10-Bit, 170 MSPS D/A Converter
10位, 170 MSPS D / A转换器

转换器 数模转换器 光电二极管
文件: 总11页 (文件大小:152K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-Bit, 170 MSPS  
D/A Converter  
a
AD9731  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
170 MSPS Update Rate  
TTL/High-Speed CMOS-Compatible Inputs  
Wideband SFDR: 66 dB @ 2 MHz/50 dB @ 65 MHz  
Pin-Compatible, Lower Cost Replacement for  
Industry Standard AD9721 DAC  
Low Power: 439 mW @ 170 MSPS  
Fast Settling: 3.8 ns to 1/2 LSB  
Internal Reference  
ANALOG  
RETURN  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DECODERS  
AND  
DRIVERS  
TTL  
DRIVE  
LOGIC  
IOUT  
SWITCH  
NETWORK  
REGISTER  
IOUT  
Two Package Styles: 28-Lead SOIC and SSOP  
REF IN  
APPLICATIONS  
CLOCK  
CONTROL  
AMP  
Digital Communications  
Direct Digital Synthesis  
Waveform Reconstruction  
High Speed Imaging  
INTERNAL VOLTAGE  
REFERENCE  
AMP OUT  
R
DIGITAL DIGITAL ANALOG  
SET  
5 MHz–65 MHz HFC Upstream Path  
REF OUT  
CONTROL  
AMP IN  
–V  
+V  
–V  
S
S
S
GENERAL DESCRIPTION  
Optimized for direct digital synthesis (DDS) waveform recon-  
struction, the AD9731 provides 50 dB of wideband harmonic  
suppression over a dc-to-65 MHz analog output bandwidth.  
This signal bandwidth addresses the transmit spectrum in many  
of the emerging digital communications applications where  
signal purity is critical. Narrowband, the AD9731 provides an  
SFDR of greater than 79 dB. This excellent wideband and  
narrowband ac performance, coupled with a lower pricing struc-  
ture, make the AD9731 the optimum high performance DAC  
value.  
The AD9731 is a 10-bit, 170 MSPS, bipolar D/A converter that  
is optimized to provide high dynamic performance, yet offer  
lower power dissipation and more economical pricing than  
afforded by previous bipolar high performance DAC solutions.  
The AD9731 was designed primarily for demanding communi-  
cations systems applications where wideband spurious-free  
dynamic range (SFDR) requirements are strenuous and could  
previously only be met by using a high performance DAC such  
as the industry-standard AD9721. The proliferation of digital  
communications into basestation and high volume subscriber-  
end markets has created a demand for excellent DAC perfor-  
mance delivered at reduced levels of power dissipation and cost.  
The AD9731 is the answer to that demand.  
The AD9731 is packaged in 28-lead SOIC (same footprint  
as the industry standard AD9721) and super space-saving  
28-lead SSOP; both are specified to operate over the extended  
industrial temperature range of –40°C to +85°C.  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1999  
5/27/99 8 PM  
(+VS = +5 V, –VS = –5.2 V, CLOCK = 125 MHz, RSET = 1.96 kfor 20.4 mA IOUT  
REF = –1.25 V, unless otherwise noted.)  
,
V
AD9731–SPECIFICATIONS  
Parameter  
Temp  
Test Level  
Min  
Typ  
10  
Max  
Units  
Bits  
RESOLUTION  
THROUGHPUT RATE  
+25°C  
IV  
165  
170  
MHz  
DC ACCURACY  
Differential Nonlinearity  
+25°C  
Full  
+25°C  
Full  
I
VI  
I
0.25  
0.35  
0.6  
1
1.5  
1
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
VI  
0.7  
1.5  
INITIAL OFFSET ERROR  
Zero-Scale Offset Error  
+25°C  
Full  
+25°C  
Full  
I
VI  
I
VI  
V
35  
40  
2.5  
2.5  
0.04  
70  
100  
5
µA  
µA  
% FS  
% FS  
µA/°C  
Full-Scale Gain Error1  
Offset Drift Coefficient  
5
REFERENCE/CONTROL AMP  
Internal Reference Voltage2  
Internal Reference Voltage Drift  
Internal Reference Output Current3  
Amplifier Input Impedance  
Amplifier Bandwidth  
+25°C  
Full  
Full  
+25°C  
+25°C  
I
–1.35  
–50  
–1.25  
100  
–1.15  
+500  
V
µV/°C  
µA  
kΩ  
MHz  
IV  
VI  
V
50  
2.5  
V
REFERENCE INPUT4  
Reference Input Impedance  
+25°C  
+25°C  
V
V
4.6  
75  
kΩ  
MHz  
Reference Multiplying Bandwidth5  
OUTPUT PERFORMANCE  
Output Current4, 6  
Output Compliance  
Output Resistance  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
V
IV  
V
V
V
V
V
V
V
V
20  
mA  
V
pF  
ns  
ns  
pVs  
V/µs  
ns  
–1.5  
+3  
240  
5
Output Capacitance  
7
Voltage Settling Time to 1/2 LSB (tST  
)
3.8  
2.9  
4.1  
400  
1
8
Propagation Delay (tPD  
)
Glitch Impulse9  
Output Slew Rate10  
Output Rise Time10  
Output Fall Time10  
1
ns  
DIGITAL INPUTS  
Input Capacitance  
Logic “1” Voltage  
Logic “0” Voltage  
Logic “1” Current  
Logic “0” Current  
Full  
Full  
Full  
+25°C  
+25°C  
+25°C  
Full  
+25°C  
Full  
IV  
VI  
VI  
VI  
VI  
IV  
IV  
IV  
IV  
IV  
IV  
2
pF  
V
V
2.0  
0.8  
50  
100  
2
2.5  
1.0  
1.0  
8
µA  
µA  
ns  
ns  
ns  
ns  
ns  
ns  
30  
1.2  
1.5  
0.1  
0.1  
Minimum Data Setup Time (tS)11  
Minimum Data Hold Time (tH)12  
Clock Pulsewidth Low (pwMIN  
Clock Pulsewidth High (pwMAX  
)
+25°C  
+25°C  
2
2
)
SFDR PERFORMANCE (Wideband) 13  
2 MHz AOUT  
10 MHz AOUT  
20 MHz AOUT  
40 MHz AOUT  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
V
V
V
V
V
V
66  
62  
61  
55  
50  
47  
dB  
dB  
dB  
dB  
dB  
dB  
65 MHz AOUT (Clock = 170 MHz)  
70 MHz AOUT (Clock = 170 MHz)  
–2–  
REV. A  
5/27/99 8 PM  
AD9731  
Parameter  
Temp  
Test Level  
Min  
Typ  
Max  
Units  
SFDR PERFORMANCE (Narrowband)13  
2 MHz; 2 MHz Span  
25 MHz, 2 MHz Span  
+25°C  
+25°C  
+25°C  
V
V
V
79  
61  
73  
dB  
dB  
dB  
10 MHz, 5 MHz Span (Clock = 170 MHz)  
INTERMODULATION DISTORTION14  
F1 = 800 kHz, F2 = 900 kHz  
+25°C  
V
58  
dB  
POWER SUPPLY15  
Digital –V Supply Current  
+25°C  
Full  
+25°C  
Full  
+25°C  
Full  
+25°C  
Full  
I
VI  
I
VI  
I
VI  
V
V
V
27  
27  
45  
45  
13  
15  
439  
449  
100  
37  
42  
53  
66  
20  
22  
mA  
mA  
mA  
mA  
mA  
mA  
mW  
mW  
µA/V  
Analog –V Supply Current  
Digital +V Supply Current  
Power Dissipation  
PSRR  
+25°C  
NOTES  
1Measured as an error in ratio of full-scale current to current through RSET (640 µA nominal); ratio is nominally 32. DAC load is virtual ground.  
2Internal reference voltage is tested under load conditions specified in Internal Reference Output current specification.  
3Internal reference output current defines load conditions applied during Internal Reference Voltage test.  
4Full-scale current variations among devices are higher when driving REFERENCE IN directly.  
5Frequency at which a 3 dB change in output of DAC is observed; RL = 50 ; 100 mV modulation at midscale.  
6Based on IFS = 32 (CONTROL AMP IN/RSET) when using internal control amplifier. DAC load is virtual ground.  
7Measured as voltage settling at midscale transition to ±0.1%; RL = 50 .  
8Measured from 50% point of rising edge of CLOCK signal to 1/2 LSB change in output signal.  
9Peak glitch impulse is measured as the largest area under a single positive or negative transient.  
10Measured with RL = 50 and DAC operating in latched mode.  
11Data must remain stable for specified time prior to rising edge of CLOCK.  
12Data must remain stable for specified time after rising edge of CLOCK.  
13SFDR is defined as the difference in signal energy between the full-scale fundamental signal and worst case spurious frequencies in the output spectrum window.  
The frequency span is dc-to-Nyquist unless otherwise noted.  
14Intermodulation distortion is the measure of the sum and difference products produced when a two-tone input is driven into the DAC. The distortion products  
created will manifest themselves at sum and difference frequencies of the two tones.  
15Supply voltages should remain stable within ±5% for nominal operation.  
Specifications subject to change without notice.  
pw  
pw  
MAX  
MIN  
CLOCK  
DATA  
tS  
tH  
CODE 1  
DATA  
CODE 2  
DATA  
CODE 3  
DATA  
CODE 4  
DATA  
CODE 2  
CODE 4  
ANALOG OUTPUT  
CODE 1  
CODE 3  
GLITCH AREA =  
1/2 HEIGHT 
؋
 WIDTH  
DETAIL OF SETTLING TIME  
CLOCK  
SPECIFIED  
ERROR BAND  
H
tPD  
ANALOG OUTPUT  
W
tST  
Figure 1. Timing Diagrams  
–3–  
REV. A  
AD9731  
ABSOLUTE MAXIMUM RATINGS*  
EXPLANATION OF TEST LEVELS  
Test Level Definition  
Analog Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . –VS to +VS  
+VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +6 V  
Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . –0.7 V to +VS  
–VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –7 V  
Analog Output Current . . . . . . . . . . . . . . . . . . . . . . . . 30 mA  
Control Amplifier Input Voltage Range . . . . . . . . . 0 V to –4 V  
Reference Input Voltage Range . . . . . . . . . . . . . . . . 0 V to –VS  
Maximum Junction Temperature . . . . . . . . . . . . . . . .+150°C  
Operating Temperature Range . . . . . . . . . . . –40°C to +85°C  
Internal Reference Output Current . . . . . . . . . . . . . . . 500 µA  
Lead Temperature (10 sec Soldering) . . . . . . . . . . . . .+300°C  
Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +165°C  
Control Amplifier Output Current . . . . . . . . . . . . . ±2.5 mA  
I
100% Production Tested.  
II  
The parameter is 100% production tested at  
+25°C; sampled at temperature production.  
III  
IV  
Sample Tested Only.  
Parameter is guaranteed by design and character-  
ization testing.  
V
Parameter is a typical value only.  
VI  
All devices are 100% production tested at +25°C;  
guaranteed by design and characterization testing  
for industrial temperature range devices.  
*Absolute maximum ratings are limiting values, to be applied individually, and  
beyond which the serviceability of the circuit may be impaired. Functional  
operability under any of these conditions is not necessarily implied. Exposure of  
absolute maximum rating conditions for extended periods of time may affect  
device reliability.  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Options  
Model  
AD9731BR  
AD9731BRS  
AD9731-PCB  
–40°C to +85°C  
–40°C to +85°C  
0°C to +70°C  
28-Lead Wide Body (SOIC)  
28-Lead Shrink Small (SSOP)  
PCB  
R-28  
RS-28  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD9731 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. A  
AD9731  
PIN FUNCTION DESCRIPTION  
Pin Description  
Pin #  
Pin Name  
1
D9(MSB)  
D8–D1  
Most significant data bit of digital input word.  
Eight bits of 10-bit digital input word.  
2–9  
10  
D0(LSB)  
CLOCK  
NC  
Least significant data bit of digital input word.  
TTL-compatible edge-triggered latch enable signal for on-board registers.  
No internal connection to this pin.  
11  
12, 13  
14  
DIGITAL +VS  
+5 V supply voltage for digital circuitry.  
Converter Ground.  
15, 18, 28 GND  
16  
17  
DIGITAL –VS  
–5.2 V supply voltage for digital circuitry.  
RSET  
Connection for external reference set resistor; nominal 1.96 k. Full-scale output current =  
32 (Control Amp in V/RSET).  
19  
20  
ANALOG RETURN  
IOUT  
Analog Return. This point and the reference side of the DAC load resistors should be con-  
nected to the same potential (nominally ground).  
Analog current output; full-scale current occurs with a digital word input of all “1s.” With  
external load resistor, output voltage = IOUT (RLOADʈRINTERNAL). RINTERNAL is nominally  
240 .  
21  
IOUTB  
Complementary analog current output; full-scale current occurs with a digital word input  
of all “0s.”  
22  
23  
ANALOG –VS  
REF IN  
Negative analog supply, nominally –5.2 V.  
Normally connected to CONTROL AMP OUT (Pin 24). Direct line to DAC current  
source network. Voltage changes (noise) at this point have a direct effect on the full-scale  
output current of the DAC. Full-scale current output = 32 (CONTROL AMP IN/RSET  
when using the internal amplifier. DAC load is virtual ground.  
)
24  
25  
CONTROL AMP OUT Normally connected to REF IN (Pin 23). Output of internal control amplifier which pro-  
vides a reference for the current switch network.  
REF OUT  
Normally connected to CONTROL AMP IN (Pin 26). Internal voltage reference, nomi-  
nally –1.25 V.  
26  
27  
CONTROL AMP IN  
DIGITAL –VS  
Normally connected to REF Out (Pin 25) if not connected to external reference.  
Negative digital supply, nominally –5.2 V.  
PIN CONFIGURATION  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
D9(MSB)  
D8  
GND  
DIGITAL –V  
S
3
D7  
CONTROL AMP IN  
REF OUT  
4
D6  
5
D5  
CONTROL AMP OUT  
REF IN  
6
D4  
AD9731  
TOP VIEW  
(Not to Scale)  
7
D3  
ANALOG –V  
S
8
D2  
I
OUTB  
9
D1  
I
OUT  
10  
11  
12  
13  
14  
D0(LSB)  
CLOCK  
NC  
ANALOG RETURN  
GND  
R
SET  
NC  
DIGITAL –V  
GND  
S
DIGITAL +V  
S
NC = NO CONNECT  
REV. A  
–5–  
AD9731–Typical Performance Characteristics  
60  
55  
80  
75  
70  
50  
45  
40  
65  
60  
55  
50  
20  
18  
16  
14  
12  
10  
8
6
4
2
10  
20  
30  
40  
A
50  
60  
70  
80  
I
– mA  
– MHz  
OUT  
OUT  
Figure 5. SFDR vs. IOUT (Clock =125 MHz/AOUT = 40 MHz)  
Figure 2. Narrowband SFDR (Clock = 170 MHz) vs.  
A
OUT Frequency  
0.4  
0.3  
0.2  
0.1  
0
85  
80  
75  
70  
65  
–0.1  
–0.2  
60  
55  
50  
–0.3  
–0.4  
10  
20  
30  
40  
– MHz  
50  
60  
A
OUT  
Figure 6. Typical Differential Nonlinearity Performance  
(DNL)  
Figure 3. Narrowband SFDR (Clock = 125 MHz) vs.  
AOUT Frequency  
0.6  
0.4  
0.2  
65  
60  
55  
50  
45  
40  
0
–0.2  
–0.4  
–0.6  
10  
20  
30  
40  
50  
– MHz  
60  
70  
80  
90  
A
OUT  
Figure 7. Typical Integral Nonlinearity Performance (INL)  
Figure 4. Wideband SFDR (170 MHz Clock) vs. AOUT  
–6–  
REV. A  
AD9731  
1
1
–10  
–20  
–10  
–20  
ENCODE = 125MHz  
= 2MHz  
ENCODE = 125MHz  
= 40MHz  
A
A
OUT  
OUT  
SPAN = 62.5MHz  
SPAN = 62.5MHz  
–30  
–40  
–50  
–60  
–70  
–80  
–30  
–40  
–50  
–60  
–70  
–80  
1AP  
1AP  
1
1
–90  
–90  
–100  
–100  
0Hz  
START  
6.25MHz  
62.5MHz  
STOP  
0Hz  
START  
6.25MHz  
62.5MHz  
STOP  
Figure 8. Wideband SFDR 2 MHz AOUT; 125 MHz Clock  
Figure 11. Wideband SFDR 40 MHz AOUT; 125 MHz Clock  
1
–10  
0
1
ENCODE = 125MHz  
–20  
A
= 10MHz  
–10  
OUT  
SPAN = 62.5MHz  
–30  
–40  
–50  
–60  
–70  
–80  
–20  
–30  
–40  
–50  
–60  
–70  
1AP  
PRN  
1AP  
1
1
–90  
–80  
–90  
–100  
0Hz  
START  
6.25MHz  
62.5MHz  
STOP  
0Hz  
START  
8.5MHz  
85MHz  
STOP  
Figure 9. Wideband SFDR 10 MHz AOUT; 125 MHz Clock  
Figure 12. Wideband SFDR 65 MHz AOUT; 170 MHz Clock  
1
1
–10  
–10  
ENCODE = 125MHz  
ENCODE = 170MHz  
–20  
A
= 20MHz  
A
= 70MHz  
–20  
OUT  
OUT  
SPAN = 85MHz  
SPAN = 62.5MHz  
–30  
–40  
–50  
–60  
–70  
–80  
–30  
–40  
–50  
–60  
–70  
–80  
1AP  
1AP  
1
1
–90  
–90  
–100  
–100  
0Hz  
START  
6.25MHz  
62.5MHz  
STOP  
0Hz  
START  
8.5MHz  
85MHz  
STOP  
Figure 10. Wideband SFDR 20 MHz AOUT; 125 MHz Clock  
Figure 13. Wideband SFDR 70 MHz AOUT; 170 MHz Clock  
REV. A  
–7–  
AD9731  
The on-board register is rising-edge triggered and should be  
used to synchronize data to the current switches by applying a  
pulse with proper data setup and hold times as shown in the  
timing diagram. Although the AD9731 is designed to provide  
isolation of the digital inputs to the analog output, some cou-  
pling of digital transitions is inevitable. Digital feedthrough can  
be minimized by forming a low-pass filter at the digital input by  
using a resistor in series with the capacitance of each digital  
input. This common high speed DAC application technique has  
the effect of isolating digital input noise from the analog output.  
1
–10  
–20  
ENCODE = 125MHz  
A
1 = 800kHz  
OUT  
A
2 = 900kHz  
OUT  
–30  
–40  
–50  
–60  
SPAN = 2MHz  
1AP  
1
–70  
–80  
References  
–90  
The internal bandgap reference, control amplifier and reference  
input are pinned out to provide maximum user flexibility in  
configuring the reference circuitry for the AD9731. When using  
the internal reference, REF OUT (Pin 25) should be connected  
to CONTROL AMP IN (Pin 26). CONTROL AMP OUT (Pin  
24) should be connected to REF IN (Pin 23). A 0.1 µF ceramic  
capacitor connected from Pin 23 to Analog –VS (Pin 22) im-  
proves settling time by decoupling switching noise from the  
current sink baseline. A reference current cell provides feedback  
to the control amplifier by sinking current through RSET (Pin 17).  
–100  
0Hz  
START  
200kHz  
2MHz  
STOP  
Figure 14. Wideband Intermodulation Distortion  
F1 = 800 kHz; F2 = 900 kHz; 125 MHz Clock; Span = 2 MHz  
1
–10  
ENCODE = 125MHz  
–20  
Full-scale current is determined by CONTROL AMP IN and  
A
A
1 = 800kHz  
2 = 900kHz  
OUT  
RSET according to the following equation:  
OUT  
–30  
–40  
–50  
–60  
–70  
–80  
SPAN = 62.5MHz  
1AP  
PRN  
I
OUT (FS) = 32(CONTROL AMP IN/RSET  
)
The internal reference is nominally –1.25 V with a tolerance of  
±8% and typical drift over temperature of 100 ppm/°C. If  
greater accuracy or temperature stability is required, an external  
reference can be used. The AD589 reference features 10 ppm/°C  
drift over the 0°C to +70°C temperature range.  
1
Two modes of multiplying operation are possible with the  
AD9731. Signals with bandwidths up to 2.5 MHz and input  
swings from –0.6 V to –1.2 V can be applied to the CONTROL  
AMP IN pin as shown in Figure 16. Because the control ampli-  
fier is internally compensated, the 0.1 µF capacitor discussed  
above can be reduced to maximize the multiplying bandwidth.  
However, it should be noted that output settling time, for  
changes in the digital word, will be degraded.  
–90  
–100  
0Hz  
START  
6.25MHz  
62.5MHz  
STOP  
Figure 15. Wideband Intermodulation Distortion F1 =  
800 kHz; F2 = 900 kHz; 125 MHz Clock; Span = 62.5 MHz  
THEORY AND APPLICATIONS  
The AD9731 high speed digital-to-analog converter utilizes  
most significant bit decoding and segmentation techniques to  
reduce glitch impulse and deliver high dynamic performance  
on lower power consumption than previous bipolar DAC  
technologies.  
AD9731  
R
SET  
R
SET  
CONTROL  
AMP IN  
The design is based on four main subsections: the decoder/  
driver circuits, the edge-triggered data register, the switch net-  
work and the control amplifier. An internal bandgap reference is  
included to allow operation of the device with minimum exter-  
nal support components.  
–0.6 TO –1.2V  
2.5MHz TYPICAL  
R
T
CONTROL  
AMP OUT  
Digital Inputs/Timing  
REFERENCE IN  
The AD9731 has TTL/high speed CMOS-compatible single-  
ended inputs for data inputs and clock. The switching threshold  
is +1.5 V.  
0.1F  
ANALOG –V  
S
In the decoder/driver section, the three MSBs are decoded to  
seven “thermometer code” lines. An equalizing delay is included  
for the seven least significant bits and the clock signals. This  
delay minimizes data skew and data setup and hold times at the  
register inputs.  
Figure 16. Low Frequency Multiplying Circuit  
–8–  
REV. A  
AD9731  
The REFERENCE IN pin can also be driven directly for wider  
bandwidth multiplying operation. The analog signal for this mode  
of operation must have a signal swing in the range of –3.3 V to  
–4.25 V. This can be implemented by capacitively coupling into  
An operational amplifier can also be used to perform the I-to-V  
conversion of the DAC output. Figure 18 shows an example of a  
circuit that uses the AD9617, a high speed, current feedback  
amplifier. The resistor values in Figure 18 provide a 4.096 V  
swing, centered at ground, at the output of the AD9617 amplifier.  
REFERENCE IN a signal with a dc bias of –3.3 V (IOUT  
22.5 mA) to –4.25 V (IOUT 3 mA), as shown in Figure 17, or  
by dividing REFERENCE IN with a low impedance op amp  
whose signal swing is limited to the stated range.  
10k  
10k⍀  
1/2  
AD708  
NOTE: When using an external reference, the external refer-  
ence voltage must be applied prior to applying –VS.  
1/2  
AD708  
I
FS  
R1  
200⍀  
R2  
100⍀  
AD9731  
R
FB  
CONTROL  
AMP IN  
REF  
OUT  
R
FF  
25⍀  
400⍀  
I
FS  
APPROX  
–3.8V  
I
±2048V  
V
OUT  
R
L
25⍀  
AD9617  
OUT  
AD9731  
REFERENCE IN  
–V  
S
I
OUTB  
–V  
S
25⍀  
Figure 17. Wideband Multiplying Circuit  
Analog Output  
The switch network provides complementary current outputs  
OUT and IOUTB. The design of the AD9731 is based on statisti-  
cal current source matching, which provides a 10-bit linearity  
without trim. Current is steered to either IOUT or IOUTB in pro-  
portion to the digital input word. The sum of the two currents is  
always equal to the full-scale output current minus 1 LSB. The  
current can be converted to a voltage by resistive loading as  
shown in the block diagram. Both IOUT and IOUTB should be  
equally loaded for best overall performance. The voltage that is  
developed is the product of the output current and the value of  
the load resistor.  
Figure 18. I-to-V Conversion Using a Current Feedback  
Amplifier  
EVALUATION BOARD  
I
The performance characteristics of the AD9731 make it ideally  
suited for direct digital synthesis (DDS) and other waveform  
synthesis applications. The AD9731 evaluation board provides a  
platform for analyzing performance under optimum layout con-  
ditions. The AD9731 also provides a reference for high speed  
circuit board layout techniques.  
REV. A  
–9–  
AD9731  
Figure 19. AD9731-PCB Evaluation Board Schematic  
–10–  
REV. A  
AD9731  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
28-Lead SOIC Wide Body (SOIC)  
(R-28)  
0.7125 (18.10)  
0.6969 (17.70)  
28  
15  
1
14  
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
0.0098 (0.25)  
x 45°  
0.0500 (1.27)  
0.0157 (0.40)  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.0118 (0.30)  
0.0040 (0.10)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0091 (0.23)  
28-Lead Shrink Small Outline (SSOP)  
(RS-28)  
0.407 (10.34)  
0.397 (10.08)  
28  
15  
1
14  
0.07 (1.79)  
0.078 (1.98)  
0.068 (1.73)  
PIN 1  
0.066 (1.67)  
0.03 (0.762)  
8°  
0°  
0.0256  
(0.65)  
BSC  
0.015 (0.38)  
0.010 (0.25)  
0.022 (0.558)  
0.008 (0.203)  
0.002 (0.050)  
SEATING  
PLANE  
0.009 (0.229)  
0.005 (0.127)  
REV. A  
–11–  

相关型号:

AD9731BRS-REEL

PARALLEL, WORD INPUT LOADING, 0.0038 us SETTLING TIME, 10-BIT DAC, PDSO28, MO-150AH, SSOP-28
ROCHESTER

AD9731BRS-REEL

IC PARALLEL, WORD INPUT LOADING, 0.0038 us SETTLING TIME, 10-BIT DAC, PDSO28, MO-150AH, SSOP-28, Digital to Analog Converter
ADI

AD9732

10-Bit, 200 MSPS D/A Converter
ADI

AD9732/PCB

10-Bit, 200 MSPS D/A Converter
ADI

AD9732BRS

10-Bit, 200 MSPS D/A Converter
ADI

AD9732BRSRL

暂无描述
ADI

AD9734

14/12/10-Bit, 1200 MSPS D/A Converters
ADI

AD9734-DPG2-EBZ

1200 MSPS DACS
ADI

AD9734-EB

10-/12-/14-Bit, 1200 MSPS DACS
ADI

AD9734BBC

10-/12-/14-Bit, 1200 MSPS DACS
ADI

AD9734BBCRL

10-/12-/14-Bit, 1200 MSPS DACS
ADI

AD9734BBCZ

暂无描述
ADI