AD9059BRSZ [ADI]

Dual 8-Bit, 60 MSPS A/D Converter; 双路,8位, 60 MSPS A / D转换器
AD9059BRSZ
型号: AD9059BRSZ
厂家: ADI    ADI
描述:

Dual 8-Bit, 60 MSPS A/D Converter
双路,8位, 60 MSPS A / D转换器

转换器 模数转换器 光电二极管 信息通信管理
文件: 总12页 (文件大小:231K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual 8-Bit, 60 MSPS A/D Converter  
AD9059  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Dual 8-Bit ADCs on a Single Chip  
Low Power: 400 mW Typical  
On-Chip 2.5 V Reference and Track-and-Hold  
1 V p-p Analog Input Range  
Single 5 V Supply Operation  
5 V or 3 V Logic Interface  
V
PWRDN  
V
DD  
D
AD9059  
8
AINA  
VREF  
T/H  
ADC  
A
D7A–D0A  
120 MHz Analog Bandwidth  
Power-Down Mode: <12 mW  
ENCODE  
8
2.5V  
APPLICATIONS  
AINB  
T/H  
ADC  
B
Digital Communications (QAM Demodulators)  
RGB and YC/Composite Video Processing  
Digital Data Storage Read Channels  
Medical Imaging  
D7B–D0B  
GND  
Digital Instrumentation  
PIN CONFIGURATION  
PRODUCT DESCRIPTION  
1
2
28  
27  
26  
25  
AINA  
VREF  
AINB  
The AD9059 is a dual 8-bit monolithic analog-to-digital converter  
optimized for low cost, low power, small size, and ease of use.  
With a 60 MSPS encode rate capability and full-power analog  
bandwidth of 120 MHz typical, the component is ideal for  
applications requiring multiple ADCs with excellent dynamic  
performance.  
GND  
3
PWRDN  
ENCODE  
4
V
D
V
D
5
24 GND  
GND  
AD9059  
TOP VIEW  
(Not to Scale)  
V
6
23  
22  
21  
20  
19  
18  
17  
16  
V
DD  
DD  
D7A (MSB)  
D6A  
7
D7B (MSB)  
D6B  
8
To minimize system cost and power dissipation, the AD9059  
includes an internal 2.5 V reference and dual track-and-hold  
circuits. The ADC requires only a 5 V power supply and an  
encode clock. No external reference or driver components are  
required for many applications.  
D5A  
9
D5B  
D4A  
10  
11  
12  
13  
14  
D4B  
D3A  
D3B  
D2A  
D2B  
D1A  
D1B  
The AD9059’s single encode input is TTL/CMOS compatible  
and simultaneously controls both internal ADC channels. The  
parallel 8-bit digital outputs can be operated from 5 V or 3 V  
supplies. A power-down function may be exercised to bring  
total consumption to <12 mW when ADC data is not required  
for lengthy periods of time. In power-down mode, the digital  
outputs are driven to a high impedance state.  
D0A (LSB)  
15 D0B (LSB)  
Fabricated on an advanced BiCMOS process, the AD9059  
is available in a space-saving 28-lead shrink small outline  
package (28-lead SSOP) and is specified over the industrial  
temperature range (–40°C to +85°C).  
Customers desiring single-channel digitization may consider the  
AD9057, a single 8-bit, 60 MSPS monolithic based on the  
AD9059 ADC core. The AD9057 is available in a 20-lead shrink  
small outline package (20-lead SSOP) and is specified over the  
industrial temperature range.  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD9059–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS (V = 5 V, V = 3 V, external reference, ENCODE = 60 MSPS, unless otherwise noted.)  
D
DD  
AD9059BRS  
Parameter  
Temp  
Test Level  
Min  
Typ  
Max  
Unit  
RESOLUTION  
8
Bits  
DC ACCURACY  
Differential Nonlinearity  
25°C  
Full  
25°C  
Full  
Full  
25°C  
Full  
I
VI  
I
VI  
VI  
I
VI  
V
0.75  
0.75  
2.0  
2.5  
2.0  
2.5  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
No Missing Codes  
Gain Error1  
Guaranteed  
–2.5  
–6  
–8  
+6  
+8  
% FS  
% FS  
ppm/°C  
Gain Temperature Coefficient1  
Full  
70  
ANALOG INPUT  
Input Voltage Range (Centered at 2.5 V)  
Input Offset Voltage  
25°C  
25°C  
Full  
25°C  
25°C  
25°C  
25°C  
V
I
VI  
V
V
I
1.0  
0
V p-p  
mV  
mV  
kΩ  
–15  
–25  
+15  
+25  
Input Resistance  
Input Capacitance  
Input Bias Current  
Analog Bandwidth  
150  
2
6
pF  
16  
µA  
MHz  
V
120  
CHANNEL MATCHING (A to B)  
Gain Delta  
Input Offset Voltage Delta  
25°C  
25°C  
V
V
1
4
% FS  
mV  
BAND GAP REFERENCE  
Output Voltage  
Temperature Coefficient  
Full  
Full  
VI  
V
2.4  
60  
2.5  
10  
2.6  
V
ppm/°C  
SWITCHING PERFORMANCE  
Maximum Conversion Rate  
Minimum Conversion Rate  
Aperture Delay (tA)  
Full  
Full  
25°C  
25°C  
Full  
Full  
VI  
IV  
V
V
IV  
IV  
MSPS  
MSPS  
ns  
ps, rms  
ns  
5
2.7  
5
6.6  
9.5  
Aperture Uncertainty (Jitter)  
Output Valid Time (tV)2  
4.0  
2
Output Propagation Delay (tPD  
)
14.2  
ns  
DYNAMIC PERFORMANCE3  
Transient Response  
Overvoltage Recovery Time  
Signal-to-Noise Ratio (SINAD) (with Harmonics)  
fIN = 10.3 MHz  
fIN = 76 MHz  
Effective Number of Bits (ENOB)  
fIN = 10.3 MHz  
fIN = 76 MHz  
Signal-to-Noise Ratio (SNR) (Without Harmonics)  
fIN = 10.3 MHz  
fIN = 76 MHz  
Second Harmonic Distortion  
fIN = 10.3 MHz  
fIN = 76 MHz  
Third Harmonic Distortion  
fIN = 10.3 MHz  
fIN = 76 MHz  
Two-Tone Intermodulation Distortion (IMD)  
Channel Crosstalk Rejection  
Differential Phase  
25°C  
25°C  
V
V
9
9
ns  
ns  
25°C  
25°C  
I
V
40  
44.5  
43.5  
dB  
dB  
25°C  
25°C  
I
V
6.35  
42  
7.1  
6.9  
Bits  
Bits  
25°C  
25°C  
I
V
46  
45  
dB  
dB  
25°C  
25°C  
I
V
–50  
–46  
–62  
–54  
dBc  
dBc  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
I
–60  
–54  
–52  
–50  
0.8  
1.0  
dBc  
dBc  
dBc  
dBc  
Degrees  
%
V
V
V
V
V
Differential Gain  
–2–  
REV. A  
AD9059  
SPECIFICATIONS (continued)  
AD9059BRS  
Typ  
Parameter  
Temp  
Test Level  
Min  
Max  
Unit  
DIGITAL INPUTS  
Logic 1 Voltage  
Logic 0 Voltage  
Logic 1 Current  
Logic 0 Current  
Input Capacitance  
Full  
Full  
Full  
Full  
25°C  
25°C  
25°C  
VI  
VI  
VI  
VI  
V
2.0  
V
V
µA  
µA  
pF  
ns  
ns  
0.8  
1
1
4.5  
Encode Pulsewidth High (tEH  
Encode Pulsewidth Low (tEL  
)
)
IV  
IV  
6.7  
6.7  
166  
166  
DIGITAL OUTPUTS  
Logic 1 Voltage (VDD = 3 V)  
Logic 1 Voltage (VDD = 5 V)  
Logic 0 Voltage (VDD = 3 V or 5 V)  
Output Coding  
Full  
Full  
Full  
VI  
IV  
VI  
2.95  
4.95  
V
V
V
0.05  
Offset Binary Code  
POWER SUPPLY  
VD Supply Current (VD = 5 V)  
VDD Supply Current (VDD = 3 V)4  
Power Dissipation5, 6  
Power-Down Dissipation  
Power Supply Rejection Ratio (PSRR)  
Full  
Full  
Full  
Full  
25°C  
VI  
VI  
VI  
VI  
I
72  
13  
400  
6
92  
15  
505  
12  
mA  
mA  
mW  
mW  
mV/V  
3
NOTES  
1Gain error and gain temperature coefficient are based on the ADC only (with a fixed 2.5 V external reference).  
2tV and tPD are measured from the 1.5 V level of the ENCODE to the 10%/90% levels of the digital output swing. The digital output load during test is not to exceed  
an ac load of 10 pF or a dc current of 40 µA.  
3SNR/harmonics based on an analog input voltage of –0.5 dBFS referenced to a 1.0 V full-scale input range.  
4Digital supply current based on VDD = 3 V output drive with <10 pF loading under dynamic test conditions.  
5Power dissipation is based on 60 MSPS encode and 10.3 MHz analog input dynamic test conditions (VD = 5 V 5%, VDD = 3 V 5%).  
6Typical thermal impedance for the RS style (SSOP) 28-lead package: θJC = 39°C/W, θCA = 70°C/W, and θJA = 109°C/W.  
Specifications subject to change without notice.  
ABSOLUTE MAXIMUM RATINGS*  
EXPLANATION OF TEST LEVELS  
Test Level  
VD, VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
Analog Inputs . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VD + 0.5 V  
Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VD + 0.5 V  
VREF Input . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VD + 0.5 V  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Operating Temperature . . . . . . . . . . . . . . . . . . –55°C to +125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
I
100% production tested.  
II – 100% production tested at +25°C and sample tested at  
specified temperatures.  
III – Sample tested only.  
IV – Parameter is guaranteed by design and characterization  
testing.  
*Stresses above those listed under Absolute Maximum Ratings may cause permanent  
damage to the device. This is a stress rating only; functional operation of the device  
at these or any other conditions above those indicated in the operational sections of  
this specification is not implied. Exposure to absolute maximum ratings for extended  
periods may affect device reliability.  
V
Parameter is a typical value only.  
VI – 100% production tested at +25°C; guaranteed by design  
and characterization testing for industrial temperature range.  
ORDERING GUIDE  
Model  
Temperature Range  
Package Option  
AD9059BRS  
AD9059/PCB  
–40°C to +85°C  
25°C  
RS-28  
Evaluation Board  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
AD9059 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
REV. A  
–3–  
AD9059  
PIN FUNCTION DESCRIPTIONS  
Mnemonic Function  
AINA, AINB Analog Inputs for ADC A and B.  
N
N + 3  
N + 5  
Pin No.  
1, 28  
2
AIN  
N + 1  
N + 2  
N + 4  
VREF  
PWRDN  
VD  
Internal Voltage Reference (2.5 V  
Typical); Bypass with 0.1 µF to  
Ground or Overdrive with External  
Voltage Reference.  
tA  
tEH tEL  
ENCODE  
3
Power-Down Function Select; Logic  
HIGH for Power-Down Mode  
(Digital Outputs Go to High-  
Impedance State).  
tV  
DIGITAL  
OUTPUTS  
N – 3  
N – 2  
N – 1  
N
N + 1  
N + 2  
tPD  
4, 25  
Analog 5 V Power Supply.  
Ground.  
MIN  
TYP  
2.7ns  
MAX  
5, 24, 27 GND  
tA  
APERTURE DELAY  
PULSEWIDTH HIGH  
PULSEWIDTH LOW  
OUTPUT VALID TIME  
OUTPUT PROP DELAY  
6.7ns  
6.7ns  
4.0ns  
tEH  
tEL  
tV  
166ns  
166ns  
6, 23  
VDD  
Digital Output Power Supply.  
Nominally 3 V to 5 V.  
6.6n  
7–14  
22–15  
26  
D7A–D0A  
D7B–D0B  
ENCODE  
Digital Outputs of ADC A.  
Digital Outputs of ADC B.  
tPD  
9.5ns  
14.2ns  
Figure 1. Timing Diagram  
Encode Clock for ADCs A and B  
(ADCs Sample Simultaneously on  
the Rising Edge of ENCODE).  
PIN CONFIGURATION  
1
2
28  
27  
26  
25  
AINA  
VREF  
AINB  
Table I. Digital Coding (VREF = 2.5 V)  
GND  
3
PWRDN  
ENCODE  
Analog Input (V)  
Voltage Level  
Digital Output  
4
V
D
V
D
3.0  
Positive Full Scale  
Midscale + 1/2 LSB  
Midscale – 1/2 LSB  
Negative Full Scale  
1111 1111  
1000 0000  
0111 1111  
0000 0000  
5
24 GND  
GND  
AD9059  
TOP VIEW  
(Not to Scale)  
2.502  
2.498  
2.0  
V
6
23  
22  
21  
20  
19  
18  
17  
16  
V
DD  
DD  
D7A (MSB)  
D6A  
7
D7B (MSB)  
D6B  
8
D5A  
9
D5B  
D4A  
10  
11  
12  
13  
14  
D4B  
D3A  
D3B  
D2A  
D2B  
D1A  
D1B  
D0A (LSB)  
15 D0B (LSB)  
–4–  
REV. A  
Typical Performance Characteristics–AD9059  
0
–10  
–20  
–30  
–30  
ENCODE = 60MSPS  
ANALOG IN = 10.3MHz, –0.5dBFS  
SINAD = 43.9dB  
ENOB = 7.0 BITS  
SNR = 45.1dB  
ENCODE = 60MSPS  
–35  
AIN = –0.5dBFS  
–40  
–45  
SECOND HARMONIC  
–50  
–40  
–50  
–60  
–55  
–60  
–70  
–80  
–90  
THIRD HARMONIC  
–65  
–70  
0
20  
40  
60  
80  
100  
120  
140  
160  
0
30  
FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
TPC 1. FFT Spectral Plot 60 MSPS, 10.3 MHz  
TPC 4. Harmonic Distortion vs. AIN Frequency  
0
0
ENCODE = 60MSPS  
ENCODE = 60MSPS  
–10  
–10  
F1 IN = 9.5MHz @ –7.0dBFS  
ANALOG IN = 76MHz, –0.5dBFS  
F2 IN = 9.9MHz @ –7.0dBFS  
2F1 - F2 = –52.0dBc  
SINAD = 43.0dB  
ENOB = 6.85 BITS  
SNR = 44.1dB  
–20  
–30  
–40  
–50  
–60  
–20  
2F2 - F1 = –53.0dBc  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–70  
–80  
–90  
0
30  
0
10  
20  
30  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TPC 2. Spectral Plot 60 MSPS, 76 MHz  
TPC 5. Two-Tone IMD  
46  
44  
42  
40  
38  
36  
34  
32  
30  
54  
48  
SNR  
AIN = 10.3MHz, –0.5dBFS  
SNR  
42  
36  
30  
24  
18  
12  
6
SINAD  
SINAD  
ENCODE = 60MSPS  
AIN = –0.5dBFS  
0
20  
40  
60  
80  
100  
120  
140  
160  
5
10  
20  
30  
40  
50  
60  
70  
80  
90  
ANALOG INPUT FREQUENCY (MHz)  
ENCODE RATE (MSPS)  
TPC 3. SINAD/SNR vs. AIN Frequency  
TPC 6. SINAD/SNR vs. Encode Rate  
REV. A  
–5–  
AD9059  
600  
550  
500  
450  
400  
350  
300  
12  
AIN = 10.3MHz, –0.5dBFS  
11  
10  
V
= 3V  
DD  
9.5  
9.0  
V
= 5V  
DD  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
V
= 5V  
DD  
V
= 3V  
50  
DD  
250  
5
10  
20  
30  
40  
60  
70  
80  
90  
–45  
0
25  
TEMPERATURE (  
70  
90  
ENCODE RATE (MSPS)  
°
C)  
TPC 7. Power Dissipation vs. Encode Rate  
TPC 10. tPD vs. Temperature/Supply (3 V/5 V)  
45.5  
46.0  
SNR  
45.5  
45.0  
44.5  
44.0  
43.5  
43.0  
42.5  
42.0  
41.5  
SNR  
45.0  
44.5  
44.0  
43.5  
43.0  
42.5  
SINAD  
SINAD  
ENCODE = 60MSPS  
AIN = 10.3MHz, –0.5dBFS  
ENCODE = 60MSPS  
AIN = 10.3MHz, –0.5dBFS  
42.0  
41.5  
41.0  
40.5  
–45  
0
25  
TEMPERATURE (°C)  
70  
90  
5.8  
6.7  
7.5  
8.4  
9.2  
10  
10.9  
ENCODE HIGH PULSEWIDTH (ns)  
TPC 8. SINAD/SNR vs. Temperature  
TPC 11. SINAD/SNR vs. Encode Pulsewidth  
0
–1  
–2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
–1.8  
–3  
–4  
–5  
–6  
ENCODE = 60MSPS  
–7  
AIN = –0.5dBFS  
–8  
–9  
–10  
1
2
5
10  
20  
50  
100  
200  
500  
–45  
0
25  
70  
90  
ANALOG FREQUENCY (MHz)  
TEMPERATURE (°C)  
TPC 12. ADC Frequency Response  
TPC 9. ADC Gain vs. Temperature (With External  
2.5 V Reference)  
–6–  
REV. A  
AD9059  
THEORY OF OPERATION  
Figure 3 shows typical connections for high performance dc  
biasing using the ADC’s internal voltage reference. All compo-  
nents may be powered from a single 5 V supply (analog input  
signals are referenced to ground).  
The AD9059 combines Analog Devices’ proprietary MagAmp  
gray code conversion circuitry with flash converter technology to  
provide dual high performance 8-bit ADCs in a single low cost  
monolithic device. The design architecture ensures low power,  
high speed, and 8-bit accuracy.  
1k  
+5V  
The AD9059 provides two linked ADC channels that are clocked  
from a single ENCODE input (see Functional Block Diagram).  
The two ADC channels simultaneously sample the analog inputs  
(AINA and AINB) and provide noninterleaved parallel digital  
outputs (D0A–D7A and D0B–D7B). The voltage reference  
(VREF) is internally connected to both ADCs so channel gains  
and offsets will track if external reference control is desired.  
+5V  
1k⍀  
AD8041  
VIN  
A
1
3
AINA  
VREF  
10k⍀  
10k⍀  
5V  
0.1µF  
AD9059  
The analog input signal is buffered at the input of each ADC  
channel and applied to a high speed track-and-hold. The track-  
and-hold circuit holds the analog input value during the  
conversion process (beginning with the rising edge of the  
ENCODE command). The track-and-hold’s output signal passes  
through the gray code and flash conversion stages to generate  
coarse and fine digital representations of the held analog input  
level. Decode logic combines the multistage data and aligns the  
8-bit word for strobed outputs on the rising edge of the ENCODE  
command. The MagAmp/Flash architecture of the AD9059  
results in three pipeline delays for the output data.  
AD8041  
28  
1k⍀  
AINB  
VIN  
B
(–0.5V TO +0.5V)  
1k⍀  
Figure 3. DC-Coupled AD9059 (VIN Inverted)  
Voltage Reference  
A stable and accurate 2.5 V voltage reference is built into the  
AD9059 (VREF). The reference output is used to set the ADC  
gain/offset and can provide dc bias for the analog input signals.  
The internal reference is tied to the ADC circuitry through an  
800 internal impedance and is capable of providing 300 µA  
external drive current (for dc biasing the analog input or other  
user circuitry).  
USING THE AD9059  
Analog Inputs  
The AD9059 provides independent single-ended high impedance  
(150 k) analog inputs for the dual ADCs. Each input requires a  
dc bias current of 6 µA (typical) centered near 2.5 V ( 10%). The  
dc bias may be provided by the user or may be derived from the  
ADC’s internal voltage reference. Figure 2 shows a low cost dc  
bias implementation that allows the user to capacitively couple  
ac signals directly into the ADC without additional active cir-  
cuitry. For best dynamic performance, the VREF pin should  
be decoupled to ground with a 0.1 µF capacitor (to minimize  
modulation of the reference voltage), and the bias resistor should  
be approximately 1 k.  
Some applications may require greater accuracy, improved  
temperature performance, or gain adjustments that cannot be  
obtained using the internal reference. An external voltage may  
be applied to the VREF pin to overdrive the internal voltage  
reference for gain adjustment of up to 10% (the VREF pin is  
internally tied directly to the ADC circuitry). ADC gain and  
offset will vary simultaneously with external reference adjust-  
ment with a 1:1 ratio (a 2% or 50 mV adjustment to the 2.5 V  
reference varies ADC gain by 2% and ADC offset by 50 mV).  
Theoretical input voltage range versus reference input voltage  
may be calculated using the following equations.  
5V  
0.1µF  
VRANGE (p p) =VREF 2.5  
VMIDSCALE =VREF  
VTOPOFRANGE =VREF +VRANGE  
VIN  
(1V p-p)  
1
3
AINA  
A
1k  
1k⍀  
2
AD9059  
VBOTTOMOFRANGE =VREF VRANGE  
2
EXTERNAL V  
VREF  
AINB  
REF  
(OPTIONAL)  
0.1µF  
0.1µF  
The external reference should have a 1 mA minimum sink/  
source current capability to ensure complete overdrive of the  
internal voltage reference.  
VIN  
B
(1V p-p)  
28  
Figure 2. Capacity Coupled AD9059  
REV. A  
–7–  
AD9059  
Digital Logic (5 V/3 V Systems)  
Applications  
The digital inputs and outputs of the AD9059 can easily be  
configured to interface directly with 3 V or 5 V logic systems.  
The encode and power-down (PWRDN) inputs are CMOS  
stages with TTL thresholds of 1.5 V, making the inputs compat-  
ible with TTL, 5 V CMOS, and 3 V CMOS logic families. As  
with all high speed data converters, the encode signal should be  
clean and jitter free to prevent degradation of ADC dynamic  
performance.  
The wide analog bandwidth of the AD9059 makes it attractive for  
a variety of high performance receiver and encoder applications.  
Figure 4 shows the dual ADC in a typical low cost I and Q  
demodulator implementation for cable, satellite, or wireless  
LAN modem receivers. The excellent dynamic performance of  
the ADC at higher analog input frequencies and encode rates  
empowers users to employ direct IF sampling techniques (see  
TPC 2). IF sampling eliminates or simplifies analog mixer and  
filter stages to reduce total system cost and power.  
The AD9059’s digital outputs will also interface directly with 5 V  
or 3 V CMOS logic systems. The voltage supply pins (VDD) for  
these CMOS stages are isolated from the analog VD voltage  
supply. By varying the voltage on these supply pins, the digital  
output high levels will change for 5 V or 3 V systems. The VDD  
pins are internally connected on the AD9059 die. Care should  
be taken to isolate the VDD supply voltages from the 5 V analog  
supply to minimize noise coupling into the ADCs.  
AD9059  
ADC  
BPF  
90°  
IF IN  
ADC  
VCO  
BPF  
The AD9059 provides high impedance digital output operation  
when the ADC is driven into power-down mode (PWRDN,  
logic high). A 200 ns (minimum) power-down time should be  
provided before a high impedance characteristic is required. A  
200 ns power-up period should be provided to ensure accurate  
ADC output data after reactivation (valid output data is avail-  
able three clock cycles after the 200 ns delay).  
VCO  
Figure 4. I and Q Digital Receiver  
The high sampling rate and analog bandwidth of the AD9059  
are ideal for computer RGB video digitizer applications. With a  
full-power analog bandwidth of 2× the maximum sampling rate,  
the ADC provides sufficient pixel-to-pixel transient settling time  
to ensure accurate 60 MSPS video digitization. Figure 5 shows  
a typical RGB video digitizer implementation for the AD9059.  
Timing  
The AD9059 is guaranteed to operate with conversion rates  
from 5 MSPS to 60 MSPS. At 60 MSPS, the ADC is designed  
to operate with an encode duty cycle of 50%, but performance  
is insensitive to moderate variations. Pulsewidth variations of up  
to 10% (allowing the encode signal to meet the minimum/  
maximum high/low specifications) will cause no degradation in  
ADC performance (see Figure 1).  
AD9059  
8
ADC  
ADC  
RED  
8
GREEN  
H-SYNC  
BLUE  
PIXEL CLOCK  
Due to the linked ENCODE architecture of the ADCs, the  
AD9059 cannot be operated in a 2-channel ping-pong mode.  
PLL  
8
ADC  
Power Dissipation  
The power dissipation of the AD9059 is specified to reflect a  
typical application setup under the following conditions: encode  
is 60 MSPS, analog input is –0.5 dBFS at 10.3 MHz, VD is 5 V,  
VDD is 3 V, and digital outputs are loaded with 7 pF typical  
(10 pF maximum). The actual dissipation will vary as these  
conditions are modified in user applications. TPC 7 shows typi-  
cal power consumption for the AD9059 versus ADC encode  
frequency and VDD supply voltage.  
ADC  
AD9059  
Figure 5. RGB Video Encoder  
A power-down function allows users to reduce power dissipation  
when ADC data is not required. A TTL/CMOS high signal  
(PWRDN) shuts down portions of the dual ADC and brings total  
power dissipation to less than 10 mW. The internal band gap  
voltage reference remains active during power-down mode to  
minimize ADC reactivation time. If the power-down function is  
not desired, Pin 3 should be tied to ground. Both ADC channels  
are controlled simultaneously by the PWRDN pin; they cannot  
be shut down or turned on independently.  
–8–  
REV. A  
AD9059  
+V  
3V TO 5V  
DD  
+V  
+V  
+V  
D
D
D
3k  
800⍀  
500⍀  
ENCODE  
PWRDN  
AIN  
VREF  
VREF  
D0–D7  
2.5k⍀  
2.5V  
DIGITAL INPUTS  
Figure 6. Equivalent Circuits  
DIGITAL OUTPUTS  
VOLTAGE REFERENCE  
ANALOG INPUTS  
Analog input signals to the board should be 1 V p-p into 50 Ω  
for full-scale ADC drive. For ac-coupled operation, connect E7  
to E8 (analog input A to C12 feedthrough capacitor), E13 to  
E15 (C12 to R15 termination resistor for Channel A), E4 to E6  
(analog input B to C11 feedthrough capacitor), and E10 to E12  
(C11 to R14 termination resistor for Channel B) using the  
board jumper connectors.  
Evaluation Board  
The AD9059/PCB evaluation board provides an easy-to-use  
analog/digital interface for the dual 8-bit, 60 MSPS ADC. The  
board includes typical hardware configurations for a variety of high  
speed digitization evaluations. On-board components include the  
AD9059 (in the 28-lead SSOP package), optional analog input  
buffer amplifiers, digital output latches, board timing drivers, and  
configurable jumpers for ac coupling, dc coupling, and power-  
down function testing. The board is configured at shipment for  
dc coupling using the AD9059’s internal reference.  
The on-board reference voltage may be used to drive the ADC or  
an external reference may be applied. The standard configuration  
employs the internal voltage reference without any external  
connection requirements. An external voltage reference may be  
applied at board connector input REF to overdrive the limited  
current output of the AD9059’s internal voltage reference. The  
external voltage reference should be 2.5 V typical.  
For dc-coupled analog input applications, amplifiers U3 and U4  
are configured to operate as unity gain inverters with adjustable  
offset for the analog input signals. For full-scale ADC drive,  
each analog input signal should be 1 V p-p into 50 referenced  
to ground. Each amplifier offsets its analog signal by +VREF  
(2.5 V typical) to center the voltage for proper ADC input drive.  
For dc-coupled operation, connect E7 to E9 (analog input A to  
R11), E14 to E13 (amplifier output to analog input A of  
AD9059), E4 to E5 (analog input B to R10), and E11 to E10  
(amplifier output to analog input B of AD9059) using the board  
jumper connectors.  
The power-down function of the AD9059 can be exercised  
through a board jumper connection. Connect E2 to E1 (5 V to  
PWRDN) for power-down mode operation. For normal operation,  
connect E3 to E1 (ground to PWRDN).  
The encode signal source should be TTL/CMOS compatible  
and capable of driving a 50 termination. The digital outputs  
of the AD9059 are buffered through latches on the evaluation  
board (U5 and U6) and are available for the user at connector  
Pins 30–37 and Pins 22–29. Latch timing is derived from the  
ADC ENCODE clock and a digital clocking signal is provided  
for the board user at connector Pins 2 and 21.  
For ac-coupled analog input applications, amplifiers U3 and U4  
are removed from the analog signal paths. The analog signals  
are coupled through Capacitors C11 and C12, each terminated  
to the VREF voltage through separate 1 kresistors (providing  
bias current for the AD9059 analog inputs, AINA and AINB).  
REV. A  
–9–  
AD9059  
J9, V  
DD  
ANALOG IN–A  
BNC  
U4  
C12  
AD8041Q  
0.1µF  
E8  
E9  
J5  
C16  
C9  
8
E7  
1
2
3
DIS  
10µF  
0.1µF  
NC  
P2  
C37DRPF  
R5  
U1  
AD9059RS  
7
6
5
+V  
S
5V  
10  
E14  
E15  
R13  
50⍀  
R11  
1k⍀  
E13  
1
2
1
2
3
4
5
6
28  
27  
4
AINB  
AINA  
–V  
NC  
S
GND  
ENC  
VREF  
PWRDN  
3
4
5
26  
25  
24  
R15  
1k⍀  
R7  
1k⍀  
U5  
V
5V  
V
5V  
D
D
74ACQ574  
GND  
V
GND  
12  
C10  
0.1µF  
9
8
R8  
10k⍀  
C17  
10µF  
6
7
8
23  
22  
D0B  
8D  
DB0  
8Q  
7Q  
6Q  
V
DD  
DD  
13  
14  
15  
7
C8  
0.1µF  
D1B  
D2B  
7D  
6D  
5D  
DB1  
DB2  
D7A  
D6A  
D5A  
D4A  
D7B  
D6B  
D5B  
D4B  
D7B  
D6B  
D5B  
D4B  
D7A  
D6A  
D5A  
D4A  
7
6
8
9
10  
11  
12  
13  
21  
20  
19  
R9  
10k⍀  
J1, REF  
9
10  
11  
D3B  
D4B  
D5B  
5Q  
4Q  
3Q  
2Q  
DB3  
DB4  
DB5  
16  
17  
5
4
3
4D  
3D  
2D  
18  
17  
16  
D3B  
D2B  
D1B  
D3B  
D2B  
D1B  
D3A  
D2A  
D1A  
D3A  
D2A  
D1A  
E2  
E3  
18  
19  
12  
13  
5V  
D6B  
D7B  
DB6  
DB7  
E1  
PWRDN  
R14  
1k⍀  
2
1Q  
1D  
14  
15  
16  
17  
18  
14  
15  
CK  
D0B  
D0B  
D0A  
D0A  
OE  
11  
1
E12  
E11  
R8  
1k⍀  
E10  
U6  
74ACQ574  
19  
20  
21  
R4  
10⍀  
U3  
AD8041Q  
12  
9
D7A  
D6A  
8D  
7D  
6D  
8Q  
7Q  
DA7  
DA6  
DA5  
ANALOG IN–B  
BNC  
13  
14  
8
7
6
22  
23  
24  
25  
26  
27  
28  
R10  
1k⍀  
8
1
2
3
4
DB0  
DB1  
DB2  
DIS  
NC  
E5  
E6  
D5A  
D4A  
D3A  
6Q  
5Q  
4Q  
3Q  
7
6
5
J4  
5V  
15  
16  
17  
+V  
S
E4  
5D  
4D  
3D  
DA4  
DA3  
5
4
DB3  
DB4  
DB5  
DB6  
DB7  
DA0  
DA1  
DA2  
DA3  
C11  
0.1µF  
R12  
50⍀  
–V  
NC  
S
D2A  
D1A  
DA2  
DA1  
DA0  
3
2
18  
19  
2Q  
1Q  
2D  
1D  
D0A  
29  
30  
31  
32  
33  
34  
U7  
74AC00  
CK  
OE  
BNC  
J10  
1
1
11  
3
6
2
J11, V  
ENCODE  
D
C6  
0.1µF  
C7  
0.1µF  
C14  
0.1µF  
U7  
74AC00  
R15  
50⍀  
5V  
DA4  
DA5  
DA6  
DA7  
4
35  
36  
C3  
0.1µF  
C13  
0.1µF  
C4  
0.1µF  
C5  
0.1µF  
C15  
10µF  
5
37  
U7  
74AC00  
DECOUPLING CAPS  
J12, GND  
12  
13  
11  
Figure 7. AD9059 Dual Evaluation Board Schematic  
–10–  
REV. A  
AD9059  
Figure 8. Evaluation Board Layout (Top)  
Figure 9. Evaluation Board Layout (Bottom)  
REV. A  
–11–  
AD9059  
OUTLINE DIMENSIONS  
28-Lead Shrink Small Outline Package [SSOP]  
(RS-28)  
Dimensions shown in millimeters  
10.50  
10.20  
9.90  
28  
15  
5.60  
5.30  
5.00  
8.20  
7.80  
7.40  
14  
1
1.85  
1.75  
1.65  
0.10  
COPLANARITY  
2.00 MAX  
0.25  
0.09  
8؇  
4؇  
0؇  
0.95  
0.75  
0.55  
0.38  
0.22  
0.65  
BSC  
0.05  
MIN  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-150AH  
Revision History  
Location  
Page  
4/03—Data Sheet changed from REV. 0 to REV. A.  
Renumbered Figures and TPCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal  
Changes to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
–12–  
REV. A  

相关型号:

AD9059BRSZ-REEL

Dual 8-Bit, 60 MSPS A/D Converter
ADI

AD9059PCB

Dual 8-Bit, 60 MSPS A/D Converter
ADI

AD9060

10-Bit 75 MSPS A/D Converter
ADI

AD9060/PCB

10-Bit 75 MSPS A/D Converter
ADI

AD9060JE

10-Bit 75 MSPS A/D Converter
ADI

AD9060JZ

10-Bit 75 MSPS A/D Converter
ADI

AD9060KE

10-Bit 75 MSPS A/D Converter
ADI

AD9060KZ

10-Bit 75 MSPS A/D Converter
ADI

AD9060SE

10-Bit 75 MSPS A/D Converter
ADI

AD9060SZ

10-Bit 75 MSPS A/D Converter
ADI

AD9060SZ/883B

IC 1-CH 10-BIT FLASH METHOD ADC, PARALLEL ACCESS, CQFP68, CERAMIC, LCC-68, Analog to Digital Converter
ADI

AD9060TE

10-Bit 75 MSPS A/D Converter
ADI