AD8450 [ADI]

Precision Analog Front End and Controller;
AD8450
型号: AD8450
厂家: ADI    ADI
描述:

Precision Analog Front End and Controller

文件: 总42页 (文件大小:1336K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Analog Front End and Controller  
for Battery Test/Formation Systems  
Data Sheet  
AD8450  
FEATURES  
GENERAL DESCRIPTION  
Integrated constant current and voltage modes with  
automatic switchover  
Charge and discharge modes  
The AD8450 is a precision analog front end and controller for  
testing and monitoring battery cells. A precision programmable  
gain instrumentation amplifier (PGIA) measures the battery  
charge/discharge current, and a programmable gain difference  
amplifier (PGDA) measures the battery voltage (see Figure 1).  
Internal laser trimmed resistor networks set the gains for the  
PGIA and the PGDA, optimizing the performance of the  
AD8450 over the rated temperature range. PGIA gains are 26,  
66, 133, and 200. PGDA gains are 0.2, 0.27, 0.4, and 0.8.  
Precision voltage and current measurement  
Integrated precision control feedback blocks  
Precision interface to PWM or linear power converters  
Programmable gain settings  
Current sense gains: 26, 66, 133, and 200  
Voltage sense gains: 0.2, 0.27, 0.4, and 0.8  
Programmable OVP and OCP fault detection  
Current sharing and balancing  
Excellent ac and dc performance  
Maximum offset voltage drift: 0.6 µV/°C  
Maximum gain drift: 3 ppm/°C  
Low current sense amplifier input voltage noise: ≤9 nV/√Hz  
Current sense CMRR: 126 dB minimum (gain = 200)  
TTL compliant logic  
Voltages at the ISET and VSET inputs set the desired constant  
current (CC) and constant voltage (CV) values. CC to CV  
switching is automatic and transparent to the system.  
A TTL logic level input, MODE, selects the charge or discharge  
mode (high for charge, low for discharge). An analog output,  
VCTRL, interfaces directly with the Analog Devices, Inc.,  
ADP1972 PWM controller.  
The AD8450 includes resistor programmable overvoltage and  
overcurrent detection and current sharing circuitry. Current  
sharing is used to balance the output current of multiple  
bridged channels.  
APPLICATIONS  
Battery cell formation and testing  
Battery module testing  
The AD8450 simplifies designs by providing excellent accuracy,  
performance over temperature, flexibility with functionality,  
and overall reliability in a space-saving package. The AD8450 is  
available in an 80-lead, 14 mm × 14 mm × 1 mm LQFP package  
and is rated for an operating temperature of −40°C to +85°C.  
FUNCTIONAL BLOCK DIAGRAM  
ISREFH/  
ISREFL  
IVE0/  
ISET IVE1  
ISMEA  
VINT  
AD8450  
CSH  
CURRENT  
SHARING  
ISVP  
ISVN  
CONSTANT  
CURRENT LOOP  
FILTER  
GAIN  
NETWORK  
AND MUX  
IMAX  
26, 66,  
133, 200  
VCLP  
VCTRL  
VCLN  
CURRENT  
SENSE PGIA  
1×  
(CHARGE/  
DISCHARGE)  
SWITCHING  
MODE  
BVPx  
VOLTAGE  
SENSE PGDA  
VOLTAGE  
REFERENCE  
VREF  
GAIN  
NETWORK  
0.2, 0.27,  
0.4, 0.8  
CONSTANT  
VOLTAGE LOOP  
FILTER  
FAULT  
DETECTION  
BVNx  
FAULT  
BVREFH/ BVMEA VSET VVE0/  
VVP0 VSETBF VINT OVPS/ OCPS/  
OVPR OCPR  
BVREFL  
VVE1  
Figure 1.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2015 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
AD8450* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
REFERENCE MATERIALS  
Press  
Analog Devices Introduces the First Integrated Analog  
Controller Optimizing High-Efficiency Rechargeable  
Battery Manufacturing  
EVALUATION KITS  
AD8450 Evaluation Board  
DESIGN RESOURCES  
AD8450 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
DOCUMENTATION  
Application Notes  
AN-1319: Compensator Design for a Battery Charge/  
Discharge Unit Using the AD8450 or the AD8451  
Data Sheet  
AD8450: Precision Analog Front End and Controller for  
DISCUSSIONS  
Battery Test/Formation Systems Data Sheet  
User Guides  
View all AD8450 EngineerZone Discussions.  
UG-845: AD8450/ADP1972 Battery Testing and Formation  
Evaluation Board  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
TOOLS AND SIMULATIONS  
AD8450 SPICE Macro Model  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD8450  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Overcurrent and Overvoltage Comparators........................... 27  
Current Sharing Bus and IMAX Output................................. 28  
Applications Information .............................................................. 29  
Functional Description.............................................................. 29  
Power Supply Connections ....................................................... 29  
Power Supply Sequencing ......................................................... 29  
Power-On Sequence................................................................... 29  
Power-Off Sequence................................................................... 30  
PGIA Connections ..................................................................... 30  
PGDA Connections ................................................................... 31  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 11  
PGIA Characteristics ................................................................. 11  
PGDA Characteristics................................................................ 13  
Battery Current and Voltage Control Inputs (ISET and VSET)  
....................................................................................................... 31  
Loop Filter Amplifiers ............................................................... 32  
Connecting to a PWM Controller (VCTRL Pin) ...................... 32  
Overvoltage and Overcurrent Comparators........................... 32  
Step by Step Design Example.................................................... 32  
Additional Information ............................................................. 33  
Evaluation Board ............................................................................ 34  
Introduction................................................................................ 34  
Features and Tests....................................................................... 34  
Testing the AD8450-EVALZ ..................................................... 34  
Using the AD8450...................................................................... 36  
Schematic and Artwork............................................................. 37  
Outline Dimensions....................................................................... 41  
Ordering Guide .......................................................................... 41  
CC and CV Loop Filter Amplifiers, Uncommitted Op Amp,  
and VSET Buffer......................................................................... 15  
VINT Buffer ................................................................................ 17  
Current Sharing Amplifier........................................................ 18  
Comparators................................................................................ 19  
Reference Characteristics .......................................................... 20  
Theory of Operation ...................................................................... 21  
Introduction ................................................................................ 21  
Programmable Gain Instrumentation Amplifier (PGIA)..... 23  
Programmable Gain Difference Amplifier (PGDA).............. 24  
CC and CV Loop Filter Amplifiers.......................................... 24  
Compensation............................................................................. 26  
VINT Buffer ................................................................................ 26  
MODE Pin, Charge and Discharge Control ........................... 26  
7/14—Rev. 0 to Rev. A  
REVISION HISTORY  
Changes to General Description .....................................................1  
Changes to Pin 39 and Pin 80 Descriptions................................ 10  
Changes to Introduction Section and Figure 50 ........................ 22  
Changes to Figure 52...................................................................... 24  
Changes to Figure 55...................................................................... 26  
Changes to Current Sharing Bus and IMAX Output Section .. 27  
Changes to Figure 58...................................................................... 28  
Changes to Figure 59...................................................................... 30  
Changes to Evaluation Board Section.......................................... 33  
8/15—Rev. A to Rev. B  
Changes to Table 2 ............................................................................ 8  
Added Power Supply Sequencing Section and Power-On  
Sequence Section ............................................................................ 29  
Added Power-Off Sequence .......................................................... 30  
Added Additional Information Section....................................... 33  
Changes to Step 4: Determine the Control Voltage for the CC  
Loop, the Shunt Resistor, and the PGIA Gain Section .............. 33  
1/14—Revision 0: Initial Version  
Rev. B | Page 2 of 41  
 
Data Sheet  
AD8450  
SPECIFICATIONS  
AVCC = +25 V, AVEE = −5 V; AVCC = +15 V, AVEE = −15 V; DVCC = +5 V; PGIA gain = 26, 66, 133, or 200; PGDA gain = 0.2, 0.27,  
0.4, or 0.8; TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
CURRENT SENSE PGIA  
Internal Fixed Gains  
Gain Error  
Gain Drift  
Gain Nonlinearity  
Offset Voltage (RTI)  
26, 66, 133, 200  
V/V  
%
ppm/°C  
ppm  
µV  
VISMEA = 10 V  
TA = TMIN to TMAX  
VISMEA = 10 V, RL = 2 kΩ  
Gain = 200, ISREFH and ISREFL pins  
grounded  
0.1  
3
3
−110  
+110  
Offset Voltage Drift  
Input Bias Current  
Temperature Coefficient  
Input Offset Current  
Temperature Coefficient  
TA = TMIN to TMAX  
TA = TMIN to TMAX  
TA = TMIN to TMAX  
0.6  
30  
150  
2
µV/°C  
nA  
pA/°C  
nA  
pA/°C  
V
V
V
GΩ  
GΩ  
V
V
pF  
mA  
V
µA  
15  
10  
Input Common-Mode Voltage Range VISVP − VISVN = 0 V  
AVEE + 2.3  
AVEE + 2.6  
AVCC − 55  
AVCC − 2.4  
AVCC − 2.6  
AVEE + 55  
Over Temperature  
Overvoltage Input Range  
Differential Input Impedance  
Input Common-Mode Impedance  
Output Voltage Swing  
Over Temperature  
Capacitive Load Drive  
Short-Circuit Current  
Reference Input Voltage Range  
Reference Input Bias Current  
Output Voltage Level Shift  
Maximum  
TA = TMIN to TMAX  
150  
150  
AVEE + 1.5  
AVEE + 1.7  
AVCC − 1.2  
AVCC − 1.4  
1000  
TA = TMIN to TMAX  
40  
5
ISREFH and ISREFL pins tied together  
VISVP = VISVN = 0 V  
ISREFL pin grounded  
ISREFH pin connected to VREF pin  
VISMEA/VISREFH  
AVEE  
AVCC  
17  
6.8  
20  
8
23  
9.2  
mV  
mV/V  
Scale Factor  
CMRR  
ΔVCM = 20 V  
Gain = 26  
Gain = 66  
Gain = 133  
Gain = 200  
108  
116  
122  
126  
dB  
dB  
dB  
dB  
Temperature Coefficient  
PSRR  
TA = TMIN to TMAX  
ΔVS = 20 V  
0.01  
µV/V/°C  
Gain = 26  
Gain = 66  
Gain = 133  
Gain = 200  
108  
116  
122  
126  
122  
130  
136  
140  
dB  
dB  
dB  
dB  
Voltage Noise  
f = 1 kHz  
Gain = 26  
Gain = 66  
Gain = 133  
Gain = 200  
Voltage Noise, Peak-to-Peak  
Current Noise  
Current Noise, Peak-to-Peak  
9
8
7
7
0.2  
80  
5
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
µV p-p  
fA/√Hz  
pA p-p  
f = 0.1 Hz to 10 Hz, all fixed gains  
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
Rev. B | Page 3 of 41  
 
AD8450  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
Small Signal −3 dB Bandwidth  
Gain = 26  
Gain = 66  
Gain = 133  
Gain = 200  
1.5  
630  
330  
220  
5
MHz  
kHz  
kHz  
kHz  
V/µs  
Slew Rate  
ΔVISMEA = 10 V  
VOLTAGE SENSE PGDA  
Internal Fixed Gains  
Gain Error  
0.2, 0.27, 0.4, 0.8  
V/V  
%
ppm/°C  
ppm  
µV  
VIN = 10 V  
TA = TMIN to TMAX  
0.1  
3
3
500  
4
Gain Drift  
Gain Nonlinearity  
Offset Voltage (RTO)  
Offset Voltage Drift  
Differential Input Voltage Range  
VBVMEA = 10 V, RL = 2 kΩ  
BVREFH and BVREFL pins grounded  
TA = TMIN to TMAX  
Gain = 0.8, VBVN0 = 0 V, VBVREFL = 0 V  
AVCC = +15 V, AVEE = −15 V  
AVCC = +25 V, AVEE = −5 V  
µV/°C  
−16  
−4  
+16  
+29  
V
V
Input Common-Mode Voltage Range Gain = 0.8, VBVMEA = 0 V  
AVCC = +15 V, AVEE = −15 V  
AVCC = +25 V, AVEE = −5 V  
−27  
−7  
+27  
+50  
V
V
Differential Input Impedance  
Gain = 0.2  
Gain = 0.27  
Gain = 0.4  
Gain = 0.8  
800  
600  
400  
200  
kΩ  
kΩ  
kΩ  
kΩ  
Input Common-Mode Impedance  
Gain = 0.2  
Gain = 0.27  
Gain = 0.4  
Gain = 0.8  
240  
190  
140  
90  
kΩ  
kΩ  
kΩ  
kΩ  
Output Voltage Swing  
AVEE + 1.5  
AVEE + 1.7  
AVCC − 1.5  
AVCC − 1.7  
1000  
V
V
pF  
mA  
V
Over Temperature  
Capacitive Load Drive  
Short-Circuit Current  
Reference Input Voltage Range  
Output Voltage Level Shift  
Maximum  
Scale Factor  
CMRR  
Temperature Coefficient  
PSRR  
Output Voltage Noise  
Gain = 0.2  
TA = TMIN to TMAX  
30  
BVREFH and BVREFL pins tied together AVEE  
BVREFL pin grounded  
AVCC  
BVREFH pin connected to VREF pin  
VBVMEA/VBVREFH  
ΔVCM = 10 V, all fixed gains, RTO  
TA = TMIN to TMAX  
ΔVS = 20 V, all fixed gains, RTO  
f = 1 kHz, RTI  
4.5  
1.8  
80  
5
2
5.5  
2.2  
mV  
mV/V  
dB  
µV/V/°C  
dB  
0.05  
100  
325  
250  
180  
105  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
Gain = 0.27  
Gain = 0.4  
Gain = 0.8  
Voltage Noise, Peak-to-Peak  
Gain = 0.2  
Gain = 0.27  
Gain = 0.4  
Gain = 0.8  
f = 0.1 Hz to 10 Hz, RTI  
6
5
3
2
µV p-p  
µV p-p  
µV p-p  
µV p-p  
Rev. B | Page 4 of 41  
Data Sheet  
AD8450  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
Small Signal −3 dB Bandwidth  
Gain = 0.2  
Gain = 0.27  
Gain = 0.4  
Gain = 0.8  
420  
730  
940  
1000  
0.8  
kHz  
kHz  
kHz  
kHz  
V/µs  
Slew Rate  
CONSTANT CURRENT AND CONSTANT  
VOLTAGE LOOP FILTER AMPLIFIERS  
Offset Voltage  
150  
µV  
Offset Voltage Drift  
Input Bias Current  
Over Temperature  
TA = TMIN to TMAX  
TA = TMIN to TMAX  
0.6  
+5  
+5  
µV/°C  
nA  
nA  
−5  
−5  
Input Common-Mode Voltage Range  
Output Voltage Swing  
Over Temperature  
AVEE + 1.5  
AVEE + 1.5  
AVEE + 1.7  
AVCC − 1.8  
AVCC − 1  
AVCC − 1  
V
V
V
VVCLN = AVEE + 1 V, VVCLP = AVCC − 1 V  
TA = TMIN to TMAX  
Closed-Loop Output Impedance  
Capacitive Load Drive  
Source Short-Circuit Current  
Sink Short-Circuit Current  
Open-Loop Gain  
0.01  
pF  
mA  
mA  
dB  
1000  
1
40  
140  
CMRR  
PSRR  
ΔVCM = 10 V  
ΔVS = 20 V  
100  
100  
dB  
dB  
Voltage Noise  
Voltage Noise, Peak-to-Peak  
Current Noise  
Current Noise, Peak-to-Peak  
Small Signal Gain Bandwidth Product  
Slew Rate  
CC to CV Transition Time  
UNCOMMITTED OP AMP  
Offset Voltage  
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
10  
0.3  
80  
5
3
1
nV/√Hz  
µV p-p  
fA/√Hz  
pA p-p  
MHz  
V/μs  
µs  
f = 0.1 Hz to 10 Hz  
ΔVVINT = 10 V  
1.5  
150  
µV  
Offset Voltage Drift  
Input Bias Current  
Over Temperature  
TA = TMIN to TMAX  
TA = TMIN to TMAX  
0.6  
+5  
+5  
µV/°C  
nA  
nA  
−5  
−5  
Input Common-Mode Voltage Range  
Output Voltage Swing  
Over Temperature  
AVEE + 1.5  
AVEE + 1.5  
AVEE + 1.7  
AVCC − 1.8  
AVCC − 1.5  
AVCC − 1.5  
V
V
V
TA = TMIN to TMAX  
Closed-Loop Output Impedance  
Capacitive Load Drive  
Short-Circuit Current  
Open-Loop Gain  
0.01  
pF  
mA  
dB  
1000  
40  
140  
RL = 2 kΩ  
CMRR  
PSRR  
ΔVCM = 10 V  
ΔVS = 20 V  
100  
100  
dB  
dB  
Voltage Noise  
Voltage Noise, Peak-to-Peak  
Current Noise  
Current Noise, Peak-to-Peak  
Small Signal Gain Bandwidth Product  
Slew Rate  
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
10  
0.3  
80  
5
3
1
nV/√Hz  
µV p-p  
fA/√Hz  
pA p-p  
MHz  
V/µs  
f = 0.1 Hz to 10 Hz  
ΔVOAVO = 10 V  
Rev. B | Page 5 of 41  
AD8450  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
CURRENT SHARING BUS AMPLIFIER  
Nominal Gain  
1
V/V  
Offset Voltage  
150  
0.6  
AVCC − 1.5  
AVCC − 1.7  
1000  
µV  
µV/°C  
V
V
Offset Voltage Drift  
Output Voltage Swing  
Over Temperature  
Capacitive Load Drive  
Source Short-Circuit Current  
Sink Short-Circuit Current  
CMRR  
TA = TMIN to TMAX  
TA = TMIN to TMAX  
AVEE + 1.5  
AVEE + 1.7  
pF  
40  
0.5  
mA  
mA  
dB  
ΔVCM = 10 V  
ΔVS = 20 V  
100  
100  
PSRR  
dB  
Voltage Noise  
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
10  
0.4  
3
1
1.5  
nV/√Hz  
µV p-p  
MHz  
V/µs  
µs  
Voltage Noise, Peak-to-Peak  
Small Signal −3 dB Bandwidth  
Slew Rate  
ΔVCS = 10 V  
Transition Time  
CURRENT SHARING, VINT, AND  
CONSTANT VOLTAGE BUFFERS  
Nominal Gain  
Offset Voltage  
1
V/V  
µV  
150  
Offset Voltage Drift  
Input Bias Current  
Over Temperature  
Input Voltage Range  
Output Voltage Swing  
TA = TMIN to TMAX  
CV buffer only  
TA = TMIN to TMAX  
0.6  
+5  
+5  
µV/°C  
nA  
nA  
−5  
−5  
AVEE + 1.5  
AVCC − 1.8  
V
Current Sharing and Constant  
Voltage Buffers  
AVEE + 1.5  
AVCC − 1.5  
V
Over Temperature  
VINT Buffer  
Over Temperature  
Output Clamps Voltage Range  
VCLP Pin  
TA = TMIN to TMAX  
AVEE + 1.7  
VVCLN − 0.6  
VVCLN − 0.6  
AVCC − 1.5  
VVCLP + 0.6  
VVCLP + 0.6  
V
V
V
TA = TMIN to TMAX  
VINT buffer only  
VVCLN  
AVEE + 1  
AVCC − 1  
VVCLP  
V
V
VCLN Pin  
Closed-Loop Output Impedance  
Capacitive Load Drive  
Short-Circuit Current  
PSRR  
1
pF  
mA  
dB  
1000  
100  
40  
ΔVS = 20 V  
Voltage Noise  
Voltage Noise, Peak-to-Peak  
Current Noise  
Current Noise, Peak-to-Peak  
Small Signal −3 dB Bandwidth  
Slew Rate  
f = 1 kHz  
10  
0.3  
80  
5
3
1
nV/√Hz  
µV p-p  
fA/√Hz  
pA p-p  
MHz  
V/µs  
f = 0.1 Hz to 10 Hz  
f = 1 kHz, CV buffer only  
f = 0.1 Hz to 10 Hz  
ΔVOUT = 10 V  
OVERCURRENT AND OVERVOLTAGE  
FAULT COMPARATORS  
High Threshold Voltage  
Temperature Coefficient  
Low Threshold Voltage  
Temperature Coefficient  
Input Bias Current  
With respect to OVPR and OCPR pins  
With respect to OVPR and OCPR pins  
30  
45  
mV  
µV/°C  
mV  
µV/°C  
nA  
100  
−30  
−100  
250  
−45  
Input Voltage Range  
Differential Input Voltage Range  
OVPR, OCPR, OVPS, and OCPS pins  
Rev. B | Page 6 of 41  
AVEE  
−7  
AVCC − 3  
+7  
V
V
Data Sheet  
AD8450  
Parameter  
Test Conditions/Comments  
FAULT pin (Pin 46)  
ILOAD = 200 µA  
ILOAD = 200 µA  
CLOAD = 10 pF  
Min  
Typ  
Max  
Unit  
Fault Output Logic Levels  
Output Voltage High, VOH  
Output Voltage Low, VOL  
Propagation Delay  
Fault Rise Time  
4.5  
V
V
ns  
ns  
ns  
0.5  
500  
150  
150  
CLOAD = 10 pF  
CLOAD = 10 pF  
Fault Fall Time  
VOLTAGE REFERENCE  
Nominal Output Voltage  
Output Voltage Error  
Temperature Drift  
Line Regulation  
Load Regulation  
Output Current, Sourcing  
Voltage Noise  
Voltage Noise, Peak-to-Peak  
DIGITAL INTERFACE, MODE INPUT  
Input Voltage High, VIH  
Input Voltage Low, VIL  
Mode Switching Time  
POWER SUPPLY  
With respect to AGND  
2.5  
V
%
1
10  
40  
400  
10  
TA = TMIN to TMAX  
ΔVS = 10 V  
ΔIVREF = 1 mA (source only)  
ppm/°C  
ppm/V  
ppm/mA  
mA  
nV/√Hz  
µV p-p  
f = 1 kHz  
100  
5
f = 0.1 Hz to 10 Hz  
MODE pin (Pin 39)  
With respect to DGND  
With respect to DGND  
2.0  
DGND  
DVCC  
0.8  
V
V
ns  
500  
Operating Voltage Range  
AVCC  
AVEE  
Analog Supply Range  
DVCC  
5
−31  
5
36  
0
36  
5
V
V
V
V
AVCC − AVEE  
3
Quiescent Current  
AVCC  
AVEE  
7
6.5  
40  
10  
10  
70  
mA  
mA  
µA  
DVCC  
TEMPERATURE RANGE  
For Specified Performance  
Operational  
−40  
−55  
+85  
+125  
°C  
°C  
Rev. B | Page 7 of 41  
AD8450  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
The θJA value assumes a 4-layer JEDEC standard board with  
zero airflow.  
Parameter  
Rating  
36 V  
36 V  
Analog Supply Voltage (AVCC − AVEE)  
Digital Supply Voltage (DVCC − DGND)  
Maximum Voltage at Input Pins (ISVP, ISVN,  
BVPx, and BVNx)  
Table 3. Thermal Resistance  
AVEE + 55 V  
Package Type  
θJA  
Unit  
80-Lead LQFP  
54.7  
°C/W  
Minimum Voltage at Input Pins (ISVP, ISVN, BVPx, AVCC − 55 V  
and BVNx)  
Maximum Voltage at All Input Pins, Except ISVP,  
ISVN, BVPx, and BVNx  
Minimum Voltage at All Input Pins, Except ISVP,  
ISVN, BVPx, and BVNx  
Maximum Digital Supply Voltage with Respect  
to the Positive Analog Supply (DVCC − AVCC)  
AVCC  
AVEE  
+0.5 V  
ESD CAUTION  
Minimum Digital Supply Voltage with Respect to −0.5 V  
the Negative Analog Supply (DVCC − AVEE)  
Maximum Digital Ground with Respect to the  
Positive Analog Supply (DGND − AVCC)  
Minimum Digital Ground with Respect to the  
Negative Analog Supply (DGND − AVEE)  
Maximum Analog Ground with Respect to the  
Positive Analog Supply (AGND − AVCC)  
Minimum Analog Ground with Respect to the  
Negative Analog Supply (AGND − AVEE)  
Maximum Analog Ground with Respect to the  
Digital Ground (AGND − DGND)  
Minimum Analog Ground with Respect to the  
Digital Ground (AGND − DGND)  
+0.5 V  
−0.5 V  
+0.5 V  
−0.5 V  
+0.5 V  
−0.5 V  
Operating Temperature Range  
−40°C to  
+85°C  
Storage Temperature Range  
−65°C to  
+150°C  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. B | Page 8 of 41  
 
 
 
 
Data Sheet  
AD8450  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
ISVP  
VCLP  
VCTRL  
VCLN  
AVCC  
VINT  
PIN 1  
2
3
RGP  
RGPS  
ISGP0  
ISGP0S  
ISGP1  
ISGP1S  
ISGP2  
ISGP3  
RFBP  
4
5
6
NC  
7
VVE1  
VVE0  
NC  
8
AD8450  
TOP VIEW  
(Not to Scale)  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VVP0  
VSETBF  
VSET  
NC  
RFBN  
ISGN3  
ISGN2  
ISGN1S  
ISGN1  
ISGN0S  
ISGN0  
RGNS  
RGN  
DVCC  
FAULT  
DGND  
OCPS  
OCPR  
VREF  
OVPR  
ISVN  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
NOTES  
1. NC = NO CONNECT.  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Input/  
Pin No.  
Mnemonic  
Output1 Description  
1, 20  
ISVP, ISVN  
Input  
Current Sense Instrumentation Amplifier Positive (Noninverting) and Negative (Inverting) Inputs.  
Connect these pins across the current sense shunt resistor.  
2, 19  
3, 18  
4, 6,  
8, 9,  
RGP, RGN  
N/A  
Current Sense Instrumentation Amplifier Gain Setting Pins. Connect these pins to the appropriate  
resistor network gain pins to select the current sense gain (see Table 5).  
Kelvin Sense Pins for the Current Sense Instrumentation Amplifier Gain Setting Pins (RGP and RGN).  
Current Sense Instrumentation Amplifier Resistor Network Gain Pins (see Table 5).  
RGPS, RGNS  
N/A  
N/A  
ISGP0, ISGP1,  
ISGP2, ISGP3,  
ISGN3, ISGN2,  
ISGN1, ISGN0  
12, 13,  
15, 17  
5, 7,  
14, 16  
ISGP0S, ISGP1S, N/A  
ISGN1S, ISGN0S  
Kelvin Sense Pins for the ISGP0, ISGP1, ISGN1, and ISGN0 Pins.  
10, 11  
21, 35  
RFBP, RFBN  
BVP3S, BVN3S  
Output  
N/A  
Current Sense Preamplifier Positive and Negative Outputs.  
Kelvin Sense Pins for the Voltage Sense Difference Amplifier Inputs BVP3 and BVN3.  
22, 23,  
24, 25,  
31, 32,  
33, 34  
BVP3, BVP2,  
BVP1, BVP0,  
BVN0, BVN1,  
BVN2, BVN3  
Input  
Voltage Sense Difference Amplifier Inputs. Each input pair (BVPx and BVNx) corresponds to a  
different voltage sense gain (see Table 6).  
26, 42, 73 VREF  
Output  
Input  
Voltage Reference Output Pins. VREF = 2.5 V.  
27  
BVREFH  
Reference Input for the Voltage Sense Difference Amplifier. To level shift the voltage sense  
difference amplifier output by approximately 5 mV, connect this pin to the VREF pin. Otherwise,  
connect this pin to the BVREFL pin.  
28, 75  
29  
30  
AGND  
BVREFL  
BVREFLS  
N/A  
Input  
N/A  
Analog Ground Pins.  
Reference Input for the Voltage Sense Difference Amplifier. The default connection is to ground.  
Kelvin Sense Pin for the BVREFL Pin.  
Rev. B | Page 9 of 41  
 
AD8450  
Data Sheet  
Input/  
Pin No.  
Mnemonic  
Output1 Description  
36, 61, 72 AVEE  
38, 57, 70 AVCC  
N/A  
N/A  
Output  
Input  
Analog Negative Supply Pins. The default voltage is −5 V.  
Analog Positive Supply Pins. The default voltage is +25 V.  
Voltage Sense Difference Amplifier Output.  
TTL-Compliant Logic Input to Select the Charge or Discharge Mode. Low = discharge, high =  
charge.  
37  
39  
BVMEA  
MODE  
40  
41  
OVPS  
OVPR  
Input  
Input  
Noninverting Sense Input of the Overvoltage Protection Comparator.  
Inverting Reference Input of the Overvoltage Protection Comparator. Typically, this pin connects  
to the 2.5 V reference voltage (VREF).  
43  
OCPR  
Input  
Inverting Reference Input of the Overcurrent Protection Sense Comparator. Typically, this pin  
connects to the 2.5 V reference voltage (VREF).  
44  
45  
46  
47  
OCPS  
DGND  
FAULT  
DVCC  
Input  
N/A  
Output  
N/A  
Noninverting Sense Input of the Overcurrent Protection Sense Comparator.  
Digital Ground Pin.  
Overvoltage or Overcurrent Fault Detection Logic Output (Active Low).  
Digital Supply. The default voltage is +5 V.  
48, 52, 55, NC  
63, 66  
N/A  
No Connect. There are no internal connections to these pins.  
49  
50  
51  
53  
54  
56, 62  
58  
VSET  
Input  
Output  
Input  
Input  
Input  
Output  
Input  
Output  
Target Voltage for the Voltage Sense Control Loop.  
Buffered Voltage VSET.  
VSETBF  
VVP0  
VVE0  
VVE1  
VINT  
Noninverting Input of the Voltage Sense Integrator for Discharge Mode.  
Inverting Input of the Voltage Sense Integrator for Discharge Mode.  
Inverting Input of the Voltage Sense Integrator for Charge Mode.  
Minimum Output of the Voltage Sense and Current Sense Integrator Amplifiers.  
Low Clamp Voltage for VCTRL.  
VCLN  
VCTRL  
59  
Controller Output Voltage. Connect this pin to the input of the PWM controller (for example, the  
COMP pin of the ADP1972).  
60  
64  
65  
67  
68  
69  
71  
74  
VCLP  
IVE1  
IVE0  
Input  
Input  
Input  
Input  
Output  
Input  
Output  
Input  
High Clamp Voltage for VCTRL.  
Inverting Input of the Current Sense Integrator for Charge Mode.  
Inverting Input of the Current Sense Integrator for Discharge Mode.  
Target Voltage for the Current Sense Control Loop.  
Output of the Uncommitted Operational Amplifier.  
Inverting Input of the Uncommitted Operational Amplifier.  
Current Sense Instrumentation Amplifier Output.  
Reference Input for the Current Sense Amplifier. To level shift the current sense instrumentation  
amplifier output by approximately 20 mV, connect this pin to the VREF pin. Otherwise, connect  
this pin to the ISREFL pin.  
ISET  
OAVO  
OAVN  
ISMEA  
ISREFH  
76  
77  
78  
79  
80  
ISREFL  
ISREFLS  
OAVP  
IMAX  
Input  
N/A  
Input  
Output  
N/A  
Reference Input for the Current Sense Amplifier. The default connection is to ground.  
Kelvin Sense Pin for the ISREFL Pin.  
Noninverting Input of the Uncommitted Operational Amplifier.  
Maximum Voltage of All Voltages Applied to the Current Sharing (CSH) Pin.  
Current Sharing Bus.  
CSH  
1 N/A means not applicable.  
Rev. B | Page 10 of 41  
 
Data Sheet  
AD8450  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, AVCC = +25 V, AVEE = −5 V, RL = ∞, unless otherwise noted.  
PGIA CHARACTERISTICS  
30  
20  
15  
VALID FOR ALL GAINS  
VALID FOR ALL GAINS  
25  
20  
15  
10  
5
10  
5
0
–5  
0
–10  
–15  
–20  
–5  
AVCC = +25V  
AVEE = –5V  
–10  
AVCC = +15V  
AVEE = –15V  
–10  
–5  
0
5
10  
15  
20  
25  
30  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 3. Input Common-Mode Voltage vs. Output Voltage  
for AVCC = +25 V and AVEE = −5 V  
Figure 6. Input Common-Mode Voltage vs. Output Voltage  
for AVCC = +15 V and AVEE = −15 V  
15  
15  
AVCC = +15V  
AVEE = –15V  
10  
5
10  
5
GAIN = 200  
GAIN = 200  
0
0
GAIN = 26  
GAIN = 26  
–5  
–10  
–15  
–5  
–10  
–15  
AVCC = +25V  
AVEE = –5V  
–35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20 25 30 35 40 45  
–45–40–35–30–25–20–15–10 –5  
0
5
10 15 20 25 30 35 40 45  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 4. Input Overvoltage Performance  
for AVCC = +25 V and AVEE = −5 V  
Figure 7. Input Overvoltage Performance  
for AVCC = +15 V and AVEE = −15 V  
17.0  
16.8  
16.6  
16.4  
16.2  
16.0  
15.8  
15.6  
15.4  
15.2  
15.0  
20  
19  
18  
17  
16  
15  
14  
13  
12  
VALID FOR ALL GAINS  
AVCC = +15V  
AVEE = –15V  
+I  
–I  
B
AVCC = +25V  
AVEE = –5V  
B
–15  
–10  
–5  
0
5
10  
15  
20  
25  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 5. Input Bias Current vs. Input Common-Mode Voltage  
Figure 8. Input Bias Current vs. Temperature  
Rev. B | Page 11 of 41  
 
 
AD8450  
Data Sheet  
20  
160  
150  
140  
130  
120  
110  
100  
90  
GAIN = 200  
GAIN = 133  
GAIN = 66  
GAIN = 26  
0
GAIN = 200  
GAIN = 66  
–20  
–40  
–60  
–80  
–100  
GAIN = 133  
GAIN = 26  
80  
70  
60  
50  
0.1  
1
10  
100  
1k  
10k  
100k  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 9. Gain Error vs. Temperature  
Figure 12. CMRR vs. Frequency  
0.3  
160  
140  
120  
100  
80  
AVCC = +25V  
AVEE = –5V  
0.2  
0.1  
0
60  
–0.1  
–0.2  
–0.3  
GAIN AVCC  
AVEE  
100  
40  
GAIN = 200  
GAIN = 133  
GAIN = 66  
GAIN = 26  
200  
133  
66  
20  
26  
0
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
1
10  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 13. PSRR vs. Frequency  
Figure 10. Normalized CMRR vs. Temperature  
100  
10  
1
50  
40  
GAIN = 200  
GAIN = 200  
GAIN = 133  
GAIN = 66  
GAIN = 26  
GAIN = 133  
GAIN = 66  
30  
GAIN = 26  
RTI  
20  
10  
0
–10  
AVCC = +15V  
AVEE = –15V  
–20  
100  
1k  
10k  
100k  
1M  
10M  
0.1  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 14. Spectral Density Voltage Noise, RTI vs. Frequency  
Figure 11. Gain vs. Frequency  
Rev. B | Page 12 of 41  
Data Sheet  
AD8450  
PGDA CHARACTERISTICS  
60  
50  
40  
GAIN = 0.80  
GAIN = 0.40  
GAIN = 0.27  
GAIN = 0.20  
GAIN = 0.80  
GAIN = 0.40  
GAIN = 0.27  
GAIN = 0.20  
50  
40  
30  
30  
20  
20  
10  
10  
0
0
–10  
–20  
–30  
–40  
–50  
–10  
–20  
–30  
–40  
–10  
–5  
0
5
10  
15  
20  
25  
30  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 15. Input Common-Mode Voltage vs. Output Voltage  
for AVCC = +25 V and AVEE = −5 V  
Figure 18. Input Common-Mode Voltage vs. Output Voltage  
for AVCC = +15 V and AVEE = −15 V  
0
50  
GAIN = 0.80  
GAIN = 0.40  
GAIN = 0.27  
GAIN = 0.20  
–10  
0
–20  
–30  
–40  
–50  
–50  
–100  
–150  
–200  
GAIN = 0.80  
GAIN = 0.40  
GAIN = 0.27  
GAIN = 0.20  
VALID FOR ALL RATED  
SUPPLY VOLTAGES  
100  
1k  
10k  
100k  
1M  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 16. Gain vs. Frequency  
Figure 19. Gain Error vs. Temperature  
0
–20  
3
2
VALID FOR ALL RATED  
SUPPLY VOLTAGES  
–40  
1
–60  
0
–80  
–1  
–2  
–3  
GAIN = 0.80  
GAIN = 0.40  
GAIN = 0.27  
GAIN = 0.20  
GAIN = 0.80  
GAIN = 0.40  
GAIN = 0.27  
GAIN = 0.20  
–100  
–120  
100  
1k  
10k  
100k  
1M  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 20. Normalized CMRR vs. Temperature  
Figure 17. CMRR vs. Frequency  
Rev. B | Page 13 of 41  
 
AD8450  
Data Sheet  
0
1k  
100  
10  
GAIN = 0.80  
GAIN = 0.40  
GAIN = 0.27  
GAIN = 0.20  
GAIN AVCC  
AVEE  
0.80  
0.40  
0.27  
0.20  
–20  
–40  
RTI  
–60  
–80  
–100  
–120  
–140  
VALID FOR ALL RATED  
SUPPLY VOLTAGES  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
0.1  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 21. PSRR vs. Frequency  
Figure 22. Spectral Density Voltage Noise, RTI vs. Frequency  
Rev. B | Page 14 of 41  
Data Sheet  
AD8450  
CC AND CV LOOP FILTER AMPLIFIERS, UNCOMMITTED OP AMP, AND VSET BUFFER  
500  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
CONSTANT CURRENT LOOP AND  
CONSTANT VOLTAGE LOOP AMPLIFIERS  
400  
300  
AVCC = +15V  
AVEE = –15V  
AVCC = +25V  
AVEE = –5V  
200  
AVCC = +25V  
AVEE = –5V  
100  
0
AVCC = +15V  
AVEE = –15V  
–100  
–200  
–300  
–400  
–500  
–15  
–10  
–5  
0
5
10  
15  
20  
25  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 23. Input Offset Voltage vs. Input Common-Mode Voltage  
for Two Supply Voltage Combinations  
Figure 26. Output Source Current vs. Temperature  
for Two Supply Voltage Combinations  
100  
90  
120  
100  
80  
–45.0  
–67.5  
80  
PHASE  
GAIN  
–90.0  
AVCC = +25V  
AVEE = –5V  
70  
60  
50  
40  
30  
20  
10  
0
60  
–112.5  
–135.0  
–157.5  
–180.0  
–202.5  
–225.0  
40  
AVCC = +15V  
AVEE = –15V  
20  
0
–20  
–40  
–15  
–10  
–5  
0
5
10  
15  
20  
25  
10  
100  
1k  
10k  
100k  
1M  
10M  
INPUT COMMON-MODE VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 24. Input Bias Current vs. Input Common-Mode Voltage  
for Two Supply Voltage Combinations  
Figure 27. Open-Loop Gain and Phase vs. Frequency  
100  
80  
60  
40  
20  
0
160  
140  
120  
100  
80  
UNCOMMITTED  
OP AMP  
60  
40  
CONSTANT CURRENT LOOP  
AND  
CONSTANT VOLTAGE  
LOOP FILTER  
–20  
20  
–I  
+I  
B
B
AMPLIFIERS  
–40  
–40 –30 –20 –10  
0
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 25. Input Bias Current vs. Temperature  
Figure 28. CMRR vs. Frequency  
Rev. B | Page 15 of 41  
 
AD8450  
Data Sheet  
1.5  
1.0  
140  
120  
100  
80  
AVCC = +15V  
AVEE = –15V  
+PSRR  
0.5  
TRANSITION  
0
60  
–0.5  
–1.0  
–1.5  
–PSRR  
40  
20  
ISET  
VCTRL  
0
10  
–15 –10  
–5  
0
5
10  
15  
20  
25  
30  
35  
100  
1k  
10k  
100k  
1M  
TIME (µs)  
FREQUENCY (Hz)  
Figure 29. PSRR vs. Frequency  
Figure 31. CC to CV Transition  
1k  
100  
10  
1
0.1  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 30. Range of Spectral Density Voltage Noise vs. Frequency  
for the Op Amps and Buffers  
Rev. B | Page 16 of 41  
Data Sheet  
AD8450  
VINT BUFFER  
0.5  
6
5
C
R
= 100pF  
= 2kΩ  
VCTRL OUTPUT WRT VCLP  
L
L
0.4  
0.3  
4
0.2  
0.1  
3
VCLP AND VCLN REFERENCE  
0
VALID FOR ALL RATED  
SUPPLY VOLTAGES  
2
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
1
VCTRL OUTPUT WRT VCLN  
0
–1  
0
5
10  
15  
20  
25  
30  
35  
40  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
TIME (µs)  
Figure 32. Output Voltage Swing with Respect to VCLP and VCLN  
vs. Temperature  
Figure 35. Large Signal Transient Response, RL = 2 kΩ, CL = 100 pF  
15  
10  
5
0.20  
C
C
C
C
C
= 10pF  
L
L
L
L
L
= 100pF  
= 510pF  
= 680pF  
= 1000pF  
0.15  
0.10  
0.05  
0
TEMP VCLP  
VCLN  
–40°C  
+25°C  
+85°C  
0
–5  
–0.05  
–0.10  
–0.15  
–0.20  
–10  
–15  
0
1
2
3
4
5
6
7
8
9
10  
100  
1k  
10k  
LOAD RESISTANCE (Ω)  
100k  
1M  
TIME (µs)  
Figure 33. Output Voltage Swing vs. Load Resistance at Three Temperatures  
Figure 36. Small Signal Transient Response vs. Capacitive Load  
6
100  
5
VCLP  
4
10  
TEMP VCLP  
VCLN  
3
2
–40°C  
0°C  
+25°C  
+85°C  
V
= +6V/–1V  
IN  
1
1
VCLN  
0
–1  
0.1  
10  
15  
20  
25  
30  
35  
40  
10  
100  
1k  
10k  
100k  
1M  
OUTPUT CURRENT (mA)  
FREQUENCY (Hz)  
Figure 34. Clamped Output Voltage vs. Output Current  
at Four Temperatures  
Figure 37. Output Impedance vs. Frequency  
Rev. B | Page 17 of 41  
 
AD8450  
Data Sheet  
CURRENT SHARING AMPLIFIER  
–0.20  
3
2
VALID FOR ALL RATED  
SUPPLY VOLTAGES  
AVCC = +15V  
AVEE = –15V  
–0.25  
–0.30  
–0.35  
–0.40  
–0.45  
–0.50  
1
TRANSITION  
0
–1  
–2  
–3  
ISMEA  
IMAX  
–15 –10  
–5  
0
5
10  
15  
20  
25  
30  
35  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
TIME (µs)  
Figure 38. Output Sink Current vs. Temperature  
Figure 39. Current Sharing Bus Transition Characteristics  
Rev. B | Page 18 of 41  
 
Data Sheet  
AD8450  
COMPARATORS  
500  
5
4
3
2
1
0
450  
400  
350  
VALID FOR ALL  
RATED SUPPLY  
VOLTAGES  
HIGH TO LOW  
TRANSITION  
TEMP  
I
I
SINK  
SOURCE  
–40°C  
+25°C  
+85°C  
LOW TO HIGH  
TRANSITION  
300  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
0
100  
200  
300  
400  
500  
OUTPUT CURRENT (µA)  
Figure 40. Propagation Delay vs. Temperature  
Figure 43. Output Voltage vs. Output Current at Three Temperatures  
1600  
1400  
1200  
1000  
800  
6
5
4
3
HIGH TO LOW  
TRANSITION  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
2
1
LOW TO HIGH  
TRANSITION  
600  
400  
0
200  
–1  
0
100 200 300 400 500 600 700 800 900 1000  
LOAD CAPACITANCE (pF)  
2.45 2.46 2.47 2.48 2.49 2.50 2.51 2.52 2.53 2.54 2.55  
INPUT VOLTAGE (V)  
Figure 44. Comparator Transfer Function at Three Temperatures  
Figure 41. Propagation Delay vs. Load Capacitance  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
HIGH TO LOW  
TRANSITION  
LOW TO HIGH  
TRANSITION  
10  
100  
1k  
10k  
SOURCE RESISTANCE (Ω)  
Figure 42. Propagation Delay vs. Source Resistance  
Rev. B | Page 19 of 41  
 
AD8450  
Data Sheet  
REFERENCE CHARACTERISTICS  
2.51  
1200  
1100  
1000  
900  
T
T
T
T
T
= +85°C  
= +25°C  
= 0°C  
= –20°C  
= –40°C  
AVCC = +25V  
AVEE = –5V  
A
A
A
A
A
2.50  
2.49  
2.48  
2.47  
800  
700  
AVCC = +25V  
AVEE = –5V  
2.46  
600  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
0
1
2
3
4
5
6
7
8
9
10  
OUTPUT CURRENT—SOURCING (mA)  
Figure 45. Output Voltage vs. Output Current (Sourcing) over Temperature  
Figure 47. Source and Sink Load Regulation vs. Temperature  
2.9  
1k  
AVCC = +25V  
AVEE = –5V  
2.8  
2.7  
2.6  
100  
T
T
T
T
T
= +85°C  
= +25°C  
= 0°C  
= –20°C  
= –40°C  
A
A
A
A
A
2.5  
2.4  
10  
0.1  
–10  
–9  
–8  
–7  
–6  
–5  
–4  
–3  
–2  
–1  
0
1
10  
100  
1k  
10k  
100k  
OUTPUT CURRENT—SINKING (mA)  
FREQUENCY (Hz)  
Figure 46. Output Voltage vs. Output Current (Sinking) over Temperature  
Figure 48. Spectral Density Voltage Noise vs. Frequency  
Rev. B | Page 20 of 41  
 
Data Sheet  
AD8450  
THEORY OF OPERATION  
The analog front end of the AD8450 includes a precision current  
sense programmable gain instrumentation amplifier (PGIA)  
to measure the battery current, and a precision voltage sense  
programmable gain difference amplifier (PGDA) to measure the  
battery voltage. The gain programmability of the PGIA allows the  
system to set the battery charge/discharge current to any of four  
discrete values with the same shunt resistor. The gain program-  
mability of the PGDA allows the system to handle up to four  
batteries in series (4S).  
INTRODUCTION  
To form and test a battery, the battery must undergo charge and  
discharge cycles. During these cycles, the battery terminal current  
and voltage must be precisely controlled to prevent battery failure  
or a reduction in the capacity of the battery. Therefore, battery  
formation and test systems require a high precision analog front  
end to monitor the battery current and terminal voltage.  
75  
72  
70  
66  
63  
61  
80  
79  
78  
77  
76  
74  
73  
71  
69  
68  
67  
65  
64  
62  
1
2.5V  
60  
59  
58  
VINT  
BUFFER  
ISVP  
RGP  
VCLP  
VCTRL  
VCLN  
AVCC  
VINT  
VREF  
AGND  
2
1×  
+
UNCOMMITTED  
OP AMP  
+/–  
+
100kΩ  
3
RGPS  
ISGP0  
ISGP0S  
ISGP1  
+
AVEE  
1.1mA  
CC LOOP  
FILTER  
AMPLIFIER  
CS  
BUFFER  
4
57  
56  
CS BUS  
AMPLIFIER  
AVCC  
AVCC  
5
1×  
+
6
55  
54  
NC  
CV LOOP  
FILTER  
AMPLIFIER  
0.2mA  
AVEE  
0.2mA  
7
VVE1  
VVE0  
NC  
ISGP1S  
ISGP2  
+
53  
8
AVEE  
BATTERY  
CURRENT  
SENSING  
PGIA  
9
52  
51  
ISGP3  
RFBP  
RFBN  
VSET  
BUFFER  
10kΩ  
10kΩ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
VVP0  
VSETBF  
VSET  
NC  
+
50  
49  
48  
1×  
CONSTANT  
CURRENT AND  
20kΩ  
ISGN3  
ISGN2  
ISGN1S  
ISGN1  
ISGN0S  
ISGN0  
RGNS  
RGN  
VOLTAGE LOOP  
FILTER AMPLIFIERS  
47  
46  
DVCC  
FAULT  
DGND  
OCPS  
OCPR  
VREF  
OVPR  
AD8450  
OVERCURRENT  
FAULT COMPARATOR  
45  
44  
+
+
BATTERY  
VOLTAGE  
SENSING  
PGDA  
80kΩ  
OVERVOLTAGE  
FAULT  
COMPARATOR  
NOR  
43  
42  
+
+
+/–  
100Ω  
100kΩ 100kΩ 100kΩ  
100kΩ 100kΩ 100kΩ  
41  
20  
MODE  
1 = CHARGE  
0 = DISCHARGE  
ISVN  
26  
28  
21  
22  
23  
24  
25  
27  
29  
30  
31  
32  
33  
34  
35  
37  
39  
40  
36  
38  
Figure 49. AD8450 Detailed Block Diagram  
Rev. B | Page 21 of 41  
 
 
 
AD8450  
Data Sheet  
Battery formation and test systems charge and discharge  
batteries using a constant current/constant voltage (CC/CV)  
algorithm. In other words, the system first forces a set constant  
current in or out of the battery until the battery voltage reaches  
a target value. At this point, a set constant voltage is forced  
across the battery terminals.  
Battery formation and test systems used to condition high  
current battery cells often employ multiple independent  
channels to charge or discharge high currents to or from the  
battery. To maximize efficiency, these systems benefit from  
circuitry that enables precise current sharing (or balancing)  
among the channels—that is, circuitry that actively matches  
the output current of each channel. The AD8450 includes a  
specialty precision amplifier that detects the maximum output  
current among several channels by identifying the channel with  
the maximum voltage at its PGIA output. This maximum  
voltage can then be compared to all the PGIA output voltages  
to actively adjust the output current of each channel.  
The AD8450 provides two control loops—a constant current  
(CC) loop and a constant voltage (CV) loop—that transition  
automatically after the battery reaches the user defined target  
voltage. These loops are implemented via two precision specialty  
amplifiers with external feedback networks that set the transfer  
function of the CC and CV loops. Moreover, in the AD8450,  
these loops reconfigure themselves to charge or discharge the  
battery by toggling the MODE pin.  
Figure 49 is a block diagram of the AD8450 that illustrates the  
distinct sections of the AD8450, including the PGIA and PGDA  
measurement blocks, the loop filter amplifiers, the fault com-  
parators, and the current sharing circuitry. Figure 50 is a block  
diagram of a battery formation and test system.  
Battery formation and test systems must also be able to detect  
overvoltage and overcurrent conditions in the battery to prevent  
damage to the battery and/or the control system.  
The AD8450 includes two comparators to detect overcurrent  
and overvoltage events. These comparators output a logic low at  
the FAULT pin when either comparator is tripped.  
SET  
BATTERY  
VINT  
CURRENT  
ISET  
BUFFER  
+
V
ISET  
VCTRL  
1×  
CONSTANT  
VOLTAGE LOOP  
FILTER AMPLIFIER  
POWER CONVERTER  
(SWITCHED OR LINEAR)  
SET  
+
BATTERY  
VOLTAGE  
VSET  
1×  
CONSTANT  
CURRENT LOOP  
FILTER AMPLIFIER  
AVEE  
AD8450  
CONTROLLER  
V
VSET  
C
D
C
D
C
D
MODE  
CV  
BUFFER  
SWITCHES (3)  
C = CHARGE  
FAULT  
BATTERY  
CURRENT  
D = DISCHARGE  
VINT  
NOR  
OVERVOLTAGE  
COMPARATOR  
OVERCURRENT  
COMPARATOR  
ISVP  
+
SENSE  
RESISTOR  
PGIA  
VREF  
OVPS  
OVPR  
OCPR  
OCPS  
ISVN  
SYSTEM LOOP COMPENSATION  
ISMEA  
BVPx  
BVNx  
+
BVMEA  
PGDA  
BATTERY  
Figure 50. Signal Path of a Li-Ion Battery Formation and Test System Using the AD8450  
Rev. B | Page 22 of 41  
 
Data Sheet  
AD8450  
The external PGIA gain is set by tying 10 kΩ feedback resistors  
between the inverting inputs of the PGIA preamplifiers (RGP and  
RGN pins) and the outputs of the PGIA preamplifiers (RFBP and  
RFBN pins) and by tying a gain resistor (RG) between the RGP  
and RGN pins. When using external resistors, the PGIA gain is  
PROGRAMMABLE GAIN INSTRUMENTATION  
AMPLIFIER (PGIA)  
Figure 51 is a block diagram of the PGIA, which is used to monitor  
the battery current. The architecture of the PGIA is the classic  
3-op-amp topology, similar to the Analog Devices industry-  
standard AD8221 and AD620. This architecture provides the  
highest achievable CMRR at a given gain, enabling high-side  
battery current sensing without the introduction of significant  
errors in the measurement. For more information about instru-  
mentation amplifiers, see A Designer's Guide to Instrumentation  
Amplifiers.  
Gain = 2 × (1 + 20 kꢁ/RG)  
Note that the PGIA subtractor has a closed-loop gain of 2 to  
increase the common-mode range of the preamplifiers.  
Reversing Polarity When Charging and Discharging  
Figure 50 shows that during the charge cycle, the power converter  
feeds current into the battery, generating a positive voltage across  
the current sense resistor. During the discharge cycle, the power  
converter draws current from the battery, generating a negative  
voltage across the sense resistor. In other words, the battery current  
polarity reverses when the battery discharges.  
VREF  
POLARITY  
100k  
INVERTER  
ISREFH  
ISREFL  
PGIA  
ISVP  
+ CURRENT  
SHUNT  
+/–  
+
10kΩ  
19.2k806Ω  
RGP  
In the constant current (CC) control loop, this change in  
polarity can be problematic if the polarity of the target current  
is not reversed. To solve this problem, the AD8450 PGIA includes  
a multiplexer preceding its inputs that inverts the polarity of the  
PGIA gain. This multiplexer is controlled via the MODE pin.  
When the MODE pin is logic high (charge mode), the PGIA gain  
is noninverting, and when the MODE pin is logic low (discharge  
mode), the PGIA gain is inverting.  
RFBP  
ISGP0,  
ISGP1,  
ISGP2,  
ISGP3  
G = 2 SUBTRACTOR  
ISMEA  
CONNECT  
FOR DESIRED  
GAIN  
GAIN  
ISGN0,  
ISGN1,  
ISGN2,  
ISGN3  
NETWORKS  
(4)  
RFBN  
RGN  
ISVN  
PGIA Offset Option  
As shown in Figure 51, the PGIA reference node is connected  
to the ISREFL and ISREFH pins via an internal resistor divider.  
This resistor divider can be used to introduce a temperature  
insensitive offset to the output of the PGIA such that the PGIA  
output always reads a voltage higher than zero for a zero differ-  
ential input. Because the output voltage of the PGIA is always  
positive, a unipolar ADC can digitize it.  
– CURRENT  
SHUNT  
+
10kΩ  
20kΩ  
+/–  
POLARITY  
INVERTER  
MODE  
Figure 51. PGIA Simplified Block Diagram  
Gain Selection  
When the ISREFH pin is tied to the VREF pin with the ISREFL  
pin grounded, the voltage at the ISMEA pin is increased by  
20 mV, guaranteeing that the output of the PGIA is always  
positive for zero differential inputs. Other voltage shifts can be  
realized by tying the ISREFH pin to an external voltage source.  
The gain from the ISREFH pin to the ISMEA pin is 8 mV/V.  
For zero offset, tie the ISREFL and ISREFH pins to ground.  
The PGIA includes four fixed internal gain options. The PGIA  
can also use an external gain network for arbitrary gain selection.  
The internal gain options are established via four independent  
three-resistor networks, which are laser trimmed to a matching  
level better than 0.1ꢀ. The internal gains are optimized to  
minimize both PGIA gain error and gain error drift, allowing  
the controller to set a stable charge/discharge current over  
temperature. If the built in internal gains are not adequate, the  
PGIA gain can be set via an external three-resistor network.  
Battery Reversal and Overvoltage Protection  
The AD8450 PGIA can be configured for high-side or low-side  
current sensing. If the PGIA is configured for high-side current  
sensing (see Figure 50) and the battery is connected backward,  
the PGIA inputs may be held at a voltage that is below the  
negative power rail (AVEE), depending on the battery voltage.  
The internal gains of the PGIA are selected by tying the inverting  
inputs of the PGIA preamplifiers (RGP and RGN pins) to the  
corresponding gain pins of the internal three-resistor network  
(ISGP[0:3] and ISGN[0:3] pins). For example, to set the PGIA  
gain to 26, tie the RGP pin to the ISGP0 pin, and tie the RGN  
pin to the ISGN0 pin. See Table 5 for information about the  
gain selection connections.  
To prevent damage to the PGIA under these conditions, the  
PGIA inputs include overvoltage protection circuitry that allows  
them to be held at voltages of up 55 V from the opposite power  
rail. In other words, the safe voltage span for the PGIA inputs  
extends from AVCC − 55 V to AVEE + 55 V.  
Rev. B | Page 23 of 41  
 
 
AD8450  
Data Sheet  
When the BVREFH pin is tied to the VREF pin with the BVREFL  
pin grounded, the voltage at the BVMEA pin is increased by 5 m V,  
guaranteeing that the output of the PGDA is always positive for  
zero differential inputs. Other voltage shifts can be realized by  
tying the BVREFH pin to an external voltage source. The gain  
from the BVREFH pin to the BVMEA pin is 2 mV /V. For zero  
offset, tie the BVREFL and BVREFH pins to ground.  
PROGRAMMABLE GAIN DIFFERENCE AMPLIFIER  
(PGDA)  
Figure 52 is a block diagram of the PGDA, which is used to  
monitor the battery voltage. The architecture of the PGDA is a  
subtractor amplifier with four selectable inputs: the BVP[0:3]  
and BVN[0:3] pins. Each input pair corresponds to one of the  
internal gains of the PGDA: 0.2, 0.27, 0.4, and 0.8. These gain  
values allow the PGDA to funnel the voltage of up to four 5 V  
batteries in series (4S) to a level that can be read by a 5 V ADC.  
See Table 6 for information about the gain selection connections.  
CC AND CV LOOP FILTER AMPLIFIERS  
The constant current (CC) and constant voltage (CV) loop filter  
amplifiers are high precision, low noise specialty amplifiers with  
very low offset voltage and very low input bias current. These  
amplifiers serve two purposes:  
BVP2  
BVP1  
BVP0  
100kΩ  
100kΩ  
100kΩ  
100kΩ  
79.9kΩ  
100Ω  
50kΩ  
BVP3  
BVREFL  
Using external components, the amplifiers implement active  
loop filters that set the dynamics (transfer function) of the  
CC and CV loops.  
BVREFH  
VREF  
+
PGDA  
The amplifiers perform a seamless transition from CC to  
CV mode after the battery reaches its target voltage.  
100kΩ  
100kΩ  
100kΩ  
100kΩ  
80kΩ  
BVMEA  
BVN3  
Figure 53 is the functional block diagram of the AD8450 CC  
and CV feedback loops for charge mode (MODE pin is logic high).  
For illustration purposes, the external networks connected to  
the loop amplifiers are simple RC networks configured to form  
single-pole inverting integrators. The outputs of the CC and CV  
loop filter amplifiers are coupled to the VINT pin via an analog  
NOR circuit (minimum output selector circuit), such that they can  
only pull the VINT node down. In other words, the loop amplifier  
that requires the lowest voltage at the VINT pin is in control of  
the node. Thus, only one loop amplifier, CC or CV, can be in  
control of the system charging control loop at any given time.  
BVN2  
BVN1  
BVN0  
Figure 52. PGDA Simplified Block Diagram  
The resistors that form the PGDA gain network are laser  
trimmed to a matching level better than 0.1%. This level of  
matching minimizes the gain error and gain error drift of the  
PGDA while maximizing the CMRR of the PGDA. This match-  
ing also allows the controller to set a stable target voltage for the  
battery over temperature while rejecting the ground bounce in  
the battery negative terminal.  
Like the PGIA, the PGDA can also level shift its output voltage  
via an internal resistor divider that is tied to the PGDA refer-  
ence node. This resistor divider is connected to the BVREFH  
and BVREFL pins.  
I POWER  
IOUT  
BUS  
VCTRL  
R1  
POWER  
CONVERTER  
C1  
I
V
BAT  
ISET  
ISMEA  
ISET  
IVE1  
CC LOOP  
AMPLIFIER  
VINT  
VINT  
PGIA  
ISVP  
ISVN  
+
BUFFER  
+
SENSE  
RESISTOR  
R
VCLP  
G
S
IA  
ANALOG  
NOR  
VCTRL  
VCLN  
1×  
MINIMUM  
OUTPUT  
BVPx  
BVNx  
PGDA  
DA  
+
+
+
SELECTOR  
VBAT  
G
V3  
V4  
CV LOOP  
AMPLIFIER  
MODE  
5V  
BVMEA  
VSET  
VSET  
VVE1  
R2  
VINT  
V
V3 < VCTRL < V4  
C2  
Figure 53. Functional Block Diagram of the CC and CV Loops in Charge Mode (MODE Pin High)  
Rev. B | Page 24 of 41  
 
 
 
 
Data Sheet  
AD8450  
The unity-gain amplifier (VINT buffer) buffers the VINT pin  
and drives the VCTRL pin. The VCTRL pin is the control  
output of the AD8450 and the control input of the power  
converter. The VISET and VVSET voltage sources set the target  
constant current and the target constant voltage, respectively.  
When the CC and CV feedback loops are in steady state, the  
charging current is set at  
The following steps describe how the AD8450 implements the  
CC/CV charging profile (see Figure 53). In this scenario, the  
battery begins in the fully discharged state, and the system has  
just been turned on such that IBAT = 0 A at Time 0.  
1. Because the voltages at the ISMEA and BVMEA pins  
are below the target voltages (VISET and VVSET) at Time 0,  
both integrators begin to ramp, increasing the voltage at  
the VINT node.  
2. As the voltage at the VINT node increases, the voltage at  
the VCRTL node rises, and the output current of the power  
converter, IBAT, increases (assuming that an increasing  
voltage at the VCRTL node increases the output current  
of the power converter).  
VISET  
IBAT_SS  
=
G
IA ×RS  
where:  
IA is the PGIA gain.  
G
RS is the value of the shunt resistor.  
The target voltage is set at  
VVSET  
3. When the IBAT current reaches the CC steady state value,  
I
BAT_SS, the battery voltage is still below the target steady  
VBAT_SS  
=
state value, VBAT_SS. Therefore, the CV loop tries to keep  
pulling the VINT node up while the CC loop tries to keep  
it at its current voltage. At this point, the voltage at the  
ISMEA pin equals VISET, so the CC loop stops integrating.  
4. Because the loop amplifiers can only pull the VINT node  
down due to the analog NOR circuit, the CC loop takes  
control of the charging feedback loop and the CV loop is  
disabled.  
GDA  
where GDA is the PGDA gain.  
Because the offset voltage of the loop amplifiers is in series with  
the target voltage sources, VISET and VVSET, the high precision of  
these amplifiers minimizes this source of error.  
Figure 54 shows a typical CC/CV charging profile for a Li-Ion  
battery. In the first stage of the charging process, the battery is  
charged with a constant current (CC) of 1 A. When the battery  
voltage reaches a target voltage of 4.2 V, the charging process  
transitions such that the battery is charged with a constant  
voltage (CV) of 4.2 V.  
5. As the charging process continues, the battery voltage  
increases until it reaches the steady state value, VBAT_SS  
and the voltage at the BVMEA pin reaches the target  
,
voltage, VVSET  
.
6. The CV loop tries to pull the VINT node down to reduce  
the charging current (IBAT) and prevent the battery voltage  
from rising any farther. At the same time, the CC loop tries  
to keep the VINT node at its current voltage to keep the  
1.25  
1.00  
0.75  
0.50  
0.25  
0
5
4
3
2
1
0
TRANSITION FROM CC TO CV  
CC  
CHARGE  
BEGINS  
battery current at IBAT_SS  
.
7. Because the loop amplifiers can only pull the VINT node  
down due to the analog NOR circuit, the CV loop takes  
control of the charging feedback loop and the CC loop is  
disabled.  
The analog NOR (minimum output selector) circuit that couples  
the outputs of the loop amplifiers is optimized to minimize the  
transition time from CC to CV control. Any delay in the trans-  
ition causes the CC loop to remain in control of the charge  
feedback loop after the battery voltage reaches its target value.  
Therefore, the battery voltage continues to rise beyond VBAT_SS  
until the control loop transitions; that is, the battery voltage  
overshoots its target voltage. When the CV loop takes control  
of the charge feedback loop, it reduces the battery voltage to the  
target voltage. A large overshoot in the battery voltage due to  
transition delays can damage the battery; thus, it is crucial to  
minimize delays by implementing a fast CC to CV transition.  
CC  
CHARGE  
ENDS  
0
1
2
3
4
5
TIME (Hours)  
Figure 54. Representative Constant Current to Constant Voltage Transition  
Near the End of a Battery Charging Cycle  
Rev. B | Page 25 of 41  
 
AD8450  
Data Sheet  
I POWER  
BUS  
IOUT  
VCTRL  
R1  
POWER  
CONVERTER  
V
C1  
I
ISET  
BAT  
ISMEA  
ISET  
IVE0  
CC LOOP  
AMPLIFIER  
VINT  
VINT  
PGIA  
ISVP  
ISVN  
+
BUFFER  
+
SENSE  
RESISTOR  
R
VCLP  
G
S
IA  
ANALOG  
NOR  
VCTRL  
VCLN  
1×  
VSET  
CV LOOP  
AMPLIFIER  
MINIMUM  
OUTPUT  
SELECTOR  
BUFFER  
BVPx  
BVNx  
PGDA  
+
+
+
VBAT  
G
DA  
V3  
V4  
1×  
MODE  
BVMEA VSET  
VSETBF VVP0 VVE0  
VINT  
V3 < VCTRL < V4  
0V  
V
VSET  
C2  
R2  
C2  
R2  
Figure 55. Functional Block Diagram of the CC and CV Loops in Discharge Mode (MODE Pin Low)  
Figure 55 is the functional block diagram of the AD8450 CC  
and CV feedback loops for discharge mode (MODE pin is logic  
low. In discharge mode, the feedback loops operate in a similar  
manner as in charge mode. The only difference is in the CV  
loop amplifier, which operates as a noninverting integrator in  
discharge mode. For illustration purposes, the external networks  
connected to the loop amplifiers are simple RC networks  
configured to form single-pole integrators (see Figure 55).  
VINT BUFFER  
The unity-gain amplifier (VINT buffer) is a clamp amplifier  
that drives the VCTRL pin. The VCTRL pin is the control  
output of the AD8450 and the control input of the power  
converter (see Figure 53 and Figure 55). The output voltage  
range of this amplifier is bounded by the clamp voltages at  
the VCLP and VCLN pins such that  
VVCLN − 0.5 V < VVCTRL < VVCLP + 0.5 V  
COMPENSATION  
The reduction in the output voltage range of the amplifier is a  
safety feature that allows the AD8450 to drive devices such as the  
ADP1972 pulse-width modulation (PWM) controller, whose  
input voltage range must not exceed 5.5 V (that is, the voltage at  
the COMP pin of the ADP1972 must be below 5.5 V).  
In battery formation and test systems, the CC and CV feedback  
loops have significantly different open-loop gain and crossover  
frequencies; therefore, each loop requires its own frequency  
compensation. The active filter architecture of the AD8450 CC  
and CV loops allows the frequency response of each loop to be set  
independently via external components. Moreover, due to the  
internal switches in the CC and CV amplifiers, the frequency  
response of the loops in charge mode does not affect the frequency  
response of the loops in discharge mode.  
MODE PIN, CHARGE AND DISCHARGE CONTROL  
The MODE pin is a TTL logic input that configures the AD8450  
for either charge or discharge mode. A logic low (VMODE < 0.8 V)  
corresponds to discharge mode, and a logic high (VMODE > 2 V)  
corresponds to charge mode. Internal to the AD8450, the MODE  
pin toggles all SPDT switches in the CC and CV loop amplifiers  
and inverts the gain polarity of the PGIA.  
Unlike simpler controllers that use passive networks to ground  
for frequency compensation, the AD8450 allows the use of feed-  
back networks for its CC and CV loop filter amplifiers. These  
networks enable the implementation of both PD (Type II) and  
PID (Type III) compensators. Note that in charge mode, both  
the CC and CV loops implement inverting compensators, whereas  
in discharge mode, the CC loop implements an inverting compen-  
sator and the CV loop implements a noninverting compensator.  
As a result, the CV loop in discharge mode includes an additional  
amplifier, VSET buffer, to buffer the VSET node from the feed-  
back network (see Figure 55).  
Rev. B | Page 26 of 41  
 
 
 
 
Data Sheet  
AD8450  
Alternatively, the outputs of the PGIA and PGDA can be tied  
OVERCURRENT AND OVERVOLTAGE  
COMPARATORS  
directly to the sense inputs of the comparators (OCPS and  
OVPS pins) such that the voltages at the ISMEA and BVMEA  
pins are compared to the external reference voltages, VOCP_REF  
and VOVP_REF (see Figure 57). In this configuration, the FAULT  
pin registers a logic low (a fault condition) when  
The AD8450 includes overcurrent protection (OCP) and over-  
voltage protection (OVP) comparators to detect overvoltage  
and overcurrent conditions in the battery. Because the outputs  
of the comparators are combined by a NOR logic gate, these  
comparators output a logic low at the FAULT pin when either  
comparator is tripped (see Figure 49).  
VISMEA > VOCP_REF  
or  
The OCP and OVP comparators can be configured to detect a  
fault in one of two ways. In the configuration shown in Figure 56,  
the voltages at the ISMEA and BVMEA pins are divided down  
and compared to the internal 2.5 V reference of the AD8450. In  
this configuration, the FAULT pin registers a logic low (a fault  
condition) when  
V
BVMEA > VOVP_REF  
ISVP  
ISVN  
+
ISMEA  
PGIA  
BVPx  
BVNx  
R1+ R2  
+
BVMEA  
VISMEA  
>
× 2.5 V  
PGDA  
R2  
or  
R3 + R4  
OVPS  
OVPR  
+
VBVMEA  
>
× 2.5 V  
V
V
OVP_REF  
R3  
+
FAULT  
NOR  
ISVP  
ISVN  
OCPR  
OCPS  
OCP_REF  
+
+
ISMEA  
PGIA  
+
R1  
BVPx  
BVNx  
+
Figure 57. OVP and OCP Comparator Configuration  
Using an External Reference (For Example, a DAC)  
BVMEA  
PGDA  
R3  
OVPS  
OVPR  
+
R4  
FAULT  
NOR  
VREF  
OCPR  
OCPS  
+
R2  
Figure 56. OVP and OCP Comparator Configuration  
Using the Internal Reference  
Rev. B | Page 27 of 41  
 
 
 
AD8450  
Data Sheet  
By means of external resistors, the uncommitted operational  
amplifier is configured as a difference amplifier to measure the  
voltage difference between the IMAX and ISMEA nodes.  
CURRENT SHARING BUS AND IMAX OUTPUT  
Battery formation and test systems that use multiple channels  
bridged together to condition high current battery cells require  
circuitry to balance the total output current among the channels.  
Current balance, or current sharing (CS), can be implemented  
by actively matching the output current of each channel during  
the battery charge/discharge process.  
During the charge process, the charging current and, therefore,  
the voltage at the ISMEA pin, is slightly different in each channel  
due to mismatches in the components that make up each channel.  
Because the CS bus amplifiers are driven by their respective PGIAs  
and have output stages that can only pull up their output nodes,  
the amplifier that requires the highest voltage takes control of the  
CS bus. Therefore, the voltage at the CS bus is pulled up to match  
the VISMEA voltage of the channel with the largest output current.  
The current sharing bus amplifier is a precision unity-gain  
specialty amplifier with an output stage that can only pull up its  
output node (the CSH pin). The amplifier is configured as a  
unity-gain buffer with its input connected to the ISMEA pin  
(the output of the PGIA). If the CSH pin is left unconnected, the  
voltage at the pin is a replica of the voltage at the ISMEA pin.  
The output voltage of the uncommitted op amp in each channel  
is proportional to the difference between the channels output  
current and the largest output current. This output voltage can  
then be used to form a feedback loop that actively corrects the  
channel’s output current by adjusting the channel’s target current  
and target voltage, that is, adjusting VISET and VVSET voltages.  
Figure 58 is a functional block diagram of the current sharing  
circuit. In this example, Channel 0 through Channel n are  
bridged together to charge a high current battery.  
The CS output of each channel is tied to a common bus (CS bus),  
which is buffered by the CS buffer amplifier to the IMAX pin.  
I_0  
CHANNEL 0  
CS BUS  
AMPLIFIER  
UNCOMMITTED  
CS  
OP AMP  
BUFFER  
+
ISVP  
ISVN  
+
+
R
PGIA  
1
S0  
I_0  
I_1  
I_n  
AVEE  
ISMEA  
CS  
IMAX  
OAVP  
OAVN  
OAVO  
R
IBAT  
R
R
R
CORRECTION  
SIGNAL  
V
− V  
CS  
ISMEA  
CHANNEL 0  
CHANNEL 1  
CHANNEL n  
CS BUS  
Figure 58. Functional Block Diagram of the Current Sharing Circuit  
Rev. B | Page 28 of 41  
 
 
Data Sheet  
AD8450  
APPLICATIONS INFORMATION  
This section describes how to use the AD8450 in the context of  
a battery formation and test system. This section includes a design  
example of a small scale model of an actual system. An evaluation  
board for the AD8450 is available and is described in the  
Evaluation Board section.  
POWER SUPPLY CONNECTIONS  
The AD8450 requires two analog power supplies (AVCC and  
AVEE), one digital power supply (DVCC), one analog ground  
(AGND), and one digital ground (DGND). AVCC and AVEE  
power all the analog blocks, including the PGIA, PGDA, op amps,  
and comparators. DVCC powers the MODE input logic circuit  
and the FAULT output logic circuit. AGND provides a reference  
and return path for the 2.5 V reference, and DGND provides a  
reference and return path for the digital circuitry.  
FUNCTIONAL DESCRIPTION  
The AD8450 is a precision analog front end and controller for  
battery formation and test systems. These systems use precision  
controllers and power stages to put batteries through charge and  
discharge cycles. Figure 59 shows the signal path of a simplified  
switching battery formation and test system using the AD8450  
controller and the ADP1972 PWM controller. For more  
The rated absolute maximum value for AVCC − AVEE is 36 V,  
and the minimum operating AVCC and AVEE voltages are +5 V  
and −5 V, respectively. Due to the high PSRR of the AD8450  
analog blocks, AVCC can be connected directly to the high current  
power bus (the input voltage of the power converter) without  
risking the injection of supply noise to the controller outputs.  
information about the ADP1972, see the ADP1972 data sheet.  
The AD8450 is suitable for systems that form and test NiCad,  
NiMH, and Li-Ion batteries and is designed to operate in  
conjunction with both linear and switching power stages.  
A commonly used power supply combination is +25 V and  
−5 V for AVCC and AVEE, and +5 V for DVCC. The +25 V rail  
for AVCC provides enough headroom to the PGIA such that it  
can be connected in a high-side current sensing configuration  
with up to four batteries in series (4S). The −5 V rail for AVEE  
allows the PGDA to sense accidental reverse battery conditions  
(see the Reverse Battery Conditions section).  
The AD8450 includes the following blocks (see Figure 49 and  
the Theory of Operation section for more information).  
Pin programmable gain instrumentation amplifier (PGIA)  
that senses low-side or high-side battery current.  
Pin programmable gain difference amplifier (PGDA) that  
measures the terminal voltage of the battery.  
Two loop filter error amplifiers that receive the battery target  
current and voltage and establish the dynamics of the constant  
current (CC) and constant voltage (CV) feedback loops.  
Minimum output selector circuit that combines the outputs  
of the loop filter error amplifiers to perform automatic CC  
to CV switching.  
Output clamp amplifier that drives the VCTRL pin. The  
voltage range of this amplifier is bounded by the voltage  
at the VCLP and VCLN pins such that it cannot overrange  
the subsequent stage. The output clamp amplifier can drive  
switching and linear power converters. Note that an increas-  
ing voltage at the VCTRL pin must translate to a larger  
output current in the power converter.  
Connect decoupling capacitors to all the supply pins. A 1 μF  
capacitor in parallel with a 0.1 μF capacitor is recommended.  
POWER SUPPLY SEQUENCING  
As detailed in the absolute maximum ratings table (see Table 2),  
the voltage at any input pin other than ISVP, ISVN, BVPx, and  
BVNx cannot exceed the positive analog supply (AVCC) by  
more than 0.5 V and cannot be exceeded by the analog negative  
supply (AVEE) by 0.5V.  
Additionally, supply and ground pins (DVCC, DGND, and  
AGND) cannot exceed the positive analog supply (AVCC) by  
more than 0.5 V and cannot be exceeded by the analog negative  
supply (AVEE) by 0.5V.  
Therefore, power-on and power-off sequencing may be  
required to comply with the absolute maximum ratings.  
Overcurrent and overvoltage comparators whose outputs are  
combined using a NOR gate to drive the FAULT pin. The  
FAULT pin presents a logic low when either comparator is  
tripped.  
Failure to comply with the absolute maximum ratings can result  
in functional failure or damage to the internal ESD diodes.  
Damaged ESD diodes can cause parametric failures and cannot  
provide full ESD protection, reducing reliability.  
2.5 V reference that can be used as the reference voltage for  
the overcurrent and overvoltage comparators. The output  
node of the 2.5 V reference is the VREF pin.  
Current sharing amplifier that detects the maximum battery  
current among several charging channels and whose output  
can be used to implement current balancing.  
Logic input pin (MODE) that changes the configuration of  
the controller from charge to discharge mode. A logic high  
at the MODE pin configures charge mode; a logic low  
configures discharge mode.  
POWER-ON SEQUENCE  
To power on the device, take the following steps:  
1. Turn on AVCC  
2. Turn on AVEE  
3. Turn on DVCC  
4. Turn on the input signals  
The positive analog supply (AVCC) and the negative analog  
supply (AVEE) may be turned on simultaneously.  
Rev. B | Page 29 of 41  
 
 
 
 
 
AD8450  
Data Sheet  
Table 5. PGIA Gain Connections  
PGIA Gain Connect RGP (Pin 2) to Connect RGN (Pin 19) to  
POWER-OFF SEQUENCE  
To power off the device, take the following steps:  
26  
ISGP0 (Pin 4)  
ISGP1 (Pin 6)  
ISGP2 (Pin 8)  
ISGP3 (Pin 9)  
ISGN0 (Pin 17)  
ISGN1 (Pin 15)  
ISGN2 (Pin 13)  
ISGN3 (Pin 12)  
1. Turn off the input signals.  
2. Turn off DVCC.  
3. Turn off AVEE.  
66  
133  
200  
4. Turn off AVCC.  
If a different gain value is desired, connect 10 kΩ feedback resistors  
between the inverting inputs of the PGIA preamplifiers (RGP  
and RGN pins) and the outputs of the PGIA preamplifiers (RFBP  
and RFBN pins). Also, connect a gain resistor (RG) between the  
RGP and RGN pins. When using external resistors, the gain of  
the PGIA is  
The positive analog supply (AVCC) and the negative analog  
supply (AVEE) may be turned off simultaneously.  
PGIA CONNECTIONS  
For a description of the PGIA, see the Theory of Operation  
section, Figure 49, and Figure 51. The internal gains of the  
PGIA (26, 66, 133, and 200) are selected by hardwiring the  
appropriate pin combinations (see Table 5).  
Gain = 2 × (1 + 20 kΩ/RG)  
SET  
BATTERY  
CURRENT  
CONSTANT  
AVCC  
VINT  
VOLTAGE LOOP  
FILTER AMPLIFIER  
ISET  
BUFFER  
+
OUTPUT  
FILTER  
VCTRL  
LEVEL  
SHIFTER  
OUTPUT  
DRIVERS  
ADP1972  
PWM  
1×  
CC AND CV  
GATES  
CONSTANT  
CURRENT LOOP  
FILTER AMPLIFIER  
SET  
BATTERY  
VOLTAGE  
+
VSET  
1×  
DC-TO-DC  
POWER CONVERTER  
AVEE  
AD8450  
CONTROLLER  
MODE  
SWITCHES (3)  
C
D
C
D
C
D
C = CHARGE  
D = DISCHARGE  
CV  
BUFFER  
FAULT  
BATTERY  
CURRENT  
VINT  
NOR  
OVERVOLTAGE  
COMPARATOR  
OVERCURRENT  
COMPARATOR  
ISVP  
ISVN  
+
SENSE  
RESISTOR  
PGIA  
VREF  
OVPS  
OVPR  
OCPR  
OCPS  
EXTERNAL PASSIVE  
COMPENSATION  
NETWORK  
ISMEA  
BVPx  
BVNx  
+
BVMEA  
PGDA  
BATTERY  
Figure 59. Complete Signal Path of a Battery Test or Formation System Suitable for Li-Ion Batteries  
Rev. B | Page 30 of 41  
 
 
 
 
Data Sheet  
AD8450  
Current Sensors  
Set the PGDA gain value to attenuate the voltage of up to four 5 V  
battery cells in series to a full-scale voltage of 4 V. For example, a  
5 V battery voltage is attenuated to 4 V using the gain of 0.8, and  
a 20 V battery voltage (four 5 V batteries in series) is attenuated  
to 4 V using the gain of 0.2. This voltage scaling enables the use of  
a 5 V ADC to read the battery voltage at the BVMEA output pin.  
Two common options for current sensors are isolated current  
sensing transducers and shunt resistors. Isolated current sensing  
transducers are galvanically isolated from the power converter  
and are affected less by the high frequency noise generated by  
switch mode power supplies. Shunt resistors are less expensive  
and easier to deploy.  
Reverse Battery Conditions  
If a shunt resistor sensor is used, a 4-terminal, low resistance shunt  
resistor is recommended. Two of the four terminals conduct the  
battery current, whereas the other two terminals conduct virtually  
no current. The terminals that conduct no current are sense  
terminals that are used to measure the voltage drop across the  
resistor (and, therefore, the current flowing through it) using an  
amplifier such as the PGIA of the AD8450. To interface the PGIA  
with the current sensor, connect the sense terminals of the sensor  
to the ISVP and ISVN pins of the AD8450 (see Figure 60).  
The output voltage of the AD8450 PGDA can be used to detect  
a reverse battery connection. A −5 V rail for AVEE allows the  
output of the PGDA to go below ground when the battery is  
connected backward. Therefore, the condition can be detected  
by monitoring the BVMEA pin for a negative voltage.  
BATTERY CURRENT AND VOLTAGE CONTROL  
INPUTS (ISET AND VSET)  
The voltages at the ISET and VSET input pins set the target  
battery current and voltage for the constant current (CC) and  
constant voltage (CV) loops. These inputs must be driven by a  
precision voltage source (or a DAC connected to a precision  
reference) whose output voltage is referenced to the same voltage  
as the PGIA and PGDA reference pins (ISREFH/ISREFL and  
BVREFH/BVREFL, respectively). For example, if the PGIA ref-  
erence pins are connected to AGND, the voltage source connected  
to ISET must also be referenced to AGND. In the same way, if  
the PGDA reference pins are connected to AGND, the voltage  
source connected to VSET must also be referenced to AGND.  
Optional Low-Pass Filter  
The AD8450 is designed to control both linear regulators and  
switching power converters. Linear regulators are generally  
noise free, whereas switch mode power converters generate  
switching noise. Connecting an external differential low-pass  
filter between the current sensor and the PGIA inputs reduces  
the injection of switching noise into the PGIA (see Figure 60).  
ISVP  
+
RGP  
In constant current mode, when the CC feedback loop is in  
steady state, the ISET input sets the battery current as follows:  
RFBP  
20kΩ  
10kΩ  
10kΩ  
10kΩ  
ISGPx  
VISET  
IBAT_SS  
=
+
LPF  
G
IA ×RS  
RGn  
10kΩ  
ISGNx  
RFBN  
where:  
IA is the PGIA gain.  
RS is the value of the shunt resistor.  
20kΩ  
DUT  
G
RGN  
ISVN  
+
In constant voltage mode, when the CV feedback loop is in  
steady state, the VSET input sets the battery voltage as follows:  
Figure 60. 4-Terminal Shunt Resistor Connected to the Current Sense PGIA  
VVSET  
GDA  
PGDA CONNECTIONS  
VBAT_SS  
=
For a description of the PGDA, see the Theory of Operation  
section, Figure 49, and Figure 52. The internal gains of the  
PGDA (0.2, 0.27, 0.4, and 0.8) are selected by connecting the  
appropriate input pair to the battery terminals (see Table 6).  
where GDA is the PGDA gain.  
Therefore, the accuracy and temperature stability of the formation  
and test system are dependent not only on the precision of the  
AD8450, but also on the accuracy of the ISET and VSET inputs.  
Table 6. PGDA Gain Connections  
PGDA  
Gain  
Connect Battery  
Positive Terminal to  
Connect Battery  
Negative Terminal to  
0.8  
0.4  
0.27  
0.2  
BVP0 (Pin 25)  
BVP1 (Pin 24)  
BVP2 (Pin 23)  
BVP3 (Pin 22)  
BVN0 (Pin 31)  
BVN1 (Pin 32)  
BVN2 (Pin 33)  
BVN3 (Pin 34)  
Rev. B | Page 31 of 41  
 
 
 
 
 
AD8450  
Data Sheet  
LOOP FILTER AMPLIFIERS  
OVERVOLTAGE AND OVERCURRENT  
COMPARATORS  
The AD8450 has two loop filter amplifiers, also known as error  
amplifiers (see Figure 59). One amplifier is for constant current  
control (CC loop filter amplifier), and the other amplifier is for  
constant voltage control (CV loop filter amplifier). The outputs  
of these amplifiers are combined using a minimum output  
selector circuit to perform automatic CC to CV switching.  
The reference inputs of the overvoltage and overcurrent comparators  
can be driven with external voltage references or with the internal  
2.5 V reference (adjacent VREF pin). If external voltage references  
are used, the sense inputs can be driven directly by the PGIA and  
PGDA output nodes, ISMEA and BVMEA, respectively. If the  
internal 2.5 V reference is used, the sense inputs can be driven  
by resistor dividers, which attenuate the voltage at the ISMEA  
and BVMEA nodes. For more information, see the Overcurrent  
and Overvoltage Comparators section.  
Table 7 lists the inputs of the loop filter amplifiers for charge  
mode and discharge mode.  
Table 7. Integrator Input Connections  
Reference Feedback  
STEP BY STEP DESIGN EXAMPLE  
Feedback Loop Function  
Input  
Terminal  
This section describes the systematic design of a 1 A battery  
charger/discharger using the AD8450 controller and the ADP1972  
pulse-width modulation (PWM) controller. The power converter  
used in this design is a nonisolated buck boost dc-to-dc converter.  
The target battery is a 4.2 V fully charged, 2.7 V fully discharged  
Li-Ion battery.  
Control the Current While  
Discharging a Battery  
Control the Current While Charging a  
Battery  
Control the Voltage While  
Discharging a Battery  
Control the Voltage While Charging a  
Battery  
ISET  
IVE0  
ISET  
IVE1  
VSET  
VSET  
VVE0  
VVE1  
Step 1: Design the Switching Power Converter  
Select the switches and passive components of the buck boost  
power converter to support the 1 A maximum battery current.  
The design of the power converter is beyond the scope of this  
data sheet; however, there are many application notes and other  
helpful documents available from manufacturers of integrated  
driver circuits and power MOSFET output devices that can be  
used for reference.  
The CC and CV amplifiers in charge mode and the CC amplifier  
in discharge mode are inverting integrators, whereas the CV  
amplifier in discharge mode is a noninverting integrator. There-  
fore, the CV amplifier in discharge mode uses an extra amplifier,  
the VSET buffer, to buffer the VSET input pin (see Figure 49).  
Also, the CV amplifier in discharge mode uses the VVP0 pin to  
couple the signal from the BVMEA pin to the integrator.  
Step 2: Identify the Control Voltage Range of the  
ADP1972  
CONNECTING TO A PWM CONTROLLER (VCTRL PIN)  
The VCTRL output pin of the AD8450 is designed to interface  
with linear power converters and with pulse-width modulation  
(PWM) controllers such as the ADP1972. The voltage range of  
the VCTRL output pin is bounded by the voltages at the VCLP  
and VCLN pins, as follows:  
The control voltage range of the ADP1972 (voltage range of the  
COMP input pin) is 0.5 V to 4.5 V. An input voltage of 4.5 V  
results in the highest duty cycle and output current, whereas an  
input voltage of 0.5 V results in the lowest duty cycle and output  
current. Because the COMP pin connects directly to the VCTRL  
output pin of the AD8450, the battery current is proportional to  
the voltage at the VCTRL pin.  
VVCLN − 0.5 V < VVCTRL < VVCLP + 0.5 V  
Because the maximum rated input voltage at the COMP pin of  
the ADP1972 is 5.5 V, connect the clamp voltages of the output  
amplifier to +5 V (VCLP) and ground (VCLN) to prevent over-  
ranging of the COMP input. As an additional precaution, install  
an external 5.1 V Zener diode from the COMP pin to ground  
with a series 1 kΩ resistor connected between the VCTRL and  
COMP pins. Consult the ADP1972 data sheet for additional  
applications information.  
For information about how to interface the ADP1972 to the  
power converter switches, see the ADP1972 data sheet.  
Step 3: Determine the Control Voltage for the CV Loop  
and the PGDA Gain  
The relationship between the control voltage for the CV loop  
(the voltage at the VSET pin), the target battery voltage, and the  
PGDA gain is as follows:  
Given the architecture of the AD8450, the controller requires  
that an increasing voltage at the VCTRL pin translate to a larger  
output current in the power converter. If this is not the case, a  
unity-gain inverting amplifier can be added in series with the  
AD8450 output to add an extra inversion.  
VVSET  
CV Battery Target Voltage =  
PGDAGain  
In charge mode, for a CV battery target voltage of 4.2 V, the  
PGDA gain of 0.8 maximizes the dynamic range of the PGDA.  
Therefore, select a CV control voltage of 3.36 V. In discharge  
mode, for a CV battery target voltage of 2.7 V, the CV control  
voltage is 2.16 V.  
Rev. B | Page 32 of 41  
 
 
 
 
 
Data Sheet  
AD8450  
Step 4: Determine the Control Voltage for the CC Loop,  
the Shunt Resistor, and the PGIA Gain  
Step 5: Choose the Control Voltage Sources  
The input control voltages (the voltages at the ISET and VSET pins)  
can be generated by an analog voltage source such as a voltage  
reference or by a digital-to-analog converter (DAC). In both  
cases, select a device that provides a stable, low noise output  
voltage. If a DAC is preferred, Analog Devices offers a wide  
range of precision converters. For example, the AD5668 16-bit  
DAC provides up to eight 0 V to 4 V sources when connected to  
an external 2 V reference.  
The relationship between the control voltage for the CC loop  
(the voltage at the ISET pin), the target battery current, and the  
PGIA gain is as follows:  
VISET  
CC Battery Target Current =  
RS × PGIA Gain  
The voltage across the shunt resistor is as follows:  
VISET  
Shunt Resistor Voltage =  
PGIA Gain  
To maximize accuracy, the control voltage sources must be  
referenced to the same potential as the outputs of the PGIA and  
PGDA. For example, if the PGIA and PGDA reference pins are  
connected to AGND, connect the reference pins of the control  
voltage sources to AGND.  
Selecting the highest PGIA gain of 200 reduces the voltage across  
the shunt resistor, minimizing dissipated power and inaccuracies  
due to self heating. For a PGIA gain of 200 and a target current  
of 1 A, choosing a 20 mΩ shunt resistor results in a control  
voltage of 4 V.  
Step 6: Select the Compensation Devices  
Feedback controlled switching power converters require frequency  
compensation to guarantee loop stability. There are many refer-  
ences available about how to design the compensation for such  
power converters. The AD8450 provides active loop-filter error-  
amplifiers for the CC and CV control loops that can implement  
PI, PD, and PID compensators using external passive components.  
When selecting a shunt resistor, pay close attention to the  
resistor style and construction. For low power applications,  
many surface-mount (SMD), temperature stable styles are  
available that solder to a mating pad on a printed circuit board  
(PCB). For optimum accuracy, specify a 4-terminal shunt  
resistor that provides separate high current and sense terminals.  
This type of resistor directs the majority of the battery current  
through a high current path. An additional pair of terminals  
provides a separate connection for the input leads to the PGIA,  
avoiding the power loss inherent to forcing the full battery  
current through the distance to the PGIA pins. Because the bias  
current is so low, the sense error is significantly less than if the  
battery current were to transverse the additional lead length.  
ADDITIONAL INFORMATION  
Additional information relative to using the AD8450 is available in  
the AN-1319, Compensator Design for a Battery Charge/Discharge  
Unit Using the AD8450 or the AD8451.  
Rev. B | Page 33 of 41  
 
AD8450  
Data Sheet  
EVALUATION BOARD  
INTRODUCTION  
FEATURES AND TESTS  
Figure 61 is a photograph of the AD8450-EVALZ. The evaluation  
board is a convenient standalone platform for evaluating the  
major elements of the AD8450 (such as the PGIA and PGDA).  
The circuit architecture is particularly suitable for evaluating  
PID loop compensation when connected within an operating  
charge/discharge system. Four separate loop dynamic networks are  
available for constant current charge and discharge, and constant  
voltage charge and discharge. The network subcircuits are shown  
on the right hand side of the board schematic (Figure 62).  
The AD8450-EVALZ contains many user friendly features to  
facilitate evaluation of the AD8450 performance. Numerous  
connectors, test loops, and points facilitate the attachment of  
scope probes and cables, and I/O switches conveniently exercise  
various device options.  
TESTING THE AD8450-EVALZ  
The schematic item abbreviation TP signifies a test loop. Prior  
to testing, install Jumpers TST1 through TST5 and move the  
Shunts RUN1 through RUN5 to a single pin to open the  
connection. Connect +25 V at AVCC, −5 V at AVEE, and  
+5 V at DVCC.  
SMA connectors provide shielded access to the highly sensitive  
programmable gain instrumentation amplifier (PGIA) and the  
programmable gain difference amplifier (PGDA). SMA connectors  
ISET and VSET are the constant current and constant voltage  
control inputs. The ISMEA and VCTRL outputs, current and  
voltage alarm references, and trigger voltages are accessible for  
testing. The MODE switch selects either the charge or discharge  
option. Figure 62 is a schematic of the AD8450-EVALZ. Table 8  
lists and describes the various switches and their functions and  
lists the SMA connector I/O.  
PGIA and Offset  
PGIA Gain Test  
Apply 10 mV dc across TPISVP and TPISVN. For bench testing,  
connect ISVN to ground using an external jumper. Use the  
ISGN switch to select the desired PGIA gain option, and measure  
the output voltage at TPISMEA or TPIMAX (referenced to  
ground). For gains of 26, 66, 133, and 200, the output voltages  
are 260 mV, 660 mV, 1.33 V, and 2 V, respectively. Subtract any  
residual offset voltages from the output reading before  
calculating the gain.  
Figure 61. Photograph of the AD8450-EVALZ  
Rev. B | Page 34 of 41  
 
 
 
 
 
Data Sheet  
AD8450  
Table 8. AD8450-EVALZ Test Switches and Their Functions  
Default  
Switch  
ISGN  
Function  
Operation  
Position1  
PGIA gain switch  
PGDA gain switch  
The ISGN switch selects one of four fixed gain values: 26, 66, 133, or 200.  
The BVGN switch selects one of four fixed gain values: 0.2, 0.27, 0.4, or 0.8.  
User select  
N/A  
BVGN  
IS_REF  
Selects between offset options for NORM: 0 V reference.  
NORM  
the PGIA  
20mV: offsets the PGIA reference by 20 mV.  
EXT: An externally supplied reference voltage is applied to the PGIA.  
NORM: Overvoltage (OV) reference applied.  
5mV: The BVDA is offset by 5 mV.  
EXT: An externally supplied reference voltage is applied to the BVDA.  
The MODE switch selects CHG (logic high) or DISCH (logic low).  
BV_REF  
MODE  
Selects input source option for  
the BVREFH pin  
NORM  
Selects charge or discharge mode  
CHG  
RUN  
RUN_TEST1 Configures the ISET and VSET  
inputs to test the integrators.  
RUN: The ISET and VSET inputs are connected to SMA connectors ISET  
and VSET.  
TEST: connectors the ISET and VSET inputs to the 2.5 V reference.  
RUN: configures the ISET and VSET outputs as integrators.  
TEST: configures the ISET and VSET outputs as followers.  
RUN_TEST2 Configures the ISET and VSET  
outputs to test the integrators.  
RUN  
1 N/A means not applicable.  
Table 9. AD8450-EVALZ SMA Connector Functions  
Connector  
Function  
ISVP  
ISVN  
BVP  
BVN  
Input from the battery current sensor to the PGIA positive input.  
Input from the battery current sensor to the PGIA negative input.  
Input from the battery positive voltage terminal to the PGDA positive input.  
Input from the battery negative voltage terminal to the PGDA negative input.  
Input to the AD8450 ISET pin.  
ISET  
VSET  
Input to the AD8450 VSET pin.  
VCTRL  
CS_BUS  
AD8450 control voltage output to the PWM or analog power supply COMP input.  
AD8450 current sharing input/output bus.  
PGDA and Offset  
PGIA in an Application  
Simple Test  
The differential inputs of the PGIA assume the use of a high-  
side current shunt in series with the battery. To connect the  
evaluation board in an application, simply connect the ISVP  
and ISVN to the positive and negative shunt connections. Be  
sure that both inputs are floating (ungrounded). The ISVP and  
ISVN inputs tolerate the full AVCC common-mode voltage  
applied to the board.  
The PGDA has four gain options (0.8, 0.4, 0.27, and 0.2) selected  
with the four-position BVGN slide switch. Set the BV_REF  
switch to the NORM position. Test the PGDA amplifier in the  
same manner as PGIA. Apply 1 V dc between TPBVP and TPBVN.  
Measure the output voltages at TPBVMEA. The output voltages  
are 0.8 V, 0.4 V, 0.27 V, and 0.2 V, respectively, at the four BVGN  
switch positions.  
Simple Offset Test  
PGDA in an Application  
Short the PGIA inputs from TPISVP to TPISVN to one of the  
black ground loops. The ISMEA output is 0 V the residual  
offset voltage multiplied by the gain. Move the IS_REF switch  
to the 20 mV position to increase ISMEA by 20 mV.  
For connection to an application, simply connect the input  
terminal across the battery. It is good practice to take advantage of  
the differential input to achieve the most accurate measurements.  
Offset in an Application  
PGDA Offset  
In certain instances, the system operates with various ground  
voltage levels. Although the PGIA is differential and floating, it  
may be advantageous to refer the PGIA to a ground at or near  
the battery load.  
The BV_REF offset works just the same as the IS_REF except  
that the fixed offset is 5 mV. Simply use the BV_REF switch to  
select the option. For an external offset reference, move the  
BV_REF switch to EXT and connect a wire from the TPBREFL  
and TPBREFH test loops to the desired reference points.  
Rev. B | Page 35 of 41  
 
AD8450  
Data Sheet  
Overload Comparators  
CC and CV Integrator Tests  
The AD8450 features identical fault sensing comparators for  
overcurrent (OCPS pin) and overvoltage (OVPS pin) to help  
protect against battery damage. The reference pins, OVPR and  
OCPR, are hardwired via 0 Ω resistors, R27 and R28, to the 2.5 V  
reference. The outputs of the comparators are connected together  
internally, and are active low in the event of an overdrive of  
either parameter.  
The RUN_TEST1 and RUN_TEST2 switches provide all the circuit  
switching required to test the integrator. Set RUN_TEST1 to the  
TEST position and apply 2.5 V to the ISET and VSET inputs;  
then read 2.5 V at the VCTRL output. Set RUN_TEST2 to  
TEST_CC, then TEST_CV, and the VCTRL output voltage still  
measures 2.5 V.  
Uncommitted Op Amp  
For reference, the sense pins are set at 20% greater than the  
reference. For other sense voltage ratios, simply calculate a new  
value for the resistor divider. The 2.49 kΩ resistor was selected  
as an easy equivalent to the 2.5 V reference, the 499 Ω resistors  
to the ISMEA and BVMEA as 20% greater. These values were  
selected for an experimental 1 A charge/discharge system built  
in the lab. Other ratios and values are user selected.  
The uncommitted op amp is configured as a follower (R24 is  
installed between the OAVN pin and the OAVO pin). The input  
pin, OAVP, is jumper connected to ground via OAVP. To test  
the uncommitted op amp, simply connect a jumper from TP2.5V  
and Pin 1 of Jumper OAV P. T h e output TPOAVO reads 2.5 V.  
USING THE AD8450  
Except for the power converter and accessories, such as filters  
and current sensing, the AD8450-EVALZ includes all of the  
signal path elements necessary to implement a battery charging/  
forming system (see Figure 59).  
As a basic test or experiment, simply apply enough voltage at  
the PGIA or PGDA inputs to exceed 3 V at ISMEA or BVMEA.  
The FAULT output pin switches from 5 V to 0 V if either input  
exceeds the sense trigger level.  
The AD8450 is usable with either linear or switch mode power  
converters. Switching converters typically generate higher noise  
levels than linear; however, switching converters are the most  
popular by far because of significantly higher efficiency and  
lower cost. Regardless of the power converter architecture used, the  
PID loop must be configured to reflect the phase shift and gain of  
the power stage. Circuit simulation is helpful with this task.  
VSET Buffer  
The VSET buffer is a unity gain, voltage follower pin accessible  
for testing. Apply a voltage up to 5 V at the VSET input, and  
measure the output at TPVSETBF.  
CV and CC Loop Filter Amplifiers  
The constant voltage (CV) and constant current (CC) integrators  
are identical circuits and are the two active integrator elements of  
the master loop compensation and switching block (see Figure 49).  
Except for their external connections, the two circuits are identical  
and are tested in the same way, sequentially. The integrator  
outputs are analog ORed together, creating the VCTRL output to  
the input of an external pulse-width modulation controller.  
On the right hand side of Figure 62 are four universal loop  
compensation circuits. All or part of the circuits are usable  
for installing fixed components when the AD8450-EVALZ is  
connected to a battery system for design verification. There are  
two feedback amplifiers, but four potentially distinctive separate  
configurations. The types and values of passive components  
vary according to the power converter and its characteristics.  
As shown in Figure 49, the integrator op amp inputs are called  
IVE0, IVE1, VVE0, VVE1, and VVP0. The first two letters (IV  
or VV) signify the constant current or constant voltage integrator.  
The third letter identifies the noninverting input (P) or the  
inverting input (E for error input). The final digit (0 or 1)  
indicates the state of the mode circuit (0 for discharge and 1  
for charge). Because the integrators are connected in parallel,  
a static test of either integrator requires disabling the other by  
forcing the output to the supply rail, reverse biasing the  
transistor/diode gate.  
To use the board for setting up a charging system, replace the  
10 kΩ resistors in the feedback (there are no capacitors installed)  
and connect the measured feedback voltages by installing  
jumpers RUN1 through RUN5. Remove jumpers TST1 through  
TST5 and install capacitors associated with the integrator.  
Rev. B | Page 36 of 41  
 
Data Sheet  
AD8450  
SCHEMATIC AND ARTWORK  
E E V A  
T N I V  
C N  
V P O S  
D E O M  
6 1  
6 2  
6 3  
6 4  
6 5  
6 6  
6 7  
6 8  
6 9  
7 0  
7 1  
7 2  
7 3  
7 4  
7 5  
7 6  
7 7  
7 8  
7 9  
8 0  
4 0  
3 9  
3 8  
3 7  
3 6  
3 5  
V P O S  
D E O M  
C N  
C N  
C C A V  
E A V M B  
1
0
V I E  
V I E  
E A V M B  
V 5 −  
V E A E  
C N  
S 3 N B V  
3 N B V  
2 N B V  
1 N B V  
0 N B V  
S L F R E B V  
L F R E B V  
N D A G  
S 3 N B V  
T E S I  
3 4 3 N B V  
O V A O  
N V A O  
C C V A  
E A M S I  
3 3  
3 2  
2 N B V  
1 N B V  
O V A O  
2 5  
V
3 1 0 N B V  
3 0  
S L F B R E  
E E V A  
F E R V  
H F E R S I  
D N G A  
L F E R S I  
L F S E R S I  
P V A O  
X A M I  
2 9  
2 8  
2 7  
2 6  
2 5  
2 4  
2 3  
2 2  
2 1  
L F B R E  
L F B P R T E  
H F R E B V  
E F V R  
H F B R E  
E F V R  
0 P B V  
1 P B V  
2 P B V  
S L E F S I R  
3 P B V  
0 P B V  
1 P B V  
2 P B V  
3 P B V  
S 3 P B V  
S C H  
Figure 62. Schematic of the AD8450 Evaluation Board  
Rev. B | Page 37 of 41  
 
 
AD8450  
Data Sheet  
Figure 63. Top Silkscreen of the AD8450-EVALZ  
Figure 64. AD8450-EVALZ Primary Side Copper  
Rev. B | Page 38 of 41  
Data Sheet  
AD8450  
Figure 65. AD8450-EVALZ Secondary Side Copper  
Figure 66. AD8450-EVALZ Power Plane  
Rev. B | Page 39 of 41  
AD8450  
Data Sheet  
Figure 67. AD8450-EVALZ Ground Plane  
Rev. B | Page 40 of 41  
Data Sheet  
AD8450  
OUTLINE DIMENSIONS  
16.20  
16.00 SQ  
15.80  
0.75  
0.60  
0.45  
1.60  
MAX  
61  
80  
60  
1
PIN 1  
14.20  
14.00 SQ  
13.80  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
0.10  
COPLANARITY  
20  
41  
0.15  
0.05  
40  
21  
SEATING  
PLANE  
VIEW A  
0.65  
0.38  
0.32  
0.22  
BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BEC  
Figure 68. 80-Lead Low Profile Quad Flat Package [LQFP]  
(ST-80-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
AD8450ASTZ  
AD8450ASTZ-RL  
AD8450-EVALZ  
80-Lead Low Profile Quad Flat Package [LQFP]  
80-Lead Low Profile Quad Flat Package [LQFP]  
Evaluation Board  
ST-80-2  
ST-80-2  
1 Z = RoHS Compliant Part.  
©2014–2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11966-0-8/15(B)  
Rev. B | Page 41 of 41  
 
 

相关型号:

AD8450-EVALZ

Precision Analog Front End and Controller
ADI

AD8450ASTZ

Precision Analog Front End and Controller
ADI

AD8450ASTZ-RL

Precision Analog Front End and Controller
ADI

AD8450_17

Precision Analog Front End and Controller
ADI

AD8451

Low Cost, Precision Analog Front End and Controller for Battery Test/Formation Systems
ADI

AD8451-EVALZ

Low Cost, Precision Analog Front End and Controller for Battery Test/Formation Systems
ADI

AD8451ASTZ

Low Cost Precision Analog Front End and Controller for Battery Test/Formation Systems
ADI

AD8451ASTZ-RL

Low Cost Precision Analog Front End and Controller for Battery Test/Formation Systems
ADI

AD8451_17

Low Cost, Precision Analog Front End and Controller for Battery Test/Formation Systems
ADI

AD8452

Precision Integrated Analog Front End, Controller
ADI

AD8452-EVALZ

Precision Integrated Analog Front End, Controller
ADI

AD8452ASTZ

Precision Integrated Analog Front End, Controller, and PWM for Battery Test and Formation Systems
ADI