AD8451-EVALZ [ADI]

Low Cost, Precision Analog Front End and Controller for Battery Test/Formation Systems;
AD8451-EVALZ
型号: AD8451-EVALZ
厂家: ADI    ADI
描述:

Low Cost, Precision Analog Front End and Controller for Battery Test/Formation Systems

电池
文件: 总33页 (文件大小:949K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, Precision Analog Front End and  
Controller for Battery Test/Formation Systems  
Data Sheet  
AD8451  
FEATURES  
GENERAL DESCRIPTION  
Integrated constant current and voltage modes with  
automatic switchover  
Charge and discharge modes  
Precision voltage and current measurement  
Integrated precision control feedback blocks  
Precision interface to PWM or linear power converters  
Fixed gain settings  
Current sense gain: 26 V/V (typ)  
Voltage sense gain: 0.8 V/V (typ)  
Excellent ac and dc performance  
Maximum offset voltage drift: 0.9 µV/°C  
Maximum gain drift: 3 ppm/°C  
The AD8451 is a precision analog front end and controller for  
testing and monitoring battery cells. A precision fixed gain  
instrumentation amplifier (IA) measures the battery charge/  
discharge current, and a fixed gain difference amplifier (DA)  
measures the battery voltage (see Figure 1). Internal laser  
trimmed resistor networks set the gains for the IA and the DA,  
optimizing the performance of the AD8451 over the rated  
temperature range. The IA gain is 26 V/V and the DA gain is  
0.8 V/V.  
Voltages at the ISET and VSET inputs set the desired constant  
current (CC) and constant voltage (CV) values. CC to CV  
switching is automatic and transparent to the system.  
Low current sense amplifier input voltage noise: 9 nV/√Hz typ  
Current sense CMRR: 108 dB min  
TTL compliant logic  
A TTL logic level input, MODE, selects the charge or discharge  
mode (high for charge, and low for discharge). An analog output,  
VCTRL, interfaces directly with the Analog Devices, Inc.,  
ADP1972 pulse-width modulation (PWM) controller.  
APPLICATIONS  
The AD8451 simplifies designs by providing excellent accuracy,  
performance over temperature, flexibility with functionality,  
and overall reliability in a space-saving package. The AD8451 is  
available in an 80-lead, 14 mm × 14 mm × 1.40 mm LQFP and  
is rated for an operating temperature of −40°C to +85°C.  
Battery cell formation and testing  
Battery module testing  
FUNCTIONAL BLOCK DIAGRAM  
ISREFH/  
ISREFL ISMEA ISET IVE0/IVE1  
VINT  
AD8451  
ISVP  
CONSTANT  
VCLP  
CURRENT LOOP  
MUX  
FILTER  
26  
×1  
VCTRL  
VCLN  
ISVN  
MODE  
BVP  
CURRENT  
SENSE IA  
(CHARGE/  
DISCHARGE)  
SWITCHING  
VOLTAGE  
SENSE DA  
VOLTAGE  
REFERENCE  
VREF  
0.8  
CONSTANT  
VOLTAGE LOOP  
FILTER  
BVN  
BVREFH/  
BVREFL  
BVMEA VSET VVE0/  
VVE1  
VVP0  
VSETBF VINT  
Figure 1.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2014 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
 
AD8451* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
AD8451 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
EVALUATION KITS  
AD8451 Evaluation Board  
DOCUMENTATION  
Application Notes  
DISCUSSIONS  
View all AD8451 EngineerZone Discussions.  
AN-1319: Compensator Design for a Battery Charge/  
Discharge Unit Using the AD8450 or the AD8451  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
Data Sheet  
AD8451: Low Cost, Precision Analog Front End and  
Controller for Battery Test/Formation Systems Data Sheet  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
User Guides  
UG-845: AD8450/ADP1972 Battery Testing and Formation  
Evaluation Board  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
TOOLS AND SIMULATIONS  
AD8451 SPICE Macro Model  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD8451  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
MODE Pin, Charge and Discharge Control ........................... 21  
Applications Information .............................................................. 22  
Functional Description.............................................................. 22  
Power Supply Connections ....................................................... 23  
Current Sense IA Connections................................................. 23  
Voltage Sense DA Connections................................................ 23  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 9  
IA Characteristics ......................................................................... 9  
DA Characteristics ..................................................................... 11  
CC and CV Loop Filter Amplifiers, and VSET Buffer .......... 13  
VINT Buffer ................................................................................ 15  
Reference Characteristics .......................................................... 16  
Theory of Operation ...................................................................... 17  
Overview...................................................................................... 17  
Instrumentation Amplifier (IA) ............................................... 18  
Difference Amplifier (DA)........................................................ 19  
CC and CV Loop Filter Amplifiers.......................................... 19  
Battery Current and Voltage Control Inputs (ISET and VSET)  
....................................................................................................... 23  
Loop Filter Amplifiers ............................................................... 24  
Connecting to a PWM Controller (VCTRL Pin) ...................... 24  
Step-by-Step Design Example................................................... 24  
Evaluation Board ............................................................................ 26  
Introduction................................................................................ 26  
Features and Tests....................................................................... 26  
Evaluating the AD8451.............................................................. 27  
Schematic and Artwork............................................................. 28  
Outline Dimensions....................................................................... 32  
Ordering Guide .......................................................................... 32  
REVISION HISTORY  
3/14—Revision 0: Initial Version  
Rev. 0 | Page 2 of 32  
 
Data Sheet  
AD8451  
SPECIFICATIONS  
AVCC = +15 V, AVEE = −15 V; DVCC = +5 V; TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ Max  
Unit  
CURRENT SENSE INSTRUMENTATION AMPLIFIER  
Internal Fixed Gain  
Gain Error  
Gain Drift  
Gain Nonlinearity  
Offset Voltage (RTI)  
26  
0.1  
3
V/V  
%
ppm/°C  
ppm  
µV  
VISMEA = 10 V  
TA = TMIN to TMAX  
VISMEA = 10 V, RL = 2 kΩ  
ISREFH and ISREFL pins grounded  
TA = TMIN to TMAX  
3
−110  
+110  
0.9  
Offset Voltage Drift  
Input Bias Current  
µV/°C  
nA  
15  
30  
Temperature Coefficient  
Input Offset Current  
TA = TMIN to TMAX  
150  
2
pA/°C  
nA  
Temperature Coefficient  
Input Common-Mode Voltage Range  
Over Temperature  
Overvoltage Input Range  
Differential Input Impedance  
Input Common-Mode Impedance  
Output Voltage Swing  
Over Temperature  
Capacitive Load Drive  
Short-Circuit Current  
Reference Input Voltage Range  
Reference Input Bias Current  
Output Voltage Level Shift  
Maximum  
TA = TMIN to TMAX  
VISVP − VISVN = 0 V  
TA = TMIN to TMAX  
10  
pA/°C  
V
V
AVEE + 2.3  
AVEE + 2.6  
AVCC − 55  
AVCC − 2.4  
AVCC − 2.6  
AVEE + 55  
V
150  
150  
GΩ  
GΩ  
V
V
pF  
mA  
V
µA  
AVEE + 1.5  
AVEE + 1.7  
AVCC − 1.2  
AVCC − 1.4  
1000  
TA = TMIN to TMAX  
40  
5
ISREFH and ISREFL pins tied together  
VISVP = VISVN = 0 V  
ISREFL pin grounded  
ISREFH pin connected to VREF pin  
VISMEA/VISREFH  
ΔVCM = 20 V  
TA = TMIN to TMAX  
ΔVS = 20 V  
f = 1 kHz  
AVEE  
AVCC  
17  
6.8  
108  
20  
8
23  
9.2  
mV  
mV/V  
dB  
µV/V/°C  
dB  
nV/√Hz  
µV p-p  
fA/√Hz  
pA p-p  
MHz  
Scale Factor  
Common-Mode Rejection Ratio (CMRR)  
Temperature Coefficient  
Power Supply Rejection Ratio (PSRR)  
Voltage Noise  
Voltage Noise, Peak to Peak  
Current Noise  
Current Noise, Peak to Peak  
Small Signal −3 dB Bandwidth  
Slew Rate  
0.01  
108  
122  
9
0.2  
80  
5
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
1.5  
5
ΔVISMEA = 10 V  
V/µs  
VOLTAGE SENSE DIFFERENCE AMPLIFER  
Internal Fixed Gains  
Gain Error  
Gain Drift  
Gain Nonlinearity  
Offset Voltage (RTO)  
0.8  
V/V  
%
ppm/°C  
ppm  
µV  
µV/°C  
V
V
kΩ  
kΩ  
V
V
pF  
VIN = 10 V  
TA = TMIN to TMAX  
0.1  
3
3
500  
4
+16  
+27  
VBVMEA = 10 V, RL = 2 kΩ  
BVREFH and BVREFL pins grounded  
TA = TMIN to TMAX  
VBVN = 0 V, VBVREFL = 0 V  
VBVMEA = 0 V  
Offset Voltage Drift  
Differential Input Voltage Range  
Input Common-Mode Voltage Range  
Differential Input Impedance  
Input Common-Mode Impedance  
Output Voltage Swing  
Over Temperature  
−16  
−27  
200  
90  
AVEE + 1.5  
AVEE + 1.7  
AVCC − 1.5  
AVCC − 1.7  
1000  
TA = TMIN to TMAX  
Capacitive Load Drive  
Short-Circuit Current  
30  
mA  
Rev. 0 | Page 3 of 32  
 
AD8451  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ Max  
Unit  
Reference Input Voltage Range  
Output Voltage Level Shift  
Maximum  
Scale Factor  
CMRR  
BVREFH and BVREFL pins tied together AVEE  
BVREFL pin grounded  
AVCC  
V
BVREFH pin connected to VREF pin  
VBVMEA/VBVREFH  
4.5  
1.8  
80  
5
2
5.5  
2.2  
mV  
mV/V  
dB  
ΔVCM = 10 V, RTO  
Temperature Coefficient  
PSRR  
TA = TMIN to TMAX  
ΔVS = 20 V, RTO  
0.05  
µV/V/°C  
dB  
100  
Output Voltage Noise  
Voltage Noise, Peak to Peak  
Small Signal −3 dB Bandwidth  
Slew Rate  
f = 1 kHz, RTI  
f = 0.1 Hz to 10 Hz, RTI  
105  
2
1
nV/√Hz  
µV p-p  
MHz  
0.8  
V/µs  
CONSTANT CURRENT AND CONSTANT VOLTAGE  
LOOP FILTER AMPLIFIERS  
Offset Voltage  
Offset Voltage Drift  
Input Bias Current  
150  
0.6  
+5  
µV  
µV/°C  
nA  
TA = TMIN to TMAX  
TA = TMIN to TMAX  
−5  
−5  
Over Temperature  
+5  
nA  
Input Common-Mode Voltage Range  
Output Voltage Swing  
Over Temperature  
AVEE + 1.5  
AVEE + 1.5  
AVEE + 1.7  
AVCC − 1.8  
AVCC − 1  
AVCC − 1  
V
V
V
VVCLN = AVEE + 1 V, VVCLP = AVCC − 1 V  
TA = TMIN to TMAX  
Closed-Loop Output Impedance  
Capacitive Load Drive  
Source Short-Circuit Current  
Sink Short-Circuit Current  
Open-Loop Gain  
0.01  
pF  
mA  
mA  
dB  
1000  
1
40  
140  
CMRR  
PSRR  
ΔVCM = 10 V  
ΔVS = 20 V  
100  
100  
dB  
dB  
Voltage Noise  
Voltage Noise, Peak to Peak  
Current Noise  
Current Noise, Peak to Peak  
Small Signal Gain Bandwidth Product  
Slew Rate  
CC to CV Transition Time  
VINT AND CONSTANT VOLTAGE BUFFER  
Nominal Gain  
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
10  
0.3  
80  
5
3
1
nV/√Hz  
µV p-p  
fA/√Hz  
pA p-p  
MHz  
V/µs  
µs  
f = 0.1 Hz to 10 Hz  
ΔVVINT = 10 V  
1.5  
1
V/V  
µV  
Offset Voltage  
150  
Offset Voltage Drift  
Input Bias Current  
Over Temperature  
TA = TMIN to TMAX  
CV buffer only  
TA = TMIN to TMAX  
0.6  
+5  
+5  
µV/°C  
nA  
nA  
−5  
−5  
Input Voltage Range  
Output Voltage Swing  
Current Sharing and Constant Voltage Buffers  
Over Temperature  
VINT Buffer  
Over Temperature  
Output Clamps Voltage Range  
VCLP Pin  
VCLN Pin  
AVEE + 1.5  
AVCC − 1.8  
V
AVEE + 1.5  
AVEE + 1.7  
VVCLN − 0.6  
VVCLN − 0.6  
AVCC − 1.5  
AVCC − 1.5  
VVCLP + 0.6  
VVCLP + 0.6  
V
V
V
V
TA = TMIN to TMAX  
TA = TMIN to TMAX  
VINT buffer only  
VVCLN  
AVEE + 1  
AVCC − 1  
VVCLP  
V
V
Closed-Loop Output Impedance  
Capacitive Load Drive  
Short-Circuit Current  
PSRR  
1
1000  
100  
pF  
mA  
dB  
40  
ΔVS = 20 V  
Rev. 0 | Page 4 of 32  
Data Sheet  
AD8451  
Parameter  
Test Conditions/Comments  
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
f = 1 kHz, CV buffer only  
f = 0.1 Hz to 10 Hz  
Min  
Typ Max  
Unit  
Voltage Noise  
Voltage Noise, Peak to Peak  
Current Noise  
Current Noise, Peak to Peak  
Small Signal −3 dB Bandwidth  
Slew Rate  
10  
0.3  
80  
5
3
1
nV/√Hz  
µV p-p  
fA/√Hz  
pA p-p  
MHz  
ΔVOUT = 10 V  
V/µs  
VOLTAGE REFERENCE  
Nominal Output Voltage  
Output Voltage Error  
Temperature Drift  
Line Regulation  
Load Regulation  
Output Current, Sourcing  
Voltage Noise  
Voltage Noise, Peak to Peak  
DIGITAL INTERFACE, MODE INPUT  
Input Voltage High, VIH  
Input Voltage Low, VIL  
Mode Switching Time  
POWER SUPPLY  
With respect to AGND  
2.5  
V
%
1
TA = TMIN to TMAX  
ΔVS = 10 V  
ΔIVREF = 1 mA (source only)  
10  
40  
400  
10  
100  
5
ppm/°C  
ppm/V  
ppm/mA  
mA  
nV/√Hz  
µV p-p  
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
MODE pin (Pin 39)  
With respect to DGND  
With respect to DGND  
2.0  
DGND  
DVCC  
0.8  
V
V
ns  
500  
Operating Voltage Range  
AVCC  
AVEE  
Analog Supply Range  
DVCC  
5
−31  
5
36  
0
36  
5
V
V
V
V
AVCC − AVEE  
3
Quiescent Current  
AVCC  
AVEE  
7
6.5  
40  
10  
10  
70  
mA  
mA  
µA  
DVCC  
TEMPERATURE RANGE  
For Specified Performance  
Operational  
−40  
−55  
+85  
+125  
°C  
°C  
Rev. 0 | Page 5 of 32  
AD8451  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
The θJA value assumes a 4-layer JEDEC standard board with  
zero airflow.  
Parameter  
Rating  
Analog Supply Voltage (AVCC − AVEE)  
36 V  
Digital Supply Voltage (DVCC − DGND) 36 V  
Table 3. Thermal Resistance  
Package Type  
Maximum Voltage at Any Input Pin  
Minimum Voltage at Any Input Pin  
Operating Temperature Range  
Storage Temperature Range  
AVCC  
AVEE  
−40°C to +85°C  
−65°C to +150°C  
θJA  
Unit  
80-Lead LQFP  
54.7  
°C/W  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
ESD CAUTION  
Rev. 0 | Page 6 of 32  
 
 
 
Data Sheet  
AD8451  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
ISVP  
1
2
3
4
5
6
7
8
9
60  
59  
58  
57  
56  
55  
54  
PIN 1  
INDENTFIER  
VCLP  
VCTRL  
VCLN  
AVCC  
VINT  
RGP  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VVE1  
53 VVE0  
52 NC  
51  
50  
49  
48  
47  
46  
NC 10  
AD8451  
VVP0  
VSETBF  
VSET  
NC  
TOP VIEW  
11  
12  
NC  
NC  
NC 13  
NC  
14  
DVCC  
NC  
NC 15  
NC 16  
45 DGND  
44 NC  
NC 17  
NC 18  
43 NC  
42 VREF  
41 NC  
RGN 19  
ISVN 20  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic Input/Output1 Description  
1, 20  
ISVP, ISVN  
RGP, RGN  
NC  
Input  
Current Sense Instrumentation Amplifier Positive (Noninverting) and Negative  
(Inverting) Inputs. Connect these pins across the current sense shunt resistor.  
Negative Input of the Preamplifiers of the Current Sense Instrumentation  
Amplifier.  
2, 19  
N/A  
3 to 18, 21, 23, 25, 31, 33,  
34, 40, 41, 43, 44, 46, 48,  
52, 55, 63, 66, 69, 78 to 80  
N/A  
No Connect. Do not connect to this pin.  
22, 35  
24, 32  
26, 42, 73  
27  
BVPS, BVNS Input  
Kelvin Sense Pins for the BVP and BVN Voltage Sense Difference Amplifier Inputs.  
Voltage Sense Difference Amplifier Inputs.  
Voltage Reference Output Pins. VREF = 2.5 V.  
Reference Input for the Voltage Sense Difference Amplifier. To level shift the  
voltage sense difference amplifier output by approximately 5 mV, connect this  
pin to the VREF pin. Otherwise, connect this pin to the BVREFL pin.  
BVP, BVN  
VREF  
Input  
Output  
Input  
BVREFH  
28, 75  
29  
AGND  
BVREFL  
N/A  
Input  
Analog Ground Pins.  
Reference Input for the Voltage Sense Difference Amplifier. The default connection  
is to ground.  
30  
BVREFLS  
Input  
Kelvin Sense Pin for the BVREFL Pin.  
Rev. 0 | Page 7 of 32  
 
AD8451  
Data Sheet  
Pin No.  
36, 61, 72  
37  
38, 57, 70  
39  
Mnemonic Input/Output1 Description  
AVEE  
BVMEA  
AVCC  
N/A  
Output  
N/A  
Analog Negative Supply Pins. The default voltage is −15 V.  
Voltage Sense Difference Amplifier Output.  
Analog Positive Supply Pins. The default voltage is 15 V.  
MODE  
Input  
TTL Compliant Logic Input Selects Charge or Discharge Mode. Low =  
discharge, high = charge.  
45  
47  
49  
50  
51  
53  
54  
56, 62  
58  
DGND  
DVCC  
VSET  
VSETBF  
VVP0  
VVE0  
VVE1  
VINT  
N/A  
N/A  
Digital Ground Pin.  
Digital Supply. The default voltage is 5 V.  
Target Voltage for the Voltage Sense Control Loop.  
Buffered Voltage VSET.  
Noninverting Input of the Voltage Sense Integrator for Discharge Mode.  
Inverting Input Voltage for the Voltage Sense Integrator for Discharge Mode.  
Inverting Input of the Voltage Sense Integrator for Charge Mode.  
Minimum Output of the Voltage Sense and Current Sense Integrator Amplifiers.  
Low Clamp Voltage for VCTRL.  
Input  
Output  
Input  
Input  
Input  
Output  
Input  
Output  
VCLN  
VCTRL  
59  
Controller Output Voltage. Connect this pin to the input of the PWM controller  
(for example, the COMP pin of the ADP1972).  
60  
64  
65  
67  
68  
71  
74  
VCLP  
IVE1  
IVE0  
Input  
Input  
Input  
Input  
Output  
Output  
Input  
High Clamp Voltage for VCTRL.  
Inverting Input of the Current Sense Integrator for Charge Mode.  
Inverting Input of the Current Sense Integrator for Discharge Mode.  
Target Voltage for the Current Sense Control Loop.  
Buffered Voltage ISREFL.  
ISET  
ISREFB  
ISMEA  
ISREFH  
Current Sense Instrumentation Amplifier Output.  
Reference Input for the Current Sense Amplifier. To level shift the current sense  
instrumentation amplifier output by approximately 20 mV, connect this pin to  
the VREF pin. Otherwise, connect this pin to the ISREFL pin.  
76  
ISREFL  
Input  
Input  
Reference Input for the Current Sense Amplifier. The default connection is to  
ground.  
Kelvin Sense Pin for the ISREFL Pin.  
77  
ISREFLS  
1 N/A means not applicable.  
Rev. 0 | Page 8 of 32  
 
Data Sheet  
AD8451  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVCC = +15 V, AVEE = −15 V, TA = 25°C, and RL = ∞, unless otherwise noted.  
IA CHARACTERISTICS  
30  
20  
15  
25  
20  
15  
10  
5
10  
5
0
–5  
–10  
–15  
–20  
0
−5  
AVCC = +15V  
AVEE = –15V  
AVCC = +25V  
AVEE = −5V  
−10  
−10  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
−5  
0
10  
15  
20  
30  
5
25  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 3. Input Common-Mode Voltage vs. Output Voltage  
for AVCC = +25 V and AVEE = −5 V  
Figure 6. Input Common-Mode Voltage vs. Output Voltage  
for AVCC = +15 V and AVEE = −15 V  
15  
10  
5
15  
AVCC = +15V  
AVEE = –15V  
10  
5
0
0
–5  
–5  
–10  
–15  
–10  
AVCC = +25V  
AVEE = –5V  
–15  
–35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20 25 30 35 40 45  
–45–40–35–30–25–20–15–10 –5  
0
5 10 15 20 25 30 35 40 45  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 4. Input Overvoltage Performance  
for AVCC = +25 V and AVEE = −5 V  
Figure 7. Input Overvoltage Performance  
for AVCC = +15 V and AVEE = −15 V  
17.0  
16.8  
16.6  
16.4  
16.2  
16.0  
15.8  
15.6  
15.4  
15.2  
15.0  
20  
19  
18  
17  
16  
15  
14  
13  
12  
AVCC = +15V  
AVEE = –15V  
+I  
–I  
B
AVCC = +25V  
AVEE = –5V  
B
–15  
–10  
–5  
0
5
10  
15  
20  
25  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 5. Input Bias Current vs. Input Common-Mode Voltage  
Figure 8. Input Bias Current vs. Temperature  
Rev. 0 | Page 9 of 32  
 
 
AD8451  
Data Sheet  
20  
160  
150  
140  
130  
120  
110  
100  
90  
0
–20  
–40  
–60  
–80  
–100  
80  
70  
60  
50  
0.1  
1
10  
100  
1k  
10k  
100k  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 9. Gain Error vs. Temperature  
Figure 12. CMRR vs. Frequency  
0.3  
160  
140  
120  
100  
80  
AVCC = +25V  
AVEE = –5V  
0.2  
0.1  
AVCC  
AVEE  
0
60  
–0.1  
–0.2  
–0.3  
40  
20  
0
1
10  
100  
1k  
10k  
100k  
1M  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 13. PSRR vs. Frequency  
Figure 10. Normalized CMRR vs. Temperature  
50  
40  
100  
30  
20  
RTI  
10  
10  
0
10  
20  
AVCC = +15V  
AVEE = −15V  
1
0.1  
1
10  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 11. Gain vs. Frequency  
Figure 14. Spectral Density Voltage Noise, RTI vs. Frequency  
Rev. 0 | Page 10 of 32  
Data Sheet  
AD8451  
DA CHARACTERISTICS  
60  
50  
40  
50  
40  
30  
30  
20  
20  
10  
10  
0
0
–10  
–20  
–30  
–40  
–50  
–10  
–20  
–30  
–40  
AVCC = +15V  
AVCC = +25V  
AVEE = −15V  
AVEE = −5V  
–10  
–5  
0
5
10  
15  
20  
25  
30  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 15. Input Common-Mode Voltage vs. Output Voltage  
for AVCC = +25 V and AVEE = −5 V  
Figure 18. Input Common-Mode Voltage vs. Output Voltage  
for AVCC = +15 V and AVEE = −15 V  
0
50  
–10  
0
–20  
–30  
–40  
–50  
–50  
–100  
–150  
–200  
VALID FOR ALL RATED  
SUPPLY VOLTAGES  
100  
1k  
10k  
100k  
1M  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 16. Gain vs. Frequency  
Figure 19. Gain Error vs. Temperature  
0
–20  
3
2
VALID FOR ALL RATED  
SUPPLY VOLTAGES  
–40  
1
–60  
0
–80  
–1  
–2  
–3  
–100  
–120  
100  
1k  
10k  
100k  
1M  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 17. CMRR vs. Frequency  
Figure 20. Normalized CMRR vs. Temperature  
Rev. 0 | Page 11 of 32  
 
AD8451  
Data Sheet  
0
1k  
100  
10  
–20  
AVEE  
–40  
–60  
RTI  
–80  
AVCC  
–100  
–120  
VALID FOR ALL RATED  
SUPPLY VOLTAGES  
–140  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
0.1  
1
10  
100  
FREQUENCY (Hz)  
1k  
10k  
100k  
Figure 21. PSRR vs. Frequency  
Figure 22. Spectral Density Voltage Noise, RTI vs. Frequency  
Rev. 0 | Page 12 of 32  
Data Sheet  
AD8451  
CC AND CV LOOP FILTER AMPLIFIERS, AND VSET BUFFER  
500  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
CONSTANT CURRENT LOOP AND  
CONSTANT VOLTAGE LOOP AMPLIFIERS  
400  
300  
AVCC = +15V  
AVEE = –15V  
AVCC = +25V  
AVEE = –5V  
200  
100  
AVCC = +25V  
AVEE = –5V  
0
AVCC = +15V  
AVEE = –15V  
–100  
–200  
–300  
–400  
–500  
–15  
–10  
–5  
0
5
10  
15  
20  
25  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 23. Input Offset Voltage vs. Input Common-Mode Voltage  
for Two Supply Voltage Combinations  
Figure 26. Output Source Current vs. Temperature  
for Two Supply Voltage Combinations  
100  
90  
120  
100  
80  
–45.0  
–67.5  
80  
PHASE  
GAIN  
–90.0  
AVCC = +25V  
AVEE = –5V  
70  
60  
50  
40  
30  
20  
10  
0
60  
–112.5  
–135.0  
–157.5  
–180.0  
–202.5  
–225.0  
40  
AVCC = +15V  
AVEE = –15V  
20  
0
–20  
–40  
–15  
–10  
–5  
0
5
10  
15  
20  
25  
10  
100  
1k  
10k  
100k  
1M  
10M  
INPUT COMMON-MODE VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 24. Input Bias Current vs. Input Common-Mode Voltage  
for Two Supply Voltage Combinations  
Figure 27. Open-Loop Gain and Phase vs. Frequency  
100  
80  
60  
40  
20  
0
160  
140  
120  
100  
80  
60  
40  
CONSTANT CURRENT LOOP  
AND  
CONSTANT VOLTAGE  
LOOP FILTER  
–20  
20  
–I  
+I  
B
B
AMPLIFIERS  
–40  
–40 –30 –20 –10  
0
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 25. Input Bias Current vs. Temperature  
Figure 28. CMRR vs. Frequency  
Rev. 0 | Page 13 of 32  
 
AD8451  
Data Sheet  
1.5  
1.0  
140  
120  
100  
80  
AVCC = +15V  
AVEE = –15V  
+PSRR  
0.5  
TRANSITION  
0
60  
–0.5  
–1.0  
–1.5  
–PSRR  
40  
20  
ISET  
VCTRL  
0
10  
100  
1k  
10k  
100k  
1M  
–15 –10  
–5  
0
5
10  
15  
20  
25  
30  
35  
FREQUENCY (Hz)  
TIME (µs)  
Figure 29. PSRR vs. Frequency  
Figure 31. CC to CV Transition  
1k  
100  
10  
1
0.1  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 30. Range of Spectral Density Voltage Noise vs. Frequency  
for the Op Amps and Buffers  
Rev. 0 | Page 14 of 32  
Data Sheet  
AD8451  
VINT BUFFER  
0.5  
6
5
C
R
= 100pF  
= 2kΩ  
VCTRL OUTPUT WITH RESPECT TO VCLP  
L
L
0.4  
0.3  
4
0.2  
0.1  
3
VCLP AND VCLN REFERENCE  
0
VALID FOR ALL RATED  
SUPPLY VOLTAGES  
2
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
1
VCTRL OUTPUT WITH RESPECT TO VCLN  
0
–1  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
0
5
10  
15  
20  
25  
30  
35  
40  
TIME (µs)  
Figure 32. Output Voltage Swing with Respect to VCLP and VCLN  
vs. Temperature  
Figure 35. Large Signal Transient Response, RL = 2 kΩ, CL = 100 pF  
15  
0.20  
C
C
C
C
C
= 10pF  
L
L
L
L
L
= 100pF  
= 510pF  
= 680pF  
= 1000pF  
0.15  
0.10  
0.05  
0
VCLP  
10  
5
TEMP = –40°C  
TEMP = +25°C  
TEMP = +85°C  
0
–5  
–0.05  
–0.10  
–0.15  
–0.20  
–10  
VCLN  
–15  
100  
1k  
10k  
LOAD RESISTANCE (Ω)  
100k  
1M  
0
1
2
3
4
5
6
7
8
9
10  
TIME (µs)  
Figure 36. Small Signal Transient Response vs. Capacitive Load  
Figure 33. Output Voltage Swing vs. Load Resistance at Three Temperatures  
100  
6
5
VCLP  
4
10  
3
2
TEMP = –40°C  
TEMP = 0°C  
TEMP = +25°C  
TEMP = +85°C  
V
= +6V/–1V  
IN  
1
1
VCLN  
0
0.1  
–1  
10  
100  
1k  
10k  
100k  
1M  
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (Hz)  
OUTPUT CURRENT (mA)  
Figure 34. Clamped Output Voltage vs. Output Current  
at Four Temperatures  
Figure 37. Output Impedance vs. Frequency  
Rev. 0 | Page 15 of 32  
 
AD8451  
Data Sheet  
REFERENCE CHARACTERISTICS  
2.51  
1200  
1100  
1000  
900  
T
T
T
T
T
= +85°C  
= +25°C  
= 0°C  
= –20°C  
= –40°C  
AVCC = +25V  
AVEE = –5V  
A
A
A
A
A
2.50  
2.49  
2.48  
2.47  
800  
700  
AVCC = +25V  
AVEE = –5V  
2.46  
600  
0
1
2
3
4
5
6
7
8
9
10  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
OUTPUT CURRENT—SOURCING (mA)  
Figure 38. Output Voltage vs. Output Current (Sourcing) over Temperature  
Figure 40. Source and Sink Load Regulation vs. Temperature  
2.9  
1k  
AVCC = +25V  
AVEE = –5V  
2.8  
2.7  
2.6  
100  
T
T
T
T
T
= +85°C  
= +25°C  
= 0°C  
= –20°C  
= –40°C  
A
A
A
A
A
2.5  
2.4  
10  
0.1  
–10  
–9  
–8  
–7  
–6  
–5  
–4  
–3  
–2  
–1  
0
1
10  
100  
1k  
10k  
100k  
OUTPUT CURRENT—SINKING (mA)  
FREQUENCY (Hz)  
Figure 41. Spectral Density Voltage Noise vs. Frequency  
Figure 39. Output Voltage vs. Output Current (Sinking) over Temperature  
Rev. 0 | Page 16 of 32  
 
Data Sheet  
AD8451  
THEORY OF OPERATION  
The AD8451 provides two control loops—CC loop and a CV  
OVERVIEW  
loop—that transition automatically after the battery reaches the  
user defined target voltage. These loops are implemented via two  
precision specialty amplifiers with external feedback networks  
that set the transfer function of the CC and CV loops.  
Moreover, in the AD8451, these loops reconfigure themselves to  
charge or discharge the battery by toggling the MODE pin.  
To form and test a battery, the battery must undergo charge and  
discharge cycles. During these cycles, the battery terminal current  
and voltage must be precisely controlled to prevent battery failure  
or a reduction in the capacity of the battery. Therefore, battery  
formation and test systems require a high precision analog front  
end to monitor the battery current and terminal voltage. The  
analog front end of the AD8451 includes a precision current  
sense fixed gain instrumentation amplifier (IA) to measure the  
battery current and a precision voltage sense fixed gain difference  
amplifier (DA) to measure the battery voltage.  
Figure 42 is a block diagram of the AD8451 that illustrates  
the distinct sections of the AD8451, including the IA and DA  
measurement blocks, and the loop filter amplifiers. Figure 43 is a  
block diagram of a battery formation and test system.  
Battery formation and test systems charge and discharge batteries  
using a constant current/constant voltage (CC/CV) algorithm. In  
other words, the system first forces a set constant current into  
or out of the battery until the battery voltage reaches a target  
value. At this point, a set constant voltage is forced across the  
battery terminals.  
75  
72  
70  
66  
63  
61  
80  
79  
78  
77  
76  
74  
73  
71  
69  
68  
67  
65  
64  
62  
1
2.5V  
60  
59  
58  
VINT  
BUFFER  
ISVP  
RGP  
NC  
VCLP  
VCTRL  
VCLN  
AVCC  
VINT  
NC  
VREF  
ISREFL  
BUFFER  
2
MODE  
+/–  
1×  
1×  
+
3
+
AVEE  
CC LOOP  
FILTER  
AMPLIFIER  
4
57  
56  
NC  
1.1mA  
10kΩ  
5
NC  
AVCC  
6
55  
54  
NC  
CV LOOP  
FILTER  
7
VVE1  
VVE0  
NC  
AMPLIFIER  
NC  
NC  
+
53  
8
AVEE  
BATTERY  
CURRENT  
9
52  
51  
NC  
NC  
NC  
SENSING IA  
VSET  
BUFFER  
10kΩ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VVP0  
VSETBF  
VSET  
NC  
+
1667Ω  
10kΩ  
50  
49  
48  
1×  
CONSTANT  
CURRENT AND  
VOLTAGE LOOP  
FILTER AMPLIFIERS  
20kΩ  
NC  
NC  
47  
46  
NC  
DVCC  
NC  
AD8451  
NC  
10kΩ  
45  
44  
NC  
DGND  
NC  
+
BATTERY  
VOLTAGE  
SENSING  
DA  
NC  
80kΩ  
43  
42  
+
NC  
NC  
+/–  
100Ω  
RGN  
ISVN  
VREF  
NC  
MODE  
41  
40  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
Figure 42. Detailed Block Diagram  
Rev. 0 | Page 17 of 32  
 
 
 
AD8451  
Data Sheet  
SET  
CONSTANT  
BATTERY  
VOLTAGE LOOP  
FILTER AMPLIFIER  
VINT  
CURRENT  
ISET  
BUFFER  
+
V1  
VCTRL  
POWER CONVERTER  
1×  
CONSTANT  
CURRENT LOOP  
FILTER AMPLIFIER  
SWITCHED OR LINEAR  
SET  
+
BATTERY  
VOLTAGE  
VSET  
1×  
MODE  
SWITCHES AVEE  
(3)  
V2  
C
D C  
D C  
D
CV  
BUFFER  
C = CHARGE  
BATTERY  
CURRENT  
D = DISCHARGE  
AD8451  
CONTROLLER  
VINT  
ISVP  
+
SENSE  
RESISTOR  
IA  
ISVN  
ISMEA  
SYSTEM LOOP COMPENSATION  
BVP  
BVN  
+
BVMEA  
DA  
BATTERY  
Figure 43. Signal Path of an Li-Ion Battery Formation and Test System Using the AD8451  
VREF  
INSTRUMENTATION AMPLIFIER (IA)  
POLARITY  
INVERTER  
100kΩ  
ISREFH  
ISREFL  
IA  
Figure 44 is a block diagram of the IA, which is used to monitor the  
battery current. The architecture of the IA is the classic 3-op-amp  
topology, similar to the Analog Devices industry-standard  
AD8221 and AD620, with a fixed gain of 26. This architecture  
provides the highest achievable CMRR at a given gain, enabling  
high-side battery current sensing without the introduction of  
significant errors in the measurement. For more information  
about instrumentation amplifiers, see A Designer's Guide to  
Instrumentation Amplifiers.  
ISVP  
+CURRENT  
SHUNT  
±
+
10kΩ 19.2kΩ  
806Ω  
RGP  
10kΩ  
G = 2 SUBTRACTOR  
+
ISMEA  
1667Ω  
10kΩ  
RGN  
ISVN  
+
10kΩ  
20kΩ  
Reversing Polarity When Charging and Discharging  
–CURRENT  
SHUNT  
±
Figure 43 shows that during the charge cycle, the power converter  
feeds current into the battery, generating a positive voltage across  
the current sense resistor. During the discharge cycle, the power  
converter draws current from the battery, generating a negative  
voltage across the sense resistor. In other words, the battery current  
polarity reverses when the battery discharges.  
POLARITY  
INVERTER  
MODE  
Figure 44. IA Simplified Block Diagram  
IA Offset Option  
As shown in Figure 44, the IA reference node is connected to  
the ISREFL and ISREFH pins via an internal resistor divider.  
This resistor divider can be used to introduce a temperature  
insensitive offset to the output of the IA such that it always  
reads a voltage higher than zero for a zero differential input.  
Because the output voltage of the IA is always positive, a  
unipolar analog-to-digital converter (ADC) can digitize it.  
In the CC control loop, this change in polarity can be problematic  
if the polarity of the target current is not reversed. To solve this  
problem, the AD8451 IA includes a multiplexer preceding its  
inputs that inverts the polarity of the IA gain. This multiplexer  
is controlled via the MODE pin. When the MODE pin is logic  
high (charge mode), the IA gain is noninverting, and when the  
MODE pin is logic low (discharge mode), the IA gain is  
inverting.  
Rev. 0 | Page 18 of 32  
 
 
 
Data Sheet  
AD8451  
When the ISREFH pin is tied to the VREF pin with the ISREFL  
pin grounded, the voltage at the ISMEA pin is increased by 20 m V,  
guaranteeing that the output of the IA is always positive for zero  
differential inputs. Other voltage shifts can be realized by tying  
the ISREFH pin to an external voltage source. The gain from the  
ISREFH pin to the ISMEA pin is 8 mV /V. For zero offset, tie  
the ISREFL and ISREFH pins to ground.  
The resistors that form the DA gain network are laser trimmed  
to a matching level better than 0.1%. This level of matching  
minimizes the gain error and gain error drift of the DA while  
maximizing the CMRR of the DA. This matching also allows  
the controller to set a stable target voltage for the battery over  
temperature while rejecting the ground bounce in the battery  
negative terminal.  
Battery Reversal and Overvoltage Protection  
Like the IA, the DA can also level shift its output voltage via an  
internal resistor divider that is tied to the DA reference node. This  
resistor divider is connected to the BVREFH and BVREFL pins.  
The AD8451 IA can be configured for high-side or low-side  
current sensing. If the IA is configured for high-side current  
sensing (see Figure 43) and the battery is connected backward,  
the IA inputs may be held at a voltage that is below the negative  
power rail (AVEE), depending on the battery voltage.  
When the BVREFH pin is tied to the VREF pin with the BVREFL  
pin grounded, the voltage at the BVMEA pin is increased by 5 m V,  
guaranteeing that the output of the DA is always positive for  
zero differential inputs. Other voltage shifts can be realized by  
tying the BVREFH pin to an external voltage source. The gain  
from the BVREFH pin to the BVMEA pin is 2 mV /V. For zero  
offset, tie the BVREFL and BVREFH pins to ground.  
To prevent damage to the IA under these conditions, the IA  
inputs include overvoltage protection circuitry that allows them  
to be held at voltages of up to 55 V from the opposite power  
rail. In other words, the safe voltage span for the IA inputs  
extends from AVCC − 55 V to AVEE + 55 V.  
CC AND CV LOOP FILTER AMPLIFIERS  
DIFFERENCE AMPLIFIER (DA)  
The CC and CV loop filter amplifiers are high precision, low  
noise specialty amplifiers with very low offset voltage and very  
low input bias current. These amplifiers serve two purposes:  
Figure 45 is a block diagram of the DA, which is used to monitor  
the battery voltage. The architecture of the DA is a subtractor  
amplifier with a fixed gain of 0.8. This gain value allows the DA to  
funnel the voltage of a 5 V battery to a level that can be read by  
a 5 V ADC with a 4.096 V reference.  
Using external components, the amplifiers implement active  
loop filters that set the dynamics (transfer function) of the  
CC and CV loops.  
The amplifiers perform a seamless transition from CC to  
CV mode after the battery reaches its target voltage.  
DA  
100kΩ  
79.9kΩ 100kΩ  
BVP  
BVREFL  
BVREFH  
VREF  
50kΩ  
Figure 46 is the functional block diagram of the AD8451 CC  
and CV feedback loops for charge mode (MODE logic pin is high).  
For illustration purposes, the external networks connected to  
the loop amplifiers are simple RC networks configured to form  
single-pole inverting integrators. The outputs of the CC and CV  
loop filter amplifiers are coupled to the VINT pins via an analog  
NOR circuit (minimum output selector circuit), such that they can  
only pull the VINT node down. In other words, the loop amplifier  
that requires the lowest voltage at the VINT pins is in control of  
the node. Thus, only one loop amplifier, CC or CV, can be in  
control of the system charging control loop at any given time.  
+
100kΩ  
80kΩ  
BVN  
BVMEA  
Figure 45. DA Simplified Block Diagram  
Rev. 0 | Page 19 of 32  
 
 
 
AD8451  
Data Sheet  
CURRENT  
POWER  
BUS  
IOUT  
VCTRL  
R1  
I
C1  
POWER  
CONVERTER  
BAT  
V1  
CC LOOP  
AMPLIFIER  
VINT  
ISMEAS  
ISET  
IVE1  
VINT  
IA  
ISVP  
ISVN  
BUFFER  
+
SENSE  
RESISTOR  
VCLP  
G
R
IA  
S
ANALOG  
+
‘NOR’  
VCTRL  
1×  
MINIMUM  
OUTPUT  
BVP  
BVN  
VCLN  
DA  
+
G
+
+
SELECTOR  
V3 V4  
V
BAT  
DA  
CV LOOP  
MODE  
5V  
VVE1  
R2  
BVMEA  
VSET  
V2  
AMPLIFIER  
VINT  
V3 < VCTRL < V4  
C2  
Figure 46. Functional Block Diagram of the CC and CV Loops in Charge Mode (MODE Pin High)  
1.25  
5
4
3
2
1
The unity-gain amplifier (VINT buffer) buffers the VINT pins  
and drives the VCTRL pin. The VCTRL pin is the control output  
of the AD8451 and the control input of the power converter. The  
TRANSITION FROM CC TO CV  
CC  
CHARGE  
BEGINS  
1.00  
0.75  
0.50  
0.25  
0
VISET and VVSET voltage sources set the target constant current and  
the target constant voltage, respectively. When the CC and CV  
feedback loops are in a steady state, the charging current is set at  
VISET  
IBAT_SS  
=
G
IA ×RS  
where:  
BAT_SS = is the steady state charging current.  
IA is the IA gain.  
CC  
CHARGE  
ENDS  
I
G
0
RS is the value of the shunt resistor.  
The target voltage is set at  
VVSET  
0
1
2
3
4
5
TIME (Hours)  
Figure 47. Representative Constant Current to Constant Voltage Transition  
near the End of a Battery Charging Cycle  
VBAT_SS  
=
GDA  
2. As the voltage at the VINT node increases, the voltage at  
the VCRTL node rises, and the output current of the power  
converter, IBAT, increases (assuming that an increasing voltage  
at the VCRTL node increases the output current of the  
power converter).  
where:  
VBAT_SS = steady state battery voltage.  
GDA is the DA gain.  
Because the offset voltage of the loop amplifiers is in series with  
the target voltage sources, VISET and VVSET, the high precision of  
these amplifiers minimizes this source of error.  
3. When the IBAT current reaches the CC steady state value,  
I
BAT_SS, the battery voltage is still less than the target steady  
state value, VBAT_SS. Therefore, the CV loop tries to keep  
pulling the VINT node up while the CC loop tries to keep  
it at its current voltage. At this point, the voltage at the ISMEA  
pin equals VISET; therefore, the CC loop stops integrating.  
4. Because the loop amplifiers can only pull the VINT node  
down due to the analog NOR circuit, the CC loop takes  
control of the charging feedback loop, and the CV loop is  
disabled.  
Figure 47 shows a typical CC/CV charging profile for a Li-Ion  
battery. In the first stage of the charging process, the battery is  
charged with a CC of 1 A. When the battery voltage reaches a  
target voltage of 4.2 V, the charging process transitions such that  
the battery is charged with a CV of 4.2 V.  
The following steps describe how the AD8451 implements the  
CC/CV charging profile (see Figure 46). In this scenario, the  
battery begins in the fully discharged state, and the system has  
just been turned on such that IBAT = 0 A at Time 0.  
5. As the charging process continues, the battery voltage  
increases until it reaches the steady state value, VBAT_SS, and  
the voltage at the BVMEA pin reaches the target voltage, VVSET  
.
1. Because the voltages at the ISMEA and BVMEA pins  
are less than the target voltages (VISET and VVSET) at Time 0,  
both integrators begin to ramp, increasing the voltage at  
the VINT node.  
Rev. 0 | Page 20 of 32  
 
 
Data Sheet  
AD8451  
6. The CV loop tries to pull the VINT node down to reduce  
the charging current (IBAT) and prevent the battery voltage  
from rising any further. At the same time, the CC loop tries  
to keep the VINT node at its current voltage to keep the  
the internal switches in the CC and CV amplifiers, the frequency  
response of the loops in charge mode does not affect the  
frequency response of the loops in discharge mode.  
Unlike simpler controllers that use passive networks to ground  
for frequency compensation, the AD8451 allows the use of  
feedback networks for its CC and CV loop filter amplifiers.  
These networks enable the implementation of both  
proportional differentiator (PD) Type II and proportional  
integrator differentiator (PID) Type III compensators. Note  
that in charge mode, both the CC and CV loops implement  
inverting compensators, whereas in discharge mode, the CC  
loop implements an inverting compensator, and the CV loop  
implements a noninverting compensator. As a result, the CV loop  
in discharge mode includes an additional amplifier, VSET buffer, to  
buffer the VSET node from the feedback network (see Figure 48).  
battery current at IBAT_SS  
.
7. Because the loop amplifiers can only pull the VINT node  
down due to the analog NOR circuit, the CV loop takes  
control of the charging feedback loop, and the CC loop is  
disabled.  
The analog NOR (minimum output selector) circuit that couples  
the outputs of the loop amplifiers is optimized to minimize the  
transition time from CC to CV control. Any delay in the transition  
causes the CC loop to remain in control of the charge feedback  
loop after the battery voltage reaches its target value. Therefore,  
the battery voltage continues to rise beyond VBAT_SS until the  
control loop transitions; that is, the battery voltage overshoots  
its target voltage. When the CV loop takes control of the charge  
feedback loop, it reduces the battery voltage to the target voltage.  
A large overshoot in the battery voltage due to transition delays  
can damage the battery; thus, it is crucial to minimize delays by  
implementing a fast CC to CV transition.  
VINT Buffer  
The unity-gain amplifier (VINT buffer) is a clamp amplifier  
that drives the VCTRL pin. The VCTRL pin is the control  
output of the AD8451 and the control input of the power  
converter (see Figure 46 and Figure 48). The output voltage  
range of this amplifier is bounded by the clamp voltages at the  
VCLP and VCLN pins such that  
Figure 48 is the functional block diagram of the AD8451 CC  
and CV feedback loops for discharge mode (MODE logic pin is  
low). In discharge mode, the feedback loops operate in a similar  
manner as in charge mode. The only difference is in the CV  
loop amplifier, which operates as a noninverting integrator in  
discharge mode. For illustration purposes, the external networks  
connected to the loop amplifiers are simple RC networks  
configured to form single-pole integrators (see Figure 48).  
VVCLN − 0.5 V < VVCTRL < VVCLP + 0.5 V  
The reduction in the output voltage range of the amplifier is a  
safety feature that allows the AD8451 to drive devices such as  
the ADP1972 PWM controller, whose input voltage range must  
not exceed 5.5 V (that is, the voltage at the COMP pin of the  
ADP1972 must be below 5.5 V).  
MODE PIN, CHARGE AND DISCHARGE CONTROL  
Compensation  
The MODE pin is a TTL logic input that configures the AD8451  
for either charge or discharge mode. A logic low (VMODE < 0.8 V)  
corresponds to discharge mode, and a logic high (VMODE > 2 V)  
corresponds to charge mode. Internal to the AD8451, the MODE  
pin toggles all single-pole, double throw (SPDT) switches in the  
CC and CV loop amplifiers and inverts the gain polarity of the IA.  
In battery formation and test systems, the CC and CV feedback  
loops have significantly different open-loop gain and crossover  
frequencies; therefore, each loop requires its own frequency  
compensation. The active filter architecture of the AD8451 CC  
and CV loops allows the frequency response of each loop to be  
set independently via external components. Moreover, due to  
CURRENT  
IOUT  
POWER  
BUS  
VCTRL  
R1  
V1  
I
C1  
BAT  
POWER  
CONVERTER  
CC LOOP  
VINT  
ISMEAS  
ISET  
IVE0  
VINT  
IA  
ISVP  
ISVN  
AMPLIFIER  
BUFFER  
+
SENSE  
RESISTOR  
VCLP  
G
R
IA  
S
ANALOG  
+
‘NOR’  
VCTRL  
1×  
VSET  
MINIMUM  
OUTPUT  
SELECTOR  
BUFFER  
BVP  
BVN  
VCLN  
DA  
+
G
+
+
V3 V4  
V
BAT  
DA  
1×  
CV LOOP  
AMPLIFIER  
MODE  
BVMEA  
VSET VSETBF VVP0 VVE0  
VINT  
V3 < VCTRL < V4  
V2  
C2  
R2  
C2  
R2  
Figure 48. Functional Block Diagram of the CC and CV Loops in Discharge Mode (MODE Pin Low)  
Rev. 0 | Page 21 of 32  
 
 
AD8451  
Data Sheet  
APPLICATIONS INFORMATION  
This section describes how to use the AD8451 in the context of  
a battery formation and test system. This section includes a  
design example of a small scale model of an actual system.  
Two loop filter error amplifiers that receive the battery target  
current and voltage and establish the dynamics of the CC and  
CV feedback loops.  
A minimum output selector circuit that combines the  
outputs of the loop filter error amplifiers to perform  
automatic CC to CV switching.  
An output clamp amplifier that drives the VCTRL pin. The  
voltage range of this amplifier is limited by the voltage at  
the VCLP and VCLN pins such that it cannot overrange  
the subsequent stage. The output clamp amplifier can drive  
switching and linear power converters. Note that an  
increasing voltage at the VCTRL pin must translate to a  
larger output current in the power converter.  
FUNCTIONAL DESCRIPTION  
The AD8451 is a precision analog front end and controller for  
battery formation and test systems. These systems use precision  
controllers and power stages to put batteries through charge and  
discharge cycles. Figure 49 shows the signal path of a simplified  
switching battery formation and test system using the AD8451  
controller and the ADP1972 PWM controller. For more  
information on the ADP1972, see the ADP1972 data sheet.  
The AD8451 is suitable for systems that form and test NiCad,  
NiMH, and Li-Ion batteries and is designed to operate in  
conjunction with both linear and switching power stages.  
A 2.5 V reference whose output node is the VREF pin.  
A logic input pin (MODE) that changes the configuration of the  
controller from charge to discharge mode. A logic high at the  
MODE pin configures charge mode; a logic low configures  
discharge mode.  
The AD8451 includes the following blocks (see Figure 42 and  
the Theory of Operation section for more information).  
A fixed gain IA that senses low-side or high-side battery  
current.  
A fixed gain DA that measures the terminal voltage of the  
battery.  
SET  
CONSTANT  
BATTERY  
AVCC  
VOLTAGE LOOP  
VINT  
CURRENT  
ISET  
FILTER AMPLIFIER  
BUFFER  
+
OUTPUT  
FILTER  
VCTRL  
ADP1972  
PWM  
LEVEL  
SHIFTER  
OUTPUT  
DRIVERS  
1×  
CONSTANT  
CURRENT LOOP  
FILTER AMPLIFIER  
SET  
BATTERY  
VOLTAGE  
+
DC-TO-DC POWER CONVERTER  
VSET  
1×  
MODE  
SWITCHES AVEE  
(3)  
C
D C  
D C  
D
CV  
BUFFER  
C = CHARGE  
BATTERY  
CURRENT  
D = DISCHARGE  
AD8451  
CONTROLLER  
VINT  
ISVP  
+
SENSE  
RESISTOR  
IA  
ISVN  
ISMEA  
BVP  
BVN  
+
BVMEA  
DA  
BATTERY  
EXTERNAL  
PASSIVE  
COMPENSATION  
NETWORK  
Figure 49. Complete Signal Path of a Battery Test or Formation System Suitable for Li-Ion Batteries  
Rev. 0 | Page 22 of 32  
 
 
 
Data Sheet  
AD8451  
Optional Low-Pass Filter  
POWER SUPPLY CONNECTIONS  
The AD8451 is designed to control both linear regulators and  
switching power converters. Linear regulators are generally  
noise free, whereas switch mode power converters generate  
switching noise. Connecting an external differential low-pass  
filter between the current sensor and the IA inputs reduces the  
injection of switching noise into the IA (see Figure 50).  
ISVP  
The AD8451 requires two analog power supplies (AVCC and  
AVEE), one digital power supply (DVCC), one analog ground  
(AGND), and one digital ground (DGND). AVCC and AVEE  
power all the analog blocks, including the IA, DA, and op amps,  
and DVCC powers the MODE input logic. AGND provides a  
reference and return path for the 2.5 V reference, and DGND  
provides a reference and return path for the digital circuitry.  
+
10kΩ  
RGP  
The rated absolute maximum value for AVCC − AVEE is 36 V,  
and the minimum operating AVCC and AVEE voltages are +5 V  
and −5 V, respectively. Due to the high PSRR of the AD8451  
analog blocks, AVCC can be connected directly to the high current  
power bus (the input voltage of the power converter) without  
risking the injection of supply noise to the controller outputs.  
20kΩ  
10kΩ  
+
4 TERMINAL  
SHUNT  
1667Ω  
10kΩ  
LPF  
RGN  
ISVN  
DUT  
+
10kΩ  
20kΩ  
A commonly used power supply combination is +15 V for  
AVCC, −15 V for AVEE, and +5 V for DVCC. The +15 V rail  
for AVCC provides enough headroom to the IA such that it can  
be connected in a high-side current sensing configuration. The  
−15 V rail for AVEE allows the DA to sense accidental reverse  
battery conditions (see the Reverse Battery Conditions section).  
Figure 50. 4-Terminal Shunt Resistor Connected to the Current Sense IA  
VOLTAGE SENSE DA CONNECTIONS  
For a description of the DA, see the Theory of Operation  
section, Figure 42, and Figure 45. The DA fixed gain is 0.8.  
Connect decoupling capacitors to all the supply pins. A 1 µF  
capacitor in parallel with a 0.1 µF capacitor is recommended.  
Reverse Battery Conditions  
The output voltage of the AD8451 DA can be used to detect a  
reverse battery connection. A −15 V rail for AVEE allows the  
output of the DA to go below ground when the battery is  
connected backward. Therefore, the condition can be detected  
by monitoring the BVMEA pin for a negative voltage.  
CURRENT SENSE IA CONNECTIONS  
For a description of the IA, see the Theory of Operation section,  
Figure 42, and Figure 44. The IA fixed gain is 26.  
Current Sensors  
BATTERY CURRENT AND VOLTAGE CONTROL  
INPUTS (ISET AND VSET)  
Two common options for current sensors are isolated current  
sensing transducers and shunt resistors. Isolated current sensing  
transducers are galvanically isolated from the power converter  
and are affected less by the high frequency noise generated by  
switch mode power supplies. Shunt resistors are less expensive  
and easier to deploy.  
The voltages at the ISET and VSET input pins set the target  
battery current and voltage for the CC and CV loops. These  
inputs must be driven by a precision voltage source (or a digital-  
to-analog converter [DAC] connected to a precision reference)  
whose output voltage is referenced to the same voltage as the IA  
and DA reference pins (ISREFH/ISREFL and BVREFH/BVREFL,  
respectively). For example, if the IA reference pins are connected  
to AGND, the voltage source connected to ISET must also be  
referenced to AGND. In the same way, if the DA reference pins  
are connected to AGND, the voltage source connected to VSET  
must also be referenced to AGND.  
If a shunt resistor sensor is used, a 4-terminal, low resistance shunt  
resistor is recommended. Two of the four terminals conduct the  
battery current, whereas the other two terminals conduct virtually  
no current. The terminals that conduct no current are sense  
terminals that are used to measure the voltage drop across the  
resistor (and, therefore, the current flowing through it) using an  
amplifier such as the IA of the AD8451. To interface the IA with  
the current sensor, connect the sense terminals of the sensor to  
the ISVP and ISVN pins of the AD8451 (see Figure 50).  
In constant current mode, when the CC feedback loop is in a  
steady state, the ISET input sets the battery current as follows:  
VISET  
IA ×RS  
VISET  
26×RS  
IBAT_SS  
=
=
G
where:  
IA is the IA gain.  
RS is the value of the shunt resistor.  
G
Rev. 0 | Page 23 of 32  
 
 
 
 
 
 
AD8451  
Data Sheet  
In constant voltage mode, when the CV feedback loop is in  
steady state, the VSET input sets the battery voltage as follows:  
Given the architecture of the AD8451, the controller requires  
that an increasing voltage at the VCTRL pin translates to a  
larger output current in the power converter. If this is not the  
case, a unity-gain inverting amplifier can be added in series  
with the AD8451 output to add an extra inversion.  
VVSET  
GDA  
VVSET  
0.8  
VBAT_SS  
=
=
where GDA is the DA gain.  
STEP-BY-STEP DESIGN EXAMPLE  
Therefore, the accuracy and temperature stability of the formation  
and test system are not only dependent on the precision of the  
AD8451, but also on the accuracy of the ISET and VSET inputs.  
This section describes the systematic design of a 1 A battery  
charger/discharger using the AD8451 controller and the  
ADP1972 PWM controller. The power converter used in this  
design is a nonisolated buck boost dc-to-dc converter. The target  
battery is a 4.2 V fully charged, 2.7 V fully discharged Li-Ion  
battery.  
LOOP FILTER AMPLIFIERS  
The AD8451 has two loop filter amplifiers, also known as error  
amplifiers (see Figure 49). One amplifier is for constant current  
control (CC loop filter amplifier), and the other amplifier is for  
constant voltage control (CV loop filter amplifier). The outputs  
of these amplifiers are combined using a minimum output  
selector circuit to perform automatic CC to CV switching.  
Step 1: Design the Switching Power Converter  
Select the switches and passive components of the buck boost  
power converter to support the 1 A maximum battery current.  
The design of the power converter is beyond the scope of this  
data sheet; however, there are many application notes and other  
helpful documents available from manufacturers of integrated  
driver circuits and power MOSFET output devices that can be  
used for reference.  
Table 5 lists the inputs of the loop filter amplifiers for charge  
mode and discharge mode.  
Table 5. Integrator Input Connections  
Reference Feedback  
Step 2: Identify the Control Voltage Range of the  
ADP1972  
Feedback Loop Function  
Input  
Terminal  
Control the Current While Discharging ISET  
a Battery  
IVE0  
The control voltage range of the ADP1972 (voltage range of the  
COMP input pin) is 0.5 V to 4.5 V. An input voltage of 4.5 V  
results in the highest duty cycle and output current, whereas an  
input voltage of 0.5 V results in the lowest duty cycle and output  
current. Because the COMP pin connects directly to the VCTRL  
output pin of the AD8451, the battery current is proportional to  
the voltage at the VCTRL pin.  
Control the Current While Charging  
a Battery  
ISET  
IVE1  
Control the Voltage While Discharging VSET  
a Battery  
VVE0  
VVE1  
Control the Voltage While Charging  
a Battery  
VSET  
The CC and CV amplifiers in charge mode and the CC amplifier  
in discharge mode are inverting integrators, whereas the CV  
amplifier in discharge mode is a noninverting integrator. Therefore,  
the CV amplifier in discharge mode uses an extra amplifier, the  
VSET buffer, to buffer the VSET input pin (see Figure 42). In  
addition, the CV amplifier in discharge mode uses the VVP0  
pin to couple the signal from the BVMEA pin to the integrator.  
For information about how to interface the ADP1972 to the  
power converter switches, see the ADP1972 data sheet.  
Step 3: Determine the Control Voltage for the CV Loop  
The relationship between the control voltage for the CV loop  
(the voltage at the VSET pin), the target battery voltage, and the  
DA gain is as follows:  
CONNECTING TO A PWM CONTROLLER (VCTRL PIN)  
VVSET VVSET  
CV Battery Target Voltage =  
=
GDA  
0.8  
The VCTRL output pin of the AD8451 is designed to interface  
with linear power converters and with PWM controllers such as  
the ADP1972. The voltage range of the VCTRL output pin is  
bound by the voltages at the VCLP and VCLN pins, as follows:  
In charge mode, for a CV battery target voltage of 4.2 V, select a  
CV control voltage of 3.36 V. In discharge mode, for a CV  
battery target voltage of 2.7 V, select a CV control voltage of  
2.16 V.  
VVCLN − 0.5 V < VVCTRL < VVCLP + 0.5 V  
Because the maximum rated input voltage at the COMP pin of  
the ADP1972 is 5.5 V, connect the clamp voltages of the output  
amplifier to 5 V (VCLP) and ground (VCLN) to prevent over-  
ranging of the COMP input. As an additional precaution, install  
an external 5.1 V Zener diode from the COMP pin to ground  
with a series 1 kΩ resistor connected between the VCTRL and  
COMP pins. Consult the ADP1972 data sheet for additional  
applications information.  
Rev. 0 | Page 24 of 32  
 
 
 
 
Data Sheet  
AD8451  
Step 4: Determine the Control Voltage for the CC Loop  
and the Shunt Resistor  
Step 5: Choose the Control Voltage Sources  
The input control voltages (the voltages at the ISET and VSET  
pins) can be generated by an analog voltage source such as a  
voltage reference or by a DAC. In both cases, select a device that  
provides a stable, low noise output voltage. If a DAC is preferred,  
Analog Devices offers a wide range of precision converters. For  
example, the AD5668 16-bit DAC provides up to eight 0 V to  
4 V sources when connected to an external 2 V reference.  
The relationship between the control voltage for the CC loop  
(the voltage at the ISET pin), the target battery current, and the  
IA gain is as follows:  
VISET  
IA × RS 26 × RS  
VISET  
CC Battery Target Current =  
=
G
The voltage across the shunt resistor is as follows:  
To maximize accuracy, the control voltage sources must be  
referenced to the same potential as the outputs of the IA and  
DA. For example, if the IA and DA reference pins are connected  
to AGND, connect the reference pins of the control voltage  
sources to AGND.  
VISET VISET  
Shunt Resistor Voltage =  
=
GIA  
26  
For target current of 1 A, choosing a 20 mΩ shunt resistor  
results in a control voltage of 4 V.  
Step 6: Select the Compensation Devices  
When selecting a shunt resistor, consider the resistor style and  
construction. For low power dissipation applications, many  
temperature stable SMD styles can be soldered to a heat sink  
pad on a printed circuit board (PCB). For optimum accuracy,  
choose a shunt resistor that provides force and sense terminals.  
In these resistors, the battery current flows through the force  
terminals and the voltage drop in the resistor is read at the sense  
terminals.  
Feedback controlled switching power converters require  
frequency compensation to guarantee loop stability. There are  
many references available about how to design the compensation  
for such power converters. The AD8451 provides active loop  
filter error amplifiers for the CC and CV control loops that  
can implement proportional integrator (PI), PD, and PID  
compensators using external passive components.  
Rev. 0 | Page 25 of 32  
AD8451  
Data Sheet  
EVALUATION BOARD  
INTRODUCTION  
FEATURES AND TESTS  
The AD8451-EVALZ evaluation board is a convenient  
standalone platform for evaluating the major elements of the  
AD8451, either as a standalone component or connected to a  
battery test/formation system.  
SMA connectors provide access for input voltages to the  
sensitive instrumentation (IA) and difference (DA) amplifiers.  
ISVP and ISVN connectors are the IA inputs, and BVP and  
BVN are the DA inputs. These inputs accept the dc voltages  
from battery current and voltage measurement sources, or from  
a precision dc voltage source. SMA connectors ISET and VSET  
are available for precision dc control voltages for CC or CV  
battery charging voltages. SMA ISREFLO is available for  
applying a nonzero reference voltage to the IA. SMA VCTRL  
connects to the input of a dc-to-dc power converter as seen in  
Figure 52. Convenient test loops are provided connecting scope  
probes or instruments for the remainder of the input/output.  
In the latter configuration, the AD8451-EVALZ operates just as  
it would within a system including the PWM and dc-to-dc  
power converter. Simply connect the current and voltage sense  
voltages from the system directly to the board terminus. This  
feature is used when setting or evaluating loop compensation  
using a field of passive compensation components. Figure 51 is  
a photograph of the AD8451-EVALZ.  
The MODE switch selects between the charge and discharge  
option. Figure 52 is a schematic of the AD8451-EVALZ. Table 6  
lists and describes the various switches and functions.  
Figure 51. Photograph of the AD8451-EVALZ  
Rev. 0 | Page 26 of 32  
 
 
 
 
Data Sheet  
AD8451  
Table 6. AD8451-EVALZ Test Switches and Functions  
Default  
Position  
Switch  
Function  
Operation  
MODE  
Selects the charge or the discharge The MODE switch selects CHG (logic high) or DISCH (logic low).  
mode.  
CHG  
RUN  
RUN  
RUN_TEST1 Selects between the user inputs and The AD8451 operates normally when the RUN_TEST1 switch is in the RUN  
the 2.5 V AD8451 reference voltage.  
position. When in the TEST position, 2.5 V is applied to the ISET and VSET inputs.  
RUN_TEST2 Tests the CC or CV loop filter  
amplifiers.  
The voltage at the VCTRL output (TPVCTRL) for all positions is 0 V when  
RUN_TEST1 is in RUN position and 2.5 V when RUN_TEST1 in TEST position.  
ISREF_HI  
The ISREF_HI switch connects  
Pin 74 (ISREFH) to the internal 2.5 V internal 100 kΩ resistor) to Pin 73 (VREF, the 2.5 V reference). When the  
When in the 2.5V position, the ISREF_HI switch connects Pin 74 (ISREFH, an EXT  
reference (2.5 position) or to the  
SMA connector EXT (the external  
input for a user defined VREF input).  
ISREF_LO switch is in the NORM position, the output at Pin 71 (ISMEA)  
shifts positive by 20 mV.  
ISREF_LO  
Connects Pin 76 (ISREFL) to ground When in the NORM position and the ISREF_HI switch is in the EXT position, NORM  
(NORM) or to the ISREFL SMA input  
connector.  
there is no offset applied to the ISMEA output. When in the EXT position,  
the ISREFLO SMA is selected.  
EVALUATING THE AD8451  
Test the Instrumentation Amplifier  
Note the four compensation networks, CC-CHARGE, CC-  
DISCHARGE, CV-CHARGE, and CV-DISCHARGE, located  
Connect the TPISVN jumper to ground, and then apply  
100 mV dc to TPISVP. Measure 2.6 V at the TPISMEA output.  
Subtract any offset voltages from the output reading before  
calculating the gain.  
on the right-hand side of the schematic shown in Figure 52. To  
make it easier to locate these components, the configuration of  
these networks on the AD8451-EVALZ PCB approximates that  
shown in the schematic (see Figure 52). Each of the components  
locations accommodates both standard, 1206 size, surface-mount  
chip resistors and capacitors or leaded components inserted into  
the pairs of TP thru holes spanning the SM footprints. The TP  
holes accept the popular 0.025” test pins if leaded devices are  
preferred for multiple loop tests.  
20 mV Offset at IMEAS Output  
Connect a jumper from TPISVP to TPISVN to ground by using  
another jumper and any one of the convenient black test loops.  
Measure 0 V 2.86 mV at the TPISMEA output (that is, the IA  
residual offset voltage multiplied by gain). Move the ISREFLO  
switch to the EXT position, and the ISREFHI switch to the  
20 mV (EXT) position. The output will then increase by 20 mV.  
As shipped, CC and CV loop amplifier filters are configured as  
voltage followers by replacing feedback capacitors to the inverting  
inputs with resistors, and removing the dc coupling resistors from  
the IA and DA outputs. The feedback loops must be reconfigured  
to close the loops to operate as precision feedback loops.  
Test the Difference Amplifier  
Insert a shorting jumper at Header GND_BVN. With 1 V dc  
applied to TPBVP, measure 0.8 V at TPBVMEA. For the most  
accurate gain measurement, subtract the offset voltage from the  
output voltage before calculating gain.  
Loop compensation requires knowledge of the output dc-to-dc  
power converter. It is assumed that the AD8451 is most often  
used with a switching converter. The scope and breadth of this  
switching converter design architecture is quite broad, and a  
thorough discussion of all the types and variants of this type of  
converter is well beyond the scope of this data.  
5 mV Offset at BVMEAS Output  
Insert jumpers in the GND_BVP and GND_BVN headers.  
Measure 0 V 0.4mV at the TPBVMEA output (that is, the DA  
residual offset voltage multiplied by gain). Connect a jumper  
between TPBREFH and TP2.5V. The output will then increase  
by 5 mV.  
When the circuit and component details of the power converter  
are known, proceed with a calculation of the loop parameters  
and components, and the values necessary to achieve loop  
compensation.  
CC and CV Integrator Tests  
Because the loop is of the type proportional/integrating (PI), a  
direct dc path is required from the IA and DA amplifiers to the  
error inputs of the CC and CV loop amplifiers. Install these  
resistors at the R1, R6, R7, R11, and R12 locations.  
Switches RUN_TEST1 and RUN_TEST2 set up the required  
circuit conditions to test the integrators. RUN_TEST1 disconnects  
the external inputs ISET and VSET and applies 2.5 V dc from  
the reference, simultaneously, to both of the CC and CV.  
Likewise, the CC and CV amplifiers must be reconfigured from  
voltage followers to integrators by replacing the 0 Ω capacitors  
at C6, C10, C11, C19, and C24 with appropriate capacitors.  
RUN_TEST2 has three positions: RUN, TEST_CC, and  
TEST_CV.  
Loop Compensation  
The AD8451-EVALZ is suitable for use as a test platform for  
system loop compensation experiments. However, before  
installing the platform in a system, component changes are necessary.  
Rev. 0 | Page 27 of 32  
 
 
AD8451  
Data Sheet  
SCHEMATIC AND ARTWORK  
N C  
O D M  
C C A V  
E E V A  
T I N V  
E
N C  
1 E I V  
A E M V B  
E E V A  
N S B V  
N C  
0 E I V  
N C  
S N V B P T  
N C  
T E S I  
N C  
B F E R S I  
N C  
N C  
N V B  
N C  
N V B  
N C  
C C A V  
A E M S I  
E E V A  
F E R V  
F L E S R V B T P  
F L E R B T P  
F L E S R B  
L F  
B R E  
N D A G  
B R E  
H F  
H F E R S I  
N D A G  
F E R V  
N C  
P V B  
N C  
S P V B  
N C  
L F E R S I  
F L E S R S I  
N C  
N C  
N C  
Figure 52. AD8451-EVALZ Schematic  
Rev. 0 | Page 28 of 32  
 
 
Data Sheet  
AD8451  
Figure 53. AD8451-EVALZ Top Silkscreen  
Figure 54. AD8451-EVALZ Primary Side Copper  
Rev. 0 | Page 29 of 32  
AD8451  
Data Sheet  
Figure 55. AD8451-EVALZ Secondary Side Copper  
Figure 56. AD8451-EVALZ Power Plane  
Rev. 0 | Page 30 of 32  
Data Sheet  
AD8451  
Figure 57. AD8451-EVALZ Ground Plane  
Rev. 0 | Page 31 of 32  
AD8451  
Data Sheet  
OUTLINE DIMENSIONS  
16.20  
16.00 SQ  
15.80  
0.75  
0.60  
0.45  
1.60  
MAX  
61  
80  
60  
1
PIN 1  
14.20  
14.00 SQ  
13.80  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
0.10  
COPLANARITY  
20  
41  
0.15  
0.05  
40  
21  
SEATING  
PLANE  
VIEW A  
0.65  
0.38  
0.32  
0.22  
BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BEC  
Figure 58. 80-Lead Low Profile Quad Flat Package [LQFP]  
(ST-80-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +85°C  
Package Description  
80-Lead LQFP  
Package Option  
ST-80-2  
AD8451ASTZ  
AD8451ASTZ-RL  
AD8451-EVALZ  
−40°C to +85°C  
80-Lead LQFP  
Evaluation Board  
ST-80-2  
1 Z = RoHS Compliant Part.  
©2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12137-0-3/14(0)  
Rev. 0 | Page 32 of 32  
 
 

相关型号:

AD8451ASTZ

Low Cost Precision Analog Front End and Controller for Battery Test/Formation Systems
ADI

AD8451ASTZ-RL

Low Cost Precision Analog Front End and Controller for Battery Test/Formation Systems
ADI

AD8451_17

Low Cost, Precision Analog Front End and Controller for Battery Test/Formation Systems
ADI

AD8452

Precision Integrated Analog Front End, Controller
ADI

AD8452-EVALZ

Precision Integrated Analog Front End, Controller
ADI

AD8452ASTZ

Precision Integrated Analog Front End, Controller, and PWM for Battery Test and Formation Systems
ADI

AD8452ASTZ-RL

Precision Integrated Analog Front End, Controller
ADI

AD8456-A

Telecom Transformer
COILCRAFT

AD845AQ

Precision, 16 MHz CBFET Op Amp
ADI

AD845BQ

Precision, 16 MHz CBFET Op Amp
ADI

AD845BQ

OP-AMP, 400uV OFFSET-MAX, 16MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8
ROCHESTER

AD845JCHIPS

Precision, 16 MHz CBFET Op Amp
ADI