AD8426 [ADI]

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier; 宽电源电压范围,轨到轨输出仪表放大器
AD8426
型号: AD8426
厂家: ADI    ADI
描述:

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
宽电源电压范围,轨到轨输出仪表放大器

仪表放大器
文件: 总20页 (文件大小:273K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Wide Supply Range, Rail-to-Rail  
Output Instrumentation Amplifier  
AD8426  
Preliminary Technical Data  
FEATURES  
PIN CONFIGURATION  
2 channels in a small, 4 mm × 4 mm LFCSP  
LFCSP package has no metal pad  
More routing room  
No current leakage to pad  
Gain set with 1 external resistor  
Gain range: 1 to 1000  
Input voltage goes below ground  
Inputs protected beyond supplies  
Very wide power supply range  
Single supply: 2.2 V to 36 V  
16 15 14 13  
AD8426  
12 –IN2  
–IN1  
RG1  
RG1  
+IN1  
1
2
3
4
RG2  
RG2  
+IN2  
11  
10  
9
5
6
7
8
Dual supply: 1.35 V to 18 V  
Bandwidth (G = 1): 1.5 MHz  
Figure 1.  
CMRR (G = 1): 80 dB minimum  
Input noise: 22 nV/√Hz  
Typical supply current (per amp): 350 μA  
Specified temperature range: −40°C to +125°C  
Table 1. Instrumentation Amplifiers by Category1  
General  
Purpose  
Zero  
Drift  
Military  
Grade  
Low  
Power  
High Speed  
PGA  
APPLICATIONS  
Industrial process controls  
Bridge amplifiers  
Medical instrumentation  
Portable data acquisition  
Multichannel systems  
AD8220  
AD8221  
AD8222  
AD8224  
AD8228  
AD8295  
AD8231 AD620  
AD8290 AD621  
AD8293 AD524  
AD8553 AD526  
AD8556 AD624  
AD8557  
AD627  
AD623  
AD8235 AD8253  
AD8236  
AD8426  
AD8226  
AD8250  
AD8251  
AD8227  
1 See www.analog.com for the latest instrumentation amplifiers.  
GENERAL DESCRIPTION  
The AD8426 is a dual channel, low cost, wide supply range  
instrumentation amplifier that requires only one external  
resistor to set any gain from 1 to 1000.  
bias currents are specified to facilitate open-wire detection.  
The AD8426 is designed to make PCB routing easy and  
efficient. The two amplifiers are arranged in a logical way  
so that typical application circuits have short routes and few  
vias. Unlike most chip scale packages, the AD8426 does not  
have an exposed metal pad on the back of the part, which frees  
additional space for routing and vias. The AD8426 offers two in  
amps in the equivalent board space of a typical MSOP package.  
The AD8426 is designed to work with a variety of signal  
voltages. A wide input range and rail-to-rail output allow the  
signal to make full use of the supply rails. Because the input  
range also includes the ability to go below the negative supply,  
small signals near ground can be amplified without requiring  
dual supplies. The AD8426 operates on supplies ranging from  
1.ꢀ3 V to 18 V for dual supplies and 2.2 V to ꢀ6 V for single  
supply.  
The AD8426 is ideal for multichannel, space-constrained  
industrial applications. Unlike other low cost, low power  
instrumentation amplifiers, the AD8426 is designed with a  
minimum gain of 1 and can easily handle 10 V signals. With  
its space-saving LFCSP package and 123°C temperature rating,  
the AD8426 thrives in tightly packed, zero airflow designs.  
The robust AD8426 inputs are designed to connect to real-  
world sensors. In addition to its wide operating range, the  
AD8426 can handle voltages beyond the rails. For example,  
with a 3 V supply, the part is guaranteed to withstand ꢀ3 V  
at the input with no damage. Minimum as well as maximum input  
The AD8226 is the single channel version of the AD8426.  
Rev. PrD  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks are theproperty of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
AD8426  
Preliminary Technical Data  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Gain Selection..............................................................................11  
Reference Terminal .....................................................................11  
Input Voltage Range................................................................... 12  
Layout .......................................................................................... 12  
Input Bias Current Return Path ............................................... 1ꢀ  
Input Protection ......................................................................... 1ꢀ  
Radio Frequency Interference (RFI)........................................ 14  
Applications Information.............................................................. 13  
Differential Drive ....................................................................... 13  
Precision Strain Gage................................................................. 16  
Driving an ADC.......................................................................... 16  
Outline Dimensions....................................................................... 17  
Applications....................................................................................... 1  
Pin Configuration............................................................................. 1  
General Description......................................................................... 1  
Specifications..................................................................................... ꢀ  
Dual-Supply Operation ............................................................... ꢀ  
Single-Supply Operation ............................................................. 3  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 10  
Theory of Operation ...................................................................... 11  
Architecture................................................................................. 11  
Rev. PrD | Page 2 of 20  
Preliminary Technical Data  
SPECIFICATIONS  
AD8426  
DUAL-SUPPLY OPERATION  
+VS = +13 V, VS = −13 V, VREF = 0 V, TA = 23°C, G = 1, RL = 10 kΩ, specifications referred to input, unless otherwise noted.  
Table 2.  
A Grade  
Typ  
B Grade  
Typ  
Test Conditions/  
Comments  
Parameter  
Min  
Max  
Min  
Max  
Unit  
COMMON-MODE REJECTION  
RATIO (CMRR)  
VCM = −10 V to +10 V  
CMRR, DC to 60 Hz  
G = 1  
G = 10  
80  
86  
dB  
dB  
dB  
dB  
100  
105  
105  
105  
110  
110  
G = 100  
G = 1000  
CMRR at 5 kHz  
G = 1  
G = 10  
G = 100  
80  
90  
90  
100  
80  
90  
90  
100  
dB  
dB  
dB  
dB  
G = 1000  
NOISE  
Total noise:  
eN = √(eNI2 + (eNO/G)2)  
Voltage Noise  
Input Voltage Noise, eNI  
Output Voltage Noise, eNO  
RTI Noise  
f = 1 kHz  
22  
120  
24  
125  
22  
120  
24  
125  
nV/√Hz  
nV/√Hz  
f = 0.1 Hz to 10 Hz  
G = 1  
G = 10  
G = 100 to 1000  
Current Noise  
2
2
μV p-p  
μV p-p  
μV p-p  
fA/√Hz  
pA p-p  
0.5  
0.4  
100  
3
0.5  
0.4  
100  
3
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
VOLTAGE OFFSET  
Input Offset, VOSI  
Average Temperature  
Coefficient  
Output Offset, VOSO  
Total offset voltage:  
V
OS = VOSI + (VOSO/G)  
VS = 5 V to 15 V  
TA = −40°C to +125°C  
300  
3
150  
1.5  
μV  
μV/°C  
0.5  
2
0.5  
1
VS = 5 V to 15 V  
TA = −40°C to +125°C  
1200  
12  
800  
8
μV  
μV/°C  
Average Temperature  
Coefficient  
Offset RTI vs. Supply (PSR)  
G = 1  
G = 10  
G = 100  
G = 1000  
VS = 5 V to 15 V  
80  
90  
dB  
dB  
dB  
dB  
100  
105  
105  
105  
110  
110  
INPUT CURRENT  
Input Bias Current1  
TA = +25°C  
TA = +125°C  
TA = −40°C  
TA = −40°C to +125°C  
5
5
5
20  
15  
30  
70  
27  
25  
35  
5
5
5
20  
15  
30  
70  
27  
25  
35  
nA  
nA  
nA  
pA/°C  
Average Temperature  
Coefficient  
Input Offset Current  
TA = +25°C  
TA = +125°C  
2
2
1
1
nA  
nA  
Rev. PrD | Page 3 of 20  
AD8426  
Preliminary Technical Data  
A Grade  
Typ  
B Grade  
Typ  
Test Conditions/  
Comments  
TA = −40°C  
Parameter  
Min  
Max  
3
Min  
Max  
1
Unit  
nA  
Average Temperature  
TA = −40°C to +125°C  
5
5
pA/°C  
Coefficient  
REFERENCE INPUT  
RIN  
100  
7
100  
7
kΩ  
μA  
V
V/V  
%
IIN  
Voltage Range  
Reference Gain to Output  
Reference Gain Error  
DYNAMIC RESPONSE  
Small-Signal −3 dB Bandwidth  
G = 1  
−VS  
+VS  
−VS  
+VS  
1
0.01  
1
0.01  
1500  
160  
20  
1500  
160  
20  
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
G = 1000  
2
2
Settling Time 0.01%  
G = 1  
G = 10  
G = 100  
G = 1000  
10 V step  
25  
15  
40  
350  
25  
15  
40  
350  
μs  
μs  
μs  
μs  
Slew Rate  
G = 1  
G = 5 to 100  
GAIN  
Gain Range  
Gain Error  
0.4  
0.6  
0.4  
0.6  
V/μs  
V/μs  
G = 1 + (49.4 kΩ/RG)  
VOUT 10 V  
1
1000  
1
1000  
V/V  
G = 1  
0.05  
0.3  
0.02  
0.15  
%
%
G = 5 to 1000  
Gain Nonlinearity  
G = 1 to 10  
G = 100  
VOUT = −10 V to +10 V  
RL ≥ 2 kΩ  
RL ≥ 2 kΩ  
10  
75  
750  
10  
75  
750  
ppm  
ppm  
ppm  
G = 1000  
RL ≥ 2 kΩ  
Gain vs. Temperature2  
G = 1  
TA = −40°C to +85°C  
TA = +85°C to +125°C  
TA = −40°C to +125°C  
VS = 1.35 V to +36 V  
10  
10  
−100  
2
5
ppm/°C  
ppm/°C  
ppm/°C  
G > 1  
−100  
INPUT  
Input Impedance  
Differential  
Common Mode  
Input Operating Voltage  
Range3  
0.8||2  
0.4||2  
0.8||2  
0.4||2  
GΩ||pF  
GΩ||pF  
V
TA = +25°C  
−VS − 0.1  
+VS − 0.8  
−VS − 0.1  
+VS − 0.8  
TA = +125°C  
TA = −40°C  
TA = −40°C to +125°C  
−VS − 0.05  
−VS − 0.15  
+VS − 40  
+VS − 0.6  
+VS − 0.9  
−VS + 40  
−VS − 0.05  
−VS − 0.15  
+VS − 40  
+VS − 0.6  
+VS − 0.9  
−VS + 40  
V
V
V
Input Overvoltage Range  
OUTPUT  
Output Swing  
RL = 2 kΩ to Ground  
TA = +25°C  
TA = +125°C  
TA = −40°C  
−VS + 0.4  
−VS + 0.4  
−VS + 1.2  
+VS − 0.7  
+VS − 1.0  
+VS − 1.1  
−VS + 0.4  
−VS + 0.4  
−VS + 1.2  
+VS − 0.7  
+VS − 1.0  
+VS − 1.1  
V
V
V
Rev. PrD | Page 4 of 20  
Preliminary Technical Data  
AD8426  
A Grade  
Typ  
B Grade  
Typ  
Test Conditions/  
Comments  
TA = +25°C  
TA = +125°C  
TA = −40°C  
Parameter  
RL = 10 kΩ to Ground  
Min  
Max  
Min  
Max  
Unit  
V
V
V
V
mA  
−VS + 0.2  
−VS + 0.3  
−VS + 0.2  
−VS + 0.1  
+VS − 0.2  
+VS − 0.3  
+VS − 0.2  
+VS − 0.1  
−VS + 0.2  
−VS + 0.3  
−VS + 0.2  
−VS + 0.1  
+VS − 0.2  
+VS − 0.3  
+VS − 0.2  
+VS − 0.1  
RL = 100 kΩ to Ground  
Short-Circuit Current  
POWER SUPPLY  
TA = −40°C to +125°C  
13  
13  
Operating Range  
Quiescent Current  
(Per Amplifier)  
Dual-supply operation  
TA = +25°C  
1.35  
18  
425  
1.35  
18  
425  
V
μA  
350  
350  
TA = −40°C  
TA = +85°C  
TA = +125°C  
250  
450  
525  
325  
525  
600  
+125  
250  
450  
525  
325  
525  
600  
+125  
μA  
μA  
μA  
°C  
TEMPERATURE RANGE  
−40  
−40  
1 The input stage uses pnp transistors; therefore, input bias current always flows into the part.  
2 The values specified for G > 1 do not include the effects of the external gain-setting resistor, RG.  
3 Input voltage range of the AD8426 input stage. The input range depends on the common-mode voltage, the differential voltage, the gain, and the reference voltage.  
See the Input Voltage Range section for more information.  
SINGLE-SUPPLY OPERATION  
+VS = 2.7 V, −VS = 0 V, VREF = 0 V, TA = 23°C, G = 1, RL = 10 kΩ, specifications referred to input, unless otherwise noted.  
Table 3.  
A Grade  
Typ  
B Grade  
Typ  
Test Conditions/  
Comments  
Parameter  
Min  
Max  
Min  
Max  
Unit  
COMMON-MODE REJECTION  
RATIO (CMRR)  
VCM = 0 V to 1.7 V  
CMRR, DC to 60 Hz  
G = 1  
G = 10  
80  
86  
dB  
dB  
dB  
dB  
100  
105  
105  
105  
110  
110  
G = 100  
G = 1000  
CMRR at 5 kHz  
G = 1  
G = 10  
G = 100  
80  
90  
90  
100  
80  
90  
90  
100  
dB  
dB  
dB  
dB  
G = 1000  
NOISE  
Total noise:  
eN = √(eNI2 + (eNO/G)2)  
Voltage Noise  
Input Voltage Noise, eNI  
Output Voltage Noise, eNO  
RTI Noise  
f = 1 kHz  
22  
120  
24  
125  
22  
120  
24  
125  
nV/√Hz  
nV/√Hz  
f = 0.1 Hz to 10 Hz  
G = 1  
G = 10  
G = 100 to 1000  
Current Noise  
2
2
μV p-p  
μV p-p  
μV p-p  
fA/√Hz  
pA p-p  
0.5  
0.4  
100  
3
0.5  
0.4  
100  
3
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
VOLTAGE OFFSET  
Input Offset, VOSI  
Total offset voltage:  
VOS = VOSI + (VOSO/G)  
300  
150  
μV  
Rev. PrD | Page 5 of 20  
AD8426  
Preliminary Technical Data  
A Grade  
Typ  
B Grade  
Test Conditions/  
Comments  
Parameter  
Min  
Max  
Min  
Typ  
Max  
Unit  
Average Temperature  
TA = −40°C to +125°C  
0.5  
3
0.5  
1.5  
μV/°C  
Coefficient  
Output Offset, VOSO  
Average Temperature  
Coefficient  
1200  
12  
800  
8
μV  
μV/°C  
TA = −40°C to +125°C  
VS = 0 V to 1.7 V  
2
1
Offset RTI vs. Supply (PSR)  
G = 1  
G = 10  
G = 100  
G = 1000  
80  
90  
dB  
dB  
dB  
dB  
100  
105  
105  
105  
110  
110  
INPUT CURRENT  
Input Bias Current1  
TA = +25°C  
TA = +125°C  
TA = −40°C  
TA = −40°C to +125°C  
5
5
5
20  
15  
30  
70  
27  
25  
35  
5
5
5
20  
15  
30  
70  
27  
25  
35  
nA  
nA  
nA  
pA/°C  
Average Temperature  
Coefficient  
Input Offset Current  
TA = +25°C  
TA = +125°C  
TA = −40°C  
2
2
3
1
1
1
nA  
nA  
nA  
Average Temperature  
Coefficient  
TA = −40°C to +125°C  
5
5
pA/°C  
REFERENCE INPUT  
RIN  
IIN  
Voltage Range  
Reference Gain to Output  
Reference Gain Error  
DYNAMIC RESPONSE  
Small-Signal −3 dB Bandwidth  
G = 1  
100  
7
100  
7
kΩ  
μA  
V
V/V  
%
−VS  
+VS  
−VS  
+VS  
1
0.01  
1
0.01  
1500  
160  
20  
1500  
160  
20  
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
G = 1000  
2
2
Settling Time 0.01%  
G = 1  
G = 10  
G = 100  
G = 1000  
2 V step  
6
6
35  
350  
6
6
35  
350  
μs  
μs  
μs  
μs  
Slew Rate  
G = 1  
G = 5 to 100  
GAIN  
0.4  
0.6  
0.4  
0.6  
V/μs  
V/μs  
G = 1 + (49.4 kΩ/RG)  
Gain Range  
Gain Error  
1
1000  
1
1000  
V/V  
G = 1  
VOUT = 0.8 V to 1.8 V  
VOUT = 0.2 V to 2.5 V  
0.04  
0.3  
0.01  
0.1  
%
%
G = 5 to 1000  
Gain vs. Temperature2  
G = 1  
TA = −40°C to +85°C  
TA = +85°C to +125°C  
TA = −40°C to +125°C  
5
5
1
2
-100  
ppm/°C  
ppm/°C  
ppm/°C  
G > 1  
−100  
Rev. PrD | Page 6 of 20  
Preliminary Technical Data  
AD8426  
A Grade  
Typ  
B Grade  
Typ  
Test Conditions/  
Comments  
Parameter  
Min  
Max  
Min  
Max  
Unit  
INPUT  
−VS = 0 V, +VS = 2.7 V  
to 36 V  
Input Impedance  
Differential  
Common Mode  
0.8||2  
0.4||2  
0.8||2  
0.4||2  
GΩ||pF  
GΩ||pF  
Input Operating Voltage  
Range3  
TA = +25°C  
−0.1  
+VS − 0.7  
−0.1  
+VS − 0.7  
V
TA = +125°C  
TA = −40°C  
TA = −40°C to +125°C  
−0.05  
−0.15  
+VS − 40  
+VS − 0.6  
+VS − 0.9  
−VS + 40  
−0.05  
−0.15  
+VS − 40  
+VS − 0.6  
+VS − 0.9  
−VS + 40  
V
V
V
Input Overvoltage Range  
OUTPUT  
Output Swing  
RL = 10 kΩ to 1.35 V  
Short-Circuit Current  
POWER SUPPLY  
Operating Range  
Quiescent Current  
(Per Amplifier)  
TA = −40°C to +125°C  
0.1  
+VS − 0.1  
36  
0.1  
2.2  
+VS − 0.1  
36  
V
mA  
13  
13  
Single-supply operation 2.2  
−VS = 0 V, +VS = 2.7 V  
V
TA = +25°C  
TA = −40°C  
TA = +85°C  
TA = +125°C  
−40  
325  
250  
425  
475  
400  
325  
500  
550  
+125  
325  
250  
425  
475  
400  
325  
500  
550  
+125  
μA  
μA  
μA  
μA  
°C  
TEMPERATURE RANGE  
−40  
1 The input stage uses pnp transistors; therefore, input bias current always flows into the part.  
2 The values specified for G > 1 do not include the effects of the external gain-setting resistor, RG.  
3 Input voltage range of the AD8426 input stage. The input range depends on the common-mode voltage, the differential voltage, the gain, and the reference voltage.  
See the Input Voltage Range section for more information.  
Rev. PrD | Page 7 of 20  
AD8426  
Preliminary Technical Data  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
THERMAL RESISTANCE  
The θJA value in Table 3 assumes a 4-layer JEDEC standard  
board with zero airflow.  
Parameter  
Supply Voltage  
Rating  
18 V  
Output Short-Circuit Current  
Maximum Voltage at −INx or +INx  
Minimum Voltage at −INx or +INx  
REFx Voltage  
Indefinite  
−VS + 40 V  
+VS − 40 V  
VS  
Table 5.  
Package  
16-Lead LFCSP_VQ  
θJA  
86  
Unit  
°C/W  
Storage Temperature Range  
Specified Temperature Range  
Maximum Junction Temperature  
ESD  
−65°C to +150°C  
−40°C to +125°C  
130°C  
ESD CAUTION  
Human Body Model  
Charged Device Model  
Machine Model  
1.5 kV  
1.5 kV  
100 V  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. PrD | Page 8 of 20  
Preliminary Technical Data  
AD8426  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
16 15 14 13  
AD8426  
12 –IN2  
–IN1  
RG1  
RG1  
+IN1  
1
2
3
4
RG2  
RG2  
+IN2  
11  
10  
9
5
6
7
8
Figure 2. Pin Configuration  
Table 6. Pin Function Description  
Pin No.  
1
2
3
4
5
Mnemonic  
−IN1  
RG1  
RG1  
+IN1  
+VS  
Description  
Negative Input, In-Amp 1  
Gain-Setting Resistor Terminal, In-Amp 1  
Gain-Setting Resistor Terminal, In-Amp 1  
Positive Input, In-Amp 1  
Positive Supply  
6
7
8
REF1  
REF2  
−VS  
Reference Adjust, In-Amp 1  
Reference Adjust, In-Amp 2  
Negative Supply  
9
+IN2  
RG2  
RG2  
−IN2  
−VS  
OUT2  
OUT1  
+VS  
Positive Input, In-Amp 2  
Gain-Setting Resistor Terminal, In-Amp 2  
Gain-Setting Resistor Terminal, In-Amp 2  
Negative Input, In-Amp 2  
Negative Supply  
Output, In-Amp 2  
Output, In-Amp 1  
Positive Supply  
10  
11  
12  
13  
14  
15  
16  
Rev. PrD | Page 9 of 20  
AD8426  
Preliminary Technical Data  
TYPICAL PERFORMANCE CHARACTERISTICS  
T = 23°C, VS = 13 V, RL = 10 kꢁ, unless otherwise noted.  
2.50  
6.0  
4.0  
2.0  
0
V
= 0V  
0.0, +4.25  
REF  
+0.01, +1.90  
+1.35, +1.95  
2.00  
1.50  
1.00  
0.50  
0.00  
0.50  
V
= 1.35V  
REF  
+0.01, +1.28  
–4.93, +1.77  
+4.87, +1.79  
+4.90, –2.84  
+2.61, +1.13  
+2.61, +0.37  
+2.17, +0.90  
+0.01, +0.31  
–2.0  
–4.93, –2.83  
–4.0  
–6.0  
0.0, –5.30  
0.00, 0.45  
+1.35, 0.41  
1.00  
–6.0  
–4.0  
–2.0  
0
2.0  
4.0  
6.0  
OUTPUT VOLTAGE (V)  
Output Voltage (V)  
Figure 3. Input Common-Mode Voltage vs. Output Voltage,  
Single Supply, Vs = 2.7 V, G = 1  
Figure 5. Input Common-Mode Voltage vs. Output Voltage,  
Dual Supply, Vs = 5 V, G = 1  
20.0  
5.00  
VS = ±12V  
VS = ±15V  
0.0, +14.2  
10.0  
+0.02, +4.25  
+2.50, +4.25  
V
= 2.5V  
= 0V  
REF  
4.00  
3.00  
2.00  
1.00  
0.00  
1.00  
V
REF  
15.0  
5.0  
–14.9, +6.7  
+14.8, +6.8  
0.0, +11.2  
+0.02, +2.95  
+4.90, +3.03  
+4.64, +2.03  
–11.9, +5.2  
–11.9, –6.0  
+11.9, +5.3  
+11.8, –6.5  
0
–5.0  
–15.0  
–10.0  
–20.0  
+0.01, +0.87  
+4.90, +0.82  
0.0, –12.3  
–14.9, –7.6  
+14.8, –7.9  
0.0, –15.3  
0
+0.01, -0.30  
+2.50, -0.40  
–20.0 –15.0 –10.0  
–5.0  
5.0  
10.0  
15.0  
20.0  
-0.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 6. Input Common-Mode Voltage vs. Output Voltage,  
Dual Supply, Vs = 15 V, G = 1  
Figure 4. Input Common-Mode Voltage vs. Output Voltage,  
Single Supply, Vs = 5 V, G = 1  
Rev. PrD | Page 10 of 20  
Preliminary Technical Data  
AD8426  
THEORY OF OPERATION  
+V  
–V  
+V  
–V  
S
S
R
G
NODE 3  
NODE 4  
R3  
50k  
S
S
R1  
24.7kΩ  
R2  
24.7kΩ  
+V  
–V  
S
R4  
50kΩ  
NODE 2  
V
A3  
OUT  
+V  
–V  
NODE 1  
R5  
50kΩ  
S
R6  
50kΩ  
S
ESD AND  
OVERVOLTAGE  
PROTECTION  
ESD AND  
OVERVOLTAGE  
PROTECTION  
REF  
Q1  
Q2  
+IN  
–IN  
A1  
A2  
S
V
R
R
BIAS  
B
B
–V  
DIFFERENCE  
AMPLIFIER STAGE  
S
GAIN STAGE  
Figure 7. Simplified Schematic  
ARCHITECTURE  
Table 7. Gains Achieved Using 1% Resistors  
The AD8426 is based on the classic three op amp topology. This  
topology has two stages: a gain stage (preamplifier) to provide  
differential amplification, followed by a difference amplifier to  
remove the common-mode voltage. Figure 7 shows a simplified  
schematic of one of the instrumentation amplifiers in the AD8426.  
1% Standard Table Value of RG  
Calculated Gain  
1.990  
4.984  
9.998  
19.93  
50.40  
100.0  
199.4  
49.9 kꢀ  
12.4 kꢀ  
5.49 kꢀ  
2.61 kꢀ  
1.00 kꢀ  
499 ꢀ  
249 ꢀ  
100 ꢀ  
49.9 ꢀ  
The first stage works as follows: to maintain a constant voltage  
across the bias resistor, RB, A1 must keep Node ꢀ at a constant  
diode drop above the positive input voltage. Similarly, A2 keeps  
Node 4 at a constant diode drop above the negative input voltage.  
Therefore, a replica of the differential input voltage is placed  
across the gain setting resistor, RG. The current that flows across  
this resistance must also flow through the R1 and R2 resistors,  
creating a gained differential signal between the A2 and A1 out-  
puts. Note that, in addition to a gained differential signal, the  
original common-mode signal, shifted a diode drop up, is also  
still present.  
495.0  
991.0  
The AD8426 defaults to G = 1 when no gain resistor is used.  
The tolerance and gain drift of the RG resistor should be added  
to the AD8426 specifications to determine the total gain accu-  
racy of the system. When the gain resistor is not used, gain  
error and gain drift are minimal.  
REFERENCE TERMINAL  
The second stage is a difference amplifier, composed of Aꢀ and  
four 30 kꢁ resistors. The purpose of this stage is to remove the  
common-mode signal from the amplified differential signal.  
The output voltage of the AD8426 is developed with respect to  
the potential on the reference terminal. This is useful when the  
output signal needs to be offset to a precise midsupply level. For  
example, a voltage source can be tied to the REF pin to level-  
shift the output so that the AD8426 can drive a single-supply  
ADC. The REF pin is protected with ESD diodes and should  
not exceed either +VS or −VS by more than 0.ꢀ V.  
The transfer function of the AD8426 is  
V
OUT = G × (VIN+ VIN−) + VREF  
where:  
49.4 kΩ  
RG  
G 1   
For the best performance, source impedance to the REF  
terminal should be kept below 2 ꢁ. As shown in Figure 8,  
the reference terminal, REF, is at one end of a 30 kΩ resistor.  
Additional impedance at the REF terminal adds to this 30 kΩ  
resistor and results in amplification of the signal connected to  
the positive input. The amplification from the additional RREF  
GAIN SELECTION  
Placing a resistor across the RG terminals sets the gain of the  
AD8426, which can be calculated by referring to Table 7 or by  
using the following gain equation:  
49.4 kΩ  
RG   
can be computed by 2 × (30 kΩ + RREF)/100 kΩ + RREF  
.
G 1  
Rev. PrD | Page 11 of 20  
AD8426  
Preliminary Technical Data  
Only the positive signal path is amplified; the negative path  
is unaffected. This uneven amplification degrades the CMRR of  
the amplifier.  
supply has more margin. Conversely, at hot temperatures, the part  
requires less headroom from the positive supply but is subject  
to the worst-case conditions for input voltages near the negative  
supply.  
A typical part functions up to the boundaries described in this  
section. However, for best performance, designing with a few  
hundred millivolts extra margin is recommended. As signals  
approach the boundary, internal transistors begin to saturate,  
which can affect frequency and linearity performance.  
INCORRECT  
AD8426  
CORRECT  
CORRECT  
AD8426  
AD8426  
V
V
REF  
REF  
V
REF  
LAYOUT  
+
+
AD8426  
OP1177  
To ensure optimum performance of the AD8426 at the PCB  
level, care must be taken in the design of the board layout.  
The AD8426 pins are arranged in a logical manner to aid in  
this task.  
Figure 8. Driving the Reference Pin  
INPUT VOLTAGE RANGE  
16 15 14 13  
The three op amp architecture of the AD8426 applies gain in the  
first stage before removing common-mode voltage in the  
difference amplifier stage. In addition, the input transistors in  
the first stage shift the common-mode voltage up one diode  
drop. Therefore, internal nodes between the first and second  
stages (Node 1 and Node 2 in Figure 7) experience a combina-  
tion of gained signal, common-mode signal, and a diode drop.  
This combined signal can be limited by the voltage supplies even  
when the individual input and output signals are not.  
AD8426  
12 –IN2  
–IN1  
RG1  
RG1  
+IN1  
1
2
3
4
RG2  
RG2  
+IN2  
11  
10  
9
5
6
7
8
Figure 9. Pinout Diagram  
Equation 1 to Equation ꢀ can be used to understand how the  
gain (G), common-mode input voltage (VCM), differential input  
voltage (VDIFF), and reference voltage (VREF) interact. The values  
for the constants, V−LIMIT, V+LIMIT, and VREF_LIMIT, at different temper-  
atures are shown in Table 8. These three formulas, along with  
the input and output range specifications in Table 2 and Table ꢀ,  
set the operating boundaries of the part.  
Package Considerations  
The AD8426 is available in a 16-lead, 4 mm × 4 mm LFCSP with  
no exposed paddle. The footprint from another 4 mm × 4 mm  
LFCSP part should not be copied because it may not have the  
correct lead pitch and lead width dimensions. Refer to the  
Outline Dimensions section for the correct dimensions.  
(VDIFF )(G)  
Hidden Paddle Package  
VCM  
 V S VLIMIT  
(1)  
(2)  
2
The AD8426 is available in an LFCSP package with a hidden  
paddle. Unlike chip scale packages where the pad limits routing  
capability, this package allows routes and vias directly beneath  
the chip, so that the full space savings of the small LFCSP can be  
realized. Although the package has no metal in the center of the  
part, the manufacturing process leaves a very small section of  
exposed metal at each of the package corners, as shown in  
Figure 10 and in Figure 17 in the Outline Dimensions section.  
This metal is connected to VS through the part. Because of the  
possibility of a short, vias should not be placed underneath  
these exposed metal tabs.  
(VDIFF )(G)  
VCM  
 VS VLIMIT  
2
(VDIFF )(G)  
VCM VREF  
2
 VS VREF _ LIMIT  
(ꢀ)  
2
Table 8. Input Voltage Range Constants for Various  
Temperatures  
Temperature  
V−LIMIT  
−0.55  
−0.35  
−0.15  
−0.05  
V+LIMIT  
+0.8  
+0.7  
+0.65  
+0.6  
VREF_LIMIT  
+1.3  
+1.15  
+1.05  
+0.9  
−40°C  
+25°C  
+85°C  
+125°C  
The common-mode input voltage range shifts upward with temp-  
erature. At cold temperatures, the part requires extra headroom  
from the positive supply, whereas operation near the negative  
Rev. PrD | Page 12 of 20  
Preliminary Technical Data  
AD8426  
References  
HIDDEN  
PADDLE  
The output voltage of the AD8426 is developed with respect to  
the potential on the reference terminal. Care should be taken to  
tie REF to the appropriate local ground. This should also help  
minimize crosstalk between the two channels.  
EXPOSED LEAD  
FRAME TABS  
BOTTOM VIEW  
INPUT BIAS CURRENT RETURN PATH  
NOTES  
1. EXPOSED LEAD FRAME TABS AT THE FOUR CORNERS  
OF THE PACKAGE ARE INTERNALLY CONNECTED TO  
The input bias current of the AD8426 must have a return path  
to ground. When the source, such as a thermocouple, cannot  
provide a return current path, one should be created, as shown  
in Figure 12.  
+V . REFER TO THE OUTLINE DIMENSIONS PAGE, FOR  
S
FURTHER INFORMATION ON PACKAGE AVAILABILITY.  
Figure 10. Hidden Paddle Package, Bottom View  
INCORRECT  
+V  
CORRECT  
+V  
Common-Mode Rejection Ratio over Frequency  
S
S
Poor layout can cause some of the common-mode signals to be  
converted to differential signals before reaching the in-amp. Such  
conversions occur when one input path has a frequency response  
that is different from the other. To keep CMRR across frequency  
high, the input source impedance and capacitance of each path  
should be closely matched. Additional source resistance in the  
input path (for example, for input protection) should be placed  
close to the in-amp inputs, which minimizes their interaction  
with parasitic capacitance from the PCB traces.  
AD8426  
AD8426  
REF  
REF  
REF  
REF  
–V  
–V  
S
S
TRANSFORMER  
TRANSFORMER  
+V  
+V  
S
S
Parasitic capacitance at the gain setting pins can also affect CMRR  
over frequency. If the board design has a component at the gain  
setting pins (for example, a switch or jumper), the component  
should be chosen so that the parasitic capacitance is as small as  
possible.  
AD8426  
AD8426  
REF  
10M  
Power Supplies  
–V  
S
–V  
S
A stable dc voltage should be used to power the instrumenta-  
tion amplifier. Noise on the supply pins can adversely affect  
performance.  
THERMOCOUPLE  
THERMOCOUPLE  
+V  
+V  
S
S
A 0.1 μF capacitor should be placed as close as possible to each  
supply pin. As shown in Figure 11, a 10 μF capacitor can be used  
farther away from the part. In most cases, it can be shared by  
other precision integrated circuits.  
C
C
C
R
R
1
fHIGH-PASS  
=
AD8426  
2πRC  
AD8426  
C
REF  
+V  
S
–V  
–V  
S
S
0.1µF  
10µF  
CAPACITIVELY COUPLED  
CAPACITIVELY COUPLED  
+IN  
–IN  
Figure 12. Creating an Input Bias Current Return Path  
V
OUT  
INPUT PROTECTION  
The AD8426 has very robust inputs and typically does not  
AD8426  
LOAD  
REF  
need additional input protection. Input voltages can be up to  
40 V from the opposite supply rail. For example, with a +3 V  
positive supply and a −8 V negative supply, the part can safely  
withstand voltages from −ꢀ3 V to +ꢀ2 V. Unlike some other  
instrumentation amplifiers, the part can handle large differen-  
tial input voltages even when the part is in high gain.  
0.1µF  
10µF  
–V  
S
Figure 11. Supply Decoupling, REF, and Output Referred to Local Ground  
The rest of the AD8426 terminals should be kept within the  
supplies. All terminals of the AD8426 are protected against ESD.  
Rev. PrD | Page 13 of 20  
AD8426  
Preliminary Technical Data  
+V  
S
limiting resistors and low leakage diode clamps such as the  
BAV199, the FJH1100s, or the SP720 should be used.  
0.1µF  
+IN  
10µF  
C
1nF  
RADIO FREQUENCY INTERFERENCE (RFI)  
C
R
RF interference is often a problem when amplifiers are used in  
applications where there are strong RF signals. The precision  
circuits in the AD8426 can rectify the RF signals so that they  
appear as a dc offset voltage error. To avoid this rectification,  
place a low-pass RC filter at the input of the instrumentation  
amplifier (see Figure 1ꢀ). The filter limits both the differential  
and common-mode bandwidth, as shown in the following  
equations:  
4.02k  
V
C
D
10nF  
OUT  
R
G
AD8426  
R
REF  
–IN  
4.02kΩ  
C
C
1nF  
0.1µF  
10µF  
–V  
S
1
Figure 13. RFI Suppression  
FilterFrequencyDIFF  
R(2CD CC )  
CD affects the differential signal, and CC affects the common-  
mode signal. Values of R and CC should be chosen to minimize  
RFI. Any mismatch between the R × CC at the positive input  
and the R × CC at the negative input degrades the CMRR of the  
AD8426. By using a value of CD one order of magnitude larger  
than CC, the effect of the mismatch is reduced, and performance  
is improved.  
1
FilterFrequencyCM  
RCC  
where CD 10 CC.  
Rev. PrD | Page 14 of 20  
Preliminary Technical Data  
AD8426  
APPLICATIONS INFORMATION  
Tips for Best Differential Output Performance  
DIFFERENTIAL DRIVE  
For best ac performance, an op amp with at least 2 MHz gain  
bandwidth and 1 V/μs slew rate is recommended. Good choices  
for op amps are the AD8641, AD8313, or AD820.  
Figure 14 shows how to configure the AD8426 for differential  
output.  
+IN  
Keep trace lengths from resistors to the inverting terminal of  
the op amp as short as possible. Excessive capacitance at this  
node can cause the circuit to be unstable. If capacitance cannot  
be avoided, use lower value resistors.  
+OUT  
AD8426  
–IN  
REF  
R
R
V
BIAS  
+
For best linearity and ac performance, a minimum positive  
supply voltage (+VS) is required. Table 9 shows the minimum  
supply voltage required for optimum performance where  
VCM_MAX indicates the maximum common-mode voltage  
expected at the input of the AD8426.  
OP AMP  
–OUT  
RECOMMENDED OP AMPS: AD8515, AD8641, AD820.  
RECOMMENDED R VALUES: 5kto 20k.  
Table 9. Minimum Positive Supply Voltage  
Figure 14. Differential Output Using an Op Amp  
Temperature  
Equation  
The differential output is set by the following equation:  
Less than −10°C  
−10°C to +25°C  
More than +25°C  
+VS > (VCM_MAX + VBIAS)/2 + 1.4 V  
+VS > (VCM_MAX + VBIAS)/2 + 1.25 V  
+VS > (VCM_MAX + VBIAS)/2 + 1.1 V  
V
DIFF_OUT = VOUT+ VOUT− = Gain × (VIN+ VIN−  
The common-mode output is set by the following equation:  
CM_OUT = (VOUT+ VOUT−)/2 = VBIAS  
)
V
The advantage of this circuit is that the dc differential accuracy  
depends on the AD8426 and not on the op amp or the resistors.  
This circuit takes advantage of the precise control that the AD8426  
has of its output voltage relative to the reference voltage. Op amp  
dc performance and resistor matching do affect the dc common-  
mode output accuracy. However, because common-mode errors  
are likely to be rejected by the next device in the signal chain,  
these errors typically have little effect on overall system accuracy.  
Rev. PrD | Page 15 of 20  
AD8426  
Preliminary Technical Data  
Option 1 shows the minimum configuration required to drive  
a charge sampling ADC. The capacitor provides charge to the  
ADC sampling capacitor, and the resistor shields the AD8426  
from the capacitance. To keep the AD8426 stable, the RC time  
constant of the resistor and capacitor needs to stay above 3 μs.  
This circuit is mainly useful for lower frequency signals.  
PRECISION STRAIN GAGE  
The low offset and high CMRR over frequency of the AD8426  
make it an excellent candidate for bridge measurements. The  
bridge can be connected directly to the inputs of the amplifier  
(see Figure 13).  
5V  
Option 2 shows a circuit for driving higher frequency signals.  
It uses a precision op amp (AD8616) with relatively high band-  
width and output drive. This amplifier can drive a resistor and  
capacitor with a much higher time constant and is, therefore,  
suited for higher frequency applications.  
10µF  
0.1µF  
350  
350Ω  
350Ω  
350Ω  
+IN  
–IN  
+
R
AD8426  
G
2.5V  
Option ꢀ is useful for applications where the AD8426 needs to  
run off a large voltage supply, but drives a single supply ADC.  
In normal operation, the AD8426 output stays within the ADC  
range, and the AD8616 simply buffers it. However, in a fault  
condition, the output of the AD8426 may go outside the supply  
range of both the AD8616 and the ADC. This is not an issue in  
this circuit, because the 10 kΩ resistor between the two  
Figure 15. Precision Strain Gage  
DRIVING AN ADC  
Figure 16 shows several different methods of driving an ADC.  
The ADC in the ADuC7026 microcontroller was chosen for this  
example because it has an unbuffered, charge sampling  
architecture that is typical of most modern ADCs. This type of  
architecture typically requires an RC buffer stage between the  
ADC and the amplifier to work correctly.  
amplifiers limits the current into the AD8616 to a safe level.  
OPTION 1: DRIVING LOW FREQUENCY SIGNALS  
3.3V  
3.3V  
AV  
DD  
ADC0  
100  
AD8426  
REF  
100nF  
ADuC7026  
OPTION 2: DRIVING HIGH FREQUENCY SIGNALS  
3.3V  
3.3V  
AD8426  
10Ω  
REF  
ADC1  
AD8616  
10nF  
OPTION 3: PROTECTING ADC FROM LARGE VOLTAGES  
+15V  
AD8426  
–15V  
3.3V  
10kΩ  
10Ω  
REF  
AD8616  
ADC2  
AGND  
10nF  
Figure 16. Driving an ADC  
Rev. PrD | Page 16 of 20  
Preliminary Technical Data  
OUTLINE DIMENSIONS  
AD8426  
0.60 MAX  
4.00  
BSC SQ  
0.60 MAX  
13  
12  
16  
1
4
0.65  
BSC  
PIN 1  
INDICATOR  
3.75  
BCS SQ  
1.95 REF  
SQ  
9
8
5
0.75  
0.60  
0.50  
TOP VIEW  
BOTTOM VIEW  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
0.20 REF  
0.35  
0.30  
0.25  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-263-VBBC  
Figure 17. 16-Lead Lead Frame Chips Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad, with Hidden Paddle  
(CP-16-19)  
Dimensions shown in millimeters  
Rev. PrD | Page 17 of 20  
AD8426  
NOTES  
Preliminary Technical Data  
Rev. PrD | Page 18 of 20  
Preliminary Technical Data  
NOTES  
AD8426  
Rev. PrD | Page 19 of 20  
AD8426  
NOTES  
Preliminary Technical Data  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
PR09490-0-6/11(PrD)  
Rev. PrD | Page 20 of 20  

相关型号:

AD8426-A

Telecom Transformer
COILCRAFT

AD8426ACPZ-R7

Wide Supply Range, Rail-to-Rail
ADI

AD8426ACPZ-WP

Wide Supply Range, Rail-to-Rail
ADI

AD8426BCPZ-R7

Wide Supply Range, Rail-to-Rail
ADI

AD8426BCPZ-WP

Wide Supply Range, Rail-to-Rail
ADI

AD8426_1108

Wide Supply Range, Rail-to-Rail
ADI

AD8428

Low Noise, Low Gain Drift, G = 2000
ADI

AD8428-KGD-WP

Instrumentation Amplifier
ADI

AD8428ARZ

Low Noise, Low Gain Drift, G = 2000
ADI

AD8428ARZ-RL

Low Noise, Low Gain Drift, G = 2000
ADI

AD8428BRZ

Low Noise, Low Gain Drift, G = 2000
ADI

AD8428BRZ-RL

Low Noise, Low Gain Drift, G = 2000
ADI