AD8598ARU-REEL [ADI]

暂无描述;
AD8598ARU-REEL
型号: AD8598ARU-REEL
厂家: ADI    ADI
描述:

暂无描述

比较器
文件: 总11页 (文件大小:126K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual 7 ns  
a
Single Supply Comparator  
AD8598  
FEATURES  
PIN CONFIGURATIONS  
7 ns Propagation Delay  
Single Supply Operation: +3 V to +10 V  
Low Power  
Symmetrical Layout  
Latch Function  
N-16, RU-16 and R-16A  
1
2
3
4
5
6
7
8
16 QB  
QA  
15  
QA  
GND  
LEA  
NC  
QB  
14  
13  
12  
11  
10  
9
GND  
LEB  
NC  
TSSOP Packages  
AD8598  
TOP VIEW  
APPLICATIONS  
Clock Recovery and Clock Distribution  
High Speed Data  
Line Receivers  
Phase Detectors  
(Not to Scale)  
V–  
V+  
IN B–  
IN B+  
IN A–  
IN A+  
NC = NO CONNECT  
Digital Communications  
I and Q Detection  
High Speed Sampling  
Upgrade for MAX912  
Satellite Receivers  
PCMCIA Cards  
Wireless Data Links  
Battery Operated Instrumentation  
GENERAL DESCRIPTION  
The AD8598 is a dual 7 ns comparator with digital latches.  
Separate supplies enable the input stage to be operated from  
+5 V to as high as ±5 V.  
Ultrafast 7 ns propagation delay makes the AD8598 a good  
choice for timing circuits and line receivers. Propagation delays  
for rising and falling signals are closely matched and track over  
temperature. This matched delay makes the AD8598 a good  
choice for clock recovery, since the duty cycle of the output will  
match the duty cycle of the input.  
The AD8598 has the same pinout as the DIP version of the  
AD9698. For a single comparator like the AD8598, please refer  
to the AD8561 data sheet.  
The AD8598 is specified over the industrial (–40°C to +85°C)  
temperature range. The AD8598 is available in both the 16-lead  
plastic DIP, 16-lead TSSOP or narrow R-16A surface mount  
packages.  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1998  
AD8598–SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS (@ V+ = +5.0 V, V– = VGND = 0 V, TA = +25؇C unless otherwise noted)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
2.3  
7
8
mV  
mV  
µV/°C  
µA  
µA  
µA  
–40°C TA +85°C  
Offset Voltage Drift  
Input Bias Current  
VOS/T  
IB  
IB  
IOS  
4
–3  
–3.5  
VCM = 0 V  
–40°C TA +85°C  
VCM = 0 V  
–6  
–7  
Input Offset Current  
±4  
Input Common-Mode Voltage Range VCM  
0.0  
65  
+3.0  
V
dB  
V/V  
pF  
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
Input Capacitance  
CMRR  
AVO  
CIN  
0 V VCM +3.0 V  
RL = 10 kΩ  
85  
+3,000  
3.0  
LATCH ENABLE INPUT  
Logic “1” Voltage Threshold  
Logic “0” Voltage Threshold  
Logic “1” Current  
Logic “0” Current  
Latch Enable  
VIH  
VIL  
IIH  
IIL  
+2.0  
+1.65  
+1.60 +0.8  
–0.3  
–2  
V
V
µA  
µA  
VLH = +3.0 V  
VLL = +0.3 V  
–1.0  
–4  
Pulsewidth  
Setup Time  
Hold Time  
tPW(E)  
tS  
tH  
6
1
1.2  
ns  
ns  
ns  
DIGITAL OUTPUTS  
Logic “1” Voltage  
Logic “1” Voltage  
Logic “0” Voltage  
VOH  
VOH  
VOL  
IOH = –50 µA, VIN > 250 mV  
IOH = –3.2 mA, VIN > 250 mV  
IOL = 3.2 mA, VIN > 250 mV  
+3.5  
+2.4  
V
V
V
+3.5  
+0.25 +0.4  
DYNAMIC PERFORMANCE  
Propagation Delay  
tP  
tP  
200 mV Step with 100 mV Overdrive  
–40°C TA +85°C  
100 mV Step with 5 mV Overdrive  
6.75  
8
8
9.8  
13  
ns  
ns  
ns  
Propagation Delay  
Differential Propagation Delay  
(Rising Propagation Delay vs.  
Falling Propagation Delay)  
Rise Time  
tP  
100 mV Step with 100 mV Overdrive1  
20% to 80%  
80% to 20%  
0.5  
3.8  
1.5  
2.0  
ns  
ns  
ns  
Fall Time  
POWER SUPPLY  
Power Supply Rejection Ratio  
Positive Supply Current (V+ Pin)  
PSRR  
I+  
+4.5 V V+ +5.5 V  
–40°C TA +85°C  
50  
65  
9.0  
dB  
12.0  
15.0  
6.6  
7.6  
9.0  
mA  
mA  
mA  
mA  
mA  
mA  
Ground Supply Current (GND Pins) IGND  
Analog Supply Current (V– Pin) I–  
VO = 0 V, RL =  
–40°C TA +85°C  
4.4  
4.6  
–40°C TA +85°C  
11.0  
NOTES  
1Guaranteed by design.  
Specifications subject to change without notice.  
–2–  
REV. A  
AD8598  
(@ V+ = +5.0 V, VGND = 0 V, V– = –5 V, TA = +25؇C unless otherwise noted)  
ELECTRICAL SPECIFICATIONS  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
1
7
8
mV  
mV  
µV/°C  
µA  
µA  
µA  
–40°C TA +85°C  
Offset Voltage Drift  
Input Bias Current  
VOS/T  
IB  
IB  
IOS  
4
–3  
–2.5  
VCM = 0 V  
–40°C TA +85°C  
VCM = 0 V  
–6  
–7  
Input Offset Current  
±4  
Input Common-Mode Voltage Range VCM  
–5.0  
65  
+3.0  
V
dB  
V/V  
pF  
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
Input Capacitance  
CMRR  
AVO  
CIN  
–5.0 V VCM +3.0 V  
RL = 10 kΩ  
85  
+3,000  
3.0  
LATCH ENABLE INPUT  
Logic “1” Voltage Threshold  
Logic “0” Voltage Threshold  
Logic “1” Current  
Logic “0” Current  
Latch Enable  
VIH  
VIL  
IIH  
IIL  
+2.0  
+1.65  
+1.60 +0.8  
–0.5  
–2  
V
V
µA  
µA  
VLH = +3.0 V  
VLL = +0.3 V  
–1  
–4  
Pulsewidth  
Setup Time  
Hold Time  
tPW(E)  
tS  
tH  
6
1.0  
1.2  
ns  
ns  
ns  
DIGITAL OUTPUTS  
Logic “1” Voltage  
Logic “0” Voltage  
VOH  
VOL  
IOH = –3.2 mA  
IOL = 3.2 mA  
+2.6  
+3.5  
+0.2  
V
V
+0.3  
DYNAMIC PERFORMANCE  
Propagation Delay  
tP  
tP  
200 mV Step with 100 mV Overdrive  
–40°C TA +85°C  
100 mV Step with 5 mV Overdrive  
6.5  
8
7
9.8  
13  
ns  
ns  
ns  
Propagation Delay  
Differential Propagation Delay  
(Rising Propagation Delay vs.  
Falling Propagation Delay)  
Rise Time  
tP  
100 mV Step with 100 mV Overdrive1  
20% to 80%  
80% to 20%  
0.5  
3.8  
1.5  
1
2
ns  
ns  
ns  
ns  
Fall Time  
Dispersion  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current  
PSRR  
I+  
±4.5 V VCC and VEE ±5.5 V  
55  
70  
dB  
VO = 0 V, RL =  
Positive Supply Current (V+ Pin)  
9.4  
4.4  
4.8  
13.0  
15.0  
6.6  
7.6  
9.0  
mA  
mA  
mA  
mA  
mA  
mA  
–40°C TA +85°C  
VO = 0 V, RL =  
Ground Supply Current (GND Pins) IGND  
Analog Supply Current (V– Pin) I–  
–40°C TA +85°C  
–40°C TA +85°C  
11.0  
NOTES  
1Guaranteed by design.  
Specifications subject to change without notice.  
REV. A  
–3–  
AD8598–SPECIFICATIONS  
(@ V+ = +3.0 V, V– = VGND = 0 V, TA = +25؇C unless otherwise noted)  
ELECTRICAL SPECIFICATIONS  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
INPUT CHARACTERISTICS  
Offset Voltage  
Input Bias Current  
VOS  
IB  
IB  
7
mV  
µA  
µA  
V
VCM = 0 V  
–40°C TA +85°C  
–6  
–7  
0
–3.0  
–4  
Input Common-Mode Voltage Range VCM  
Common-Mode Rejection Ratio  
+1.5  
+0.3  
CMRR  
+0.1 V VCM +1.5 V  
50  
dB  
OUTPUT CHARACTERISTICS  
Output High Voltage1  
Output Low Voltage  
VOH  
VOL  
IOH = –3.2 mA, VIN > 250 mV  
IOL = +3.2 mA, VIN > 250 mV  
+1.2  
V
V
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Currents  
PSRR  
I+  
+2.7 V VCC, VEE +6 V  
40  
dB  
VO = 0 V, RL =  
Positive Supply Current (V+ Pin)  
8.0  
3.2  
4.8  
9.0  
11.0  
5.0  
6.0  
6.6  
7.6  
mA  
mA  
mA  
mA  
mA  
mA  
–40°C TA +85°C  
–40°C TA +85°C  
–40°C TA +85°C  
Ground Supply Current (GND Pins) IGND  
Analog Supply Current (V– Pin)  
I–  
DYNAMIC PERFORMANCE  
Propagation Delay  
tP  
100 mV Step with 20 mV Overdrive2  
8.5  
9.8  
ns  
NOTES  
1Output high voltage without pull-up resistor. It may be useful to have a pull-up resistor to V+ for +3 V operation.  
2Guaranteed by design.  
Specifications subject to change without notice.  
ABSOLUTE MAXIMUM RATINGS  
Package Type  
2
Units  
JA  
JC  
Total Analog Supply Voltage . . . . . . . . . . . . . . . . . . . . . +14 V  
16-Lead Plastic DIP  
16-Lead SOIC  
16-Lead TSSOP  
103  
158  
240  
43  
43  
43  
°C/W  
°C/W  
°C/W  
Digital Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . +7 V  
Analog Positive Supply–Digital Positive Supply . . . . . –600 mV  
Input Voltage1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±7 V  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . ±8 V  
Output Short-Circuit Duration to GND . . . . . . . . . Indefinite  
Storage Temperature Range  
NOTES  
1The analog input voltage is equal to ±7 V or the analog supply voltage, whichever  
is less.  
2θJA is specified for the worst case conditions, i.e., θJA is specified for device in socket  
for P-DIP and θJA is specified for device soldered in circuit board for SOIC and  
TSSOP packages.  
N, R, RU Package . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Operating Temperature Range . . . . . . . . . . . –40°C to +85°C  
Junction Temperature Range  
N, R, RU Package . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature Range (Soldering, 10 sec) . . . . . . .+300°C  
ORDERING GUIDE  
Package  
Temperature  
Range  
Package  
Options  
Model  
Descriptions  
AD8598AN  
AD8598ARU  
AD8598AR  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
16-Lead Plastic DIP  
16-Lead Thin Shrink Small Outline (TSSOP)  
16-Lead Narrow Body IC  
N-16  
RU-16  
R-16A  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD8598 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. A  
AD8598  
Typical Performance Characteristics (V+ = +5 V, V– = 0 V, TA = +25؇C unless otherwise noted)  
5
4
3
2
1
0
20  
15  
10  
5
500  
400  
300  
200  
100  
0
+125؇C  
V
= +5V, SINGLE SUPPLY  
S
V
= +5V, SINGLE SUPPLY  
S
STEP SIZE = 100mV  
CAPACITANCE LOAD = 10pF  
؊40؇C  
T
= +25؇C  
A
+25؇C  
0
؊2.5 ؊2.0 ؊1.5 ؊1.0 ؊0.5  
0
0.5 1.0 1.5  
10  
20  
30  
40  
50  
0
؊5 ؊4 ؊3 ؊2 ؊1  
0
1
2
3
4
5
DIFFERENTIAL INPUT VOLTAGE – mV  
OVERDRIVE – mV  
INPUT VOLTAGE – mV  
Figure 1. Output Voltage vs. Differen-  
tial Input Voltage  
Figure 2. Typical Distribution of Input  
Offset Voltage  
Figure 3. Propagation Delay vs.  
Overdrive  
20  
40  
20  
V
= +5V, SINGLE SUPPLY  
S
V
= +5V, SINGLE SUPPLY  
S
T
= +25؇C  
A
STEP SIZE = 100mV  
OVERDRIVE LOAD = 5mV  
OVERDRIVE = 10mV  
CAPACITANCE LOAD = 10pF  
SINGLE SUPPLY  
STEP SIZE = 100mV  
OVERDRIVE = 5mV  
T
= +25؇C  
A
15  
10  
5
30  
20  
10  
0
15  
10  
5
CAPACITANCE LOAD = 10pF  
STEP SIZE = 800mV  
400mV  
tPD  
؊
FALLING EDGE  
200mV  
tPD  
+
FALLING EDGE  
100mV  
0
0
10  
20  
30  
40  
50  
0
0.5  
1
1.5  
2
0
4.5  
4.75  
5
5.25  
5.5  
LOAD CAPACITANCE – pF  
SUPPLY VOLTAGE – Volts  
SOURCE RESISTANCE – k⍀  
Figure 4. Propagation Delay vs. Load  
Capacitance  
Figure 5. Propagation Delay vs.  
Source Resistance  
Figure 6. Propagation Delay vs. Posi-  
tive Supply Voltage  
20  
20  
4
3
+25؇C  
V
= +5V, SINGLE SUPPLY  
S
STEP SIZE = 100mV  
OVERDRIVE = 5mV,  
LOAD CAPACITANCE = 10pF  
15  
15  
10  
5
؊40؇C  
+125؇C  
10  
2
1
0
HOLD TIME  
SETUP TIME  
5
0
V = +5V  
S
STEP SIZE = 100mV  
OVERDRIVE = 5mV  
LOAD CAPACITANCE = 10pF  
0
1
2
3
4
5
0
–50 –25  
0
25  
50  
75  
100 125  
–50  
–25  
0
25  
50  
75  
100 125  
TEMPERATURE – ؇C  
COMMON-MODE VOLTAGE – Volts  
TEMPERATURE – ؇C  
Figure 9. Latch Setup-and-Hold Time  
vs. Temperature  
Figure 8. Propagation Delay vs. VCM  
Figure 7. Propagation Delay vs.  
Temperature  
REV. A  
–5–  
AD8598  
5.0  
4.4  
3.8  
3.2  
2.6  
2.0  
0.5  
0
؊4.0  
0.4  
0.3  
T
= +125؇C  
A
V+ = +5V, V؊ = 0V  
؊8.0  
T = +25؇C  
A
T
= ؊40؇C  
T
= +25؇C  
A
A
V+ = +5V, V؊ = ؊5V  
0.2  
0.1  
0
؊12.0  
؊16.0  
؊20.0  
T
= +125؇C  
A
T
= ؊40؇C  
A
–75 –50 –25  
0
25 50 75 100 125 150  
0
3
6
9
12  
15  
0
3
6
9
12  
15  
SINK CURRENT – mA  
SOURCE CURRENT – mA  
TEMPERATURE – ؇C  
Figure 11. Output High Voltage, VOH  
vs. Source Current  
Figure 12. Analog Supply Current vs.  
Temperature for ±5 V Supplies  
Figure 10. Output Low Voltage, VOL  
vs. Sink Current  
0
؊1  
؊2  
؊3  
؊4  
؊5  
0
80  
70  
60  
50  
؊4.0  
T
= ؊40؇C  
A
؊8.0  
؊12.0  
؊16.0  
؊20.0  
T
= +25؇C  
A
40  
+125؇C  
+25؇C  
30  
T
= +125؇C  
A
20  
–40؇C  
10  
0
؊7.5  
؊5  
؊2.5  
0
2.5  
5
2
4
6
8
10  
12  
1
10  
100  
INPUT COMMON-MODE VOLTAGE – Volts  
SUPPLY VOLTAGE – Volts  
FREQUENCY – MHz  
Figure 15. Input Bias Current vs. Input  
Common-Mode Voltage for ±5 V  
Supplies  
Figure 13. Analog Supply Current vs.  
Supply Voltage  
Figure 14. Positive Supply Current  
vs. Input Frequency  
0
؊1.0  
؊2.0  
؊3.0  
؊4.0  
؊5.0  
؊75 ؊50 ؊25  
0
25 50 75 100 125 150  
TEMPERATURE – ؇C  
Figure 16. Input Bias Current vs.  
Temperature  
–6–  
REV. A  
AD8598  
Note that signals much greater than +3.0 V will result in increased  
input currents and may cause the device to operate more slowly.  
APPLICATIONS  
Optimizing High Speed Performance  
As with any high speed comparator or amplifier, proper design  
and layout techniques should be used to ensure optimal perfor-  
mance from the AD8598. The performance limits of high speed  
circuitry can easily be a result of stray capacitance, improper  
ground impedance or other layout issues.  
The input bias current of the AD8598 is the same magnitude  
(–3 µA typical) as the MAX912 (+3 µA typical), and the cur-  
rent flows out of the AD8598 and into MAX912. If relatively  
low value resistors and/or low impedance sources are used on  
the inputs, the voltage shift due to bias current should be small.  
Minimizing resistance from source to the input is an important  
consideration in maximizing the high speed operation of the  
AD8598. Source resistance in combination with equivalent  
input capacitance could cause a lagged response at the input,  
thus delaying the output. The input capacitance of the AD8598,  
in combination with stray capacitance from an input pin to  
ground could result in several picofarads of equivalent capaci-  
tance. A combination of 3 ksource resistance and 5 pF of  
input capacitance yields a time constant of 15 ns, which is  
slower than the 5 ns capability of the AD8598. Source imped-  
ances should be less than 1 kfor the best performance.  
The AD8598 (6.75 ns typical) is faster than the MAX912  
(10 ns typical). While this is beneficial to many systems, timing  
may need to be adjusted to take advantage of the higher speed.  
The AD8598 has slightly more output voltage swing when the  
output is lightly loaded.  
The AD8598 uses less current (typically 10 mA) than the MAX912  
(typically 12 mA).  
Increasing Output Swing  
Although not required for normal operation, the output voltage  
swing of the AD8598 can be increased by connecting a 5 kΩ  
resistor from the output of the device to the V+ power supply.  
This configuration can be useful in low voltage power supply  
applications where maximizing output voltage swing is impor-  
tant. Adding a 5 kpull-up resistor to the device’s output will  
not adversely affect the specifications of the AD8598.  
It is also important to provide bypass capacitors for the power  
supply in a high speed application. A 1 µF electrolytic bypass  
capacitor should be placed within 0.5 inches of each power  
supply pin to ground. These capacitors will reduce any potential  
voltage ripples from the power supply. In addition, a 10 nF  
ceramic capacitor should be placed as close as possible from the  
power supply pins to ground. These capacitors act as a charge  
reservoir for the device during high frequency switching.  
Output Loading Considerations  
The AD8598 output can deliver up to 40 mA of output current  
without any significant increase in propagation delay. The  
output of the device should not be connected to more than  
twenty (20) TTL input logic gates, nor drive a load resistance  
less than 100 .  
A ground plane is recommended for proper high speed perfor-  
mance. This can be created by using a continuous conductive  
plane over the surface of the circuit board, only allowing breaks in  
the plane for necessary current paths. The ground plane provides  
a low inductance ground, eliminating any potential differences at  
different ground points throughout the circuit board caused from  
“ground bounce.” A proper ground plane also minimizes the  
effects of stray capacitance on the circuit board.  
To ensure the best performance from the AD8598 it is impor-  
tant to minimize capacitive loading of the output of the device.  
Capacitive loads greater than 50 pF will cause ringing on the  
output waveform and will reduce the operating bandwidth of  
the comparator.  
Replacing the MAX912  
Setup and Hold Times for Latching the Output  
The AD8598 is pin compatible with the MAX912 comparator.  
While it is easy to replace the MAX912 with the higher perfor-  
mance AD8598, please note that there are differences, and it is  
useful to check these to ensure proper operation.  
The latch inputs can be used to retain data at the outputs of the  
AD8598. When the voltage at the latch input goes high, the  
output of the device will remain constant regardless of the input  
voltages. The setup time for the latch is 2 ns–3 ns and the hold  
time is 3 ns. This means that to ensure data retention at the  
output, the input signal must be valid at least 5 ns before the  
latch pin goes high and must remain valid at least 3 ns after the  
latch pin goes high. Once the latch input voltage goes low, new  
output data will appear in approximately 8 ns.  
There are five major differences between the AD8598 and the  
MAX912; input voltage range, input bias currents, speed, out-  
put swing and power consumption.  
When operated on a +5 V single supply, the MAX912 has an  
input voltage range from –0.2 V to +3.5 V. The AD8598 has an  
input range from 0 V to +3.0 V. Signals above +3.0 V may  
result in slower response times (see Figure 8). If both signals  
exceed +3.0 V, the signals may be shifted or attenuated to bring  
them into range, keeping in mind the note about source resis-  
tance in Optimizing High Speed Performance. If only one of the  
signals exceeds +3.0 V only slightly, and the other signal is  
always well within the 0 V to +3 V range, the comparator may  
operate without changes to the circuit.  
A logic high for the latch input is a minimum of +2.0 V and a  
logic low is a maximum of +0.8 V. This makes the latch input  
easily interface with TTL or CMOS logic gates. The latch  
circuitry in the AD8598 has no built-in hysteresis.  
Input Stage and Bias Currents  
The AD8598 uses a PNP differential input stage that enables  
the input common-mode range to extend all the way from the  
negative supply rail to within +2.2 V of the positive supply rail.  
The input common-mode voltage can be found as the average  
of the voltage at the two inputs of the device. To ensure the  
fastest response time, care should be taken not to allow the  
input common-mode voltage to exceed either of these voltages.  
Example: A comparator compares a fast moving signal to a fixed  
+2.5 V reference. Since the comparator only needs to operate  
when the signal is near +2.5 V, both signals will be within the  
input range (near +2.5 V and well under +3.0 V) when the  
comparator needs to change output.  
REV. A  
–7–  
AD8598  
The input signal is directly connected to the noninverting input  
of the comparator. The output is fed back to the inverting input  
through R1 and R2. The ratio of R1 to R1 + R2 establishes the  
width of the hysteresis window with VREF setting the center of  
the window, or the average switching voltage. The Q output will  
switch high when the input voltage is greater than VHI and will  
not switch low again until the input voltage is less than VLO as  
given in Equation 1:  
The input bias current for the AD8598 is 3 µA. As with any  
PNP differential input stage, this bias current will go to zero on  
an input that is high and will double on an input that is low.  
Care should be taken in choosing resistor values to be con-  
nected to the inputs as large resistors could cause significant  
voltage drops due to the input bias current.  
The input capacitance for the AD8598 is typically 3 pF. This is  
measured by inserting a 5 ksource resistance to the input and  
measuring the change in propagation delay.  
R1  
VHI = V –1–V  
+VREF  
Using Hysteresis  
(
)
R1+ R2  
+
REF  
Hysteresis can easily be added to a comparator through the  
addition of positive feedback. Adding hysteresis to a comparator  
offers an advantage in noisy environments where it is not desir-  
able for the output to toggle between states when the input  
signal is near the switching threshold. Figure 17 shows a  
method for configuring the AD8598 with hysteresis.  
(1)  
R1  
R1+ R2  
VLO =VREF 1–  
where V+ is the positive supply voltage.  
The capacitor, CF, can also be added to introduce a pole into the  
feedback network. This has the effect of increasing the amount of  
hysteresis at high frequencies. This can be useful when comparing  
a relatively slow signal in a high frequency noise environment. At  
COMPARATOR  
SIGNAL  
R1  
R2  
V
REF  
1
frequencies greater than fP =  
, the hysteresis window  
C
F
2π CF R2  
approaches VHI = V+ – 1 V and VLO = 0 V. At frequencies less  
than fP the threshold voltages remain as in Equation 1.  
Figure 17. Configuring the AD8598 with Hysteresis  
–8–  
REV. A  
AD8598  
SPICE Model  
* AD8598 SPICE Macro-Model Typical Values  
* 4/98, Ver. 1.0  
* TAM / ADSC  
*
* Node assignments  
*
non-inverting input  
*
*
*
*
*
*
*
*
|
|
|
|
|
|
|
|
1
inverting input  
|
|
|
|
|
|
|
2
positive supply  
|
|
|
|
|
|
99  
negative supply  
|
Latch  
|
|
DGND  
|
|
|
Q
|
|
|
|
|
|
QNOT  
|
|
|
.SUBCKT AD8598  
50  
80  
51  
45  
65  
*
* INPUT STAGE  
*
*
Q1  
Q2  
4
6
3 5 PIX  
2 5 PIX  
IBIAS 99 5 800E-6  
RC1  
RC2  
CL1  
CIN  
4 50 1E3  
6 50 1E3  
4
1
6 1E-12  
2 3E-12  
VCM1 99 7 1  
D1  
EOS  
*
5
3
7 DX  
1 POLY(1) (31,98) 1E-3 1  
* Reference Voltage  
*
EREF 98 0 POLY(2) (99,0) (50,0) 0 0.5 0.5  
RREF 98 0 100E3  
*
* CMRR=80dB, ZERO AT 1kHz  
*
ECM1 30 98 POLY(2) (1,98) (2,98) 0 0.5 0.5  
RCM1 30 31 10E3  
RCM2 31 98 1  
CCM1 30 31 15.9E-9  
*
* Latch Section  
*
RX 80 51 100E3  
E1 10 98 (4,6) 1  
S1 10 11 (80,51) SLATCH1  
R2 11 12 1  
C3 12 98 10E-12  
E2 13 98 (12,98) 1  
R3 12 13 500  
*
* Power Supply Section  
*
REV. A  
–9–  
AD8598  
GSY1 99 52 POLY(1) (99,50) 4E-3 -2.6E-4  
GSY2 52 50 POLY(1) (99,50) 3.7E-3 -.6E-3  
RSY 52 51 10  
*
* Gain Stage Av=250 fp=100MHz  
*
G2 98 20 (12,98) 0.25  
R1 20 98 1000  
C1 20 98 10E-13  
D2 20 21 DX  
D3 22 20 DX  
V1 99 21 DC 0.8  
V2 22 50 DC 0.8  
*
* Q Output  
*
Q3 99 41 46 NOX  
Q4 47 42 50 NOX  
RB1 43 41 200  
RB2 40 42 5E3  
CB1 99 41 10E-12  
CB2 42 50 5E-12  
RO1 46 45 2E3  
RO2 47 45 500  
EO1 98 43 POLY(1) (20,98) 0 1  
EO2 40 98 POLY(1) (20,98) 0 1  
*
* Q NOT Output  
*
Q5 99 61 66 NOX  
Q6 67 62 50 NOX  
RB3 63 61 200  
RB4 60 62 5E3  
CB3 99 61 10E-12  
CB4 62 50 5E-12  
RO3 66 65 2E3  
RO4 67 65 500  
EO3 63 98 POLY(1) (20,98) 0 1  
EO4 98 60 POLY(1) (20,98) 0 1  
*
* MODELS  
*
.MODEL PIX PNP(BF=100,IS=1E-16)  
.MODEL NOX NPN(BF=100,VAF=130,IS=1E-14)  
.MODEL DX D(IS=1E-16)  
.MODEL SLATCH1 VSWITCH(ROFF=1E6,RON=500,VOFF=2.1,VON=1.4)  
.ENDS AD8598  
–10–  
REV. A  
AD8598  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
16-Lead Plastic DIP  
(N-16)  
0.840 (21.33)  
0.745 (18.93)  
16  
1
9
0.280 (7.11)  
0.240 (6.10)  
8
0.325 (8.25)  
0.300 (7.62)  
0.195 (4.95)  
0.115 (2.93)  
0.060 (1.52)  
0.015 (0.38)  
PIN 1  
0.210 (5.33)  
MAX  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
0.100  
(2.54)  
BSC  
0.070 (1.77) SEATING  
0.045 (1.15)  
0.022 (0.558)  
0.014 (0.356)  
PLANE  
16-Lead Thin Shrink Small Outline  
(RU-16)  
0.201 (5.10)  
0.193 (4.90)  
16  
9
8
0.256 (6.50)  
0.246 (6.25)  
0.177 (4.50)  
0.169 (4.30)  
1
0.006 (0.15)  
0.002 (0.05)  
PIN 1  
0.0433  
(1.10)  
MAX  
0.028 (0.70)  
0.020 (0.50)  
8؇  
0؇  
0.0118 (0.30)  
0.0075 (0.19)  
0.0256  
(0.65)  
BSC  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
16-Lead Narrow Body IC  
(R-16A)  
0.3937 (10.00)  
0.3859 (9.80)  
9
16  
0.1574 (4.00)  
0.1497 (3.80)  
0.2440 (6.20)  
0.2284 (5.80)  
1
8
0.0688 (1.75)  
0.0532 (1.35)  
PIN 1  
0.0196 (0.50)  
0.0099 (0.25)  
؋
 45؇  
0.0098 (0.25)  
0.0040 (0.10)  
8؇  
0؇  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
SEATING  
PLANE  
0.0500 (1.27)  
0.0160 (0.41)  
0.0099 (0.25)  
0.0075 (0.19)  
REV. A  
–11–  

相关型号:

AD8599

Dual Ultralow Distortion, Ultralow Noise Op Amp
ADI

AD8599ARZ

Dual Ultralow Distortion, Ultralow Noise Op Amp
ADI

AD8599ARZ-REEL

Dual Ultralow Distortion, Ultralow Noise Op Amp
ADI

AD8599ARZ-REEL7

Dual Ultralow Distortion, Ultralow Noise Op Amp
ADI

AD8599TRZ-EP

暂无描述
ADI

AD8599TRZ-EP-R7

Ultralow Distortion, Ultralow Noise Op Amp (Dual)
ADI

AD8600

16-Channel, 8-Bit Multiplying DAC
ADI

AD8600*

16-Channel. 8-Bit Multiplying DAC
ADI

AD8600AP

16-Channel, 8-Bit Multiplying DAC
ADI

AD8600AP-REEL

IC PARALLEL, 8 BITS INPUT LOADING, 2 us SETTLING TIME, 8-BIT DAC, PQCC44, PLASTIC, LCC-44, Digital to Analog Converter
ADI

AD8600APZ

IC PARALLEL, 8 BITS INPUT LOADING, 2 us SETTLING TIME, 8-BIT DAC, PQCC44, PLASTIC, LCC-44, Digital to Analog Converter
ADI

AD8600CHIPS

16-Channel, 8-Bit Multiplying DAC
ADI