AD8597ARZ [ADI]

Single and Dual, Ultralow Distortion, Ultralow Noise Op Amps; 单路和双路,超低失真,超低噪声运算放大器
AD8597ARZ
型号: AD8597ARZ
厂家: ADI    ADI
描述:

Single and Dual, Ultralow Distortion, Ultralow Noise Op Amps
单路和双路,超低失真,超低噪声运算放大器

运算放大器 放大器电路 光电二极管 PC
文件: 总20页 (文件大小:529K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single and Dual, Ultralow  
Distortion, Ultralow Noise Op Amps  
AD8597/AD8599  
PIN CONFIGURATIONS  
FEATURES  
Low noise: 1.1 nV/√Hz at 1 kHz  
Low distortion: −120 dB THD @ 1 kHz  
Input noise, 0.1 Hz to 10 Hz: <76 nV p-p  
Slew rate: 14 V/μs  
NC  
–IN  
+IN  
V–  
1
2
3
4
8
7
6
5
NC  
V+  
AD8597  
OUT  
NC  
TOP VIEW  
(Not to Scale)  
NC = NO CONNECT  
Wide bandwidth: 10 MHz  
Supply current: 4.8 mA/amp typical  
Low offset voltage: 10 μV typical  
CMRR: 120 dB  
Figure 1. AD8597 8-Lead SOIC (R-8)  
Unity-gain stable  
1ꢀ V operation  
PIN 1  
INDICATOR  
NC  
–IN  
+IN  
V–  
1
2
3
4
8
7
6
5
NC  
V+  
AD8597  
TOP VIEW  
OUT  
NC  
APPLICATIONS  
Professional audio preamplifiers  
ATE/precision testers  
Imaging systems  
Medical/physiological measurements  
Precision detectors/instruments  
Precision data conversion  
NOTES  
1. NC = NO CONNECT.  
2. PIN 4 AND THE EXPOSED PAD MUST BE  
CONNECTED TO V–.  
Figure 2. AD8597 8-Lead LFCSP (CP-8-2)  
OUT A  
–IN A  
+IN A  
–V  
1
2
3
4
8
7
6
5
+V  
AD8599  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
Figure 3. AD8599 8-Lead SOIC (R-8)  
GENERAL DESCRIPTION  
The AD8597/AD8599 are very low noise, low distortion opera-  
tional amplifiers ideal for use as preamplifiers. The low noise of  
1.1 nV/√Hz and low harmonic distortion of −120 dB (or better)  
at audio bandwidths give the AD8597/AD8599 the wide dynamic  
range necessary for preamplifiers in audio, medical, and instru-  
mentation applications. The excellent slew rate of 14 V/μs and  
10 MHz gain bandwidth make them highly suitable for medical  
applications. The low distortion and fast settling time make  
them ideal for buffering of high resolution data converters.  
The AD8597 is available in 8-lead SOIC and LFCSP packages,  
while the AD8599 is available in an 8-lead SOIC package. They  
are both specified over a −40°C to +125°C temperature range.  
The AD8597 and AD8599 are members of a growing series of  
low noise op amps offered by Analog Devices, Inc., (see  
Table 1).  
Table 1. Low Noise Op Amps  
Voltage Noise  
0.9 nV  
1.1 nV  
1.8 nV  
2.8 nV  
3.2 nV  
3.8 nV  
Single  
Dual  
AD797  
AD8597  
AD8599  
AD8675  
AD8676  
OP27  
AD8671  
AD8672  
AD8674  
Quad  
ADA4004-4  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2007–2008 Analog Devices, Inc. All rights reserved.  
 
 
 
AD8597/AD8599  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................5  
Typical Performance Characteristics ..............................................6  
Functional Operation..................................................................... 15  
Input Voltage Range................................................................... 15  
Output Phase Reversal............................................................... 15  
Noise and Source Impedance Considerations ........................... 15  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 17  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
Power Sequencing ........................................................................ 5  
REVISION HISTORY  
10/08—Rev.A to Rev. B  
4/07—Rev. 0 to Rev. A  
Added AD8597 ...................................................................Universal  
Added LFCSP_VD .............................................................Universal  
Added Table 1.................................................................................... 1  
Changes to Specifications Section.................................................. 3  
Changes to Absolute Maximum Ratings Section......................... 5  
Changes to Typical Performance Characteristics Section........... 6  
Added Figure 12 and Figure 15....................................................... 7  
Added Figure 18 and Figure 19....................................................... 8  
Added Figure 30 and Figure 33..................................................... 10  
Added Figure 34 to Figure 38........................................................ 11  
Added Figure 42 and Figure 45..................................................... 12  
Added Figure 52, Figure 55, Figure 57......................................... 14  
Added Functional Operation Section.......................................... 15  
Added Figure 58.............................................................................. 15  
Updated Outline Dimensions....................................................... 17  
Changes to Ordering Guide .......................................................... 17  
Updated Layout .................................................................................5  
Changes to Figure 45 Caption ...................................................... 12  
Added Figure 48 ............................................................................. 12  
Changes to Figure 51 Caption ...................................................... 13  
2/07—Revision 0: Initial Version  
Rev. B | Page 2 of 20  
 
AD8597/AD8599  
SPECIFICATIONS  
VSY = 5 V, VCM = 0 V, VO = 0 V, TA = 25°C, unless otherwise specified.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
15  
120  
180  
μV  
μV  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Offset Voltage Drift  
Input Bias Current  
ΔVOS/ΔT  
IB  
0.8  
40  
2.2  
μV/°C  
nA  
nA  
nA  
nA  
V
dB  
dB  
dB  
dB  
210  
340  
250  
340  
+2.0  
Input Offset Current  
IOS  
65  
Input Voltage Range  
Common-Mode Rejection Ratio  
IVR  
CMRR  
−2.0  
120  
105  
105  
100  
−2.0 V ≤ VCM ≤ +2.0 V  
−40°C ≤ TA ≤ +125°C  
RL ≥ 600 Ω, VO = −11 V to +11 V  
−40°C ≤ TA ≤ +125°C  
135  
110  
Large Signal Voltage Gain  
AVO  
Input Capacitance  
Differential Capacitance  
Common-Mode Capacitance  
OUTPUT CHARACTERISTICS  
Output Voltage High  
CDIFF  
CCM  
15.4  
5.5  
pF  
pF  
VOH  
RL = 600 Ω  
−40°C ≤ TA ≤ +125°C  
RL = 2 kΩ  
−40°C ≤ TA ≤ +125°C  
RL = 600 Ω  
−40°C ≤ TA ≤ +125°C  
RL = 2 kΩ  
3.5  
3.3  
3.7  
3.5  
3.7  
V
V
V
V
V
V
V
V
3.8  
Output Voltage Low  
VOL  
−3.6  
−3.7  
−3.4  
−3.3  
−3.5  
−3.4  
−40°C ≤ TA ≤ +125°C  
Output Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ISC  
ZOUT  
52  
5
mA  
Ω
At 1 MHz, AV = 1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY  
=
18 V to 4.5 V  
120  
118  
140  
4.8  
dB  
dB  
mA  
mA  
−40°C ≤ TA ≤ +125°C  
Supply Current per Amplifier  
5.5  
6.5  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
AV = −1, RL = 2 kΩ  
AV = 1, RL = 2 kΩ  
To 0.01%, step = 10 V  
14  
14  
2
V/μs  
V/μs  
μs  
Settling Time  
tS  
Gain Bandwidth Product  
Phase Margin  
GBP  
ΦM  
10  
60  
MHz  
Degrees  
NOISE PERFORMANCE  
Peak-to-Peak Noise  
Voltage Noise Density  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 Hz  
f = 1 kHz  
f = 10 Hz  
f = 1 kHz  
f = 10 Hz  
76  
1.07  
nV p-p  
nV/√Hz  
nV/√Hz  
pA/√Hz  
pA/√Hz  
pA/√Hz  
pA/√Hz  
dB  
1.15  
1.5  
Correlated Current Noise  
2.0  
4.2  
2.4  
5.2  
−120  
−120  
Uncorrelated Current Noise  
Total Harmonic Distortion + Noise  
Channel Separation  
THD + N  
CS  
G = 1, RL ≥ 1 kΩ, f = 1 kHz, VRMS = 1 V  
f = 10 kHz  
dB  
Rev. B | Page 3 of 20  
 
AD8597/AD8599  
VS = 15 V, VCM = 0 V, VO = 0 V, TA = +25°C, unless otherwise specified.  
Table 3.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
10  
120  
180  
μV  
μV  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Offset Voltage Drift  
Input Bias Current  
Input Offset Current  
ΔVOS/ΔT  
0.8  
25  
50  
2.2  
μV/°C  
IB  
200  
300  
200  
300  
nA  
nA  
nA  
nA  
V
dB  
dB  
dB  
dB  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
IOS  
Input Voltage Range  
Common-Mode Rejection Ratio  
IVR  
CMRR  
−12.5  
120  
115  
110  
106  
+12.5  
−12.5 V ≤ VCM ≤ +12.5 V  
−40°C ≤ TA ≤ +125°C  
RL ≥ 600 Ω, VO = −11 V to +11 V  
−40°C ≤ TA ≤ +125°C  
135  
116  
Large Signal Voltage Gain  
AVO  
Input Capacitance  
Differential Capacitance  
Common-Mode Capacitance  
OUTPUT CHARACTERISTICS  
Output Voltage High  
CDIFF  
CCM  
12.1  
5.1  
pF  
pF  
VOH  
RL = 600 Ω  
−40°C ≤ TA ≤ +125°C  
RL = 2 kΩ  
−40°C ≤ TA ≤ +125°C  
RL = 600 Ω  
−40°C ≤ TA ≤ +125°C  
RL = 2 kΩ  
13.1  
12.8  
13.5  
13.2  
13.4  
V
V
V
V
V
V
V
V
13.7  
Output Voltage Low  
VOL  
−13.2  
−13.5  
−12.9  
−12.8  
−13.4  
−13.3  
−40°C ≤ TA ≤ +125°C  
Output Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ISC  
ZOUT  
52  
5
mA  
Ω
At 1 MHz, AV = 1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY  
=
18 V to 4.5 V  
120  
118  
140  
5.0  
dB  
dB  
mA  
mA  
−40°C ≤ TA ≤ +125°C  
Supply Current per Amplifier  
5.7  
6.75  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
AV = −1, RL = 2 kΩ  
AV = 1, RL = 2 kΩ  
To 0.01%, step = 10 V  
16  
15  
2
V/μs  
V/μs  
μs  
Settling Time  
ts  
Gain Bandwidth Product  
Phase Margin  
GBP  
ΦM  
10  
65  
MHz  
Degrees  
NOISE PERFORMANCE  
Peak-to-Peak Noise  
Voltage Noise Density  
nV p-p  
nV/√Hz  
nV/√Hz  
pA/√Hz  
pA/√Hz  
pA/√Hz  
pA/√Hz  
dB  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 Hz  
f = 1 kHz  
f = 10 Hz  
f = 1 kHz  
f = 10 Hz  
76  
1.07  
1.15  
1.5  
Correlated Current Noise  
1.9  
4.3  
2.3  
5.3  
−120  
−120  
Uncorrelated Current Noise  
Total Harmonic Distortion + Noise  
Channel Separation  
THD + N  
CS  
G = 1, RL ≥ 1 kΩ, f = 1 kHz, VRMS = 3 V  
f = 10 kHz  
dB  
Rev. B | Page 4 of 20  
AD8597/AD8599  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
THERMAL RESISTANCE  
θJA is specified with the device soldered on a circuit board with  
its exposed paddle soldered to a pad (if applicable) on a 4-layer  
JEDEC standard PCB with zero air flow.  
Parameter  
Rating  
Supply Voltage  
Input Voltage  
18 V  
−V ≤ VIN ≤ +V  
1 V  
Indefinite  
−65°C to +150°C  
−40°C to +125°C  
300°C  
Differential Input Voltage1  
Output Short-Circuit to GND  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature Range (Soldering 60 sec)  
Junction Temperature  
Table 5.  
Package Type  
θJA  
78  
140  
120  
θJC  
20  
39  
36  
Unit  
°C/W  
°C/W  
°C/W  
8-Lead LFCSP_VD (CP-8-2)  
8-Lead SOIC (R-8) (AD8597)  
8-Lead SOIC (R-8) (AD8599)  
150°C  
1 If the differential input voltage exceeds 1 V, the current should be limited  
to 5 mA.  
POWER SEQUENCING  
The op amp supplies should be applied simultaneously. The  
op amp supplies should be stable before any input signals are  
applied. In any case, the input current must be limited to 5 mA.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. B | Page 5 of 20  
 
 
 
 
AD8597/AD8599  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
70  
60  
50  
40  
30  
20  
10  
0
70  
AD8599  
MEAN = 8.23  
STDEV = 24.47  
MIN = –72.62  
MAX = 62.09  
AD8599  
MEAN = 7.91  
STDEV = 21.89  
MIN = –63.02  
MAX = 57.5  
60  
V
= ±5V  
50  
40  
30  
20  
10  
0
V
= ±15V  
SY  
SY  
–75 –65 –55 –45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75  
–75 –65 –55 –45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75  
V
(µV)  
V
(µV)  
OS  
OS  
Figure 4. Input Offset Voltage Distribution  
Figure 7. Input Offset Voltage Distribution  
60  
50  
40  
30  
45  
40  
AD8599  
MEAN = 0.346  
STDEV = 0.218  
MIN = 0.010  
MAX = 1.155  
AD8599  
MEAN = 0.765  
STDEV = 0.234  
MIN = 0.338  
MAX = 1.709  
35  
30  
25  
20  
15  
10  
5
V
= ±5V  
V
= ±15V  
SY  
SY  
20  
10  
0
0
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
TCV (µV)  
OS  
TCV (µV)  
OS  
Figure 8. TCVOS Distribution, −40°C ≤ TA ≤ +125°C  
Figure 5. TCVOS Distribution, −40°C ≤ TA ≤ +125°C  
60  
50  
40  
30  
60  
50  
40  
30  
AD8599  
MEAN = 0.342  
STDEV = 0.221  
MIN = 0.013  
MAX = 1.239  
AD8599  
MEAN = 0.461  
STDEV = 0.245  
MIN = 0.026  
MAX = 1.26  
V
= ±15V  
V
= ±5V  
SY  
SY  
20  
10  
0
20  
10  
0
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
TCV (µV)  
OS  
TCV (µV)  
OS  
Figure 6. TCVOS Distribution, −40°C ≤ TA ≤ +85°C  
Figure 9. TCVOS Distribution, −40°C ≤ TA ≤ +85°C  
Rev. B | Page 6 of 20  
 
AD8597/AD8599  
100  
75  
100  
75  
AD8599  
= ±5V  
AD8599  
= ±15V  
V
V
SY  
SY  
50  
50  
25  
25  
0
0
–25  
–50  
–25  
–50  
–75  
–75  
–100  
–5.0  
–100  
–2.5  
0
2.5  
5.0  
–15  
–10  
–5  
0
5
10  
15  
V
(V)  
V
(V)  
CM  
CM  
Figure 10. Offset Voltage vs. VCM  
Figure 13. Offset Voltage vs. VCM  
350  
350  
AD8599  
AD8599  
300  
250  
V
V
= ±5V  
= 0V  
300  
250  
V
V
= ±15V  
= 0V  
SY  
SY  
CM  
CM  
200  
150  
100  
50  
200  
150  
100  
50  
0
0
–50  
–100  
–150  
–200  
–50  
–100  
–150  
–200  
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. Input Bias Current vs. Temperature  
Figure 14. Input Bias Current vs. Temperature  
50  
40  
350  
AD8597  
= ±15V  
AD8597  
300  
250  
200  
150  
100  
50  
V
SY  
30  
20  
T
= –40°C  
A
10  
T
= +25°C  
A
0
0
T
= +85°C  
A
–50  
–100  
–150  
–200  
–250  
–300  
–350  
±15V  
–10  
–20  
–30  
–40  
–50  
T
= +125°C  
A
±5V  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
–12 –10 –8 –6 –4 –2  
0
2
4
6
8
10 12  
TEMPERATURE (°C)  
V
(V)  
CM  
Figure 12. Input Offset Voltage vs. Temperature  
Figure 15. Input Bias Current vs. Temperature  
Rev. B | Page 7 of 20  
AD8597/AD8599  
150  
100  
50  
80  
AD8597  
AD8599  
70  
60  
50  
40  
±15V  
0
±5V  
I
@ V = ±5V  
SY  
OS  
30  
20  
–50  
–100  
–150  
I
@ V = ±15V  
SY  
OS  
10  
0
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 16. Input Offset Current vs. Temperature  
Figure 19. Input Offset Current vs. Temperature  
114  
112  
120  
AD8599  
= ±5V  
AD8599  
= ±15V  
V
V
SY  
SY  
118  
116  
114  
112  
110  
R
= 2k, V = ±11V  
O
L
110  
108  
106  
R
= 2k, V = ±2V  
O
L
R
= 600, V = ±11V  
O
R
= 600, V = ±2V  
O
L
L
104  
102  
100  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. Large Signal Voltage Gain vs. Temperature  
Figure 20. Large Signal Voltage Gain vs. Temperature  
8
7
6
5
4
3
2
1
0
350  
300  
250  
200  
150  
AD8597  
AD8599  
V
= ±15V  
SY  
T
= –40°C  
A
T
= +125°C  
A
T
= +85°C  
A
T
= +25°C  
A
100  
50  
T
= +25°C  
= +85°C  
A
T
= –40°C  
A
0
T
A
–50  
–100  
–150  
T
= +125°C  
A
–200  
–250  
–300  
–350  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32 34 36  
(V)  
–12 –10 –8 –6 –4 –2  
0
2
4
6
8
10 12  
V
V
(V)  
CM  
SY  
Figure 18. Supply Current vs. Supply Voltage  
Figure 21. Input Bias Current vs. VCM  
Rev. B | Page 8 of 20  
AD8597/AD8599  
80  
60  
40  
20  
0
80  
60  
AD8599  
= ±5V  
AD8599  
V
V
= ±15V  
SY  
SY  
I
I
SINK  
SINK  
40  
20  
0
–20  
–40  
–60  
–80  
–20  
–40  
–60  
–80  
I
I
SOURCE  
SOURCE  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 22. ISC vs. Temperature  
Figure 25. ISC vs. Temperature  
10k  
10k  
AD8599  
AD8599  
V
= ±5V  
V
= ±15V  
SY  
SY  
I
I
SINK  
SINK  
1k  
1k  
I
SOURCE  
I
SOURCE  
100  
0.001  
100  
0.001  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
I
(mA)  
I (mA)  
L
L
Figure 23. Output Saturation Voltage vs. Current Load  
Figure 26. Output Saturation Voltage vs. Current Load  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
AD8599  
AD8599  
V
= ±5V  
V
= ±15V  
SY  
SY  
V
– V @ R = 600  
OH  
CC  
L
V
– V @ R = 600  
OH  
CC  
L
V
– V @ R = 2kΩ  
OH  
CC  
L
V
– V @ R = 2kΩ  
OH  
CC  
L
–50  
–25  
0
25  
50  
75  
100  
125  
150  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 24. Output Saturation Voltage vs. Temperature  
Figure 27. Output Saturation Voltage vs. Temperature  
Rev. B | Page 9 of 20  
AD8597/AD8599  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
AD8599  
AD8599  
= ±15V  
V
= ±5V  
V
SY  
SY  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
V
– V @ R = 2kΩ  
OL  
EE  
L
V
– V @ R = 2k  
OL  
EE  
L
V
– V @ R = 600Ω  
OL  
EE  
L
V
– V @ R = 600ꢀ  
OL  
EE  
L
–50  
–25  
0
25  
50  
75  
100  
125  
150  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 28. Output Saturation Voltage vs. Temperature  
Figure 31. Output Saturation Voltage vs. Temperature  
–13.0  
–13.5  
15.0  
14.8  
14.6  
V
@ R = 600Ω  
L
AD8599  
OL  
V
= ±15V  
SY  
14.4  
14.2  
14.0  
13.8  
13.6  
V
@ R = 2kΩ  
OL  
L
–14.0  
–14.5  
–15.0  
V
@ R = 2kꢀ  
L
OH  
13.4  
13.2  
13.0  
V
@ R = 600ꢀ  
OH  
L
AD8599  
= ±15V  
V
SY  
–50  
0
50  
100  
150  
–50  
0
50  
TEMPERATURE (°C)  
100  
150  
TEMPERATURE (°C)  
Figure 29. Output Voltage Low vs. Temperature  
Figure 32. Output Voltage High vs. Temperature  
100  
80  
120  
100  
80  
60  
40  
60  
C
= 20pF  
L
20  
40  
C
= 20pF  
L
0
20  
–20  
–40  
–60  
–80  
–100  
0
C
= 200pF  
L
–20  
–40  
–60  
–80  
C
= 200pF  
L
AD8597  
SY  
AD8597  
SY  
V
= ±5V  
V
= ±15V  
R
= 2kꢀ  
R
= 2kꢀ  
L
L
10  
100  
1k  
FREQUENCY (kHz)  
10k  
50k  
1
10  
100  
1k  
10k  
50k  
FREQUENCY (kHz)  
Figure 30. Gain and Phase vs. Frequency  
Figure 33. Gain and Phase vs. Frequency  
Rev. B | Page 10 of 20  
AD8597/AD8599  
50  
40  
50  
40  
A
A
= 100  
= 10  
A
A
= 100  
= 10  
V
V
30  
30  
20  
20  
V
V
10  
10  
0
0
A
= 1  
A
= 1  
V
V
–10  
–20  
–30  
–40  
–10  
–20  
–30  
–40  
AD8597  
= ±5V  
AD8597  
V = ±15V  
V
SY  
= 2kꢀ  
SY  
R = 2kꢀ  
L
R
L
1
10  
100  
1k  
10k  
50k  
100k  
10k  
1
10  
100  
1k  
10k  
50k  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 34. Closed-Loop Gain vs. Frequency  
Figure 37. Closed-Loop Gain vs. Frequency  
100  
10  
100  
10  
A
= –100  
= –10  
A
= –100  
= –10  
V
V
A
A
V
V
A
= +1  
A = +1  
V
V
1
1
0.1  
0.1  
AD8597  
AD8597  
V
= ±5V  
V
= ±15V  
SY  
SY  
0.01  
0.01  
10  
100  
1k  
FREQUENCY (kHz)  
10k  
10  
100  
1k  
FREQUENCY (kHz)  
10k  
100k  
Figure 35. Closed-Loop Output Impedance vs. Frequency  
Figure 38. Closed-Loop Output Impedance vs. Frequency  
110  
120  
100  
80  
AD8599  
100  
90  
80  
70  
60  
50  
40  
30  
20  
±5V V ±15V  
SY  
PSRR+ (dB)  
PSRR– (dB)  
60  
AD8597  
= ±5V, ±15V  
40  
V
SY  
20  
0
–20  
1
10  
100  
1k  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (kHz)  
FREQUENCY (Hz)  
Figure 36. Common-Mode Rejection Ratio vs. Frequency  
Figure 39. Power Supply Rejection Ratio vs. Frequency  
Rev. B | Page 11 of 20  
AD8597/AD8599  
600  
500  
400  
300  
200  
100  
0
90  
AD8599  
MEAN = 1.07  
STDEV = 0.02  
MIN = 1.05  
MAX = 1.15  
AD8599  
MEAN = 1.30  
STDEV = 0.09  
MIN = 1.1  
MAX = 1.5  
80  
70  
60  
50  
±5V V ±15V  
±5V V ±15V  
SY  
SY  
40  
30  
20  
10  
0
0.95 0.98 1.01 1.04 1.07 1.10 1.13 1.16 1.19  
VOLTAGE NOISE DENSITY (nV/ Hz)  
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0  
VOLTAGE NOISE DENSITY (nV/ Hz)  
Figure 43. Voltage Noise Density @ 1 kHz  
Figure 40. Voltage Noise Density @ 10 Hz  
100  
100  
AD8599  
AD8599  
±5V V ±15V  
±5V V ±15V  
SY  
SY  
10  
10  
1
1
0.1  
0.1  
1
1
10  
100  
FREQUENCY (Hz)  
1k  
1
1
10  
100  
FREQUENCY (Hz)  
1k  
Figure 44. Current Noise Density vs. Frequency  
Figure 41. Voltage Noise Density vs. Frequency  
0.1  
0.01  
0.1  
0.01  
R
= 600ꢀ  
L
AD8597  
= ±5V  
AD8597  
V
V
= ±15V  
= +1  
SY  
= +1  
SY  
A
A
V
V
R
1
= 600ꢀ  
L
0.001  
0.001  
R
= 100kꢀ  
R
= 100kꢀ  
L
L
0.0001  
0.0001  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
10  
V rms (V)  
V rms (V)  
Figure 42. THD + N vs. Amplitude  
Figure 45. THD + N vs. Amplitude  
Rev. B | Page 12 of 20  
AD8597/AD8599  
0.1  
0.01  
0.1  
0.01  
AD8599  
AD8599  
= ±15V  
V
V
V
= 3V rms  
= 5V rms  
= 7V rms  
V
V
= ±15V  
= 3V rms  
IN  
IN  
IN  
V
SY  
IN  
SY  
0.001  
0.0001  
0.001  
0.0001  
R
= 600ꢀ  
L
R
= 2kꢀ  
L
10  
100  
1k  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
Figure 46. THD + N vs. Frequency  
Figure 49. THD + N vs. Frequency  
20  
15  
10  
5
20  
15  
10  
5
AD8599  
AD8599  
V
V
A
R
R
C
= ±15V  
= 20V p-p  
= –1  
= 2kꢀ  
= 2kꢀ  
SY  
0
0
V
V
A
R
R
= ±15V  
= 20V p-p  
= 1  
= 1kꢀ  
= 2kꢀ  
IN  
SY  
V
F
S
L
IN  
–5  
–10  
–5  
–10  
V
F
L
= 0pF  
VERTICAL AXIS = 5V/DIV  
VERTICAL AXIS = 5V/DIV  
HORIZONTAL AXIS = 4µs/DIV  
HORIZONTAL AXIS = 4µs/DIV  
–15  
–20  
–15  
–20  
–8.6 –4.6 –0.6 3.4  
7.4 11.4 15.4 19.4 23.4 27.4 31.4  
TIME (µs)  
–8.6 –4.6 –0.6 3.4  
7.4 11.4 15.4 19.4 23.4 27.4 31.4  
TIME (µs)  
Figure 47. Large Signal Response  
Figure 50. Large Signal Response  
80  
45  
40  
AD8599  
AD8599  
±5V V ±15V  
SY  
60  
40  
A
R
= 1  
V
L
= 10kꢀ  
35  
30  
20  
25  
20  
15  
0
V
V
A
= ±15V, ±5V  
= 100mV p-p  
= 1  
SY  
IN  
–20  
–40  
V
EXTERNAL C = 100pF  
EXTERNAL R = 10kꢀ  
VERTICAL AXIS = 20mV/DIV  
HORIZONTAL AXIS = 400ns/DIV  
L
10  
5
L
–60  
–80  
0
10  
–800 –400  
0
400 800 1200 1600 2000 2400 2800 3200  
TIME (ns)  
100  
1k  
CAPACITANCE (pF)  
Figure 48. Small Signal Response  
Figure 51. Overshoot vs. Capacitance  
Rev. B | Page 13 of 20  
AD8597/AD8599  
45  
45  
40  
35  
30  
25  
20  
15  
10  
5
AD8597  
AD8597  
V = ±15V  
SY  
V
= ±5V  
SY  
40  
35  
30  
25  
20  
15  
10  
5
OS–  
OS–  
OS+  
OS+  
0
0
10  
100  
CAPACITANCE (pF)  
1k  
10  
100  
1k  
CAPACITANCE (pF)  
Figure 52. Overshoot vs. Capacitive Load  
Figure 55. Overshoot vs. Capacitive Load  
0
15.0  
AD8599  
AD8599  
V
A
R
= ±15V  
= 100  
= 1kꢀ  
SY  
–20  
V
L
–40  
–60  
V
V
= 10V p-p  
= 20V p-p  
12.5  
10.0  
7.5  
IN  
IN  
–80  
–100  
–120  
–140  
–160  
V
= ±15V  
SY  
V
= ±5V  
SY  
5.0  
–50  
100  
1k  
10k  
100k  
1M  
–25  
0
25  
50  
75  
100  
125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 53. Channel Separation vs. Frequency  
Figure 56. Supply Current vs. Temperature  
6.0  
5.5  
5.0  
4.5  
4.0  
800  
600  
400  
200  
0
AD8597  
AD8599  
±5V V ±15V  
SY  
V
= ±15V  
SY  
V
= ±5V  
SY  
–200  
–400  
–600  
–800  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
0
1
2
3
4
5
6
7
8
9
10  
TIME (Seconds)  
TEMPERATURE (°C)  
Figure 54. Peak-to-Peak Noise  
Figure 57. Supply Current vs. Temperature  
Rev. B | Page 14 of 20  
AD8597/AD8599  
FUNCTIONAL OPERATION  
The AD8597/AD8599 amplifiers have been carefully designed  
to prevent any output phase reversal if both inputs are main-  
tained within the specified input voltage range. If one or both  
inputs exceed the input voltage range but remain within the  
supply rails, the op amp specifications, such as CMRR, are not  
guaranteed, but the output remains close to the correct value.  
INPUT VOLTAGE RANGE  
The AD8597/AD8599 are not rail-to-rail input amplifiers;  
therefore, care is required to ensure that both inputs do not  
exceed the input voltage range. Under normal negative feedback  
operating conditions, the amplifier corrects its output to ensure  
that the two inputs are at the same voltage. However, if either  
input exceeds the input voltage range, the loop opens and large  
currents begin to flow through the ESD protection diodes in the  
amplifier.  
NOISE AND SOURCE IMPEDANCE CONSIDERATIONS  
The AD8597/AD8599 ultralow voltage noise of 1.1 nV/√Hz is  
achieved with special input transistors running at high collector  
current. Therefore, it is important to consider the total input-  
referred noise (eN total), which includes contributions from  
voltage noise (eN), current noise (iN), and resistor noise  
(√4 kTRS).  
These diodes are connected between the inputs and each supply  
rail to protect the input transistors against an electrostatic discharge  
event and they are normally reverse-biased. However, if the  
input voltage exceeds the supply voltage, these ESD diodes  
can become forward-biased. Without current limiting, excessive  
amounts of current may flow through these diodes, causing  
permanent damage to the device. If inputs are subject to over-  
voltage, insert appropriate series resistors to limit the diode  
current to less than 5 mA maximum.  
eN total = [eN2 + 4 kTRS + (iN × RS)2]1/2  
(1)  
where RS is the total input source resistance.  
This equation is plotted for the AD8597/AD8599 in Figure 58.  
Because optimum dc performance is obtained with matched  
source resistances, this case is considered even though it is clear  
from Equation 1 that eliminating the balancing source resistance  
lowers the total noise by reducing the total RS by a factor of 2.  
The input stage has two diodes between the input pins to  
protect the differential pair. Under high slew rate conditions,  
when the op amp is connected as a voltage follower, the diodes  
may become forward-biased and the source may try to drive  
the output. A small resistor should be placed in the feedback  
loop and in the noninverting input. The noise of a 100 Ω  
resistor at room temperature is ~1.25 nV/√Hz, which is higher  
than the AD8597/AD8599. Thus, there is a tradeoff between  
noise performance and protection. If possible, limiting should  
be placed earlier in the signal path. For further details, see the  
Amplifier Input Protection…Friend or Foe article at  
At a very low source resistance (RS < 50 Ω), the voltage noise of the  
amplifier dominates. As source resistance increases, the Johnson  
noise of RS dominates until a higher resistance of RS > 2 kΩ is  
achieved; the current noise component is larger than the  
resistor noise.  
100  
http://www.analog.com/amplifier_input.  
10  
Because of the large transistors used to achieve low noise, the  
input capacitance may seem rather high. To take advantage of  
the low noise performance, impedance around the op amp should  
be low, less than 500 Ω. Under these conditions, the pole from  
the input capacitance should be greater than 50 MHz, which  
does not affect the signal bandwidth.  
TOTAL NOISE  
RESISTOR NOISE  
ONLY  
1
OUTPUT PHASE REVERSAL  
0.1  
10  
Output phase reversal occurs in some amplifiers when the  
input common-mode voltage range is exceeded. As the common-  
mode voltage is moved outside the input voltage range, the  
outputs of these amplifiers can suddenly jump in the opposite  
direction to the supply rail. This is the result of the differential  
input pair shutting down that causes a radical shifting of  
internal voltages that results in the erratic output behavior.  
100  
1k  
10k  
SOURCE RESISTANCE ()  
Figure 58. Noise vs. Source Resistance  
Rev. B | Page 15 of 20  
 
 
 
 
 
AD8597/AD8599  
The AD8597/AD8599 are the optimum choice for low noise  
performance if the source resistance is kept < 1 kΩ. At higher  
values of source resistance, optimum performance with respect  
to only noise is obtained with other amplifiers from Analog  
Devices. Both voltage noise and current noise need to be consi-  
dered. For more information on avoiding noise from grounding  
problems and inadequate bypassing, see the AN-345 Application  
Note, Grounding for Low- and High-Frequency Circuits. For  
general noise theory with extensive calculations, see the  
AN-358 Application Note, Noise and Operational Amplifier  
Circuits. A good selection table for low noise op amps can  
be found in AN-940 Application Note, Low Noise Amplifier  
Selection Guide for Optimal Noise Performance. An interesting  
note on using one section of a monolithic dual to phase compen-  
sate the other section is in the AN-107 Application Note, Active  
Feedback Improves Amplifier Phase Accuracy.  
V+  
7
Q36  
D31  
R18  
R19  
D1  
D2  
R31  
R32  
D34  
R1  
6
2
OUTPUT  
INVERTING  
INPUT  
C1  
Q18 Q19  
V
B
Q19  
Q20  
D39  
D40  
D41  
D42  
D3  
3
+
NONINVERTING  
INPUT  
Q32  
D2  
Q27  
Q28  
4
V–  
Figure 59. Simplified Schematic  
Rev. B | Page 16 of 20  
AD8597/AD8599  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 60. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
3.25  
3.00 SQ  
2.75  
0.60 MAX  
0.50  
BSC  
0.60 MAX  
5
8
2.95  
2.75 SQ  
2.55  
1.60  
1.45  
1.30  
EXPOSED  
PAD  
TOP  
VIEW  
PIN 1  
INDICATOR  
(BOTTOM VIEW)  
4
1
PIN 1  
INDICATOR  
0.50  
0.40  
0.30  
1.89  
1.74  
1.59  
12° MAX  
0.70 MAX  
0.65TYP  
0.90 MAX  
0.85 NOM  
0.05 MAX  
0.01 NOM  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATIONS  
0.30  
0.23  
0.18  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
0.20 REF  
Figure 61. 8-Lead Lead Frame Chip Scale Package [LFCSP_VD]  
3 mm × 3 mm Body, Very Thin, Dual Lead  
(CP-8-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD8597ACPZ-R21  
AD8597ACPZ-REEL1  
AD8597ACPZ-REEL71  
AD8597ARZ1  
AD8597ARZ-REEL1  
AD8597ARZ-REEL71  
AD8599ARZ1  
AD8599ARZ-REEL1  
AD8599ARZ-REEL71  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
Branding  
A22  
A22  
8-Lead Lead Frame Chip Scale Package [LFCSP_VD]  
8-Lead Lead Frame Chip Scale Package [LFCSP_VD]  
8-Lead Lead Frame Chip Scale Package [LFCSP_VD]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
CP-8-2  
CP-8-2  
CP-8-2  
R-8  
R-8  
R-8  
A22  
R-8  
R-8  
R-8  
1 Z = RoHS Complaint Part.  
Rev. B | Page 17 of 20  
 
 
AD8597/AD8599  
NOTES  
Rev. B | Page 18 of 20  
AD8597/AD8599  
NOTES  
Rev. B | Page 19 of 20  
AD8597/AD8599  
NOTES  
©2007–2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06274-0-10/08(B)  
Rev. B | Page 20 of 20  

相关型号:

AD8597ARZ-REEL

Single and Dual, Ultralow Distortion, Ultralow Noise Op Amps
ADI

AD8597ARZ-REEL7

Single and Dual, Ultralow Distortion, Ultralow Noise Op Amps
ADI

AD8597_08

Single and Dual, Ultralow Distortion, Ultralow Noise Op Amps
ADI

AD8598

Dual 7 ns Single Supply Comparator
ADI

AD8598AN

Dual 7 ns Single Supply Comparator
ADI

AD8598AR

Dual 7 ns Single Supply Comparator
ADI

AD8598AR-REEL7

IC COMPARATOR, PDSO16, SOIC-16, Comparator
ADI

AD8598ARU

Dual 7 ns Single Supply Comparator
ADI

AD8598ARU-REEL

暂无描述
ADI

AD8599

Dual Ultralow Distortion, Ultralow Noise Op Amp
ADI

AD8599ARZ

Dual Ultralow Distortion, Ultralow Noise Op Amp
ADI

AD8599ARZ-REEL

Dual Ultralow Distortion, Ultralow Noise Op Amp
ADI