AD8599ARZ-REEL [ADI]

Dual Ultralow Distortion, Ultralow Noise Op Amp; 双超低失真,超低噪声运算放大器
AD8599ARZ-REEL
型号: AD8599ARZ-REEL
厂家: ADI    ADI
描述:

Dual Ultralow Distortion, Ultralow Noise Op Amp
双超低失真,超低噪声运算放大器

运算放大器 放大器电路 光电二极管
文件: 总16页 (文件大小:403K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual Ultralow Distortion,  
Ultralow Noise Op Amp  
AD8599  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Low noise: 1 nV/√Hz at 1kHz  
Low distortion: −105 dB THD @ 20 kHz  
<80 nV p-p input noise, 0.1 Hz to 10 Hz  
Slew rate: 16 V/μs  
OUT A  
–IN A  
+IN A  
–V  
1
2
3
4
8
7
6
5
+V  
AD8599  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
Wide bandwidth: 10 MHz  
Supply current: 4.7 mA/amp typical  
Low offset voltage: 10 μV typical  
CMRR: 120 dB  
Figure 1. 8-Lead SOIC (R-8)  
Unity-gain stable  
±15 V operation  
APPLICATIONS  
Professional audio preamplifiers  
ATE/precision testers  
Imaging systems  
Medical/physiological measurements  
Precision detectors/instruments  
Precision data conversion  
GENERAL DESCRIPTION  
The AD8599 is a dual, very low noise, low distortion opera-  
tional amplifier ideal for use as a preamplifier. The low noise of  
1 nV/√Hz and low harmonic distortion of −105 dB (or better)  
at audio bandwidths give the AD8599 the wide dynamic range  
necessary for preamps in audio, medical, and instrumentation  
applications. The AD8599s excellent slew rate of 16 V/μs and  
10 MHz gain bandwidth make it highly suitable for medical  
applications. The low distortion and settling time of the AD8599  
make it ideal for buffering of high resolution data converters.  
The AD8599 is available in an 8-Lead SOIC package and is  
specified over the −40°C to +125°C temperature range.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
 
AD8599  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Thermal Resistance.......................................................................4  
Power Sequencing .........................................................................4  
ESD Caution...................................................................................4  
Typical Performance Characteristics ..............................................5  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 14  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
REVISION HISTORY  
2/07—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
AD8599  
SPECIFICATIONS  
VS = 15 V, VCM = 0 V, VO = 0 V, TA = +25°C, unless otherwise specified.  
Table 1.  
Parameter  
Symbol  
VOS  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
10  
120  
180  
μV  
μV  
Offset Voltage Drift  
Input Bias Current  
Input Offset Current  
ΔVOS/ΔT  
IB  
0.8  
25  
2.2  
μV/°C  
nA  
nA  
nA  
nA  
V
180  
300  
180  
220  
+12.5  
IOS  
25  
Input Voltage Range  
IVR  
−12.5  
120  
VDD = ±15 V  
−12.5 V ≤ VCM ≤ +12.5 V  
Common-Mode Rejection Ratio  
CMRR  
140  
116  
dB  
−40°C ≤ TA ≤ 125°C  
RL ≥ 600 Ω, VO = −11 V to +11 V  
−40°C ≤ TA ≤ +125°C  
115  
110  
106  
dB  
dB  
dB  
pf  
Large Signal Voltage Gain  
Input Capacitance  
AVO  
CDIFF  
CCM  
4.8  
4.5  
pf  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
RL = 600 Ω  
−40°C ≤ TA ≤ +125°C  
RL = 2 kΩ  
−40°C ≤ TA ≤ +125°C  
RL = 600 Ω  
−40°C ≤ TA ≤ +125°C  
RL = 2 kΩ  
13.1  
12.8  
13.5  
13.2  
13.4  
V
V
V
V
V
V
V
V
13.7  
Output Voltage Low  
VOL  
−13.2  
−13.5  
−12.9  
−12.8  
−13.4  
−13.3  
−40°C ≤ TA ≤ +125°C  
Output Source Circuit  
Closed-Loop Output Impedance  
POWER SUPPLY  
ISC  
ZOUT  
52  
5
mA  
Ω
At 1 MHz, AV = +1  
Power Supply Rejection Ratio  
PSRR  
ISY  
120  
118  
140  
4.7  
dB  
VDD = ±18 V to ±4.5 V  
−40°C ≤ TA ≤ +125°C  
dB  
mA  
mA  
Supply Current per Amplifier  
5.7  
6.75  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
AV = −1, RL = 2 kΩ  
AV = 1, RL = 2 kΩ  
To 0.01%, step = 10 V  
16.8  
15  
2
V/μs  
V/μs  
μs  
Settling Time  
ts  
Gain Bandwidth Product  
Phase Margin  
GBP  
φM  
10  
68  
MHz  
Degrees  
NOISE PERFORMANCE  
Peak-to-Peak Noise  
Voltage Noise Density  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 Hz  
f = 1 kHz  
76  
1.07  
nV  
1.15  
1.5  
nV/√Hz  
nV/√Hz  
pA/√Hz  
dB  
Current Noise  
Total Harmonic Distortion + Noise  
1.5  
THD + N  
CS  
−108  
−105  
−120  
G = 1, RL 1 kΩ, f = 1 kHz, VRMS = 3 V, ±15 V  
G = 1, RL 1 kΩ, f = 20 kHz, VRMS = 3 V, ±15 V  
f = 10 kHz  
dB  
Channel Separation  
dB  
Rev. 0 | Page 3 of 16  
 
AD8599  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
Supply Voltage  
1ꢀ V  
Input Voltage  
GND to VDD  
1 V  
Indefinite  
−65°C to +150°C  
−40°C to +125°C  
300°C  
Table 3. Thermal Resistance  
Package Type  
ꢀ-Lead SOIC (R-ꢀ)  
Differential Input Voltage  
Output Short-Circuit to GND  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature Range (Soldering 60 sec)  
Junction Temperature  
θJA  
θJC  
Unit  
120  
36  
°C/W  
POWER SEQUENCING  
The op amp supplies must be established simultaneously with,  
or before, any input signals are applied.  
150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
If this is not possible, the input current must be limited to 10 mA.  
ESD CAUTION  
Rev. 0 | Page 4 of 16  
 
 
AD8599  
TYPICAL PERFORMANCE CHARACTERISTICS  
70  
60  
50  
40  
30  
MEAN = 8.23  
STDEV = 24.47  
MEAN = 0.346  
STDEV = 0.218  
MIN = 0.010  
MAX = 1.155  
60  
MIN = –72.62  
MAX = 62.09  
50  
40  
30  
20  
10  
0
20  
10  
0
–75 –65 –55 –45 –35 –25 –15 –5  
V
5
15 25 35 45 55 65 75  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
(µV)  
TCV (µV)  
OS  
OS  
Figure 2. Input Offset Voltage Distribution VS = 5 V  
Figure 5. TCVOS Distribution VS = 5 V, −40°C ≤ TA ≤ +125°C  
70  
60  
50  
40  
30  
20  
10  
0
60  
MEAN = 7.91  
STDEV = 21.89  
MIN = –63.02  
MAX = 57.5  
MEAN = 0.342  
STDEV = 0.221  
MIN = 0.013  
50  
MAX = 1.239  
40  
30  
20  
10  
0
–75 –65 –55 –45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
TCV (µV)  
V
(µV)  
OS  
OS  
Figure 3. Input Offset Voltage Distribution VS = 15 V  
Figure 6. TCVOS Distribution VS = 15 V , −40°C ≤ TA ≤ +85°C  
60  
50  
40  
30  
20  
10  
0
60  
MEAN = 0.461  
STDEV = 0.245  
MIN = 0.026  
50  
MAX = 1.26  
V
= ±15V  
S
40  
30  
20  
10  
0
–10  
–20  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
TCV (µV)  
TEMPERATURE (°C)  
OS  
Figure 4. Input Offset Voltage vs. Temperature  
Figure 7. TCVOS Distribution VS = 5 V, −40°C ≤ TA ≤ +85°C  
Rev. 0 | Page 5 of 16  
 
AD8599  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
75  
MEAN = 0.765  
STDEV = 0.234  
MIN = 0.338  
MAX = 1.709  
50  
25  
0
–25  
–50  
–75  
0
0
–100  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
–15  
–10  
–5  
0
5
10  
15  
TCV (µV)  
OS  
V
(V)  
CM  
Figure 8. TCVOS Distribution, VS = 15 V, −40°C ≤ TA ≤ +125°C  
Figure 11. Offset Voltage vs. VCM, VS = 15 V  
0
350  
300  
250  
–5  
–10  
–15  
200  
150  
100  
50  
V
= ±15V  
= ±5V  
S
0
–20  
–25  
–30  
V
S
–50  
–100  
–150  
–200  
0
1
2
3
4
5
–50  
–25  
0
25  
50  
75  
100  
125  
TIME (Minute)  
TEMPERATURE (°C)  
Figure 9. Offset Voltage vs. Time  
Figure 12. Input Bias Current vs. Temperature VS = 5 V, VCM = 0 V  
100  
75  
350  
300  
250  
50  
200  
150  
100  
50  
25  
0
–25  
–50  
0
–50  
–100  
–150  
–75  
–100  
–5.0  
–200  
–2.5  
0
2.5  
5.0  
–50  
–25  
0
25  
50  
75  
100  
125  
V
(V)  
TEMPERATURE (°C)  
CM  
Figure 13. Input Bias Current vs. Temperature VS = 15 V, VCM = 0 V  
Figure 10. Offset Voltage vs. VCM, VS = 5 V  
Rev. 0 | Page 6 of 16  
AD8599  
80  
70  
60  
50  
40  
30  
20  
120  
118  
116  
114  
112  
110  
R
= 2k, V = ±11V  
O
L
R
= 600, V = ±11V  
O
L
I
@ V = ±5V  
S
OS  
I
@ V = ±15V  
S
OS  
10  
0
–50  
–25  
0
25  
50  
75  
100  
125  
10 12  
150  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 14. Input Offset Current vs. Temperature  
Figure 17. Large Signal Voltage Gain vs. Temperature, VS = 15 V  
350  
300  
250  
200  
150  
100  
50  
80  
60  
T
= –40°C  
A
I
SINK  
40  
20  
0
T
= +25°C  
= +85°C  
A
0
T
A
–50  
–100  
–150  
–20  
–40  
T
= +125°C  
A
–200  
–250  
–300  
–350  
I
SOURCE  
–60  
–80  
–50  
–12 –10 –8 –6 –4 –2  
0
2
4
6
8
–25  
0
25  
50  
75  
100  
125  
150  
V
(V)  
CM  
TEMPERATURE (°C)  
Figure 15. Input Bias Current vs. VCM, VS = 15 V  
Figure 18. Output Current vs. Temperature, VS = 5 V  
114  
112  
80  
60  
I
SINK  
40  
20  
0
110  
108  
106  
R
= 2k, V = ±2V  
O
L
R
= 600, V = ±2V  
O
L
–20  
–40  
–60  
–80  
104  
102  
100  
I
SOURCE  
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 16. Large Signal Voltage Gain vs. Temperature VS = 5 V  
Figure 19. Output Current vs. Temperature, VS = 15 V  
Rev. 0 | Page 7 of 16  
AD8599  
14  
12  
10  
8
10000  
1000  
100  
I
= +85°C  
SY  
I
= +125°C  
SY  
I
= +25°C  
= –40°C  
SY  
I
I
SINK  
SY  
I
SOURCE  
6
4
2
0
0
4
8
12  
16  
20  
(V)  
24  
28  
32  
36  
40  
0.001  
0.01  
0.1  
1
10  
100  
V
I (mA)  
L
SY  
Figure 20. Supply Current vs. Supply Voltage  
Figure 23. Output Saturation Voltage vs. Current Load, VS = 15 V  
10000  
15.0  
12.5  
10.0  
7.5  
V
– V  
OH  
DD  
1000  
I
±15V  
SY  
I
±5V  
SY  
100  
100  
5.0  
–50  
1000  
10000  
OUTPUT LOAD ()  
100000  
1000000  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
Figure 21. Supply Current vs. Temperature  
Figure 24. Output Saturation Voltage vs. RL, VS = 5 V  
10000  
10000  
I
SINK  
V
– V  
OL  
EE  
1000  
1000  
I
SOURCE  
100  
0.001  
100  
100  
0.01  
0.1  
1
10  
100  
1000  
10000  
OUTPUT LOAD ()  
100000  
1000000  
I
(mA)  
L
Figure 22. Output Saturation Voltage vs. Current Load, VS = 5 V  
Figure 25. Output Saturation Voltage vs. RL, VS = 5 V  
Rev. 0 | Page 8 of 16  
AD8599  
10000  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
V
– V  
OH  
DD  
V
– V @ R = 2k  
OL  
EE  
L
1000  
V
– V @ R = 600Ω  
OL  
EE  
L
100  
100  
1000  
10000  
OUTPUT LOAD ()  
100000  
1000000  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (°C)  
Figure 26. Output Saturation Voltage vs. RL, VS = 15 V  
Figure 29. Output Saturation Voltage vs. Temperature, VS = 5 V  
2.5  
10000  
2.0  
V
– V @ R = 600  
OH L  
CC  
V
– V  
OL  
1.5  
1.0  
0.5  
0
EE  
1000  
V
– V @ R = 2kΩ  
OH L  
CC  
100  
100  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
1000  
10000  
OUTPUT LOAD ()  
100000  
1000000  
TEMPERATURE (°C)  
Figure 30. Output Saturation Voltage vs. Temperature, VS = 15 V  
Figure 27. Output Saturation Voltage vs. RL, VS = 15 V  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
–0.5  
–1.0  
V
– V @ R = 600  
OH  
CC  
L
V
– V @ R = 2k  
OL  
EE  
L
–1.5  
–2.0  
–2.5  
V
– V @ R = 2kΩ  
OH  
CC  
L
V
– V @ R = 600Ω  
OL  
EE  
L
–50  
–25  
0
25  
50  
75  
100  
125  
150  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 28. Output Saturation Voltage vs. Temperature, VS = 5 V  
Figure 31. Output Saturation Voltage vs. Temperature, VS = 15 V  
Rev. 0 | Page 9 of 16  
AD8599  
15.0  
14.8  
14.6  
120  
100  
80  
120  
100  
80  
PHASE (Degrees)  
14.4  
14.2  
14.0  
13.8  
13.6  
60  
60  
40  
40  
GAIN (dB)  
V
@ R = 2kΩ  
L
OH  
20  
20  
0
0
13.4  
13.2  
V
@ R = 600Ω  
OH  
L
–20  
–20  
–40  
1k  
–40  
100M  
13.0  
–50  
0
50  
TEMPERATURE (°C)  
100  
150  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 32. Output Voltage High vs. Temperature, VS = 15 V  
Figure 35. Gain and Phase vs. Frequency, 5 V ≤ VS ≤ 15 V  
–13.0  
50  
V
@ R = 600Ω  
L
GAIN = 100  
GAIN = 10  
OL  
40  
30  
20  
10  
0
–13.5  
V
@ R = 2kΩ  
OL  
L
GAIN = 1  
–14.0  
–14.5  
–15.0  
–10  
–20  
–30  
–40  
–50  
–50  
0
50  
100  
150  
1k  
10k  
100k  
1M  
10M  
100M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 33. Output Voltage Low vs. Temperature, VS = 15 V  
Figure 36. Closed-Loop Gain vs. Frequency, 5 V ≤ VS ≤ 15 V  
30  
25  
20  
70  
V
= ±15V  
S
60  
50  
40  
30  
20  
10  
0
GAIN = 100  
GAIN = 10  
15  
10  
5
V
= ±5V  
S
GAIN = 1  
0
1k  
10k  
100k  
1M  
10M  
100M  
1
10  
100  
1000  
10000  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 37. Closed-Loop Output Impedance vs. Frequency, 5 V ≤ VS ≤ 15 V  
Figure 34. Maximum Output Swing vs. Frequency  
Rev. 0 | Page 10 of 16  
AD8599  
600  
500  
400  
300  
200  
100  
0
140  
120  
100  
80  
MEAN = 1.07  
STDEV = 0.02  
MIN = 1.05  
MAX = 1.15  
CMRR –V = ±5V (dB)  
S
CMRR –V = ±15V (dB)  
S
60  
40  
20  
0
10  
0.95 0.98 1.01 1.04 1.07 1.10 1.13 1.16 1.19  
VOLTAGE NOISE DENSITY (nV/ Hz)  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 38. Common-Mode Rejection Ratio vs. Frequency  
Figure 41. Voltage Noise Density @ 1 kHz, 5 V ≤ VS ≤ 15 V  
120  
100  
80  
100  
PSRR+ (dB)  
PSRR– (dB)  
10  
60  
40  
1
20  
0
–20  
100  
0.1  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
FREQUENCY (Hz)  
1000  
FREQUENCY (Hz)  
Figure 39. Power Supply Rejection Ratio vs. Frequency, 5 V ≤ VS ≤ 15 V  
Figure 42. Voltage Noise Density vs. Frequency, 5 V ≤ VS ≤ 15 V  
90  
100  
MEAN = 1.30  
STDEV = 0.09  
80  
MIN = 1.1  
MAX = 1.5  
70  
60  
50  
10  
40  
30  
20  
10  
0
1
0.1  
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0  
VOLTAGE NOISE DENSITY (nV/ Hz)  
1
10  
100  
FREQUENCY (Hz)  
1000  
Figure 40. Voltage Noise Density @ 10 Hz, 5 V ≤ VS ≤ 15 V  
Figure 43. Current Noise Density vs. Frequency, 5 V ≤ VS ≤ 15 V  
Rev. 0 | Page 11 of 16  
AD8599  
0.1  
20  
15  
10  
5
0.01  
0
V
V
A
R
R
= +15V  
= 20V p-p  
= 1  
= 1k  
= 2kΩ  
S
IN  
–5  
–10  
V
F
L
0.001  
R
= 600  
L
VERTICAL AXIS = 5V/DIV  
HORIZONTAL AXIS = 4µs/DIV  
R
= 2kΩ  
L
–15  
–20  
0.0001  
10  
100  
1000  
FREQUENCY (Hz)  
10000  
100000  
–8.6 –4.6 –0.6 3.4  
7.4 11.4 15.4 19.4 23.4 27.4 31.4  
TIME (µs)  
Figure 44. Total Harmonic Distortion + Noise vs. Frequency, VS = 15 V,  
VIN = 3 V rms  
Figure 47. Large Signal Response  
0.1  
20  
15  
10  
5
V
V
A
R
R
C
= ±15V  
= 20V p-p  
= –1  
= 2kΩ  
= 2kΩ  
= 0pF  
S
V
V
V
= 3V rms  
= 5V rms  
= 7V rms  
IN  
IN  
IN  
IN  
V
F
S
L
0.01  
0.001  
VERTICAL AXIS = 5V/DIV  
HORIZONTAL AXIS = 4µs/DIV  
0
–5  
–10  
–15  
–20  
0.0001  
10  
100  
1000  
10000  
100000  
–8.6 –4.6 –0.6 3.4  
7.4 11.4 15.4 19.4 23.4 27.4 31.4  
TIME (µs)  
FREQUENCY (Hz)  
Figure 45. Total Harmonic Distortion + Noise vs. Frequency  
Figure 48. Large Signal Response  
80  
45  
40  
60  
40  
35  
30  
20  
25  
20  
15  
0
V
V
A
= +15V, +5V  
= 100mV p-p  
= 1  
S
–20  
–40  
IN  
V
EXTERNAL C = 100pF  
EXTERNAL R = 10k  
VERTICAL AXIS = 20mV/DIV  
HORIZONTAL AXIS = 400ns/DIV  
10  
5
L
L
–60  
–80  
0
10  
–800 –400  
0
400 800 1200 1600 2000 2400 2800 3200  
TIME (ns)  
100  
CAPACITANCE (pF)  
1000  
Figure 46. Small Signal Response  
Figure 49. Overshoot vs. Capacitance, 5 V ≤ VS ≤ 15 V, AV = 1, RL = 10 kΩ  
Rev. 0 | Page 12 of 16  
AD8599  
0
800  
600  
400  
200  
0
V
V
= 10V p-p  
= 20V p-p  
IN  
IN  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–200  
–400  
–600  
–800  
100  
1000  
10000  
100000  
1000000  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (Hz)  
TIME (Seconds)  
Figure 50. Channel Separation vs. Frequency, VS = 15 V, AV = 100, RL = 1 kΩ  
Figure 51.Peak-to-Peak Noise, VS ≤ 15 V, AV = 1 M, RL = 10 kΩ  
Rev. 0 | Page 13 of 16  
AD8599  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 52. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
AD8599ARZ1  
AD8599ARZ-REEL1  
AD8599ARZ-REEL71  
Temperature Range  
Package Description  
Package Option  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
R-8  
R-8  
R-8  
1 Z = Pb-free part.  
Rev. 0 | Page 14 of 16  
 
 
AD8599  
NOTES  
Rev. 0 | Page 15 of 16  
AD8599  
NOTES  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06274-0-2/07(0)  
Rev. 0 | Page 16 of 16  

相关型号:

AD8599ARZ-REEL7

Dual Ultralow Distortion, Ultralow Noise Op Amp
ADI

AD8599TRZ-EP

暂无描述
ADI

AD8599TRZ-EP-R7

Ultralow Distortion, Ultralow Noise Op Amp (Dual)
ADI

AD8600

16-Channel, 8-Bit Multiplying DAC
ADI

AD8600*

16-Channel. 8-Bit Multiplying DAC
ADI

AD8600AP

16-Channel, 8-Bit Multiplying DAC
ADI

AD8600AP-REEL

IC PARALLEL, 8 BITS INPUT LOADING, 2 us SETTLING TIME, 8-BIT DAC, PQCC44, PLASTIC, LCC-44, Digital to Analog Converter
ADI

AD8600APZ

IC PARALLEL, 8 BITS INPUT LOADING, 2 us SETTLING TIME, 8-BIT DAC, PQCC44, PLASTIC, LCC-44, Digital to Analog Converter
ADI

AD8600CHIPS

16-Channel, 8-Bit Multiplying DAC
ADI

AD8601

Precision CMOS Single Supply Rail-to-Rail Input/Output Wideband Operational Amplifiers
ADI

AD8601A

Operational Amplifiers Selection Guide
ADI

AD8601ART

Precision CMOS Single Supply Rail-to-Rail Input/Output Wideband Operational Amplifiers
ADI