AD9059BRS [ADI]

Dual 8-Bit, 60 MSPS A/D Converter; 双路,8位, 60 MSPS A / D转换器
AD9059BRS
型号: AD9059BRS
厂家: ADI    ADI
描述:

Dual 8-Bit, 60 MSPS A/D Converter
双路,8位, 60 MSPS A / D转换器

转换器
文件: 总12页 (文件大小:193K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
a
Dual 8-Bit, 60 MSPS A/D Converter  
AD9059  
FEATURES  
FUNCTIO NAL BLO CK D IAGRAM  
Dual 8-Bit ADCs on a Single Chip  
Low Pow er: 400 m W Typical  
On-Chip +2.5 V Reference and T/ Hs  
1 V p-p Analog Input Range  
Single +5 V Supply Operation  
+5 V or +3 V Logic Interface  
120 MHz Analog Bandw idth  
Pow er-Dow n Mode: < 12 m W  
V
PWRDN  
V
D
DD  
AD9059  
8
AINA  
VREF  
D7A–D0A  
T/H  
ADC  
A
ENCODE  
+2.5V  
APPLICATIONS  
8
AINB  
T/H  
ADC  
D7B–D0B  
Digital Com m unications (QAM Dem odulators)  
RGB & YC/ Com posite Video Processing  
Digital Data Storage Read Channels  
Medical Im aging  
B
GND  
Digital Instrum entation  
P RO D UCT D ESCRIP TIO N  
P IN CO NFIGURATIO N  
T he AD9059 is a dual 8-bit monolithic analog-to-digital con-  
verter optimized for low cost, low power, small size, and ease of  
use. With a 60 MSPS encode rate capability and full-power  
analog bandwidth of 120 MHz typical, the component is ideal  
for applications requiring multiple ADCs with excellent dy-  
namic performance.  
1
2
28  
27  
26  
25  
AINA  
VREF  
AINB  
GND  
3
PWRDN  
ENCODE  
4
V
D
V
D
5
24 GND  
GND  
T o minimize system cost and power dissipation, the AD9059  
includes an internal +2.5 V reference and dual track-and-hold  
circuits. T he ADC requires only a +5 V power supply and an  
encode clock. No external reference or driver components are  
required for many applications.  
AD9059  
TOP VIEW  
(Not to Scale)  
V
6
23  
22  
21  
20  
19  
18  
17  
16  
V
DD  
DD  
D7A (MSB)  
D6A  
7
D7B (MSB)  
D6B  
8
D5A  
9
D5B  
D4A  
10  
11  
12  
13  
14  
D4B  
T he AD9059s single encode input is T T L/CMOS compatible  
and simultaneously controls both internal ADC channels. T he  
parallel 8-bit digital outputs can be operated from +5 V or +3 V  
supplies. A power-down function may be exercised to bring to-  
tal consumption to < 12 mW when ADC data is not required  
for lengthy periods of time. In power-down mode the digital  
outputs are driven to a high impedance state.  
D3A  
D3B  
D2A  
D2B  
D1A  
D1B  
D0A (LSB)  
15 D0B (LSB)  
Fabricated on an advanced BiCMOS process, the AD9059  
is available in a space saving 28-lead surface mount plastic  
package (28 SSOP) and is specified over the industrial  
(–40°C to +85°C) temperature range.  
Customers desiring single channel digitization may consider the  
AD9057, a single 8-bit, 60 MSPS monolithic based on the  
AD9059 ADC core. T he AD9057 is available in a 20-lead sur-  
face mount plastic package (20 SSOP) and is specified over the  
industrial temperature range.  
REV. 0  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
© Analog Devices, Inc., 1996  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700 Fax: 617/ 326-8703  
AD9059–SPECIFICATIONS  
(V = +5 V, V = +3 V; external reference; ENCODE = 60 MSPS unless otherwise noted)  
D
DD  
ELECTRICAL CHARACTERISTICS  
AD 9059BRS  
Typ  
P aram eter  
Tem p  
Test Level  
Min  
Max  
Units  
RESOLUT ION  
8
Bits  
DC ACCURACY  
Differential Nonlinearity  
+25°C  
Full  
+25°C  
Full  
Full  
+25°C  
Full  
I
VI  
I
VI  
VI  
I
VI  
V
0.75  
0.75  
2.0  
2.5  
2.0  
2.5  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
No Missing Codes  
Gain Error1  
GUARANT EED  
–6  
–8  
–2.5  
+6  
+8  
% FS  
% FS  
ppm/°C  
Gain T empco1  
Full  
±70  
ANALOG INPUT  
Input Voltage Range (Centered at +2.5 V)  
Input Offset Voltage  
+25°C  
+25°C  
Full  
+25°C  
+25°C  
+25°C  
+25°C  
V
I
VI  
V
V
I
1.0  
0
V p-p  
mV  
mV  
kΩ  
pF  
µA  
–15  
–25  
+15  
+25  
Input Resistance  
Input Capacitance  
Input Bias Current  
Analog Bandwidth  
150  
2
6
16  
V
120  
MHz  
CHANNEL MAT CHING (A to B)  
Gain Delta  
Input Offset Voltage Delta  
+25°C  
+25°C  
V
V
±1  
±4  
% FS  
mV  
BANDGAP REFERENCE  
Output Voltage  
T emperature Coefficient  
Full  
Full  
VI  
V
2.4  
60  
2.5  
±10  
2.6  
V
ppm/°C  
SWIT CHING PERFORMANCE  
Maximum Conversion Rate  
Minimum Conversion Rate  
Aperture Delay (tA)  
Full  
Full  
+25°C  
+25°C  
Full  
VI  
IV  
V
V
IV  
IV  
MSPS  
MSPS  
ns  
ps, rms  
ns  
5
2.7  
5
6.6  
9.5  
Aperture Uncertainty (Jitter)  
Output Valid T ime (tV)2  
4.0  
2
Output Propagation Delay (tPD  
)
Full  
14.2  
ns  
DYNAMIC PERFORMANCE3  
T ransient Response  
Overvoltage Recovery T ime  
+25°C  
+25°C  
V
V
9
9
ns  
ns  
Signal-to-Noise Ratio (SINAD) (with Harmonics)  
fIN = 10.3 MHz  
fIN = 76 MHz  
+25°C  
+25°C  
I
V
40  
44.5  
43.5  
dB  
dB  
Effective Number of Bits  
fIN = 10.3 MHz  
fIN = 76 MHz  
Signal-to-Noise Ratio (SNR) (Without Harmonics)  
fIN = 10.3 MHz  
fIN = 76 MHz  
+25°C  
+25°C  
I
V
6.35  
42  
7.1  
6.9  
Bits  
Bits  
+25°C  
+25°C  
I
V
46  
45  
dB  
dB  
2nd Harmonic Distortion  
fIN = 10.3 MHz  
fIN = 76 MHz  
3rd Harmonic Distortion  
fIN = 10.3 MHz  
fIN = 76 MHz  
T wo-T one Intermodulation Distortion (IMD)  
Channel Crosstalk Rejection  
Differential Phase  
+25°C  
+25°C  
I
V
–50  
–46  
–62  
–54  
dBc  
dBc  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
I
–60  
–54  
–52  
–50  
0.8  
dBc  
dBc  
dBc  
dBc  
Degrees  
%
V
V
V
V
V
Differential Gain  
1.0  
–2–  
REV. 0  
AD9059  
AD 9059BRS  
Typ  
P aram eter  
Tem p  
Test Level  
Min  
Max  
Units  
DIGIT AL INPUT S  
Logic “1” Voltage  
Logic “0” Voltage  
Logic “1” Current  
Logic “0” Current  
Input Capacitance  
Encode Pulse Width High (tEH  
Encode Pulse Width Low (tEL  
Full  
Full  
Full  
Full  
+25°C  
+25°C  
+25°C  
VI  
VI  
VI  
VI  
V
2.0  
V
V
0.8  
±1  
±1  
µA  
µA  
pF  
ns  
ns  
4.5  
)
IV  
IV  
6.7  
6.7  
166  
166  
)
DIGIT AL OUT PUT S  
Logic “1” Voltage (VDD = +3 V)  
Logic “1” Voltage (VDD = +5 V)  
Logic “0” Voltage (VDD = +3 V or +5 V)  
Output Coding  
Full  
Full  
Full  
VI  
IV  
VI  
2.95  
4.95  
V
V
V
0.05  
Offset Binary Code  
POWER SUPPLY  
VD Supply Current (VD = +5 V)  
VDD Supply Current (VDD = +3 V)4  
Power Dissipation5, 6  
Power-Down Dissipation  
Power Supply Rejection Ratio (PSRR)  
Full  
Full  
Full  
Full  
+25°C  
VI  
VI  
VI  
VI  
I
72  
13  
400  
6
92  
15  
505  
12  
mA  
mA  
mW  
mW  
mV/V  
15  
NOT ES  
1Gain error and gain temperature coefficient are based on the ADC only (with a fixed +2.5 V external reference).  
2tV and tPD are measured from the 1.5 V level of the ENCODE to the 10%/90% levels of the digital output swing. T he digital output load during test is not to exceed  
an ac load of 10 pF or a dc current of ±40 µA.  
3SNR/harmonics based on an analog input voltage of –0.5 dBFS referenced to a 1.0 V full-scale input range.  
4Digital supply current based on VDD = +3 V output drive with <10 pF loading under dynamic test conditions.  
5Power dissipation is based on 60 MSPS encode and 10.3 MHz analog input dynamic test conditions (VD = +5 V ± 5%, VDD = +3 V ± 5%).  
6T ypical thermal impedance for the RS style (SSOP) 28-pin package: θJC = 39°C/W, θCA = 70°C/W, θJA = 109°C/W.  
Specifications subject to change without notice.  
EXP LANATIO N O F TEST LEVELS  
Test Level  
ABSO LUTE MAXIMUM RATINGS*  
VD, VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+7 V  
Analog Inputs . . . . . . . . . . . . . . . . . . . . . –0.5 V to VD + 0.5 V  
Digital Inputs . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VD + 0.5 V  
VREF Input . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VD + 0.5 V  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Operating T emperature . . . . . . . . . . . . . . . . . –55°C to +125°C  
Storage T emperature . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
I
100% production tested.  
II  
100% production tested at +25°C and sample tested at  
specified temperatures.  
III  
IV  
Sample tested only.  
Parameter is guaranteed by design and characteriza-  
tion testing.  
*Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. T his is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in the  
operational sections of this specification is not implied. Exposure to absolute  
maximum ratings for extended periods may affect device reliability.  
V
VI  
Parameter is a typical value only.  
100% production tested at +25°C; guaranteed by  
design and characterization testing for industrial tem-  
perature range.  
O RD ERING GUID E  
Model  
Tem perature Range  
P ackage O ption  
AD9059BRS  
AD9059/PCB  
–40°C to +85°C  
+25°C  
RS-28  
Evaluation Board  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD9059 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. 0  
–3–  
AD9059  
P IN D ESCRIP TIO NS  
Function  
N
N + 3  
N + 5  
P in No.  
1, 28  
2
Nam e  
AIN  
N + 1  
N + 2  
AINA, AINB Analog Inputs for ADC A and B.  
N + 4  
tA  
VREF  
Internal Voltage Reference (+2.5 V  
T ypical); Bypass with 0.1 µF to  
Ground or Overdrive with External  
Voltage Reference.  
tEH tEL  
ENCODE  
tV  
3
PWRDN  
Power-Down Function Select;  
Logic HIGH for Power-Down  
Mode (Digital Outputs Go to High-  
Impedance State).  
DIGITAL  
OUTPUTS  
N – 3  
N – 2  
N – 1  
N
N + 1  
N + 2  
tPD  
MAX  
MIN  
TYP  
2.7ns  
4, 25  
VD  
Analog +5 V Power Supply.  
Ground.  
tA  
APERTURE DELAY  
PULSE WIDTH HIGH  
PULSE WIDTH LOW  
OUTPUT VALID TIME  
OUTPUT PROP DELAY  
5, 24, 27  
6, 23  
GND  
VDD  
6.7ns  
6.7ns  
4.0ns  
tEH  
tEL  
tV  
166ns  
166ns  
Digital Output Power Supply.  
Nominally +3 V to +5 V.  
6.6ns  
9.5ns  
tPD  
14.2ns  
7–14  
22–15  
26  
D7A–D0A  
D7B–D0B  
ENCODE  
Digital Outputs of ADCA.  
Digital Outputs of ADCB.  
Figure 1. Tim ing Diagram  
Encode Clock for ADCs A and B  
(ADCs Sample Simultaneously On  
the Rising Edge of ENCODE).  
P IN CO NFIGURATIO N  
1
2
28  
27  
26  
25  
AINA  
VREF  
AINB  
GND  
Table I. D igital Coding (VREF = +2.5 V)  
3
PWRDN  
ENCODE  
Analog Input  
Voltage Level  
D igital O utput  
4
V
D
V
D
5
24 GND  
GND  
3.0 V  
Positive Full Scale  
Midscale + 1/2 LSB  
Midscale – 1/2 LSB  
Negative Full Scale  
1111 1111  
1000 0000  
0111 1111  
0000 0000  
AD9059  
TOP VIEW  
(Not to Scale)  
V
6
23  
22  
21  
20  
19  
18  
17  
16  
V
2.502 V  
2.498 V  
2.0 V  
DD  
DD  
D7A (MSB)  
D6A  
7
D7B (MSB)  
D6B  
8
D5A  
9
D5B  
D4A  
10  
11  
12  
13  
14  
D4B  
D3A  
D3B  
D2A  
D2B  
D1A  
D1B  
D0A (LSB)  
15 D0B (LSB)  
REV. 0  
–4–  
AD9059  
–30  
–35  
–40  
–45  
–50  
–55  
0
ENCODE = 60MSPS  
ANALOG IN = 10.3MHz, –0.5dBFS  
SINAD = 43.9dB  
ENOB = 7.0 BITS  
SNR = 45.1dB  
ENCODE = 60MSPS  
AIN = –0.5dBFS  
–10  
–20  
–30  
–40  
–50  
2ND HARMONIC  
–60  
–70  
–80  
–60  
–65  
–70  
3RD HARMONIC  
–90  
0
20  
40  
60  
80  
100  
120  
140  
160  
0
30  
FREQUENCY – MHz  
ANALOG INPUT FREQUENCY – MHz  
Figure 2. FFT Spectral Plot 60 MSPS, 10.3 MHz  
Figure 5. Harm onic Distortion vs. AIN Frequency  
0
0
ENCODE = 60MSPS  
F1 IN = 9.5MHz @ –7.0dBFS  
F2 IN = 9.9MHz @ –7.0dBFS  
2F1 - F2 = –52.0dBc  
ENCODE = 60MSPS  
–10  
–10  
ANALOG IN = 76MHz, –0.5dBFS  
SINAD = 43.0dB  
–20  
–20  
ENOB = 6.85 BITS  
2F2 - F1 = –53.0dBc  
SNR = 44.1dB  
–30  
–30  
–40  
–50  
–60  
–70  
–40  
–50  
–60  
–70  
–80  
–80  
–90  
–90  
0
10  
20  
30  
0
30  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 3. Spectral Plot 60 MSPS, 76 MHz  
Figure 6. Two-Tone IMD  
46  
54  
48  
42  
36  
30  
24  
18  
12  
6
SNR  
AIN = 10.3MHz, –0.5dBFS  
SNR  
44  
42  
SINAD  
SINAD  
40  
38  
ENCODE = 60MSPS  
AIN = –0.5dBFS  
36  
34  
32  
30  
0
20  
40  
60  
80  
100  
120  
140  
160  
5
10  
20  
30  
40  
50  
60  
70  
80  
90  
ANALOG INPUT FREQUENCY – MHz  
ENCODE RATE – MSPS  
Figure 4. SINAD/SNR vs. AIN Frequency  
Figure 7. SINAD/SNR vs. Encode Rate  
REV. 0  
–5–  
AD9059  
12  
600  
550  
500  
450  
400  
350  
300  
250  
AIN = 10.3MHz, –0.5dBFS  
11  
10  
V
= +3V  
DD  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
V
= +5V  
DD  
V
= +5V  
DD  
V
= +3V  
50  
DD  
5
10  
20  
30  
40  
60  
70  
80  
90  
–45  
0
25  
TEMPERATURE – °C  
70  
90  
ENCODE RATE – MSPS  
Figure 8. Power Dissipation vs. Encode Rate  
Figure 11. tPD vs. Tem perature/Supply (+3 V/+5 V)  
46  
45.5  
SNR  
45.5  
45  
SNR  
45.0  
44.5  
44.5  
44  
SINAD  
44.0  
43.5  
43  
SINAD  
43.5  
43.0  
42.5  
42  
ENCODE = 60MSPS  
AIN = 10.3MHz, –0.5dBFS  
ENCODE = 60MSPS  
AIN = 10.3MHz, –0.5dBFS  
42.5  
41.5  
42.0  
41.5  
41  
40.5  
5.8  
6.7  
7.5  
8.35  
9.2  
10  
10.9  
–45  
0
25  
TEMPERATURE –  
70  
90  
ENCODE HIGH PULSE WIDTH – ns  
°
C
Figure 9. SINAD/SNR vs. Tem perature  
Figure 12. SINAD/SNR vs. Encode Pulse Width  
0
0
–1  
–0.2  
–2  
–3  
–4  
–5  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
–1.8  
–6  
ENCODE = 60MSPS  
–7  
AIN = –0..5dBFS  
–8  
–9  
–10  
–45  
0
25  
70  
90  
1
100  
ANALOG FREQUENCY – MHz  
200  
2
5
10  
500  
20  
50  
TEMPERATURE – °C  
Figure 10. ADC Gain vs. Tem perature (With External  
+2.5 V Reference)  
Figure 13. ADC Frequency Response  
REV. 0  
–6–  
AD9059  
TH EO RY O F O P ERATIO N  
applied to the VREF pin to overdrive the internal voltage refer-  
ence for gain adjustment of up to ±10% (the VREF pin is inter-  
nally tied directly to the ADC circuitry). ADC gain and offset  
will vary simultaneously with external reference adjustment with  
a 1:1 ratio (a 2% or 50 mV adjustment to the +2.5 V reference  
varies ADC gain by 2% and ADC offset by 50 mV).  
T he AD9059 combines Analog Devices’ proprietary MagAmp  
gray code conversion circuitry with flash converter technology  
to provide dual high performance 8-bit ADCs in a single low  
cost monolithic device. T he design architecture ensures low  
power, high speed, and 8-bit accuracy.  
T he AD9059 provides two linked ADC channels that are  
clocked from a single ENCODE input (refer to block diagram).  
T he two ADC channels simultaneously sample the analog in-  
puts (AINA and AINB) and provide non-interleaved parallel  
digital outputs (D0A–D7A and D0B–D7B). T he voltage refer-  
ence (VREF) is internally connected to both ADCs so channel  
gains and offsets will track if external reference control is  
desired.  
T heoretical input voltage range versus reference input voltage  
may be calculated from the following equations:  
VRANGE (p-p) = VREF/2.5  
VMIDSCALE = VREF  
VTOP-OF-RANGE = VREF + VRANGE/2  
VBOTTOM-OF-RANGE = VREF – VRANGE/2  
T he external reference should have a 1 mA minimum sink/  
source current capability to ensure complete overdrive of the  
internal voltage reference.  
T he analog input signal is buffered at the input of each ADC  
channel and applied to a high speed track-and-hold. T he T /H  
circuit holds the analog input value during the conversion pro-  
cess (beginning with the rising edge of the ENCODE com-  
mand). T he T /Hs output signal passes through the gray code  
and flash conversion stages to generate coarse and fine digital  
representations of the held analog input level. Decode logic  
combines the multistage data and aligns the 8-bit word for  
strobed outputs on the rising edge of the ENCODE command.  
T he MagAmp/Flash architecture of the AD9059 results in three  
pipeline delays for the output data.  
D igital Logic (+5 V/+3 V System s)  
T he digital inputs and outputs of the AD9059 can easily be  
configured to interface directly with +3 V or +5 V logic systems.  
T he encode and power-down (PWRDN) inputs are CMOS  
stages with T T L thresholds of 1.5 V, making the inputs compat-  
ible with T T L, +5 V CMOS, and +3 V CMOS logic families.  
As with all high speed data converters, the encode signal should  
be clean and jitter free to prevent degradation of ADC dynamic  
performance.  
USING TH E AD 9059  
T he AD9059s digital outputs will also interface directly with  
+5 V or +3 V CMOS logic systems. T he voltage supply pins  
(VDD) for these CMOS stages are isolated from the analog VD  
voltage supply. By varying the voltage on these supply pins the  
digital output HIGH levels will change for +5 V or +3 V sys-  
tems. T he VDD pins are internally connected on the AD9059  
die. Care should be taken to isolate the VDD supply voltages  
from the +5 V analog supply to minimize noise coupling into  
the ADCs.  
Analog Inputs  
T he AD9059 provides independent single-ended high imped-  
ance (150 k) analog inputs for the dual ADCs. Each input  
requires a dc bias current of 6 µA (typical) centered near +2.5 V  
(±10%). T he dc bias may be provided by the user or may be  
derived from the ADCs internal voltage reference. Figure 14  
shows a low cost dc bias implementation allowing the user to  
capacitively couple ac signals directly into the ADC without ad-  
ditional active circuitry. For best dynamic performance the  
VREF pin should be decoupled to ground with a 0.1 µF capaci-  
tor (to minimize modulation of the reference voltage), and the  
bias resistor should approximately 1 k.  
T he AD9059 provides high impedance digital output operation  
when the ADC is driven into power-down mode (PWRDN,  
logic HIGH). A 200 ns (minimum) power-down time should  
be provided before a high impedance characteristic is required.  
A 200 ns power-up period should be provided to ensure accu-  
rate ADC output data after reactivation (valid output data is  
available three clock cycles after the 200 ns delay).  
Figure 15 shows typical connections for high performance dc bi-  
asing using the ADC’s internal voltage reference. All compo-  
nents may be powered from a single +5 V supply (example  
analog input signals are referenced to ground).  
Tim ing  
Voltage Refer ence  
T he AD9059 is guaranteed to operate with conversion rates  
from 5 MSPS to 60 MSPS. At 60 MSPS the ADC is designed  
to operate with an encode duty cycle of 50%, but performance  
is insensitive to moderate variations. Pulse width variations of  
up to ±10% (allowing the encode signal to meet the minimum/  
maximum HIGH/LOW specifications) will cause no degrada-  
tion in ADC performance (refer to Figure 1 Timing Diagram).  
A stable and accurate +2.5 V voltage reference is built into the  
AD9059 (VREF). T he reference output is used to set the ADC  
gain/offset and can provide dc bias for the analog input signals.  
T he internal reference is tied to the ADC circuitry through a  
800 internal impedance and is capable of providing 300 µA  
external drive current (for dc biasing the analog input or other  
user circuitry).  
Due to the linked ENCODE architecture of the ADCs, the  
AD9059 cannot be operated in a two-channel ping-pong mode.  
Some applications may require greater accuracy, improved tem-  
perature performance, or gain adjustments which cannot be ob-  
tained using the internal reference. An external voltage may be  
REV. 0  
–7–  
AD9059  
1k  
P ower D issipation  
+5V  
T he power dissipation of the AD9059 is specified to reflect a  
typical application setup under the following conditions: en-  
code is 60 MSPS, analog input is –0.5 dBFS at 10.3 MHz, VD  
is +5 V, VDD is +3 V, and digital outputs are loaded with 7 pF  
typical (10 pF maximum). T he actual dissipation will vary as  
these conditions are modified in user applications. Figure 8  
shows typical power consumption for the AD9059 versus ADC  
encode frequency and VDD supply voltage.  
+5V  
1kΩ  
AD8041  
VIN  
A
1
3
AINA  
10kΩ  
V
REF  
10kΩ  
+5V  
0.1µF  
AD9059  
AD8041  
+5V  
28  
1kΩ  
AINB  
VIN  
B
(–0.5V TO +0.5V)  
1kΩ  
0.1µF  
VIN  
1
3
AINA  
A
(1V p-p)  
1k  
1kΩ  
Figure 15. DC Coupled AD9059 (VIN Inverted)  
AD9059  
EXTERNAL V  
V
AD9059  
REF  
REF  
(OPTIONAL)  
0.1µF  
0.1µF  
ADC  
ADC  
BPF  
BPF  
90°  
IF IN  
28  
VIN  
B
AINB  
(1V p-p)  
VCO  
VCO  
Figure 14. Capacitively Coupled AD9059  
Figure 16. I and Q Digital Receiver  
A power-down function allows users to reduce power dissipa-  
tion when ADC data is not required. A T T L/CMOS HIGH  
signal (PWRDN) shuts down portions of the dual ADC and  
brings total power dissipation to less than 10 mW. The internal  
bandgap voltage reference remains active during power-down  
mode to minimize ADC reactivation time. If the power-down  
function is not desired, Pin 3 should be tied to ground. Both  
ADC channels are controlled simultaneously by the PWRDN  
pin; they cannot be shut down or turned on independently.  
T he high sampling rate and analog bandwidth of the AD9059  
are ideal for computer RGB video digitizer applications. With a  
full-power analog bandwidth of 2× the maximum sampling rate,  
the ADC provides sufficient pixel-to-pixel transient settling  
time to ensure accurate 60 MSPS video digitization. Figure 17  
shows a typical RGB video digitizer implementation for the  
AD9059.  
AD9059  
Applications  
8
ADC  
ADC  
RED  
T he wide analog bandwidth of the AD9059 makes it attractive  
for a variety of high performance receiver and encoder applica-  
tions. Figure 16 shows the dual ADC in a typical low cost I & Q  
demodulator implementation for cable, satellite, or wireless  
LAN modem receivers. T he excellent dynamic performance of  
the ADC at higher analog input frequencies and encode rates  
empowers users to employ direct IF sampling techniques (refer  
to Figure 3, Spectral Plot). IF sampling eliminates or simplifies  
analog mixer and filter stages to reduce total system cost and  
power.  
8
GREEN  
H-SYNC  
BLUE  
PIXEL CLOCK  
PLL  
8
ADC  
ADC  
AD9059  
Figure 17. RGB Video Encoder  
REV. 0  
–8–  
AD9059  
+V  
DD  
+3V TO +5V  
+V  
+V  
+V  
D
D
D
3k  
800Ω  
500Ω  
ENCODE  
PWRDN  
AIN  
D0–D7  
V
V
REF  
REF  
2.5kΩ  
+2.5V  
Digital Inputs  
Digital Outputs  
Voltage Reference  
Analog Inputs  
Figure 18. Equivalent Circuits  
Evaluation Boar d  
Analog input signals to the board should be 1 V p-p into 50 Ω  
for full-scale ADC drive. For ac coupled operation, connect E7  
to E8 (analog input A to C12 feedthrough capacitor), E13 to  
E15 (C12 to R15 termination resistor for channel A), E4 to E6  
(analog input B to C11 feedthrough capacitor), and E10 to E12  
(C11 to R14 termination resistor for channel B) using the board  
jumper connectors.  
T he AD9059/PCB evaluation board provides an easy-to-use  
analog/digital interface for the dual 8-bit, 60 MSPS ADC. T he  
board includes typical hardware configurations for a variety of  
high speed digitization evaluations. On-board components in-  
clude the AD9059 (in the 28-pin SSOP package), optional ana-  
log input buffer amplifiers, digital output latches, board timing  
drivers, and configurable jumpers for ac coupling, dc coupling,  
and power-down function testing. T he board is configured at  
shipment for dc coupling using the AD9059’s internal reference.  
T he on-board reference voltage may be used to drive the ADC  
or an external reference may be applied. T he standard configu-  
ration employs the internal voltage reference without any exter-  
nal connection requirements. An external voltage reference may  
be applied at board connector input REF to overdrive the lim-  
ited current output of the AD9059’s internal voltage reference.  
T he external voltage reference should be +2.5 V typical.  
For dc coupled analog input applications, amplifiers U3 and U4  
are configured to operate as unity gain inverters with adjustable  
offset for the analog input signals. For full-scale ADC drive  
each analog input signal should be 1 V p-p into 50 referenced  
to ground. Each amplifier offsets its analog signal by +VREF  
(+2.5 V typical) to center the voltage for proper ADC input  
drive. For dc coupled operation, connect E7 to E9 (analog in-  
put A to R11), E14 to E13 (amplifier output to analog input A  
of AD9059), E4 to E5 (analog input B to R10), and E11 to E10  
(amplifier output to analog input B of AD9059) using the board  
jumper connectors.  
T he power-down function of the AD9059 can be exercised  
through a board jumper connection. Connect E2 to E1 (+5 V  
to PWRDN) for power-down mode operation. For normal op-  
eration, connect E3 to E1 (ground to PWRDN).  
T he encode signal source should be T T L/CMOS compatible  
and capable of driving a 50 termination. T he digital outputs  
of the AD9059 are buffered through latches on the evaluation  
board (U5 and U6) and are available for the user at connector  
Pins 30–37 and Pins 22–29. Latch timing is derived from the  
ADC ENCODE clock and a digital clocking signal is provided  
for the board user at connector Pins 2 and 21.  
For ac coupled analog input applications, amplifiers U3 and U4  
are removed from the analog signal paths. T he analog signals  
are coupled through capacitors C11 and C12, each terminated  
to the VREF voltage through separate 1 kresistors (providing  
bias current for the AD9059 analog inputs, AINA and AINB).  
REV. 0  
–9–  
AD9059  
J9, V  
DD  
ANALOG IN–A  
BNC  
U4  
C12  
0.1µF  
AD8041Q  
E8  
E9  
J5  
C9  
0.1µF  
C16  
10µF  
8
7
6
5
1
2
3
4
E7  
NC  
DIS  
P2  
C37DRPF  
R5  
10Ω  
U1  
AD9059RS  
+5V  
+V  
S
E14  
E15  
R13  
50Ω  
R11  
1kΩ  
E13  
1
1
2
28  
AINA  
AINB  
–V  
NC  
S
2
3
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
REF  
GND  
3
R7  
1kΩ  
R15  
1kΩ  
PWRDN  
ENC  
U5  
74ACQ574  
4
4
+5V  
V
D
V
D
+5V  
5
5
GND  
GND  
C10  
0.1µF  
9
8
7
6
5
4
3
2
12  
13  
14  
15  
16  
17  
18  
19  
6
C17  
10µF  
R8  
10kΩ  
6
D0B  
D1B  
D2B  
D3B  
D4B  
D5B  
D6B  
D7B  
8D  
7D  
6D  
5D  
4D  
3D  
2D  
1D  
CK  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
8Q  
7Q  
6Q  
5Q  
4Q  
3Q  
2Q  
1Q  
V
V
DD  
DD  
7
7
C8  
0.1µF  
D7A  
D6A  
D5A  
D4A  
D3A  
D2A  
D1A  
D0A  
D7A  
D6A  
D5A  
D4A  
D3A  
D2A  
D1A  
D0A  
D7B  
D6B  
D5B  
D4B  
D3B  
D2B  
D1B  
D0B  
D7B  
D6B  
D5B  
D4B  
D3B  
D2B  
D1B  
D0B  
8
8
R9  
10kΩ  
J1, REF  
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
10  
11  
12  
13  
14  
E2  
E3  
+5V  
E1  
PWRDN  
E12  
E11  
R14  
1kΩ  
OE  
11  
1
R8  
1kΩ  
E10  
U6  
74ACQ574  
R4  
10Ω  
U3  
AD8041Q  
9
12  
13  
14  
15  
16  
17  
18  
19  
D7A  
D6A  
D5A  
D4A  
D3A  
D2A  
D1A  
D0A  
8D  
7D  
6D  
5D  
4D  
3D  
2D  
1D  
DA7  
DA6  
DA5  
DA4  
DA3  
DA2  
DA1  
DA0  
8Q  
7Q  
6Q  
5Q  
4Q  
3Q  
2Q  
1Q  
ANALOG IN–B  
BNC  
8
7
6
5
4
3
2
R10  
1kΩ  
8
7
6
5
1
2
3
4
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DA0  
DA1  
DA2  
DA3  
DA4  
DA5  
DA6  
DA7  
NC  
DIS  
E5  
E6  
J4  
+V  
+5V  
S
E4  
C11  
0.1µF  
R12  
50Ω  
–V  
NC  
S
U7  
74AC00  
CK  
OE  
30  
31  
32  
33  
34  
35  
36  
37  
BNC  
J10  
1
11  
1
3
2
J11, V  
ENCODE  
D
C6  
0.1µF  
C7  
0.1µF  
C14  
0.1µF  
U7  
74AC00  
R15  
50Ω  
+5V  
4
5
C3  
0.1µF  
C4  
0.1µF  
C5  
0.1µF  
C13  
0.1µF  
C15  
10µF  
6
U7  
74AC00  
DECOUPLING CAPS  
12  
13  
11  
J12, GND  
Figure 19. AD9059 Dual Evaluation Board Schem atic  
REV. 0  
–10–  
AD9059  
Figure 20. Evaluation Board Layout (Top)  
Figure 21. Evaluation Board Layout (Bottom )  
REV. 0  
–11–  
AD9059  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
28-Lead SSO P  
(RS-28)  
0.407 (10.34)  
0.397 (10.08)  
28  
15  
14  
1
0.07 (1.79)  
0.078 (1.98)  
PIN 1  
0.066 (1.67)  
0.068 (1.73)  
0.03 (0.762)  
8°  
0°  
0.015 (0.38)  
0.010 (0.25)  
0.0256  
(0.65)  
BSC  
0.008 (0.203)  
0.002 (0.050)  
0.022 (0.558)  
SEATING  
PLANE  
0.009 (0.229)  
0.005 (0.127)  
REV. 0  
–12–  

相关型号:

AD9059BRS-REEL

Dual 8-Bit, 60 MSPS A/D Converter
ADI

AD9059BRSZ

Dual 8-Bit, 60 MSPS A/D Converter
ADI

AD9059BRSZ-REEL

Dual 8-Bit, 60 MSPS A/D Converter
ADI

AD9059PCB

Dual 8-Bit, 60 MSPS A/D Converter
ADI

AD9060

10-Bit 75 MSPS A/D Converter
ADI

AD9060/PCB

10-Bit 75 MSPS A/D Converter
ADI

AD9060JE

10-Bit 75 MSPS A/D Converter
ADI

AD9060JZ

10-Bit 75 MSPS A/D Converter
ADI

AD9060KE

10-Bit 75 MSPS A/D Converter
ADI

AD9060KZ

10-Bit 75 MSPS A/D Converter
ADI

AD9060SE

10-Bit 75 MSPS A/D Converter
ADI

AD9060SZ

10-Bit 75 MSPS A/D Converter
ADI