AD9732BRS [ADI]

10-Bit, 200 MSPS D/A Converter; 10位, 200 MSPS D / A转换器
AD9732BRS
型号: AD9732BRS
厂家: ADI    ADI
描述:

10-Bit, 200 MSPS D/A Converter
10位, 200 MSPS D / A转换器

转换器 数模转换器 光电二极管
文件: 总11页 (文件大小:148K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-Bit, 200 MSPS  
D/A Converter  
a
AD9732  
FEATURES  
200 MSPS Throughput Rate  
3.3 V PECL Digital Input  
FUNCTIONAL BLOCK DIAGRAM  
ANALOG  
RETURN  
65 dB SFDR @ 2 MHz AOUT, 200 MSPS/54 dB @ 40 MHz  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
A
OUT, 200 MSPS  
Low Power: 305 mW  
Fast Settling: 5 ns to 1/2 LSB  
Low Glitch Energy: 6 pVs  
Internal Reference  
I
TTL  
DRIVE  
LOGIC  
OUT  
I
28-Lead SSOP Packaging  
OUT  
APPLICATIONS  
Digital Communications  
Direct Digital Synthesis  
Waveform Reconstruction  
High Speed Imaging  
REF  
IN  
CLOCK  
CONTROL  
AMP  
INTERNAL  
VOLTAGE  
REFERENCE  
CONTROL  
AMP OUT  
AD9732  
R
GENERAL DESCRIPTION  
DIGITAL  
+V  
SET  
S
The AD9732 is a 10-bit, 200 MSPS, bipolar D/A converter that  
is optimized to provide high dynamic performance, yet offers  
lower power dissipation and a more economical price than pre-  
vious high speed DAC solutions. The AD9732 was primarily  
designed for demanding communications systems applications  
where maximum spurious-free dynamic range (SFDR) is required  
at high throughput rates. The proliferation of digital communi-  
cations into base station and high volume subscriber-end mar-  
kets has created a demand for high performance bipolar DACs  
delivered at CMOS associated levels of power dissipation and  
cost. The AD9732 is the answer to that demand.  
REF  
CONTROL  
AMP IN  
OUT  
spectrum in many of the emerging digital communications ap-  
plications where signal purity is critical. Narrowband (±1 MHz  
window), the AD9732 provides an SFDR of greater than 75 dB.  
This level of wideband and narrowband ac performance, coupled  
with its 200 MSPS throughput rate, enables the AD9732 to  
present outstanding value in the high speed DAC function.  
The AD9732 is packaged in a 28-lead SSOP and is specified to  
operate over the extended industrial temperature range of –40°C  
to +85°C. Digital inputs and clock are positive-ECL compatible.  
Optimized for direct digital synthesis (DDS) and digital modu-  
lator waveform reconstruction, the AD9732 provides >50 dB of  
wideband harmonic suppression over the dc to 80 MHz analog  
output bandwidth. This signal bandwidth addresses the transmit  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1999  
AD9732–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS(+VS = +5 V, ENCODE = 125 MSPS, RSET = 1.95 k(for 20 mA IOUT) unless otherwise noted)  
Test  
Level  
AD9732BRS  
Typ  
Parameter  
Temp  
Min  
Max  
Units  
MHz  
Bits  
THROUGHPUT RATE  
RESOLUTION  
+25°C  
IV  
165  
200  
10  
DC ACCURACY  
Differential Nonlinearity  
+25°C  
Full  
+25°C  
Full  
I
VI  
I
0.25  
0.36  
0.6  
1
1
1.5  
1.5  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
VI  
0.7  
INITIAL OFFSET ERROR  
Zero-Scale Offset Error  
+25°C  
Full  
+25°C  
Full  
I
VI  
I
VI  
V
35  
40  
2.5  
2.5  
0.04  
70  
100  
5
µA  
µA  
% FS  
% FS  
µA/°C  
Full-Scale Gain Error1  
5
Offset Drift Coefficient  
REFERENCE/CONTROL AMP  
Internal Reference Voltage2  
Internal Reference Voltage Drift  
Internal Reference Output Current3  
Amplifier Input Impedance  
Amplifier Bandwidth  
+25°C  
Full  
Full  
+25°C  
+25°C  
I
3.65  
–50  
3.75  
150  
3.85  
V
µV/°C  
µA  
kΩ  
MHz  
IV  
VI  
I
+500  
50  
2.5  
I
REFERENCE INPUT4  
Reference Input Impedance  
+25°C  
+25°C  
V
V
4.6  
75  
kΩ  
MHz  
Reference Multiplying Bandwidth5  
OUTPUT PERFORMANCE  
Output Current4, 6  
Output Compliance  
Output Resistance  
Full  
Full  
+25°C  
+25°C  
+25°C  
+25°C  
Full  
Full  
Full  
Full  
V
IV  
V
V
V
V
V
V
V
V
20  
mA  
V
pF  
ns  
ns  
pVs  
V/µs  
ns  
2
5.75  
240  
5
4.75  
2.7  
5.9  
450  
1
Output Capacitance  
7
Voltage Settling Time to 1/2 LSB (tST  
)
8
Propagation Delay (tPD  
)
Glitch Impulse9  
Output Slew Rate10  
Output Rise Time10  
Output Fall Time10  
1
ns  
DIGITAL INPUTS  
Logic “1” Voltage  
Logic “0” Voltage  
Logic “1” Current  
Logic “0” Current  
Full  
Full  
+25°C  
+25°C  
Full  
+25°C  
Full  
+25°C  
Full  
+25°C  
+25°C  
VI  
VI  
I
I
V
IV  
IV  
IV  
IV  
IV  
IV  
2.4  
–1  
V
V
1.6  
10  
1
1.7  
0.01  
2
0.7  
1
0.7  
1
µA  
µA  
pF  
ns  
ns  
ns  
ns  
ns  
ns  
Input Capacitance  
Minimum Data Setup Time (tS)11  
1.5  
1.5  
1.5  
1.5  
Minimum Data Hold Time (tH)12  
Clock Pulsewidth Low (pwMIN  
Clock Pulsewidth High (pwMAX  
)
2
2
)
POWER SUPPLY13  
Digital +V Supply Current  
+25°C  
Full  
+25°C  
Full  
+25°C  
Full  
+25°C  
I
VI  
I
VI  
V
V
V
15  
10  
10  
10  
25  
20  
35  
40  
30  
30  
mA  
mA  
mA  
mA  
mW  
mW  
µA/V  
Analog +V Supply Current  
Power Dissipation14  
305  
350  
200  
Power Supply Rejection Ratio (PSRR)  
–2–  
REV. A  
AD9732  
Test  
Level  
AD9732BRS  
Typ  
Parameter  
Temp  
Min  
Max  
Units  
SFDR PERFORMANCE (Wideband)15  
2 MHz AOUT  
10 MHz AOUT  
20 MHz AOUT  
40 MHz AOUT  
2 MHz AOUT (Clock = 165 MHz)  
10 MHz AOUT (Clock = 165 MHz)  
20 MHz AOUT (Clock = 165 MHz)  
40 MHz AOUT (Clock = 165 MHz)  
65 MHz AOUT (Clock = 165 MHz)  
65 MHz AOUT (Clock = 200 MHz)  
80 MHz AOUT (Clock = 200 MHz)  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
V
V
V
V
V
V
V
V
V
V
V
66  
63  
57  
52  
63  
62  
56  
51  
48  
45  
43  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
SFDR PERFORMANCE (Narrowband)15  
2 MHz; 2 MHz Span  
25 MHz; 2 MHz Span  
+25°C  
+25°C  
+25°C  
V
V
V
77  
65  
70  
dB  
dB  
dB  
10 MHz; 5 MHz Span (Clock = 200 MHz)  
INTERMODULATION DISTORTION16  
F1 = 800 kHz, F2 = 900 kHz to Nyquist  
F1 = 800 kHz, F2 = 900 kHz, Narrowband  
(2 MHz)  
+25°C  
+25°C  
V
V
69  
61  
dB  
dB  
NOTES  
1Measured as an error in ratio of full-scale current to current through RSET (640 µA nominal); ratio is nominally 32. DAC load is virtual ground.  
2Internal reference voltage is tested under load conditions specified in Internal Reference Output Current specification.  
3Internal reference output current defines load conditions applied during Internal Reference Voltage test.  
4Full-scale current variations among devices are higher when driving REFERENCE IN directly.  
5Frequency at which a 3 dB change in output of DAC is observed; RL = 50 ; 100 mV modulation at midscale.  
6Based on IFS = 32 ([CONTROL AMP IN – (+VS)]/RSET) when using internal control amplifier. DAC load is virtual ground.  
7Measured as voltage settling at midscale transition to 0.1%; RL = 50 .  
8Measured from 50% point of rising edge of CLOCK signal to 1/2 LSB change in output signal.  
9Peak glitch impulse is measured as the largest area under a single positive or negative transient.  
10Measured with RL = 50 and DAC operating in latched mode.  
11Data must remain stable for a specified time prior to rising edge of CLOCK.  
12Data must remain stable for a specified time after rising edge of CLOCK.  
13Supply voltages should remain stable with ±5% for nominal operation.  
14Power dissipation calculation includes current through a 50 load.  
15SFDR is defined as the difference in signal energy between the full-scale fundamental signal and worst case spurious frequencies in the output spectrum window.  
The frequency span dc to Nyquist unless otherwise noted.  
16Intermodulation distortion is the measure of the sum and difference products produced when a two-tone input is driven into the DAC. The distortion products  
created will manifest themselves at sum and difference frequencies of the two tones.  
Specifications subject to change without notice.  
IV Parameter is guaranteed by design and characterization  
testing.  
EXPLANATION OF TEST LEVELS  
Test Level  
I
100% production tested.  
V
Parameter is a typical value only.  
II 100% production tested at +25°C and sample tested at  
VI 100% production tested at +25°C; guaranteed by design  
and characterization testing for industrial temperature  
range.  
specified temperatures.  
III Sample tested only.  
ORDERING GUIDE  
Package  
Temperature  
Range  
Package  
Option  
Model  
Description  
AD9732BRS  
AD9732/PCB  
–40°C to +85°C  
+25°C  
28-Lead Small Outline (SSOP)  
Evaluation Board  
RS-28  
REV. A  
–3–  
AD9732  
ABSOLUTE MAXIMUM RATINGS*  
PIN CONFIGURATION  
Analog Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+VS  
+VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +6 V  
Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . –0.7 V to +VS  
Analog Output Current . . . . . . . . . . . . . . . . . . . . . . . . 30 mA  
Control Amplifier Input Voltage Range . . . . . . . . . 0 V to +VS  
Reference Input Voltage Range . . . . . . . . . . . . . . . 0 V to +VS  
Internal Reference Output Current . . . . . . . . . . . . . . . 500 µA  
Control Amplifier Output Current . . . . . . . . . . . . . . ±2.5 mA  
Operating Temperature . . . . . . . . . . . . . . . . . –40°C to +85°C  
Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Maximum Junction Temperature . . . . . . . . . . . . . . . +175°C  
Lead Temperature (10 sec) Soldering . . . . . . . . . . . . +300°C  
D9 (MSB)  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
DIGITAL +V  
GND  
S
D8  
D7  
3
CONTROL AMP IN  
REF OUT  
4
D6  
5
D5  
CONTROL AMP OUT  
REF IN  
6
D4  
AD9732  
TOP VIEW  
(Not to Scale)  
7
D3  
GND  
8
D2  
I
OUTB  
OUT  
D1  
9
I
10  
11  
12  
13  
14  
D0 (LSB)  
CLOCK  
NC  
ANALOG RETURN  
ANALOG +V  
S
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions outside of those indicated in the operation  
sections of this specification is not implied. Exposure to absolute maximum ratings  
for extended periods may affect device reliability.  
R
SET  
NC  
GND  
15 DIGITAL +V  
DIGITAL +V  
S
S
NC = NO CONNECT  
PIN FUNCTION DESCRIPTIONS  
Function  
Pin Number  
Name  
1
2–9  
D9 (MSB)  
D8–D1  
Most significant data bit of digital input word.  
Eight bits of 10-bit digital input word.  
10  
11  
D0 (LSB)  
CLOCK  
NC  
DIGITAL +VS  
GND  
Least significant data bit of digital input word.  
TTL-compatible edge-triggered latch enable signal for on-board registers.  
No internal connection to this pin. Recommend tie to ground.  
+5 V supply voltage for digital circuitry.  
Converter Ground.  
+5 V supply voltage for analog circuitry.  
12, 13  
14, 15, 28  
16, 22, 27  
18  
ANALOG +VS  
RSET  
17  
Connection for external reference set resistor; nominal 1.96 k. Full-scale output  
current = 32 [Control Amp + VS] (Reset).  
19  
20  
ANALOG RETURN  
IOUT  
Analog Return. This point and the reference side of the DAC load resistors should be  
connected to the same potential (Analog +VS).  
Analog current output; full-scale current occurs with a digital word input of all “1s”  
with external load resistor, output voltage = IOUT (RLOADʈRINTERNAL). RINTERNAL is  
nominally 240 .  
21  
23  
IOUTB  
Complementary analog current output; full-scale current occurs with a digital word  
input of all “0s.”  
Normally connected to CONTROL AMP OUT (Pin 24). Direct line to DAC current  
source network. Voltage changes (noise) at this point have a direct effect on the full-  
scale output current of the DAC. Full-scale current output = 32 (CONTROL AMP IN/  
RSET) when using internal amplifier. DAC load is virtual ground.  
REF IN  
24  
25  
26  
CONTROL AMP OUT  
REF OUT  
Normally connected to REF IN (Pin 23). Output of internal control amplifier, which  
provides a reference for the current switch network.  
Normally connected to CONTROL AMP IN (Pin 26). Internal voltage reference,  
nominally 3.75 V.  
CONTROL AMP IN  
Normally connected to REF OUT (Pin 25) if not connected to external reference.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD9732 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. A  
AD9732  
pwMIN  
pwMAX  
CLOCK  
tS  
tH  
CODE 1  
DATA  
CODE 2  
DATA  
CODE 3  
DATA  
CODE 4  
DATA  
DATA  
CODE 2  
ANALOG OUTPUT  
CODE 4  
CODE 1  
CODE 3  
a.  
DETAIL OF SETTLING TIME  
GLITCH AREA = 1/2 HEIGHT 
؋
 WIDTH  
H
CLOCK  
SPECIFIED  
ERROR BAND  
tPD  
W
ANALOG OUTPUT  
tST  
b.  
c.  
Figure 1. Timing Diagrams  
REV. A  
–5–  
AD9732  
75  
70  
65  
60  
55  
50  
45  
40  
35  
55  
50  
45  
40  
30  
0
10  
20  
30  
40  
A
50  
60  
70  
80  
90  
100  
20  
18  
16  
14  
12  
10  
8
6
4
2
– MHz  
OUT  
I
– mA  
OUT  
Figure 2. Narrowband SFDR (Clock = 200 MHz) vs. AOUT  
Frequency  
Figure 5. SFDR vs. IOUT  
90  
80  
70  
60  
50  
56  
54  
52  
50  
48  
46  
44  
42  
40  
40  
30  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
5
25  
45  
65  
85 105 125 145 165 185 205  
CLOCK – MHz  
A
– MHz  
OUT  
Figure 3. Narrowband SFDR (Clock = 125 MHz) vs. AOUT  
Frequency  
Figure 6. SFDR vs. Clock for fCLK/AOUT = 3.125  
65  
60  
0.4  
0.3  
0.2  
0.1  
0
55  
50  
45  
40  
35  
30  
–0.1  
–0.2  
–0.3  
–0.4  
10  
20  
30  
40  
50  
– MHz  
60  
70  
80  
90  
A
OUT  
Figure 4. Wideband SFDR (200 MHz Clock) vs. AOUT  
Figure 7. Typical Differential Nonlinearity Performance  
(DNL)  
–6–  
REV. A  
AD9732  
0.6  
0.4  
0.2  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1
ENCODE = 125MHz  
= 20MHz  
SPAN = 62.5MHz  
SFDR = 57dB  
A
OUT  
0
–0.2  
–0.4  
–0.6  
1
START 0Hz  
6.25MHz/  
STOP 62.5MHz  
Figure 8. Typical Integral Nonlinearity Performance (INL)  
Figure 11. Wideband SFDR 20 MHz AOUT; 125 MHz Clock  
0
0
1
1
ENCODE = 125MHz  
ENCODE = 125MHz  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
A
= 2MHz  
A
= 40MHz  
–10  
OUT  
OUT  
SPAN = 62.5MHz  
SFDR = 66dB  
SPAN = 62.5MHz  
–20 SFDR = 52dB  
–30  
–40  
–50  
1
–60  
1
–70  
–80  
–90  
–100  
START 0Hz  
6.25MHz/  
STOP 62.5MHz  
START 0Hz  
6.25MHz/  
STOP 62.5MHz  
Figure 9. Wideband SFDR 2 MHz AOUT; 125 MHz Clock  
Figure 12. Wideband SFDR 40 MHz AOUT; 125 MHz Clock  
0
0
1
1
ENCODE = 125MHz  
ENCODE = 200MHz  
A
= 10MHz  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
A
= 40MHz  
OUT  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
OUT  
SPAN = 62.5MHz  
SFDR = 63dB  
SPAN = 100MHz  
SFDR = 54dB  
1
1
START 0Hz  
6.25MHz/  
STOP 62.5MHz  
START 0Hz  
10MHz/  
STOP 100MHz  
Figure 10. Wideband SFDR 10 MHz AOUT; 125 MHz Clock  
Figure 13. Wideband SFDR 40 MHz AOUT; 200 MHz Clock  
REV. A  
–7–  
AD9732  
1
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1
ENCODE = 200MHz  
= 65MHz  
SPAN = 200MHz  
SFDR = 45dB  
ENCODE = 125MHz  
A
OUT  
A
1 = 800kHz  
OUT  
A
2 = 900kHz  
OUT  
SPAN = 2MHz  
IMD = 61dB  
1
1
START 0Hz  
10MHz/  
STOP 100MHz  
START 0Hz  
200MHz/  
STOP 2MHz  
Figure 14. Wideband SFDR 65 MHz AOUT; 200 MHz Clock  
Figure 16. Wideband Intermodulation Distortion F1 =  
800 kHz; F2 = 900 kHz; 125 MHz Clock; Span = 2 MHz  
1
0
0
1
ENCODE = 125MHz  
ENCODE = 200MHz  
A
1 = 800kHz  
2 = 900kHz  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
A
= 80MHz  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
OUT  
OUT  
A
SPAN = 100MHz  
SFDR = 43dB  
OUT  
SPAN = 62.5MHz  
IMD = 69dB  
1
1
START 0Hz  
6.25MHz/  
STOP 62.5MHz  
START 0Hz  
10MHz/  
STOP 100MHz  
Figure 15. Wideband SFDR 80 MHz AOUT; 200 MHz Clock  
Figure 17. Wideband Intermodulation Distortion F1 =  
800 kHz; F2 = 900 kHz; 125 MHz Clock; Span = 62.5 MHz  
–8–  
REV. A  
AD9732  
However, it should be noted that output settling time, for  
changes in the digital word, will be degraded.  
APPLICATION NOTES  
THEORY OF OPERATION  
The AD9732 high speed digital-to-analog converter utilizes most  
significant bit decoding and segmentation techniques to reduce  
glitch impulse and deliver high dynamic performance on lower  
power consumption than previous bipolar DAC technologies.  
+V  
S
R
SET  
R
SET  
AD9732  
The design is based on four main subsections: the decode/driver  
circuits, the edge-triggered data register, the switch network and  
the control amplifier. An internal bandgap reference is included  
to allow operation of the device with minimum external support  
components.  
3.8V TO 4.4V  
2.5MHz TYPICAL  
CONTROL  
AMP IN  
R
T
CONTROL  
AMP OUT  
REFERENCE IN  
Digital Inputs/Timing  
The AD9732 has PECL high speed single-ended inputs for data  
inputs and clock. The switching threshold is +2.0 V.  
0.1F  
In the decode/driver section, the three MSBs are decoded to  
seven “thermometer code” lines. An equalizing delay is included  
for the seven least significant bits and the clock signals. This  
delay minimizes data skew and data setup-and-hold times at the  
register inputs.  
Figure 18. Lower Frequency Multiplying Circuit  
The REFERENCE IN pin can also be driven directly for wider  
bandwidth multiplying operation. The analog signal for this  
mode of operation must have a signal swing in the range of  
0.95 V to 1.9 V. This can be implemented by capacitively cou-  
pling into REFERENCE IN a signal with a dc bias of 1.9 V (IOUT  
= 22.5 mA) to 0.95 V (IOUT = 3 mA), as shown in Figure 19, or  
by dividing REFERENCE IN with a low impedance op amp  
whose signal swing is limited to the stated range.  
The on-board register is rising-edge triggered and should be  
used to synchronize data to the current switches by applying a  
pulse with proper data setup-and-hold times as shown in the  
timing diagram. Although the AD9732 is designed to provide  
isolation of the digital inputs to the analog output, some cou-  
pling of digital transitions is inevitable. Digital feedthrough can  
be minimized by forming a low-pass filter at the digital input by  
using a resistor in series with the capacitance of each digital  
input. This common high speed DAC application technique has  
the effect of isolating digital input noise from the analog output.  
AD9732  
APPROX  
+V  
S
1.4V  
REFERENCE IN  
References  
The internal bandgap reference, control amplifier and reference  
input are pinned out to provide maximum user flexibility in  
configuring the reference circuitry for the AD9732. When using  
the internal reference, REF OUT (Pin 25) should be connected  
to CONTROL AMP IN (Pin 26). CONTROL AMP OUT (Pin  
24) should be connected to REF IN (Pin 23). A 0.1 µF ceramic  
capacitor connected from Pin 23 to GND improves settling time  
by decoupling switching noise from the current sink baseline. A  
reference current cell provides feedback to the control amplifier  
by sinking current through RSET (Pin 17).  
Figure 19. Wideband Multiplying Circuit  
Analog Output  
The switch network provides complementary current outputs  
IOUT and IOUTB. The design of the AD9732 is based on statisti-  
cal current source matching, which provides a 10-bit linearity  
without trim. Current is steered to either IOUT or IOUTB in pro-  
portion to the digital input word. The sum of the two currents is  
always equal to the full-scale output current. The current can be  
converted to a voltage by resistive loading as shown in Figure  
20. Both IOUT and IOUTB should be equally loaded for best over-  
all performance. The voltage that is developed is the product of  
the output current and the value of the load resistor.  
Full-scale current is determined by CONTROL AMP IN and  
R
SET according to the following equation:  
I
OUT(FS) = 32 ([CONTROL AMP IN – (+VS)]/RSET  
)
The internal reference is nominally –1.25 V (referenced to  
Analog +VS), with a tolerance of ±8% and typical drift over  
temperature of 150 ppm/°C. If greater accuracy or temperature  
stability is required, an external reference can be used. The  
AD589 reference features 10 ppm/°C drift over the 0°C to  
+70°C temperature range.  
EVALUATION BOARD  
The performance characteristics of the AD9732 make it ideally  
suited for direct digital synthesis (DDS) and other waveform  
synthesis applications. The AD9732 evaluation board provides a  
platform for analyzing performance under optimum layout con-  
ditions. The AD9732 also provides a reference for high speed  
circuit board layout techniques.  
Two modes of multiplying operation are possible with the  
AD9732. Signals with bandwidths up to 2.5 MHz and input  
swings from 3.8 V to 4.4 V can be applied to the CONTROL  
AMP IN pin as shown in Figure 18. Because the control ampli-  
fier is internally compensated, the 0.1 µF capacitor discussed  
above can be reduced to maximize the multiplying bandwidth.  
REV. A  
–9–  
AD9732  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Figure 20. Evaluation Board  
–10–  
REV. A  
AD9732  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
28-Lead SSOP  
(RS-28)  
0.407 (10.34)  
0.397 (10.08)  
28  
15  
14  
1
0.07 (1.79)  
0.078 (1.98)  
PIN 1  
0.066 (1.67)  
0.068 (1.73)  
0.03 (0.762)  
8؇  
0؇  
0.0256  
(0.65)  
BSC  
0.015 (0.38)  
0.010 (0.25)  
0.022 (0.558)  
0.008 (0.203)  
0.002 (0.050)  
SEATING  
PLANE  
0.009 (0.229)  
0.005 (0.127)  
REV. A  
–11–  

相关型号:

AD9732BRSRL

暂无描述
ADI

AD9734

14/12/10-Bit, 1200 MSPS D/A Converters
ADI

AD9734-DPG2-EBZ

1200 MSPS DACS
ADI

AD9734-EB

10-/12-/14-Bit, 1200 MSPS DACS
ADI

AD9734BBC

10-/12-/14-Bit, 1200 MSPS DACS
ADI

AD9734BBCRL

10-/12-/14-Bit, 1200 MSPS DACS
ADI

AD9734BBCZ

暂无描述
ADI

AD9734BBCZ

SERIAL INPUT LOADING, 10-BIT DAC, BGA160, LEAD FREE, MO-205AE, CSPBGA-160
ROCHESTER

AD9734BBCZ1

10-/12-/14-Bit, 1200 MSPS DACS
ADI

AD9734BBCZRL

10-Bit, 1200 MSPS DACs
ADI

AD9734BBCZRL1

10-/12-/14-Bit, 1200 MSPS DACS
ADI

AD9734_06

10-/12-/14-Bit, 1200 MSPS DACS
ADI