AD8422ARZ-RL [ADI]

High Performance, Low Power, Rail-to-Rail Precision Instrumentation Amplifier; 高性能,低功耗,轨到轨精密仪表放大器
AD8422ARZ-RL
型号: AD8422ARZ-RL
厂家: ADI    ADI
描述:

High Performance, Low Power, Rail-to-Rail Precision Instrumentation Amplifier
高性能,低功耗,轨到轨精密仪表放大器

仪表放大器
文件: 总24页 (文件大小:697K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Performance, Low Power, Rail-to-Rail  
Precision Instrumentation Amplifier  
Data Sheet  
AD8422  
FEATURES  
CONNECTION DIAGRAM  
Low power: 330 µA maximum quiescent current  
Rail-to-rail output  
Low noise and distortion  
8 nV/√Hz maximum input voltage noise at 1 kHz  
0.15 µV p-p RTI noise (G = 100)  
AD8422  
1
2
3
4
8
7
6
5
–IN  
+V  
S
R
R
V
OUT  
G
G
REF  
–V  
+IN  
S
0.5 ppm nonlinearity with 2 kΩ load (G = 1)  
Excellent ac specifications  
80 dB minimum CMRR at 7 kHz (G = 1)  
2.2 MHz bandwidth (G = 1)  
TOP VIEW  
(Not to Scale)  
Figure 1. 8-Lead MSOP (RM), 8-Lead SOIC (R)  
High precision dc performance (AD8422BRZ)  
150 dB minimum CMRR (G = 1000)  
0.04% maximum gain error (G = 1000)  
0.3 µV/°C maximum input offset drift  
0.5 nA maximum input bias current  
Wide supply range  
–20  
–30  
R
= 2kΩ  
= ±10V  
L
V
OUT  
–40  
–50  
–60  
–70  
3.6 V to 36 V single supply  
–80  
G = 1000  
1.8 V to 18 V dual supply  
–90  
Input overvoltage protection: 40 V from opposite supply  
Gain range: 1 to 1000  
G = 100  
G = 10  
–100  
–110  
–120  
–130  
–140  
G = 1  
APPLICATIONS  
Medical instrumentation  
Industrial process controls  
Strain gages  
10  
100  
FREQUENCY (Hz)  
1k  
5k  
Figure 2. Total Harmonic Distortion vs. Frequency  
Transducer interfaces  
Precision data acquisition systems  
Channel-isolated systems  
Portable instrumentation  
GENERAL DESCRIPTION  
The AD8422 is a high precision, low power, low noise, rail-to-rail  
instrumentation amplifier that delivers the best performance  
per unit microampere in the industry. The AD8422 processes  
signals with ultralow distortion performance that is load  
independent over its full output range.  
The wide input range and rail-to-rail output of the AD8422  
bring all of the benefits of a high performance in-amp to single-  
supply applications. Whether using high or low supply voltages,  
the power savings make the AD8422 an excellent choice for  
high channel count or power sensitive applications on a very  
tight error budget.  
The AD8422 is the third generation development of the industry-  
standard AD620. The AD8422 employs new process technologies  
and design techniques to achieve higher dynamic range and  
lower errors than its predecessors, while consuming less than  
one-third of the power. The AD8422 uses the high performance  
pinout introduced by the AD8221.  
The AD8422 uses robust input protection that ensures reliability  
without sacrificing noise performance. The AD8422 has high  
ESD immunity, and the inputs are protected from continuous  
voltages up to 40 V from the opposite supply rail.  
A single resistor sets the gain from 1 to 1000. The reference pin  
can be used to apply a precise offset to the output voltage.  
Very low bias current makes the AD8422 error-free with high  
source impedance, allowing multiple sensors to be multiplexed  
to the inputs. Low voltage noise and low current noise make the  
AD8422 an ideal choice for measuring a Wheatstone bridge.  
The AD8422 is specified from −40°C to +85°C and has typical  
performance curves to 125°C. It is available in 8-lead MSOP  
and 8-lead SOIC packages.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2013 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
AD8422  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Architecture ................................................................................ 19  
Gain Selection............................................................................. 19  
Reference Terminal .................................................................... 20  
Input Voltage Range................................................................... 20  
Layout .......................................................................................... 20  
Input Bias Current Return Path ............................................... 21  
Input Voltages Beyond the Supply Rails.................................. 21  
Radio Frequency Interference (RFI)........................................ 22  
Applications Information.............................................................. 23  
Precision Bridge Conditioning................................................. 23  
Process Control Analog Input .................................................. 23  
Outline Dimensions....................................................................... 24  
Ordering Guide .......................................................................... 24  
Applications....................................................................................... 1  
Connection Diagram ....................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
SOIC Package................................................................................ 3  
MSOP Package.............................................................................. 5  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 10  
Theory of Operation ...................................................................... 19  
REVISION HISTORY  
5/13—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
 
Data Sheet  
AD8422  
SPECIFICATIONS  
SOIC PACKAGE  
VS = 15 V, VREF = 0 V, TA = 25°C, G = 1, RL = 2 kΩ, unless otherwise noted.  
Table 1.  
AD8422ARZ  
Typ  
AD8422BRZ  
Typ  
Test Conditions/  
Comments  
Parameter  
Min  
Max  
Min  
Max  
Unit  
COMMON-MODE REJECTION RATIO  
CMRR DC to 60 Hz with 1 kΩ  
Source Imbalance  
VCM = −10 V to +10 V  
G = 1  
G = 10  
G = 100  
G = 1000  
Over Temperature, G=1  
CMRR at 7 kHz  
G = 1  
G = 10  
G = 100  
G = 1000  
NOISE1  
86  
94  
dB  
dB  
dB  
dB  
dB  
106  
126  
146  
83  
114  
134  
150  
89  
T = −40°C to +85°C  
VCM = −10 V to +10 V  
80  
90  
100  
100  
80  
95  
100  
100  
dB  
dB  
dB  
dB  
Voltage Noise, 1 kHz  
Input Voltage Noise, eNI  
Output Voltage Noise, eNO  
Peak to Peak, RTI  
G = 1  
G = 10  
G = 100 to 1000  
Current Noise  
VIN+, VIN−, VREF = 0 V  
f = 0.1 Hz to 10 Hz  
8
80  
8
80  
nV/√Hz  
nV/√Hz  
2
2
µV p-p  
µV p-p  
µV p-p  
fA/√Hz  
pA p-p  
0.5  
0.15  
90  
8
0.5  
0.15  
90  
8
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
110  
VOLTAGE OFFSET2  
Input Offset, VOSI  
Over Temperature  
VS = 1.8 V to 15 V  
T = −40°C to +85°C  
60  
70  
0.4  
25  
40  
0.3  
µV  
µV  
µV/°C  
Average Temperature  
Coefficient  
Output Offset, VOSO  
Over Temperature  
Average Temperature  
Coefficient  
VS = 1.8 V to 15 V  
T = −40°C to +85°C  
300  
500  
5
150  
300  
2
µV  
µV  
µV/°C  
Offset RTI vs. Supply (PSR)  
G = 1  
G = 10  
G = 100  
G = 1000  
VS = 1.8 V to 18 V  
90  
110  
130  
150  
150  
100  
120  
140  
140  
120  
140  
160  
160  
dB  
dB  
dB  
dB  
110  
124  
130  
INPUT CURRENT  
Input Bias Current  
Over Temperature  
VS = 1.8 V to 15 V  
T = −40°C to +85°C  
0.5  
1
2
0.2  
0.5  
1
nA  
nA  
Average Temperature  
Coefficient  
4
4
pA/°C  
Input Offset Current  
Over Temperature  
VS = 1.8 V to 15 V  
T = −40°C to +85°C  
0.2  
0.3  
0.8  
0.1  
0.15  
0.3  
nA  
nA  
Average Temperature  
Coefficient  
1
1
pA/°C  
Rev. 0 | Page 3 of 24  
 
AD8422  
Data Sheet  
AD8422ARZ  
Typ  
AD8422BRZ  
Typ  
Test Conditions/  
Comments  
Parameter  
Min  
Max  
Min  
Max  
Unit  
REFERENCE INPUT  
RIN  
IIN  
Voltage Range  
Gain to Output  
DYNAMIC RESPONSE  
Small Signal −3 dB Bandwidth  
G = 1  
20  
35  
20  
35  
kΩ  
µA  
V
VIN+, VIN−, VREF = 0 V  
50  
+VS  
50  
+VS  
–VS  
–VS  
1
1
V/V  
2200  
850  
120  
12  
2200  
850  
120  
12  
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
G = 1000  
Settling Time 0.01%  
G = 1  
G = 10  
G = 100  
G = 1000  
10 V step  
10 V step  
13  
13  
12  
80  
13  
13  
12  
80  
µs  
µs  
µs  
µs  
Settling Time 0.001%  
G = 1  
15  
15  
µs  
G = 10  
15  
15  
µs  
G = 100  
15  
15  
µs  
G = 1000  
160  
160  
µs  
Slew Rate  
GAIN3  
Gain Range  
G = 1 to 100  
0.8  
1
0.8  
1
V/µs  
G = 1 + (19.8 kΩ/RG)  
1000  
1000  
V/V  
Gain Error  
VOUT 10 V  
G = 1  
G = 10  
G = 100  
G = 1000  
0.03  
0.2  
0.2  
0.01  
0.04  
0.04  
0.04  
%
%
%
%
0.2  
Gain Nonlinearity  
G = 1  
VOUT = −10 V to +10 V  
RL = 2 kΩ  
0.5  
2
4
5
5
10  
20  
0.5  
2
4
5
5
10  
20  
ppm  
ppm  
ppm  
ppm  
G = 10  
G = 100  
G = 1000  
10  
10  
Gain vs. Temperature  
G = 1  
G > 1  
5
−80  
1
–80  
ppm/°C  
ppm/°C  
INPUT  
Input Impedance  
Differential  
Common Mode  
Input Operating Voltage Range4  
Over Temperature  
OUTPUT  
200||2  
200||2  
200||2  
200||2  
GΩ||pF  
GΩ||pF  
V
V
VS = 1.8 V to 18 V  
T = −40°C to +85°C  
−VS + 1.2  
−VS + 1.2  
+VS − 1.1  
+VS − 1.2  
–VS + 1.2  
–VS + 1.2  
+VS − 1.1  
+VS − 1.2  
Output Swing, RL = 10 kΩ  
Over Temperature  
Output Swing, RL = 10 kΩ  
Over Temperature  
Output Swing, RL = 2 kΩ  
Over Temperature5  
Output Swing, RL = 2 kΩ  
Over Temperature  
Short-Circuit Current  
VS = 15 V  
T = −40°C to +85°C  
VS = 1.8 V  
T = −40°C to +85°C  
VS = 15 V  
T = −40°C to +85°C  
VS = 1.8 V  
−VS + 0.2  
−VS + 0.25  
−VS + 0.12  
−VS + 0.13  
−VS + 0.25  
−VS + 0.3  
−VS + 0.15  
−VS + 0.2  
+VS − 0.2  
−VS + 0.2  
+VS − 0.2  
+VS − 0.25  
+VS − 0.12  
+VS − 0.13  
+VS − 0.25  
+VS – 1.4  
V
V
V
V
V
V
V
V
+VS − 0.25 −VS + 0.25  
+VS − 0.12 −VS + 0.12  
+VS − 0.13 −VS + 0.13  
+VS − 0.25 −VS + 0.25  
+VS – 1.4  
+VS − 0.15 −VS + 0.15  
+VS − 0.2 −VS + 0.2  
−VS + 0.3  
+VS − 0.15  
+VS − 0.2  
T = −40°C to +85°C  
20  
20  
mA  
Rev. 0 | Page 4 of 24  
Data Sheet  
AD8422  
AD8422ARZ  
Typ  
AD8422BRZ  
Typ  
Test Conditions/  
Comments  
Parameter  
Min  
Max  
Min  
Max  
Unit  
POWER SUPPLY  
Operating Range  
Dual-supply operation  
Single-supply  
operation  
1.8  
3.6  
18  
36  
1.8  
3.6  
18  
36  
V
V
Quiescent Current  
Over Temperature  
300  
330  
400  
300  
330  
400  
µA  
µA  
T = −40°C to +85°C  
TEMPERATURE RANGE  
Specified Performance  
Operating Range6  
–40  
–40  
+85  
+125  
–40  
–40  
+85  
+125  
°C  
°C  
1 Total RTI noise = √  
eNI2 + (eNO/G)2  
2 Total RTI VOS = (VOSI) + (VOSO/G).  
3 Gain does not include the effects of the external resistor, RG.  
4 One input grounded. G = 1.  
5 Output current limited at cold temperatures. See Figure 35.  
6 See Typical Performance Characteristics for expected operation between 85°C and 125°C.  
MSOP PACKAGE  
VS = 15 V, VREF = 0 V, TA = 25°C, G = 1, RL = 2 kΩ, unless otherwise noted.  
Table 2.  
AD8422ARMZ  
Typ  
AD8422BRMZ  
Typ  
Test Conditions/  
Comments  
Parameter  
Min  
Max  
Min  
Max  
Unit  
COMMON-MODE REJECTION RATIO  
CMRR DC to 60 Hz with 1 kΩ  
Source Imbalance  
VCM = −10 V to +10 V  
G = 1  
G = 10  
G = 100  
G = 1000  
Over Temperature, G = 1  
CMRR at 7 kHz  
G = 1  
G = 10  
G = 100  
G = 1000  
NOISE1  
86  
90  
dB  
dB  
dB  
dB  
106  
126  
146  
83  
110  
130  
150  
86  
T = −40°C to +85°C  
VCM = −10 V to +10 V  
80  
90  
100  
100  
80  
95  
100  
100  
dB  
dB  
dB  
dB  
Voltage Noise, 1 kHz  
Input Voltage Noise, eNI  
Output Voltage Noise, eNO  
Peak to Peak, RTI  
G = 1  
G = 10  
G = 100 to 1000  
Current Noise  
VIN+, VIN−, VREF = 0 V  
f = 0.1 Hz to 10 Hz  
8
80  
8
80  
nV/√Hz  
nV/√Hz  
2
2
µV p-p  
µV p-p  
µV p-p  
fA/√Hz  
pA p-p  
0.5  
0.15  
90  
8
0.5  
0.15  
90  
8
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
110  
VOLTAGE OFFSET2  
Input Offset, VOSI  
Over Temperature  
VS = 1.8 V to 15 V  
T = −40°C to +85°C  
70  
110  
0.6  
50  
75  
0.4  
µV  
µV  
µV/°C  
Average Temperature  
Coefficient  
Output Offset, VOSO  
Over Temperature  
Average Temperature  
Coefficient  
VS = 1.8 V to 15 V  
T = −40°C to +85°C  
300  
500  
5
150  
300  
2
µV  
µV  
µV/°C  
Rev. 0 | Page 5 of 24  
 
 
AD8422  
Data Sheet  
AD8422ARMZ  
Typ  
AD8422BRMZ  
Typ  
Test Conditions/  
Comments  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Offset RTI vs. Supply (PSR)  
G = 1  
G = 10  
G = 100  
G = 1000  
VS = 1.8 V to 18 V  
90  
110  
130  
150  
150  
100  
120  
140  
140  
120  
140  
160  
160  
dB  
dB  
dB  
dB  
110  
124  
130  
INPUT CURRENT  
Input Bias Current  
Over Temperature  
VS = 1.8 V to 15 V  
T = −40°C to +85°C  
0.5  
1
2
0.2  
0.5  
1
nA  
nA  
Average Temperature  
Coefficient  
4
4
pA/°C  
Input Offset Current  
Over Temperature  
VS = 1.8 V to 15 V  
T = −40°C to +85°C  
0.2  
0.3  
0.8  
0.1  
0.15  
0.3  
nA  
nA  
Average Temperature  
Coefficient  
1
1
pA/°C  
REFERENCE INPUT  
RIN  
IIN  
Voltage Range  
Gain to Output  
DYNAMIC RESPONSE  
Small Signal −3 dB Bandwidth  
G = 1  
20  
35  
20  
35  
kΩ  
µA  
V
VIN+, VIN−, VREF = 0 V  
50  
+VS  
50  
+VS  
−VS  
−VS  
1
1
V/V  
2200  
850  
120  
12  
2200  
850  
120  
12  
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
G = 1000  
Settling Time 0.01%  
G = 1  
G = 10  
G = 100  
G = 1000  
10 V step  
10 V step  
13  
13  
12  
80  
13  
13  
12  
80  
µs  
µs  
µs  
µs  
Settling Time 0.001%  
G = 1  
15  
15  
µs  
G = 10  
15  
15  
µs  
G = 100  
15  
15  
µs  
G = 1000  
160  
160  
µs  
Slew Rate  
GAIN3  
Gain Range  
Gain Error  
G = 1  
G = 1 to 100  
0.8  
1
0.8  
1
V/µs  
G = 1 + (19.8 kΩ/RG)  
1000  
1000  
V/V  
VOUT 10 V  
0.03  
0.2  
0.2  
0.01  
0.04  
0.04  
0.04  
%
%
%
%
G = 10  
G = 100  
G = 1000  
0.2  
Gain Nonlinearity  
G = 1  
G = 10  
G = 100  
G = 1000  
VOUT = −10 V to +10 V  
RL = 2 kΩ  
0.5  
2
4
5
5
10  
20  
0.5  
2
4
5
5
10  
20  
ppm  
ppm  
ppm  
ppm  
10  
10  
Gain vs. Temperature  
G = 1  
G > 1  
5
−80  
1
−80  
ppm/°C  
ppm/°C  
Rev. 0 | Page 6 of 24  
 
 
 
Data Sheet  
AD8422  
AD8422ARMZ  
Typ  
AD8422BRMZ  
Typ  
Test Conditions/  
Comments  
Parameter  
INPUT  
Min  
Max  
Min  
Max  
Unit  
Input Impedance  
Differential  
Common Mode  
200||2  
200||2  
200||2  
200||2  
GΩ||pF  
GΩ||pF  
Input Operating Voltage Range4  
Over Temperature  
VS = 1.8 V to 18 V  
T = −40°C to +85°C  
−VS + 1.2  
−VS + 1.2  
+VS − 1.1  
+VS − 1.2  
−VS + 1.2  
−VS + 1.2  
+VS − 1.1  
+VS − 1.2  
V
V
OUTPUT  
Output Swing, RL = 10 kΩ  
Over Temperature  
Output Swing, RL = 10 kΩ  
Over Temperature  
Output Swing, RL = 2 kΩ  
Over Temperature5  
Output Swing, RL = 2 kΩ  
Over Temperature  
Short-Circuit Current  
POWER SUPPLY  
VS = 15 V  
T = −40°C to +85°C  
VS = 1.8 V  
T = −40°C to +85°C  
VS = 15 V  
T = −40°C to +85°C  
VS = 1.8 V  
−VS + 0.2  
−VS + 0.25  
−VS + 0.12  
−VS + 0.13  
−VS + 0.25  
−VS + 0.3  
−VS + 0.15  
−VS + 0.2  
+VS − 0.2  
−VS + 0.2  
+VS − 0.2  
+VS − 0.25  
+VS − 0.12  
+VS − 0.13  
+VS − 0.25  
+VS – 1.4  
V
V
V
V
V
V
V
V
+VS − 0.25 −VS + 0.25  
+VS − 0.12 −VS + 0.12  
+VS − 0.13 −VS + 0.13  
+VS − 0.25 −VS + 0.25  
+VS – 1.4  
+VS − 0.15 −VS + 0.15  
−VS + 0.3  
+VS − 0.15  
+VS − 0.2  
T = −40°C to +85°C  
+VS − 0.2  
−VS + 0.2  
20  
20  
mA  
Operating Range  
Dual-supply operation  
Single-supply operation  
1.8  
3.6  
18  
36  
1.8  
3.6  
18  
36  
V
V
Quiescent Current  
Over Temperature  
300  
330  
400  
300  
330  
400  
µA  
µA  
T = −40°C to +85°C  
TEMPERATURE RANGE  
Specified Performance  
Operating Range6  
–40  
–40  
+85  
+125  
–40  
–40  
+85  
+125  
°C  
°C  
1 Total RTI Noise = √  
eNI2 + (eNO/G)2  
2 Total RTI VOS = (VOSI) + (VOSO/G).  
3 Gain does not include the effects of the external resistor, RG.  
4 One input grounded. G = 1.  
5 Output current limited at cold temperatures. See Figure 35.  
6 See Typical Performance Characteristics for expected operation between 85°C and 125°C.  
Rev. 0 | Page 7 of 24  
 
AD8422  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
THERMAL RESISTANCE  
θJA is specified for a device in free air using a 4-layer JEDEC  
printed circuit board (PCB).  
Parameter  
Rating  
Supply Voltage  
1.8 V to 18 V  
Indefinite  
−VS + 40 V  
+VS − 40 V  
VS 0.3 V  
−65°C to +150°C  
−40°C to +125°C  
150°C  
Output Short-Circuit Current Duration  
Maximum Voltage at −IN or +IN1  
Minimum Voltage at −IN or +IN  
Maximum Voltage at REF  
Storage Temperature Range  
Operating Temperature Range  
Maximum Junction Temperature  
ESD  
Table 4.  
Package  
θJA  
Unit  
°C/W  
°C/W  
8-Lead SOIC  
8-Lead MSOP  
100  
162  
ESD CAUTION  
Human Body Model  
3 kV  
Charge Device Model  
Machine Model  
1.25 kV  
100 V  
1 For voltages beyond these limits, use input protection resistors. See the  
Theory of Operation section for more information.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 8 of 24  
 
 
 
Data Sheet  
AD8422  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AD8422  
1
2
3
4
8
7
6
5
–IN  
+V  
S
R
R
V
OUT  
G
G
REF  
–V  
+IN  
S
TOP VIEW  
(Not to Scale)  
Figure 3. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2, 3  
4
5
6
−IN  
RG  
Negative Input Terminal.  
Gain Setting Terminals. Place resistor across the RG pins to set the gain. G = 1 + (19.8 kΩ/RG).  
Positive Input Terminal.  
Negative Power Supply Terminal.  
Reference Voltage Terminal. Drive this terminal with a low impedance voltage source to level shift the output.  
+IN  
−VS  
REF  
VOUT  
+VS  
7
8
Output Terminal.  
Positive Power Supply Terminal.  
Rev. 0 | Page 9 of 24  
 
 
 
AD8422  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
T = 25°C, VS = 15, VREF = 0 V, RL = 10 kΩ, unless otherwise noted.  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
0
–90  
0
–300  
–60  
–30  
0
30  
60  
90  
–200  
–100  
0
100  
200  
300  
300  
40  
INPUT OFFSET VOLTAGE (µV)  
OUTPUT OFFSET VOLTAGE (µV)  
Figure 4. Typical Distribution of Input Offset Voltage  
Figure 7. Typical Distribution of Output Offset Voltage  
800  
600  
400  
200  
0
400  
300  
200  
100  
0
–900  
–600  
–300  
0
300  
600  
900  
–300  
–200  
–100  
0
100  
200  
POSITIVE INPUT BIAS CURRENT (pA)  
INPUT OFFSET CURRENT (pA)  
Figure 5. Typical Distribution of Input Bias Current  
Figure 8. Typical Distribution of Input Offset Current  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
3
–9  
–6  
–3  
0
6
9
–40  
–20  
0
20  
PSRR G = 1 (µV/V)  
CMRR G = 1 (µV/V)  
Figure 6. Typical Distribution of PSRR (G = 1)  
Figure 9. Typical Distribution of CMRR (G = 1)  
Rev. 0 | Page 10 of 24  
 
 
Data Sheet  
AD8422  
20  
20  
15  
G = 1  
G = 100  
V
= ±15V  
S
15  
10  
V
= ±15V  
S
10  
V
= ±12V  
= ±5V  
S
5
5
V
= ±12V  
= ±5V  
S
0
0
–5  
–5  
V
V
S
S
–10  
–15  
–20  
–10  
–15  
–20  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 10. Input Common-Mode Voltage vs. Output Voltage (G = 1),  
VS = 15 V, VS = 12 V, VS = 5 V  
Figure 13. Input Common-Mode Voltage vs. Output Voltage (G = 100),  
VS = 15 V, VS = 12 V, VS = 5 V  
5.0  
5.0  
G = 1  
G = 100  
4.5  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
V
= 0V  
V
= 2.5V  
REF  
REF  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 0V  
V
= 2.5V  
REF  
REF  
1
0.5  
0
–0.5  
0
0.5  
1.0 1.5  
2.0 2.5  
3.0 3.5  
4.0 4.5  
5.0 5.5  
–0.5  
0
0.5  
.0 1.5  
2.0 2.5  
3.0 3.5  
4
.0 4.5  
5.0 5.5  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 11. Input Common-Mode Voltage vs. Output Voltage (G = 1),  
Single-Supply, VS = 5 V  
Figure 14. Input Common-Mode Voltage vs. Output Voltage (G = 100),  
Single-Supply, VS = 5 V  
3.0  
3.0  
G = 1  
G = 100  
V
= 0V  
V
= 1.8V  
REF  
REF  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.0  
1.5  
1.0  
V
= 0V  
V
= 1.8V  
REF  
REF  
2.5  
0.5  
0
–0.5  
–0.5  
0
0.5  
1
.0  
1.5  
2
.0  
2.5  
3
.0  
3.5  
4.0  
0
0.5  
1.0  
1.5  
2
.0  
3
.0  
3.5  
4.0  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 12. Input Common-Mode Voltage vs. Output Voltage (G = 1),  
Single-Supply, VS = 3.6 V  
Figure 15. Input Common-Mode Voltage vs. Output Voltage (G = 100),  
Single-Supply, VS = 3.6 V  
Rev. 0 | Page 11 of 24  
 
 
 
 
 
AD8422  
Data Sheet  
20  
16  
12  
8
5.0  
20  
15  
20  
15  
10  
5
V
= 5V  
V
= ±15V  
S
S
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
G = 1  
G = 100  
V
V
V
V
= 2.5V  
= 2.5V  
= 0V  
OUT  
REF  
REF  
V
= 0V  
IN–  
IN–  
I
10  
IN  
V
OUT  
I
5
IN  
4
0
0
0
–4  
–8  
–12  
–16  
–20  
–5  
–5  
–10  
–15  
–20  
–10  
–15  
–20  
–35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20 25 30 35 40  
–25 –20 –15 –10  
–5  
0
5
10  
15  
20  
25  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 16. Input Overvoltage Performance; G = 1, VS = 5 V  
Figure 19. Input Overvoltage Performance; G = 100, VS = 15 V  
0.25  
20  
15  
20  
15  
10  
5
V = ±15V  
S
V
= ±15V  
S
0.20  
0.15  
0.10  
0.05  
0
G = 1  
V
V
= 0V  
REF  
= 0V  
IN–  
10  
V
OUT  
5
0
0
I
IN  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–5  
–5  
–10  
–15  
–20  
–10  
–15  
–20  
–15  
–10  
–5  
0
5
10  
15  
–25 –20 –15 –10  
–5  
0
5
10  
15  
20  
25  
COMMON-MODE VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 20. Input Bias Current vs. Common-Mode Voltage, VS = 15 V  
Figure 17. Input Overvoltage Performance; G = 1, VS = 15 V  
0.20  
20  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
V
= 5V  
S
S
16  
12  
8
G = 100  
V
V
0.15  
0.10  
0.05  
0
V
= 2.5V  
OUT  
REF  
= 2.5V  
IN–  
I
IN  
4
0
–4  
–8  
–12  
–16  
–20  
–0.05  
–0.10  
–0.15  
–0.20  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
–35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20 25 30 35 40  
COMMON-MODE VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 18. Input Overvoltage Performance; G = 100, VS = 5 V  
Figure 21. Input Bias Current vs. Common-Mode Voltage, VS = 5 V  
Rev. 0 | Page 12 of 24  
 
 
 
 
Data Sheet  
AD8422  
180  
180  
160  
140  
120  
100  
80  
GAIN = 1000  
GAIN = 1000  
GAIN = 100  
GAIN = 10  
GAIN = 1  
160  
GAIN = 100  
140  
GAIN = 10  
120  
GAIN = 1  
100  
80  
60  
40  
20  
0
60  
40  
0.1  
1
10  
100  
1k  
10k  
100k  
100k  
10M  
0.1  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 22. Positive PSRR vs. Frequency  
Figure 25. CMRR vs. Frequency  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
GAIN = 1000  
GAIN = 1000  
GAIN = 100  
GAIN = 10  
GAIN = 1  
GAIN = 100  
GAIN = 10  
GAIN = 1  
60  
40  
60  
20  
0
0.1  
40  
0.1  
1
10  
100  
1k  
10k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 23. Negative PSRR vs. Frequency  
Figure 26. CMRR vs. Frequency, 1 kΩ Source Imbalance  
70  
60  
50  
40  
30  
20  
10  
0
0.5  
0.4  
GAIN = 1000  
0.3  
GAIN = 100  
GAIN = 10  
GAIN = 1  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–10  
–20  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
TIME (s)  
Figure 24. Gain vs. Frequency  
Figure 27. Change in Input Offset Voltage (VOSI) vs. Warm-Up Time  
Rev. 0 | Page 13 of 24  
AD8422  
Data Sheet  
0.4  
2.0  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
= ±15V  
S
1.5  
1.0  
0.3  
NORMALIZED AT 25°C  
0.2  
0.5  
0.1  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.1  
–0.2  
–0.3  
–0.4  
40  
25  
10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 28. Input Bias Current and Input Offset Current vs. Temperature  
Figure 31. Supply Current vs. Temperature (G = 1)  
70  
60  
100  
REPRESENTATIVE SAMPLES  
NORMALIZED AT 25°C  
80  
60  
I
+
50  
SHORT  
40  
40  
20  
30  
0
20  
–20  
–40  
–60  
–80  
–100  
10  
0
–10  
–20  
–30  
I
SHORT  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 32. Short-Circuit Current vs. Temperature (G = 1)  
Figure 29. Gain vs. Temperature (G = 1)  
+V  
50  
40  
S
REPRESENTATIVE SAMPLE  
NORMALIZED AT 25°C  
–0.5  
30  
–1.0  
–1.5  
20  
–40°C  
+25°C  
+85°C  
+105°C  
+125°C  
10  
0
–10  
–20  
–30  
–40  
–50  
+1.5  
+1.0  
+0.5  
–V  
S
0
2
4
6
8
10  
12  
14  
16  
18  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
SUPPLY VOLTAGE (±V )  
S
TEMPERATURE (°C)  
Figure 33. Input Voltage Limit vs. Supply Voltage  
Figure 30. CMRR vs. Temperature (G = 1), Normalized at 25°C  
Rev. 0 | Page 14 of 24  
Data Sheet  
AD8422  
+V  
S
+V  
S
–0.2  
–0.4  
–0.6  
–0.8  
–0.1  
–0.2  
–0.3  
–40°C  
+25°C  
+85°C  
+105°C  
+125°C  
+125°C  
+85°C  
+25°C  
–40°C  
+0.8  
+0.6  
+0.4  
+0.2  
+0.3  
+0.2  
+0.1  
–V  
S
–V  
S
100µ  
0
2
4
6
8
10  
12  
14  
16  
18  
1m  
10m  
SUPPLY VOLTAGE (±V )  
OUTPUT CURRENT (A)  
S
Figure 34. Output Voltage Swing vs. Supply Voltage, RL = 10 kΩ  
Figure 37. Output Voltage Swing vs. Output Current  
+V  
S
5
4
3
2
1
0
V
= ±15V  
S
–0.2  
–0.4  
–0.6  
G = 1  
+125°C  
–0.8  
+85°C  
+25°C  
–40°C  
–1  
+0.8  
+0.6  
+0.4  
+0.2  
–2  
–3  
–4  
–5  
R
R
= 2kΩ  
= 10kΩ  
L
L
–V  
S
0
2
4
6
8
10  
12  
14  
16  
18  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
SUPPLY VOLTAGE (±V )  
OUTPUT VOLTAGE (V)  
S
Figure 35. Output Voltage Swing vs. Supply Voltage, RL = 2 kΩ  
Figure 38. Gain Nonlinearity (G = 1)  
10  
8
15  
V
= ±15V  
S
G = 10  
10  
5
6
4
2
–40°C  
+25°C  
+85°C  
+105°C  
+125°C  
0
0
–5  
–2  
–4  
–6  
–8  
–10  
–10  
–15  
R
R
= 2kΩ  
= 10kΩ  
L
L
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
100  
1k  
10k  
100k  
LOAD RESISTANCE (Ω)  
OUTPUT VOLTAGE (V)  
Figure 36. Output Voltage Swing vs. Load Resistance  
Figure 39. Gain Nonlinearity (G = 10)  
Rev. 0 | Page 15 of 24  
 
AD8422  
Data Sheet  
20  
G = 1000, 100nV/DIV  
V
= ±15V  
S
16  
12  
8
G = 100  
4
0
G = 1, 1µV/DIV  
–4  
–8  
–12  
–16  
–20  
R
R
= 2kΩ  
= 10kΩ  
L
L
1s/DIV  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
OUTPUT VOLTAGE (V)  
Figure 40. Gain Nonlinearity (G = 100)  
Figure 43. 0.1 Hz to 10 Hz RTI Voltage Noise (G = 1, G = 1000)  
50  
40  
10k  
V
= ±15V  
S
G = 1000  
30  
20  
1k  
100  
10  
10  
0
–10  
–20  
–30  
–40  
–50  
R
R
= 2kΩ  
= 10kΩ  
L
L
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
1
10  
100  
1k  
10k  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 41. Gain Nonlinearity (G = 1000)  
Figure 44. Current Noise Spectral Density vs. Frequency  
1k  
100  
10  
G = 1  
5pA/DIV  
G = 10  
G = 100  
G = 1000  
1s/DIV  
1
0.1  
1
10  
100  
FREQUENCY (Hz)  
1k  
10k  
100k  
Figure 45. 0.1 Hz to 10 Hz Current Noise  
Figure 42. Voltage Noise Spectral Density vs. Frequency  
Rev. 0 | Page 16 of 24  
Data Sheet  
AD8422  
30  
G = 1  
V
= ±15V  
S
25  
20  
15  
10  
5
5V/DIV  
12.0μs TO 0.01%  
15.2µs TO 0.001%  
0.002%/DIV  
V
= +5V  
S
10μs/DIV  
0
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 46. Large Signal Frequency Response  
Figure 49. Large Signal Pulse Response and Settling Time (G = 100),  
10 V Step, VS = 15 V, RL = 2 kΩ, CL = 100 pF  
5V/DIV  
5V/DIV  
13.6μs TO 0.01%  
15.2µs TO 0.001%  
80μs TO 0.01%  
160µs TO 0.001%  
0.002%/DIV  
0.002%/DIV  
100μs/DIV  
10μs/DIV  
Figure 47. Large Signal Pulse Response and Settling Time (G = 1), 10 V Step,  
VS = 15 V, RL = 2 kΩ, CL = 100 pF  
Figure 50. Large Signal Pulse Response and Settling Time (G = 1000),  
10 V Step, VS = 15 V, RL = 2 kΩ, CL = 100 pF  
30  
R
C
= 2kΩ  
= 100pF  
L
L
25  
20  
15  
10  
5
5V/DIV  
SETTLED TO 0.001%  
12.8μs TO 0.01%  
15.1µs TO 0.001%  
0.002%/DIV  
SETTLED TO 0.01%  
10μs/DIV  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
STEP SIZE (V)  
Figure 48. Large Signal Pulse Response and Settling Time (G = 10), 10 V Step,  
VS = 15 V, RL = 2 kΩ, CL = 100 pF  
Figure 51. Settling Time vs. Step Size (G = 1)  
Rev. 0 | Page 17 of 24  
AD8422  
Data Sheet  
50mV/DIV  
20mV/DIV  
100µs/DIV  
10µs/DIV  
Figure 52. Small Signal Pulse Response (G = 1), RL = 2 kΩ, CL = 100 pF  
Figure 55. Small Signal Pulse Response (G = 1000), RL = 2 kΩ, CL = 100 pF  
NO LOAD  
20 pF  
50 pF  
100 pF  
20mV/DIV  
10µs/DIV  
50mV/DIV  
10µs/DIV  
Figure 53. Small Signal Pulse Response (G = 10), RL = 2 kΩ, CL = 100 pF  
Figure 56. Small Signal Pulse Response with Various Capacitive Loads  
(G = 1), RL = No Load  
20mV/DIV  
10µs/DIV  
Figure 54. Small Signal Pulse Response (G = 100), RL = 2 kΩ, CL = 100 pF  
Rev. 0 | Page 18 of 24  
Data Sheet  
AD8422  
THEORY OF OPERATION  
+V  
S
I
V
I
B
I
I
B
B
COMPENSATION  
COMPENSATION  
A1  
A2  
10kΩ  
+V  
–V  
C1  
C2  
S
10kΩ  
10kΩ  
NODE 1  
OUTPUT  
REF  
A3  
NODE 2  
+V  
S
R1  
9.9kΩ  
R2  
9.9kΩ  
S
Q1  
Q2  
superβ  
10kΩ  
ESD AND  
OVERVOLTAGE  
PROTECTION  
ESD AND  
OVERVOLTAGE  
PROTECTION  
+V  
+V  
S
S
superβ  
–IN  
+IN  
R
G
NODE 3  
NODE 4  
–V  
S
–V  
–V  
S
S
DIFFERENCE  
AMPLIFIER STAGE  
Figure 57. Simplified Schematic  
The transfer function of the AD8422 is  
ARCHITECTURE  
V
OUT = G × (VIN+ VIN−) + VREF  
The AD8422 is based on the classic 3-op-amp instrumentation  
amplifier topology. This topology has two stages: a preamplifier  
to provide differential amplification followed by a difference  
amplifier that removes the common-mode voltage. Figure 57  
shows a simplified schematic of the AD8422.  
where:  
19.8 kΩ  
G =1+  
RG  
Topologically, Q1, A1, R1 and Q2, A2, R2 can be viewed as  
precision current feedback amplifiers that maintain a fixed  
current in the emitters of Q1 and Q2. Any change in the input  
signal forces the output voltages of A1 and A2 to change accord-  
ingly and maintain the Q1 and Q2 current at the correct value.  
This causes a precise diode drop from –IN and +IN to Node 3  
and Node 4, respectively, so that the differential signal applied  
to the inputs is replicated across the RG pins. Any current  
through RG must also flow through R1 and R2, creating the  
gained differential voltage between Node 1 and Node 2.  
GAIN SELECTION  
Placing a resistor across the RG terminals sets the gain of the  
AD8422 that can be calculated by referring to Table 6 or by  
using the following gain equation:  
19.8 kΩ  
RG =  
G 1  
The AD8422 defaults to G = 1 when no gain resistor is used. Add  
the tolerance and gain drift of the RG resistor to the specifications  
of the AD8422 to determine the total gain accuracy of the system.  
When the gain resistor is not used, gain error and gain drift are  
minimal.  
The amplified differential signal and the common-mode signal  
are applied to a difference amplifier that rejects the common-  
mode voltage but preserves the amplified differential voltage.  
Table 6. Gains Achieved Using 1% Resistors  
Laser-trimmed resistors allow for a highly accurate in-amp with a  
gain error of less than 0.01% and a CMRR that exceeds 94 dB  
(G = 1). The supply current is precisely trimmed to reduce  
uncertainties due to part-to-part variations in power dissipation  
and noise. The high performance pinout and special attention to  
design and layout allow for high CMRR across a wide frequency  
and temperature range. Using superbeta input transistors and  
bias current compensation, the AD8422 offers extremely high  
input impedance and low bias current, as well as very low voltage  
noise while using only 300 µA supply current. The overvoltage  
protection scheme allows the input to go 40 V from the opposite  
rail at all gains without compromising the noise performance.  
1% Standard Table Value of RG (Ω)  
Calculated Gain  
19.6 k  
4.99 k  
2.21 k  
1.05 k  
402  
200  
100  
39.2  
20  
2.010  
4.968  
9.959  
19.86  
50.25  
100.0  
199.0  
506.1  
991.0  
Rev. 0 | Page 19 of 24  
 
 
 
 
 
AD8422  
Data Sheet  
RG Power Dissipation  
AD8422  
1
2
3
4
8
7
6
5
–IN  
+V  
S
The AD8422 duplicates the differential voltage across its inputs  
onto the RG resistor. Choose an RG resistor size that is sufficient  
to handle the expected power dissipation at ambient temperature.  
R
R
V
OUT  
G
G
REF  
–V  
+IN  
S
REFERENCE TERMINAL  
TOP VIEW  
(Not to Scale)  
The output voltage of the AD8422 is developed with respect to the  
potential on the reference terminal. This can be used to apply a  
precise offset to the output signal. For example, a voltage source  
can be tied to the REF pin to level shift the output, allowing the  
AD8422 to drive a unipolar analog-to-digital converter (ADC).  
The REF pin is protected with ESD diodes and must not exceed  
either +VS or −VS by more than 0.3 V.  
Figure 59. Pinout Diagram  
Common-Mode Rejection Ratio over Frequency  
Poor layout can cause some of the common-mode signals to be  
converted to differential signals before reaching the in-amp.  
Such conversions occur when one input path has a frequency  
response that is different from the other. To maintain high  
CMRR over frequency, closely match the input source imped-  
ance and capacitance of each path. Place additional source  
resistance in the input path (for example, for input protection)  
close to the in-amp inputs, which minimizes their interaction  
with parasitic capacitance from the PCB traces.  
For best performance, maintain a source impedance to the REF  
terminal that is below 1 Ω. As shown in Figure 57, the reference  
terminal, REF, is at one end of a 10 kꢀ resistor. Additional impedance  
at the REF terminal adds to this 10 kꢀ resistor and results in  
amplification of the signal connected to the positive input.  
Parasitic capacitance at the gain setting pins (RG) can also affect  
CMRR over frequency. If the board design has a component at  
the gain setting pins (for example, a switch or jumper), choose a  
component such that the parasitic capacitance is as small as  
possible.  
The amplification from the additional RREF can be calculated as  
2(10 kꢀ + RREF)/(20 kꢀ + RREF  
)
Only the positive signal path is amplified; the negative path is  
unaffected. This uneven amplification degrades CMRR.  
INCORRECT  
CORRECT  
Power Supplies and Grounding  
Use a stable dc voltage to power the instrumentation amplifier.  
Noise on the supply pins can adversely affect performance.  
AD8422  
AD8422  
Place a 0.1 μF capacitor as close as possible to each supply pin.  
Because the length of the bypass capacitor leads is critical at  
high frequency, surface-mount capacitors are recommended. A  
parasitic inductance in the bypass ground trace works against  
the low impedance created by the bypass capacitor. As shown in  
Figure 60, a 10 μF capacitor can be used farther away from the  
device. For larger value capacitors, intended to be effective at  
lower frequencies, the current return path distance is less critical.  
In most cases, this capacitor can be shared by other local precision  
integrated circuits.  
REF  
REF  
V
V
+
OP1177  
Figure 58. Driving the Reference Pin (REF)  
INPUT VOLTAGE RANGE  
The 3-op-amp architecture of the AD8422 applies gain in the  
first stage before removing common-mode voltage with the  
difference amplifier stage. Internal nodes between the first and  
second stages (Node 1 and Node 2 in Figure 57) experience a  
combination of a gained signal, a common-mode signal, and a  
diode drop. The voltage supplies can limit the combined signal,  
even when the individual input and output signals are not limited.  
Figure 10 through Figure 15 show this limitation in detail.  
+V  
S
0.1µF  
10µF  
+IN  
–IN  
V
OUT  
R
G
AD8422  
LOAD  
REF  
LAYOUT  
To ensure optimum performance of the AD8422 at the PCB level,  
take care in the design of the board layout. To aid in this task,  
the pins of the AD8422 are arranged in a logical manner.  
0.1µF  
10µF  
–V  
S
Figure 60. Supply Decoupling, REF, and Output Referred to Local Ground  
Rev. 0 | Page 20 of 24  
 
 
 
 
Data Sheet  
AD8422  
A ground plane layer is helpful to reduce parasitic inductances.  
This minimizes voltage drops with changes in current. The area  
of the current path is directly proportional to the magnitude of  
parasitic inductances and, therefore, the impedance of the path  
at high frequencies. Large changes in currents in an inductive  
decoupling path or ground return create unwanted effects due  
to the coupling of such changes into the amplifier inputs.  
INPUT VOLTAGES BEYOND THE SUPPLY RAILS  
Many instrumentation amplifiers specify excellent CMRR and  
input impedance, but in a real system, the performance suffers  
because of the external components required for input protection.  
The AD8422 has very robust inputs. It typically does not need  
additional input protection. Input voltages can be up to 40 V from  
the opposite supply rail without damage to the part. For example,  
with a +5 V positive supply and a 0 V negative supply, the part can  
safely withstand voltages from −35 V to +40 V. Unlike some other  
instrumentation amplifiers, the part can handle large differential  
input voltages even when the part is in high gain.  
Because load currents flow from the supplies, connect the load at  
the same physical location as the bypass capacitor grounds.  
Reference Pin  
The output voltage of the AD8422 is developed with respect to  
the potential on the reference terminal. Ensure that REF is tied  
to the appropriate local ground.  
+V  
S
+
IN+  
I
V
V
AD8422  
INPUT BIAS CURRENT RETURN PATH  
The input bias current of the AD8422 must have a dc return  
path to ground. When using a floating source without a current  
return path, such as a thermocouple, create a current return  
path, as shown in Figure 61.  
+
IN+  
–V  
S
MOST APPLICATIONS  
Figure 62. Input Overvoltage Protection with no External Components  
INCORRECT  
CORRECT  
For input voltages less than 40 V from the opposite rail, no input  
protection is required.  
+V  
+V  
S
S
Keep the rest of the AD8422 terminals within the supplies. All  
terminals of the AD8422 are protected against ESD.  
AD8422  
AD8422  
Input Voltages Beyond the Maximum Ratings  
REF  
REF  
REF  
REF  
For applications where the AD8422 encounters voltages beyond  
the limits in the Absolute Maximum Ratings section, external  
protection is required. This external protection depends on the  
duration of the overvoltage event and the noise performance  
required.  
–V  
–V  
S
S
TRANSFORMER  
TRANSFORMER  
+V  
+V  
S
S
For short-lived events, transient protectors such as metal oxide  
varistors (MOVs) may be all that is required.  
For longer events, use resistors in series with the inputs combined  
with diodes. To avoid worsening bias current performance, low  
leakage diodes, such as the BAV199 or FJH1100s, are recommended.  
The diodes prevent the voltage at the input of the amplifier from  
exceeding the maximum ratings, while the resistors limit the  
current into the diodes. Because most external diodes can easily  
handle 100 mA or more, resistor values do not have to be large.  
Therefore, the protection resistance has minimal impact on  
noise performance.  
AD8422  
AD8422  
REF  
10M  
–V  
S
–V  
S
THERMOCOUPLE  
THERMOCOUPLE  
+V  
+V  
S
S
C
C
C
R
R
1
fHIGH-PASS  
=
AD8422  
2πRC  
AD8422  
C
REF  
–V  
–V  
S
S
CAPACITIVELY COUPLED  
CAPACITIVELY COUPLED  
Figure 61. Creating an Input Bias Current Return Path  
Rev. 0 | Page 21 of 24  
 
 
 
AD8422  
Data Sheet  
+V  
+V  
S
S
R
RADIO FREQUENCY INTERFERENCE (RFI)  
PROTECT  
I
+
I
+
IN+  
RF rectification is often a problem when amplifiers are used in  
applications that have strong RF signals. The disturbance can  
appear as a small dc offset voltage. High frequency signals can  
be filtered with a low-pass RC network placed at the input of  
the instrumentation amplifier, as shown in Figure 64.  
V
V
V
IN+  
AD8422  
AD8422  
R
PROTECT  
+
IN–  
+
IN–  
V
–V  
S
–V  
S
+V  
S
TRANSIENT PROTECTION  
SIMPLE CONTINUOUS PROTECTION  
0.1µF  
+IN  
10µF  
+V  
S
+V  
+V  
S
S
R
R
PROTECT  
PROTECT  
I
+
C
1nF  
C
+
IN+  
I
V
V
V
R
IN+  
–V  
+V  
S
AD8422  
AD8422  
2k  
S
V
C
D
10nF  
OUT  
R
R
R
G
AD8422  
PROTECT  
PROTECT  
R
+
IN–  
+
IN–  
REF  
–V  
–V  
S
V
S
–IN  
–V  
2kΩ  
S
C
C
1nF  
LOW NOISE CONTINUOUS  
OPTION 1  
LOW NOISE CONTINUOUS  
OPTION 2  
0.1µF  
10µF  
Figure 63. Input Protection Options for Input Voltages Beyond Absolute  
Maximum Ratings  
–V  
S
Figure 64. RFI Suppression  
At the expense of some noise performance, another solution is  
to use series resistors. In the overvoltage case, current into the  
inputs of the AD8422 is internally limited to a safe value for the  
amplifier. Although the AD8422 inputs must still be kept within the  
Absolute Maximum Ratings, the I × R drop across the  
protection resistor increases the maximum voltage that the  
system can withstand to the following values:  
The filter limits the input signal bandwidth, according to the  
following relationship:  
1
FilterFrequencyDIFF  
R(2CD CC )  
1
FilterFrequencyCM  
where CD ≥ 10 CC.  
RCC  
For positive input signals,  
V
MAX_NEW = (40 V + Negative Supply) + IIN × RPROTECT  
For negative input signals,  
MIN_NEW = (Positive Supply – 40 V) − IOUT × RPROTECT  
CD affects the difference signal, and CC affects the common-mode  
signal. Choose values of R and CC that minimize RFI. A mismatch  
between R × CC at the positive input and R × CC at the negative  
input degrades the CMRR of the AD8422. By using a value of CD  
that is one order of magnitude larger than CC, the effect of the  
mismatch is reduced, and performance is improved.  
V
Overvoltage performance is shown in Figure 16, Figure 17,  
Figure 18, and Figure 19. With gains greater than 100 and  
supply voltages less than 2.5 V, overdrive voltages beyond  
the rails may cause the output to invert as far as the REF pin  
voltage.  
Resistors add noise; therefore, the choice of the resistor and capacitor  
values depends on the desired tradeoff between noise, input  
impedance at high frequencies, and RF immunity. The resistors  
used for the RFI filter can be the same as those used for input  
protection.  
Rev. 0 | Page 22 of 24  
 
 
Data Sheet  
AD8422  
APPLICATIONS INFORMATION  
ADA4096-2, ensure that the desired output voltage of the AD8276  
is within its output range, and VL is within the input and output  
range of the ADA4096-2. The transistor must have sufficient  
breakdown voltage and IC. Low cost transistors, such as the BC847  
or 2N5210, are recommended.  
PRECISION BRIDGE CONDITIONING  
With its high CMRR, low drift, and rail-to-rail output, the  
AD8422 is an excellent choice for conditioning a signal from a  
Wheatstone bridge. With appropriate supply voltages, the gain  
and reference pin voltage can be adjusted to match the full-scale  
bridge output to any desired output range, such as 0 V to 5 V.  
Figure 65 shows a circuit to convert a bridge signal into a 4 mA  
to 20 mA output using the AD8276 low power, precision difference  
amplifier, and the ADA4096-2 low power, rail-to-rail input and  
output, overvoltage protected op amp. With high precision bridge  
circuits, care must be taken to compensate offsets and temperature  
errors. For example, if the voltage at the REF pin is used to  
compensate for the bridge offset, ensure that the AD8422 is within  
its operating range for the maximum expected offset. If the zero-  
adjust potentiometer is excluded, connect the positive op amp  
input to the center of the 24.9 kΩ, 10.7 kΩ divider, which is at  
1.5 V. If lower supply voltages are used for the AD8276 and the  
PROCESS CONTROL ANALOG INPUT  
In process control systems such as programmable logic controllers  
(PLC) and distributed control systems (DCS), analog variables  
typically occur in just a few standard voltage or current ranges,  
including 4 mA to 20 mA and 10 V. Variables within these input  
ranges must often be gained or attenuated and level shifted to  
match a specific ADC input range such as 0 V to 5 V. The circuit in  
Figure 66 shows one way this can be done with a single AD8422.  
Low power, overvoltage protection, and high precision make the  
AD8422 a good match for process control applications, and high  
input impedance, low bias current, and low current noise allow  
significant source resistance with minimum additional errors.  
+5V  
+5V  
+IN  
+24V  
+24V  
SENSE  
V = 0.5V TO 2.5V  
+IN  
–IN  
R
V
= ±15mV  
AD8422  
G
OUT_FS  
V
OUT  
+5V  
24.9kΩ  
AD8276  
REF  
–IN  
= 301Ω  
REF  
+24V  
R
G
124Ω  
+24V  
1
G = 66.8V/V  
I
= 4mA TO 20mA  
OUT  
V
L
10.7kΩ  
ADA4096-2  
R
L
ADA4096-2  
1
OPTIONAL  
ZERO  
ADJUST  
Figure 65. Bridge Circuit with 4 mA to 20 mA Output  
TERMINAL  
BLOCK  
0V TO 10V, ±10V  
0V TO 5V, ±5V  
0V TO 1V, ±1V  
42.2k  
34kΩ  
+15V  
1kΩ  
1kΩ  
+IN  
G
8.45kΩ  
49.9kΩ  
V
= 2.5V ±2.5V  
4mA TO 20mA,  
0mA TO 20mA  
±20mA  
OUT  
R
AD8422  
REF  
2.5V  
–IN  
–15V  
R
= 13.2kΩ  
G
G = 2.5V/V  
Figure 66. Process Control Analog Input  
Rev. 0 | Page 23 of 24  
 
 
 
 
 
AD8422  
Data Sheet  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 67. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 68. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
Branding  
AD8422ARZ  
AD8422ARZ-R7  
AD8422ARZ-RL  
AD8422BRZ  
AD8422BRZ-R7  
AD8422BRZ-RL  
AD8422ARMZ  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
8-Lead SOIC_N, Standard Grade  
R-8  
R-8  
R-8  
R-8  
R-8  
8-Lead SOIC_N, Standard Grade, 7”Tape and Reel,  
8-Lead SOIC_N, Standard Grade, 13”Tape and Reel  
8-Lead SOIC_N, High Performance Grade  
8-Lead SOIC_N, High Performance Grade, 7”Tape and Reel  
8-Lead SOIC_N, High Performance Grade, 13”Tape and Reel R-8  
8-Lead MSOP, Standard Grade  
RM-8  
Y4U  
Y4U  
Y4U  
Y4V  
Y4V  
Y4V  
AD8422ARMZ-R7 −40°C to +85°C  
AD8422ARMZ-RL −40°C to +85°C  
8-Lead MSOP, Standard Grade, 7”Tape and Reel,  
8-Lead MSOP, Standard Grade, 13”Tape and Reel  
8-Lead MSOP, High Performance Grade  
8-Lead MSOP, High Performance Grade, 7”Tape and Reel  
8-Lead MSOP, High Performance Grade, 13”Tape and Reel  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
AD8422BRMZ  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
AD8422BRMZ-R7  
AD8422BRMZ-RL  
1 Z = RoHS Compliant Part.  
©2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11197-0-5/13(0)  
Rev. 0 | Page 24 of 24  
 
 
 

相关型号:

AD8422BRMZ

High Performance, Low Power, Rail-to-Rail Precision Instrumentation Amplifier
ADI

AD8422BRMZ-R7

High Performance, Low Power, Rail-to-Rail Precision Instrumentation Amplifier
ADI

AD8422BRMZ-RL

High Performance, Low Power, Rail-to-Rail Precision Instrumentation Amplifier
ADI

AD8422BRZ

High Performance, Low Power, Rail-to-Rail Precision Instrumentation Amplifier
ADI

AD8422BRZ-R7

High Performance, Low Power, Rail-to-Rail Precision Instrumentation Amplifier
ADI

AD8422BRZ-RL

High Performance, Low Power, Rail-to-Rail Precision Instrumentation Amplifier
ADI

AD8425-A

Telecom Transformer
COILCRAFT

AD8426

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8426-A

Telecom Transformer
COILCRAFT

AD8426ACPZ-R7

Wide Supply Range, Rail-to-Rail
ADI

AD8426ACPZ-WP

Wide Supply Range, Rail-to-Rail
ADI

AD8426BCPZ-R7

Wide Supply Range, Rail-to-Rail
ADI