AD8426ACPZ-R7 [ADI]

Wide Supply Range, Rail-to-Rail; 宽电源电压范围,轨到轨
AD8426ACPZ-R7
型号: AD8426ACPZ-R7
厂家: ADI    ADI
描述:

Wide Supply Range, Rail-to-Rail
宽电源电压范围,轨到轨

仪表放大器 放大器电路 PC
文件: 总28页 (文件大小:805K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Wide Supply Range, Rail-to-Rail  
Output Instrumentation Amplifier  
AD8426  
CONNECTION DIAGRAM  
FEATURES  
2 channels in a small, 4 mm × 4 mm LFCSP  
LFCSP package has no metal pad  
More routing room  
No current leakage to pad  
Gain set with 1 external resistor  
Gain range: 1 to 1000  
Input voltage goes below ground  
Inputs protected beyond supplies  
Very wide power supply range  
Single supply: 2.2 V to 36 V  
16 15 14 13  
AD8426  
12 –IN2  
–IN1  
RG1  
RG1  
+IN1  
1
2
3
4
RG2  
RG2  
+IN2  
11  
10  
9
5
6
7
8
Dual supply: 1.35 V to 18 V  
Bandwidth (G = 1): 1 MHz  
Figure 1.  
CMRR (G = 1): 80 dB minimum  
Input noise: 24 nV/√Hz  
Typical supply current (per amplifier): 350 μA  
Specified temperature range: −40°C to +125°C  
Table 1. Instrumentation Amplifiers by Category1  
General-  
Purpose  
Zero  
Drift  
Military  
Grade  
Low  
Power  
High Speed  
PGA  
AD8220  
AD8221  
AD8222  
AD8224  
AD8228  
AD8295  
AD8231  
AD8290  
AD8293  
AD8553  
AD8556  
AD8557  
AD620  
AD621  
AD524  
AD526  
AD624  
AD627  
AD623  
AD8250  
AD8251  
AD8253  
APPLICATIONS  
Industrial process controls  
Bridge amplifiers  
Medical instrumentation  
Portable data acquisition  
Multichannel systems  
AD8235  
AD8236  
AD8426  
AD8226  
AD8227  
1 See www.analog.com for the latest instrumentation amplifiers.  
GENERAL DESCRIPTION  
The AD8426 is a dual-channel, low cost, wide supply range  
instrumentation amplifier that requires only one external  
resistor to set any gain from 1 to 1000.  
The AD8426 is designed to make PCB routing easy and efficient.  
The two amplifiers are arranged in a logical way so that typical  
application circuits have short routes and few vias. Unlike most  
chip scale packages, the AD8426 does not have an exposed metal  
pad on the bottom of the part, which frees additional space for  
routing and vias. The AD8426 offers two in-amps in the equivalent  
board space of a typical MSOP package.  
The AD8426 is designed to work with a variety of signal  
voltages. A wide input range and rail-to-rail output allow the  
signal to make full use of the supply rails. Because the input  
range can also go below the negative supply, small signals near  
ground can be amplified without requiring dual supplies. The  
AD8426 operates on supplies ranging from 1.35 V to 18 V  
for dual supplies and 2.2 V to 36 V for a single supply.  
The AD8426 is ideal for multichannel, space-constrained industrial  
applications. Unlike other low cost, low power instrumentation  
amplifiers, the AD8426 is designed with a minimum gain of 1 and  
can easily handle 10 V signals. With its space-saving LFCSP  
package and 125°C temperature rating, the AD8426 thrives in  
tightly packed, zero airflow designs.  
The robust AD8426 inputs are designed to connect to real-  
world sensors. In addition to its wide operating range, the  
AD8426 can handle voltages beyond the rails. For example,  
with a 5 V supply, the part is guaranteed to withstand 35 V  
at the input with no damage. Minimum and maximum input  
bias currents are specified to facilitate open-wire detection.  
The AD8226 is the single-channel version of the AD8426.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
AD8426  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Gain Selection............................................................................. 21  
Reference Terminal .................................................................... 22  
Input Voltage Range................................................................... 22  
Layout .......................................................................................... 23  
Input Bias Current Return Path ............................................... 24  
Input Protection ......................................................................... 24  
Radio Frequency Interference (RFI)........................................ 24  
Applications Information.............................................................. 25  
Precision Strain Gage................................................................. 25  
Differential Drive ....................................................................... 25  
Driving a Cable........................................................................... 26  
Driving an ADC ......................................................................... 27  
Outline Dimensions....................................................................... 28  
Ordering Guide .......................................................................... 28  
Applications....................................................................................... 1  
Connection Diagram ....................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Dual-Supply Operation ............................................................... 3  
Single-Supply Operation ............................................................. 6  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 11  
Theory of Operation ...................................................................... 21  
Architecture................................................................................. 21  
REVISION HISTORY  
7/11—Revision 0: Initial Version  
Rev. 0 | Page 2 of 28  
 
AD8426  
SPECIFICATIONS  
DUAL-SUPPLY OPERATION  
+VS = +15 V, VS = −15 V, VREF = 0 V, TA = 25°C, G = 1, RL = 10 kΩ, specifications referred to input, unless otherwise noted.  
Table 2.  
A Grade  
Typ  
B Grade  
Typ  
Test Conditions/  
Comments  
Parameter  
Min  
Max  
Min  
Max  
Unit  
COMMON-MODE REJECTION  
RATIO (CMRR)  
VCM = −10 V to +10 V  
CMRR, DC to 60 Hz  
G = 1  
G = 10  
80  
90  
dB  
dB  
dB  
dB  
100  
105  
105  
105  
110  
110  
G = 100  
G = 1000  
CMRR at 5 kHz  
G = 1  
G = 10  
G = 100  
80  
90  
90  
100  
80  
90  
90  
100  
dB  
dB  
dB  
dB  
G = 1000  
NOISE  
Total noise:  
eN = √(eNI2 + (eNO/G)2)  
Voltage Noise  
Input Voltage Noise, eNI  
Output Voltage Noise, eNO  
RTI Noise  
f = 1 kHz  
24  
120  
27  
125  
24  
120  
27  
125  
nV/√Hz  
nV/√Hz  
f = 0.1 Hz to 10 Hz  
G = 1  
G = 10  
G = 100 to 1000  
Current Noise  
2
2
μV p-p  
μV p-p  
μV p-p  
fA/√Hz  
pA p-p  
0.5  
0.4  
100  
3
0.5  
0.4  
100  
3
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
VOLTAGE OFFSET  
Input Offset, VOSI  
Average Temperature  
Coefficient  
Output Offset, VOSO  
Total offset voltage:  
V
OS = VOSI + (VOSO/G)  
VS = 5 V to 15 V  
TA = −40°C to +125°C  
200  
2
100  
1
μV  
μV/°C  
0.5  
2
0.5  
1
VS = 5 V to 15 V  
TA = −40°C to +125°C  
1000  
10  
500  
5
μV  
μV/°C  
Average Temperature  
Coefficient  
Offset RTI vs. Supply (PSR)  
G = 1  
G = 10  
G = 100  
G = 1000  
VS = 5 V to 15 V  
80  
90  
dB  
dB  
dB  
dB  
100  
105  
105  
105  
110  
110  
INPUT CURRENT  
Input Bias Current1  
TA = +25°C  
TA = +125°C  
TA = −40°C  
TA = −40°C to +125°C  
5
5
5
20  
15  
30  
70  
27  
25  
35  
5
5
5
20  
15  
30  
70  
27  
25  
35  
nA  
nA  
nA  
pA/°C  
Average Temperature  
Coefficient  
Input Offset Current  
TA = +25°C  
TA = +125°C  
TA = −40°C  
1.5  
1.5  
2
0.5  
0.5  
0.5  
nA  
nA  
nA  
Average Temperature  
Coefficient  
TA = −40°C to +125°C  
5
5
pA/°C  
Rev. 0 | Page 3 of 28  
 
 
AD8426  
A Grade  
Typ  
B Grade  
Typ  
Test Conditions/  
Comments  
Parameter  
REFERENCE INPUT  
RIN  
Min  
−VS  
1
Max  
+VS  
Min  
−VS  
1
Max  
+VS  
Unit  
100  
7
100  
7
kΩ  
μA  
V
V/V  
%
IIN  
Voltage Range  
Reference Gain to Output  
Reference Gain Error  
GAIN  
Gain Range  
Gain Error  
1
0.01  
1
0.01  
G = 1 + (49.4 kΩ/RG)  
VOUT 10 V  
1000  
1000  
V/V  
G = 1  
0.04  
0.3  
0.01  
0.1  
%
%
G = 5 to 1000  
Gain Nonlinearity  
G = 1 to 10  
G = 100  
G = 1000  
Gain vs. Temperature2  
VOUT = −10 V to +10 V  
RL ≥ 2 kΩ  
RL ≥ 2 kΩ  
20  
75  
750  
20  
75  
750  
ppm  
ppm  
ppm  
RL ≥ 2 kΩ  
G = 1  
TA = −40°C to +85°C  
TA = +85°C to +125°C  
TA = −40°C to +125°C  
VS = 1.35 V to +36 V  
5
5
1
2
ppm/°C  
ppm/°C  
ppm/°C  
G > 1  
−100  
−100  
INPUT  
Input Impedance  
Differential  
Common Mode  
Input Operating Voltage  
Range3  
0.8||2  
0.4||2  
0.8||2  
0.4||2  
GΩ||pF  
GΩ||pF  
V
TA = +25°C  
−VS − 0.1  
+VS − 0.8  
−VS − 0.1  
+VS − 0.8  
TA = +125°C  
TA = −40°C  
TA = −40°C to +125°C  
−VS − 0.05  
−VS − 0.15  
+VS − 40  
+VS − 0.6  
+VS − 0.9  
−VS + 40  
−VS − 0.05  
−VS − 0.15  
+VS − 40  
+VS − 0.6  
+VS − 0.9  
−VS + 40  
V
V
V
Input Overvoltage Range  
OUTPUT  
Output Swing  
RL = 2 kΩ to Ground  
TA = +25°C  
TA = +125°C  
TA = −40°C  
TA = +25°C  
TA = +125°C  
TA = −40°C  
−VS + 0.4  
−VS + 0.4  
−VS + 1.2  
−VS + 0.2  
−VS + 0.3  
−VS + 0.2  
−VS + 0.1  
+VS − 0.7  
+VS − 1.0  
+VS − 1.1  
+VS − 0.2  
+VS − 0.3  
+VS − 0.2  
+VS − 0.1  
−VS + 0.4  
−VS + 0.4  
−VS + 1.2  
−VS + 0.2  
−VS + 0.3  
−VS + 0.2  
−VS + 0.1  
+VS − 0.7  
+VS − 1.0  
+VS − 1.1  
+VS − 0.2  
+VS − 0.3  
+VS − 0.2  
+VS − 0.1  
V
V
V
V
V
V
V
mA  
RL = 10 kΩ to Ground  
RL = 100 kΩ to Ground  
Short-Circuit Current  
POWER SUPPLY  
TA = −40°C to +125°C  
13  
13  
Operating Range  
Quiescent Current  
(Per Amplifier)  
Dual-supply operation  
TA = +25°C  
1.35  
18  
425  
1.35  
18  
425  
V
μA  
350  
350  
TA = −40°C  
TA = +85°C  
TA = +125°C  
250  
450  
525  
325  
525  
600  
+125  
250  
450  
525  
325  
525  
600  
+125  
μA  
μA  
μA  
°C  
TEMPERATURE RANGE  
−40  
−40  
1 The input stage uses PNP transistors; therefore, input bias current always flows into the part.  
2 The values specified for G > 1 do not include the effects of the external gain-setting resistor, RG.  
3 Input voltage range of the AD8426 input stage. The input range depends on the common-mode voltage, the differential voltage, the gain, and the reference voltage.  
See the Input Voltage Range section for more information.  
Rev. 0 | Page 4 of 28  
 
AD8426  
Dynamic Performance Specifications  
+VS = +15 V, −VS = −15 V, VREF = 0 V, TA = 25°C, G = 1, RL = 10 kΩ, specifications referred to input, unless otherwise noted.  
Table 3. Single-Ended Output Configuration (Both Amplifiers)  
A Grade  
Typ  
B Grade  
Typ  
Test Conditions/  
Comments  
Parameter  
DYNAMIC RESPONSE  
Small Signal −3 dB Bandwidth  
G = 1  
Min  
Max  
Min  
Max  
Unit  
1000  
160  
20  
1000  
160  
20  
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
G = 1000  
2
2
Settling Time 0.01%  
G = 1  
G = 10  
G = 100  
G = 1000  
10 V step  
25  
15  
40  
750  
25  
15  
40  
750  
μs  
μs  
μs  
μs  
Slew Rate  
G = 1  
G = 5 to 100  
0.4  
0.6  
0.4  
0.6  
V/μs  
V/μs  
Table 4. Differential Output Configuration  
Test Conditions/  
Comments  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
DYNAMIC RESPONSE  
Small Signal −3 dB Bandwidth  
G = 1  
Min  
Max  
Min  
Max  
Unit  
850  
300  
30  
850  
300  
30  
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
G = 1000  
2
2
Settling Time 0.01%  
G = 1  
G = 10  
G = 100  
G = 1000  
10 V step  
25  
15  
80  
300  
25  
15  
80  
300  
μs  
μs  
μs  
μs  
Slew Rate  
G = 1  
G = 5 to 100  
0.4  
0.6  
0.4  
0.6  
V/μs  
V/μs  
Rev. 0 | Page 5 of 28  
 
AD8426  
SINGLE-SUPPLY OPERATION  
+VS = 2.7 V, −VS = 0 V, VREF = 0 V, TA = 25°C, G = 1, RL = 10 kΩ, specifications referred to input, unless otherwise noted.  
Table 5.  
A Grade  
Typ  
B Grade  
Typ  
Test Conditions/  
Comments  
Parameter  
Min  
Max  
Min  
Max  
Unit  
COMMON-MODE REJECTION  
RATIO (CMRR)  
VCM = 0 V to 1.7 V  
CMRR, DC to 60 Hz  
G = 1  
G = 10  
80  
90  
dB  
dB  
dB  
dB  
100  
105  
105  
105  
110  
110  
G = 100  
G = 1000  
CMRR at 5 kHz  
G = 1  
G = 10  
G = 100  
80  
90  
90  
100  
80  
90  
90  
100  
dB  
dB  
dB  
dB  
G = 1000  
NOISE  
Total noise:  
eN = √(eNI2 + (eNO/G)2)  
Voltage Noise  
Input Voltage Noise, eNI  
Output Voltage Noise, eNO  
RTI Noise  
f = 1 kHz  
24  
120  
27  
125  
24  
120  
27  
125  
nV/√Hz  
nV/√Hz  
f = 0.1 Hz to 10 Hz  
G = 1  
G = 10  
G = 100 to 1000  
Current Noise  
2
2
μV p-p  
μV p-p  
μV p-p  
fA/√Hz  
pA p-p  
0.5  
0.4  
100  
3
0.5  
0.4  
100  
3
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
VOLTAGE OFFSET  
Input Offset, VOSI  
Average Temperature  
Coefficient  
Output Offset, VOSO  
Average Temperature  
Coefficient  
Offset RTI vs. Supply (PSR)  
G = 1  
G = 10  
G = 100  
Total offset voltage:  
VOS = VOSI + (VOSO/G)  
300  
3
150  
1.5  
μV  
μV/°C  
TA = −40°C to +125°C  
0.5  
2
0.5  
1
1000  
12  
500  
8
μV  
μV/°C  
TA = −40°C to +125°C  
VS = 2.7 V to 36 V  
80  
90  
dB  
dB  
dB  
dB  
100  
105  
105  
105  
110  
110  
G = 1000  
INPUT CURRENT  
Input Bias Current1  
TA = +25°C  
TA = +125°C  
TA = −40°C  
TA = −40°C to +125°C  
5
5
5
20  
15  
30  
70  
30  
28  
38  
5
5
5
20  
15  
30  
70  
30  
28  
38  
nA  
nA  
nA  
pA/°C  
Average Temperature  
Coefficient  
Input Offset Current  
TA = +25°C  
TA = +125°C  
TA = −40°C  
2
2
3
1
1
1
nA  
nA  
nA  
Average Temperature  
Coefficient  
TA = −40°C to +125°C  
5
5
pA/°C  
Rev. 0 | Page 6 of 28  
 
 
AD8426  
A Grade  
Typ  
B Grade  
Typ  
Test Conditions/  
Comments  
Parameter  
REFERENCE INPUT  
RIN  
Min  
−VS  
1
Max  
+VS  
Min  
−VS  
1
Max  
+VS  
Unit  
100  
7
100  
7
kΩ  
μA  
V
V/V  
%
IIN  
Voltage Range  
Reference Gain to Output  
Reference Gain Error  
GAIN  
Gain Range  
Gain Error  
1
0.01  
1
0.01  
G = 1 + (49.4 kΩ/RG)  
1000  
1000  
V/V  
G = 1  
VOUT = 0.8 V to 1.8 V  
VOUT = 0.2 V to 2.5 V  
0.05  
0.3  
0.05  
0.1  
%
%
G = 5 to 1000  
Gain vs. Temperature2  
G = 1  
TA = −40°C to +85°C  
TA = +85°C to +125°C  
TA = −40°C to +125°C  
5
5
1
2
ppm/°C  
ppm/°C  
ppm/°C  
G > 1  
−100  
−100  
INPUT  
−VS = 0 V, +VS = 2.7 V  
to 36 V  
Input Impedance  
Differential  
Common Mode  
0.8||2  
0.4||2  
0.8||2  
0.4||2  
GΩ||pF  
GΩ||pF  
Input Operating Voltage  
Range3  
TA = +25°C  
−0.1  
+VS − 0.7  
−0.1  
+VS − 0.7  
V
TA = +125°C  
TA = −40°C  
TA = −40°C to +125°C  
−0.05  
−0.15  
+VS − 40  
+VS − 0.6  
+VS − 0.9  
−VS + 40  
−0.05  
−0.15  
+VS − 40  
+VS − 0.6  
+VS − 0.9  
−VS + 40  
V
V
V
Input Overvoltage Range  
OUTPUT  
Output Swing  
RL = 10 kΩ to 1.35 V  
Short-Circuit Current  
POWER SUPPLY  
Operating Range  
Quiescent Current  
(Per Amplifier)  
TA = −40°C to +125°C  
0.1  
+VS − 0.1  
36  
0.1  
2.2  
+VS − 0.1  
36  
V
mA  
13  
13  
Single-supply operation 2.2  
−VS = 0 V, +VS = 2.7 V  
V
TA = +25°C  
TA = −40°C  
TA = +85°C  
TA = +125°C  
−40  
325  
250  
425  
475  
400  
325  
500  
550  
+125  
325  
250  
425  
475  
400  
325  
500  
550  
+125  
μA  
μA  
μA  
μA  
°C  
TEMPERATURE RANGE  
−40  
1 The input stage uses PNP transistors; therefore, input bias current always flows into the part.  
2 The values specified for G > 1 do not include the effects of the external gain-setting resistor, RG.  
3 Input voltage range of the AD8426 input stage. The input range depends on the common-mode voltage, the differential voltage, the gain, and the reference voltage.  
See the Input Voltage Range section for more information.  
Rev. 0 | Page 7 of 28  
 
AD8426  
Dynamic Performance Specifications  
+VS = 2.7 V, −VS = 0 V, VREF = 0 V, TA = 25°C, G = 1, RL = 10 kΩ, specifications referred to input, unless otherwise noted.  
Table 6. Single-Ended Output Configuration (Both Amplifiers)  
A Grade  
Typ  
B Grade  
Typ  
Test Conditions/  
Comments  
Parameter  
DYNAMIC RESPONSE  
Small Signal −3 dB Bandwidth  
G = 1  
Min  
Max  
Min  
Max  
Unit  
1000  
160  
20  
1000  
160  
20  
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
G = 1000  
2
2
Settling Time 0.01%  
G = 1  
G = 10  
G = 100  
G = 1000  
2 V step  
6
6
35  
750  
6
6
35  
750  
μs  
μs  
μs  
μs  
Slew Rate  
G = 1  
G = 5 to 100  
0.4  
0.6  
0.4  
0.6  
V/μs  
V/μs  
Table 7. Differential Output Configuration  
Test Conditions/  
Comments  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
DYNAMIC RESPONSE  
Small Signal −3 dB Bandwidth  
G = 1  
Min  
Max  
Min  
Max  
Unit  
850  
300  
30  
850  
300  
30  
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
G = 1000  
2
2
Settling Time 0.01%  
G = 1  
G = 10  
G = 100  
G = 1000  
2 V step  
25  
15  
80  
300  
25  
15  
80  
300  
μs  
μs  
μs  
μs  
Slew Rate  
G = 1  
G = 5 to 100  
0.4  
0.6  
0.4  
0.6  
V/μs  
V/μs  
Rev. 0 | Page 8 of 28  
 
AD8426  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 8.  
The θJA value in Table 9 assumes a 4-layer JEDEC standard  
board with zero airflow.  
Parameter  
Rating  
Supply Voltage  
18 V  
Output Short-Circuit Current  
Maximum Voltage at −INx or +INx  
Minimum Voltage at −INx or +INx  
REFx Voltage  
Indefinite  
−VS + 40 V  
+VS − 40 V  
VS  
Table 9.  
Package  
θJA  
Unit  
16-Lead LFCSP (CP-16-19)  
86  
°C/W  
Storage Temperature Range  
Specified Temperature Range  
Maximum Junction Temperature  
ESD  
−65°C to +150°C  
−40°C to +125°C  
130°C  
ESD CAUTION  
Human Body Model  
Charged Device Model  
Machine Model  
1.5 kV  
1.5 kV  
100 V  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 9 of 28  
 
 
AD8426  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
16 15 14 13  
AD8426  
12 –IN2  
–IN1  
RG1  
RG1  
+IN1  
1
2
3
4
RG2  
RG2  
+IN2  
11  
10  
9
5
6
7
8
Figure 2. Pin Configuration  
Table 10. Pin Function Descriptions  
Pin No.  
Mnemonic  
−IN1  
RG1  
RG1  
+IN1  
+VS  
Description  
1
2
3
4
Negative Input, In-Amp 1  
Gain-Setting Resistor Terminal, In-Amp 1  
Gain-Setting Resistor Terminal, In-Amp 1  
Positive Input, In-Amp 1  
Positive Supply  
5
6
7
8
REF1  
REF2  
−VS  
Reference Adjust, In-Amp 1  
Reference Adjust, In-Amp 2  
Negative Supply  
9
+IN2  
RG2  
RG2  
−IN2  
−VS  
OUT2  
OUT1  
+VS  
Positive Input, In-Amp 2  
Gain-Setting Resistor Terminal, In-Amp 2  
Gain-Setting Resistor Terminal, In-Amp 2  
Negative Input, In-Amp 2  
Negative Supply  
Output, In-Amp 2  
Output, In-Amp 1  
Positive Supply  
10  
11  
12  
13  
14  
15  
16  
Rev. 0 | Page 10 of 28  
 
AD8426  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VS = 15 V, RL = 10 kꢀ, unless otherwise noted.  
IN-AMP 1  
IN-AMP 1  
IN-AMP 2  
60  
50  
40  
30  
20  
10  
0
IN-AMP 2  
40  
30  
20  
10  
0
–100  
–50  
0
50  
100  
–21  
–20  
–19  
I (nA)  
BIAS  
–18  
–17  
CMRR (µV/V)  
Figure 3. Typical Distribution for CMRR (G = 1)  
Figure 6. Typical Distribution of Input Bias Current, Inverting Input  
50  
40  
30  
20  
10  
0
IN-AMP 1  
IN-AMP 2  
IN-AMP 1  
IN-AMP 2  
50  
40  
30  
20  
10  
0
–21  
–20  
–19  
(nA)  
–18  
–17  
–100  
–50  
0
50  
100  
I
BIAS  
V
(µV)  
OSI  
Figure 4. Typical Distribution of Input Offset Voltage  
Figure 7. Typical Distribution of Input Bias Current, Noninverting Input  
60  
50  
40  
30  
20  
10  
0
IN-AMP 1  
IN-AMP 2  
IN-AMP 1  
IN-AMP 2  
70  
60  
50  
40  
30  
20  
10  
0
–600  
–400  
–200  
0
200  
400  
600  
–0.010  
–0.005  
0
0.005  
0.010  
GAIN ERROR (%)  
V
(µV)  
OSO  
Figure 5. Typical Distribution of Output Offset Voltage  
Figure 8. Typical Distribution of Gain Error (G = 1)  
Rev. 0 | Page 11 of 28  
 
AD8426  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
+0.01V, +1.90V  
V
= +1.35V  
REF  
+0.01V, +1.90V  
V
= +1.35V  
REF  
+1.35V, +1.95V  
+1.35V, +1.94V  
+2.61V, +1.13V  
+2.60V, +1.11V  
+0.01V, +1.28V  
+0.01V, +1.19V  
+2.17V, +0.90V  
V
= 0V  
V
= 0V  
REF  
+2.46V, +0.72V  
REF  
+2.61V, +0.37V  
+0.01V, +0.31V  
+0.01V, +0.05V  
+2.61V, +0.08V  
–0.5  
–0.5  
–1.0  
+1.35V, –0.41V  
0.00V, 0.45V  
+0.01V, –0.40V  
+1.35V, –0.55V  
–1.0  
–0.5  
2.0  
0
0.5  
1.0  
1.5  
2.5  
3.0  
2.0  
–0.5  
0
0.5  
1.0  
1.5  
2.5  
3.0  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 9. Input Common-Mode Voltage vs. Output Voltage,  
Single Supply, VS = 2.7 V, G = 1  
Figure 12. Input Common-Mode Voltage vs. Output Voltage,  
Single Supply, VS = 2.7 V, G = 100  
5
5
V
= +2.50V  
+0.02V, +4.25V  
REF  
+2.50V, +4.25V  
+2.49V, +4.25V  
+0.02V, +4.20V  
V
= +2.5V  
REF  
4
3
4
3
+4.90V, +3.02V  
+4.90V, +3.03V  
+0.02V, +2.95V  
+0.02V, +2.89V  
V
= 0V  
REF  
+4.64V, +2.03V  
2
2
V
= 0V  
REF  
+4.77V, +1.71V  
+0.01V, +0.87V  
1
1
+0.01V, +0.69V  
+4.90V, +0.82V  
+4.90V, +0.54V  
0
0
+2.49V, –0.30V  
+2.50V, –0.40V  
+0.01V, –0.30V  
+0.01V, –0.40V  
–1  
–0.5  
–1  
–0.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
OUTPUT VOLTAGE (V)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
OUTPUT VOLTAGE (V)  
Figure 10. Input Common-Mode Voltage vs. Output Voltage,  
Single Supply, VS = 5 V, G = 1  
Figure 13. Input Common-Mode Voltage vs. Output Voltage,  
Single Supply, VS = 5 V, G = 100  
6
6
0V, +4.25V  
0V, +4.24V  
4
4
2
2
+4.87V, +1.79V  
+4.90V, +1.76V  
–4.93V, +1.77V  
–4.93V, +1.74V  
0
–2  
–4  
–6  
0
–2  
–4  
–6  
+4.90V, –2.84V  
+4.90V, –3.18V  
–4.93V, –2.83V  
–4.93V, –3.15V  
0V, –5.30V  
–0.01V, –5.30V  
4
–6  
–4  
–2  
0
2
4
6
–6  
–4  
–2  
0
2
6
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 11. Input Common-Mode Voltage vs. Output Voltage,  
Dual Supply, VS = 5 V, G = 1  
Figure 14. Input Common-Mode Voltage vs. Output Voltage,  
Dual Supply, VS = 5 V, G = 100  
Rev. 0 | Page 12 of 28  
 
AD8426  
20  
15  
20  
15  
V
= ±15V  
V = ±15V  
S
S
0V, +14.2V  
0V, +11.2V  
0V, +14.1V  
0V, +11.2V  
+14.8V, +6.64V  
10  
10  
–14.9V, +6.61V  
–14.9V, +6.7V  
+14.8V, +6.8V  
5
5
–11.9V, +5.2V  
–11.9V, –6.0V  
–11.9V, +5.22V  
–11.9V, –6.71V  
+11.9V, +5.3V  
+11.8V, –6.5V  
+11.8V, +5.25V  
V
= ±12V  
V = ±12V  
S
S
0
0
–5  
–5  
+11.8V, –6.63V  
0V, –12.3V  
–0.01V, –12.3V  
–10  
–15  
–20  
–10  
–15  
–20  
–14.9V, –7.6V  
+14.8V, –7.9V  
+14.8V, –8.18V  
–14.9V, –8.09V  
0V, –15.3V  
0
–0.01V, 15.3V  
0
–20  
–15  
–10  
–5  
5
10  
15  
20  
–20  
–15  
–10  
–5  
5
10  
15  
20  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 15. Input Common-Mode Voltage vs. Output Voltage,  
Dual Supply, VS = 15 V and VS = 12 V, G = 1  
Figure 18. Input Common-Mode Voltage vs. Output Voltage,  
Dual Supply, VS = 15 V and VS = 12 V, G = 100  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
0.6  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
0.6  
V
= 2.7V  
V = 2.7V  
S
G = 100  
S
0.5  
0.5  
G = 1  
–V = 0V  
–V = 0V  
IN  
IN  
0.4  
0.4  
V
V
OUT  
OUT  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
I
IN  
I
IN  
–0.25  
–0.25  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20 25 30 35 40  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 16. Input Overvoltage Performance,  
Single Supply, VS = 2.7 V, G = 1  
Figure 19. Input Overvoltage Performance,  
Single Supply, VS = 2.7 V, G = 100  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
0.8  
0.8  
V
G = 1  
–V = 0V  
= ±15V  
V = ±15V  
S
G = 100  
S
0.7  
0.7  
0.6  
0.6  
–V = 0V  
IN  
IN  
V
V
OUT  
OUT  
0.5  
0.5  
0.4  
0.4  
6
6
0.3  
0.3  
4
4
0.2  
0.2  
2
2
0.1  
0.1  
I
IN  
0
0
0
0
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
I
IN  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20 25 30 35 40  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 17. Input Overvoltage Performance,  
Dual Supply, VS = 15 V, G = 1  
Figure 20. Input Overvoltage Performance,  
Dual Supply, VS = 15 V, G = 100  
Rev. 0 | Page 13 of 28  
 
 
 
AD8426  
30  
28  
26  
24  
22  
20  
18  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
–15.1V  
–0.12V  
+4.22V  
+14.1V  
0
16  
–5  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
–16  
–12  
–8  
–4  
0
4
8
12  
16  
COMMON-MODE VOLTAGE (V)  
COMMON-MODE VOLTAGE (V)  
Figure 21. Input Bias Current vs. Common-Mode Voltage,  
Single Supply, VS = 5 V  
Figure 24. Input Bias Current vs. Common-Mode Voltage,  
Dual Supply, VS = 15 V  
160  
140  
120  
100  
160  
140  
120  
100  
GAIN = 1000  
GAIN = 1000  
GAIN = 100  
GAIN = 10  
GAIN = 1  
GAIN = 100  
GAIN = 10  
GAIN = 1  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 22. Positive PSRR vs. Frequency, RTI  
Figure 25. Negative PSRR vs. Frequency  
70  
60  
70  
60  
50  
40  
30  
20  
10  
0
V
= ±15V  
S
GAIN = 1000  
GAIN = 100  
GAIN = 1000  
50  
40  
GAIN = 100  
GAIN = 10  
30  
GAIN = 10  
GAIN = 1  
20  
10  
0
GAIN = 1  
–10  
–20  
–30  
–10  
–20  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 23. Gain vs. Frequency, Dual Supply, VS = 15 V  
Figure 26. Gain vs. Frequency, Single Supply, VS = 2.7 V  
Rev. 0 | Page 14 of 28  
 
AD8426  
30  
25  
20  
15  
10  
5
250  
200  
150  
100  
50  
160  
GAIN = 1000  
GAIN = 100  
140  
120  
100  
80  
BANDWIDTH  
LIMITED  
GAIN = 10  
GAIN = 1  
±I  
B
I
OS  
60  
40  
20  
0
0
0
–45  
–50  
115 135  
–25  
–5  
15  
35  
55  
75  
95  
0.1  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 27. CMRR vs. Frequency, RTI  
Figure 30. Input Bias Current and Input Offset Current vs. Temperature  
120  
100  
80  
40  
20  
GAIN = 100  
GAIN = 1000  
GAIN = 1  
BANDWIDTH  
LIMITED  
GAIN = 10  
0
–20  
–40  
–60  
60  
40  
20  
0
NORMALIZED AT 25°C  
–80  
0.1  
1
10  
100  
FREQUENCY (Hz)  
1k  
10k  
100k  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
Figure 31. Gain Error vs. Temperature, G = 1  
Figure 28. CMRR vs. Frequency, RTI, 1 kΩ Source Imbalance  
6
5
4
3
2
1
0
10  
5
0
–5  
–1  
–10  
–15  
–20  
–2  
–3  
–4  
–5  
–6  
REPRESENTATIVE DATA  
NORMALIZED AT 25°C  
0
10 20 30 40 50 60 70 80 90 100 110 120  
WARM-UP TIME (Seconds)  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
Figure 29. Change in Input Offset Voltage vs. Warm-Up Time  
Figure 32. CMRR vs. Temperature, G = 1  
Rev. 0 | Page 15 of 28  
AD8426  
+V  
15  
10  
5
S
–40°C  
+25°C  
+85°C  
+105°C  
+125°C  
–0.2  
–0.4  
–0.6  
–0.8  
–40°C  
+25°C  
+85°C  
+105°C  
+125°C  
0
–V  
S
–5  
–10  
–15  
–0.2  
–0.4  
–0.6  
–0.8  
100  
1k  
10k  
100k  
2
4
6
8
10  
12  
14  
16  
18  
SUPPLY VOLTAGE (±V )  
LOAD RESISTANCE ()  
S
Figure 36. Output Voltage Swing vs. Load Resistance  
Figure 33. Input Voltage Limit vs. Supply Voltage  
+V  
+V  
S
S
–0.2  
–0.4  
–0.6  
–0.8  
–0.1  
–0.2  
–0.3  
–0.4  
–40°C  
+25°C  
+85°C  
+105°C  
+125°C  
–40°C  
+25°C  
+85°C  
+105°C  
+125°C  
+0.4  
+0.3  
+0.2  
+0.1  
+0.8  
+0.6  
+0.4  
+0.2  
–V  
–V  
S
0.01  
S
0.1  
1
10  
2
4
6
8
10  
12  
14  
16  
18  
SUPPLY VOLTAGE (±V )  
OUTPUT CURRENT (µA)  
S
Figure 34. Output Voltage Swing vs. Supply Voltage, RL = 10 kΩ  
Figure 37. Output Voltage Swing vs. Output Current, G = 1  
+V  
S
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–40°C  
+25°C  
+85°C  
+105°C  
+125°C  
+1.2  
+1.0  
+0.8  
+0.6  
+0.4  
+0.2  
–V  
S
OUTPUT VOLTAGE (V)  
2
4
6
8
10  
12  
14  
16  
18  
SUPPLY VOLTAGE (±V )  
S
Figure 38. Gain Nonlinearity, RL ≥ 10 kΩ, G = 1  
Figure 35. Output Voltage Swing vs. Supply Voltage, RL = 2 kΩ  
Rev. 0 | Page 16 of 28  
AD8426  
1k  
100  
10  
GAIN = 1  
GAIN = 100  
GAIN = 10  
GAIN = 1000  
1k  
OUTPUT VOLTAGE (V)  
1
10  
100  
10k  
100k  
FREQUENCY (Hz)  
Figure 39. Gain Nonlinearity, RL ≥ 10 kΩ, G = 10  
Figure 42. Voltage Noise Spectral Density vs. Frequency  
GAIN = 1000, 200nV/DIV  
GAIN = 1, 1µV/DIV  
1s/DIV  
OUTPUT VOLTAGE (V)  
Figure 40. Gain Nonlinearity, RL ≥ 10 kΩ, G = 100  
Figure 43. 0.1 Hz to 10 Hz RTI Voltage Noise, G = 1, G = 1000  
1k  
100  
10  
OUTPUT VOLTAGE (V)  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
Figure 44. Current Noise Spectral Density vs. Frequency  
Figure 41. Gain Nonlinearity, RL ≥ 10 kΩ, G = 1000  
Rev. 0 | Page 17 of 28  
AD8426  
5V/DIV  
17µs TO 0.01%  
23µs TO 0.001%  
0.002%/DIV  
1.5pA/DIV  
1s/DIV  
50µs/DIV  
Figure 45. 0.1 Hz to 10 Hz Current Noise  
Figure 48. Large Signal Pulse Response and Settling Time,  
10 V Step, Dual Supply, VS = 15 V, G = 10  
30  
V
= ±15V  
27  
24  
21  
18  
15  
12  
9
S
5V/DIV  
42µs TO 0.01%  
60µs TO 0.001%  
0.002%/DIV  
6
V
= +5V  
S
3
100µs/DIV  
0
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 46. Large Signal Frequency Response  
Figure 49. Large Signal Pulse Response and Settling Time,  
10 V Step, Dual Supply, VS = 15 V, G = 100  
5V/DIV  
5V/DIV  
580µs TO 0.01%  
780µs TO 0.001%  
26µs TO 0.01%  
27µs TO 0.001%  
0.002%/DIV  
0.002%/DIV  
50µs/DIV  
500µs/DIV  
Figure 47. Large Signal Pulse Response and Settling Time,  
10 V Step, Dual Supply, VS = 15 V, G = 1  
Figure 50. Large Signal Pulse Response and Settling Time,  
10 V Step, Dual Supply, VS = 15 V, G = 1000  
Rev. 0 | Page 18 of 28  
AD8426  
20mV/DIV  
4µs/DIV  
20mV/DIV  
100µs/DIV  
Figure 51. Small Signal Pulse Response, RL = 10 kΩ, CL = 100 pF, G = 1  
Figure 54. Small Signal Pulse Response, RL = 10 kΩ, CL = 100 pF, G = 1000  
NO LOAD  
47pF  
100pF  
147pF  
20mV/DIV  
4µs/DIV  
20mV/DIV  
4µs/DIV  
Figure 52. Small Signal Pulse Response, RL = 10 kΩ, CL = 100 pF, G = 10  
Figure 55. Small Signal Pulse Response with Various Capacitive Loads,  
G = 1, RL = Infinity  
60  
50  
40  
SETTLED TO 0.001%  
30  
SETTLED TO 0.01%  
20  
10  
0
20mV/DIV  
20µs/DIV  
2
4
6
8
10  
12  
14  
16  
18  
20  
STEP SIZE (V)  
Figure 53. Small Signal Pulse Response, RL = 10 kΩ, CL = 100 pF, G = 100  
Figure 56. Settling Time vs. Step Size, Dual Supply, VS = 15 V  
Rev. 0 | Page 19 of 28  
AD8426  
760  
740  
720  
700  
680  
660  
640  
70  
60  
GAIN = 1000  
GAIN = 100  
GAIN = 10  
GAIN = 1  
50  
40  
30  
20  
10  
0
–10  
–20  
100  
620  
0
1k  
10k  
100k  
1M  
2
4
6
8
10  
12  
14  
16  
18  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (±V )  
S
Figure 57. Supply Current vs. Supply Voltage (Both Amplifiers)  
Figure 59. Gain vs. Frequency, Differential Output Configuration  
200  
100  
90  
180  
GAIN = 1000  
160  
80  
140  
70  
LIMITED BY  
MEASUREMENT  
120 GAIN = 1  
60  
50  
40  
30  
20  
10  
0
SYSTEM  
100  
80  
60  
40  
20  
0
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 58. Channel Separation vs. Frequency, RL = 2 kΩ,  
Source Channel at G = 1 and G = 1000  
Figure 60. Output Balance vs. Frequency, Differential Output Configuration  
Rev. 0 | Page 20 of 28  
AD8426  
THEORY OF OPERATION  
+V  
–V  
+V  
–V  
S
S
R
G
NODE 3  
NODE 4  
R3  
50k  
S
S
R1  
24.7kꢀ  
R2  
24.7kꢀ  
+V  
–V  
S
R4  
50kꢀ  
NODE 2  
V
A3  
OUT  
+V  
–V  
NODE 1  
R5  
50kꢀ  
S
R6  
50kꢀ  
S
ESD AND  
OVERVOLTAGE  
PROTECTION  
ESD AND  
OVERVOLTAGE  
PROTECTION  
REF  
Q1  
Q2  
+IN  
–IN  
A1  
A2  
S
V
R
R
BIAS  
B
B
–V  
DIFFERENCE  
AMPLIFIER STAGE  
S
GAIN STAGE  
Figure 61. Simplified Schematic  
ARCHITECTURE  
GAIN SELECTION  
The AD8426 is based on the classic 3-op-amp topology. This  
topology has two stages: a gain stage (preamplifier) to provide  
differential amplification, followed by a difference amplifier stage  
to remove the common-mode voltage. Figure 61 shows a simplified  
schematic of one of the instrumentation amplifiers in the AD8426.  
Placing a resistor across the RG terminals sets the gain of the  
AD8426. The gain can be calculated by referring to Table 11  
or by using the following gain equation:  
49.4 kΩ  
RG =  
G 1  
The first stage works as follows. To maintain a constant voltage  
across the bias resistor, RB, A1 must keep Node 3 at a constant  
diode drop above the positive input voltage. Similarly, A2 keeps  
Node 4 at a constant diode drop above the negative input voltage.  
Therefore, a replica of the differential input voltage is placed  
across the gain setting resistor, RG. The current that flows across  
this resistance must also flow through the R1 and R2 resistors,  
creating a gained differential signal between the A2 and A1 out-  
puts. Note that, in addition to a gained differential signal, the  
original common-mode signal, shifted up by a diode drop, is  
also still present.  
Table 11. Gains Achieved Using 1% Resistors  
1% Standard Table Value of RG  
Calculated Gain  
49.9 kΩ  
12.4 kΩ  
5.49 kΩ  
2.61 kΩ  
1.00 kΩ  
499 Ω  
1.990  
4.984  
9.998  
19.93  
50.40  
100.0  
249 Ω  
199.4  
100 Ω  
495.0  
49.9 Ω  
991.0  
The second stage is a difference amplifier, composed of A3 and  
four 50 kꢀ resistors. The purpose of this stage is to remove the  
common-mode signal from the amplified differential signal.  
The AD8426 defaults to G = 1 when no gain resistor is used.  
The tolerance and gain drift of the RG resistor should be added  
to the AD8426 specifications to determine the total gain accu-  
racy of the system. When the gain resistor is not used, gain  
error and gain drift are minimal.  
The transfer function of the AD8426 is  
V
OUT = G × (VIN+ VIN−) + VREF  
where:  
49.4 kΩ  
G =1 +  
RG  
Rev. 0 | Page 21 of 28  
 
 
 
AD8426  
Equation 1 to Equation 3 can be used to understand the inter-  
action of the gain (G), common-mode input voltage (VCM),  
differential input voltage (VDIFF), and reference voltage (VREF).  
REFERENCE TERMINAL  
The output voltage of the AD8426 is developed with respect  
to the potential on the reference terminal. This is useful when  
the output signal needs to be offset to a precise midsupply level.  
For example, a voltage source can be tied to the REF pin to level-  
shift the output so that the AD8426 can drive a single-supply  
ADC. The REF pin is protected with ESD diodes and should  
not exceed either +VS or −VS by more than 0.3 V.  
The values for the constants (V−LIMIT, V+LIMIT, and VREF_LIMIT  
)
at different temperatures are shown in Table 12. These three  
equations, along with the input and output voltage range speci-  
fications in Table 2 and Table 5, set the operating boundaries  
of the part.  
V
DIFF × G  
For the best performance, source impedance to the REF  
terminal should be kept below 2 ꢀ. As shown in Figure 62,  
the reference terminal, REF, is at one end of a 50 kΩ resistor.  
Additional impedance at the REF terminal adds to this 50 kΩ  
resistor and results in amplification of the signal connected to  
the positive input. The amplification from the additional RREF  
VCM  
VCM  
+
> −VS + VLIMIT  
(1)  
(2)  
2
V
DIFF × G  
< +VS V+LIMIT  
2
V
DIFF ×G  
+ VCM +VREF  
can be computed by 2 × (50 kΩ + RREF)/100 kΩ + RREF  
.
2
< +VS VREF_LIMIT  
(3)  
Only the positive signal path is amplified; the negative path is  
unaffected. This uneven amplification degrades the CMRR of  
the amplifier.  
2
Table 12. Input Voltage Range Constants for Various  
Temperatures  
INCORRECT  
CORRECT  
CORRECT  
Temperature  
V−LIMIT (V)  
V+LIMIT (V)  
VREF_LIMIT (V)  
−40°C  
−0.55  
+0.8  
+1.3  
AD8426  
AD8426  
AD8426  
+25°C  
−0.35  
+0.7  
+1.15  
REF  
REF  
REF  
V
V
REF  
REF  
+85°C  
+125°C  
−0.15  
−0.05  
+0.65  
+0.6  
+1.05  
+0.9  
V
REF  
+
+
OP1177  
AD8426  
The common-mode input voltage range shifts upward with temp-  
erature. At cold temperatures, the part requires extra headroom  
from the positive supply, whereas operation near the negative  
supply has more margin. Conversely, at hot temperatures, the part  
requires less headroom from the positive supply but is subject  
to the worst-case conditions for input voltages near the negative  
supply.  
Figure 62. Driving the Reference Pin  
INPUT VOLTAGE RANGE  
The 3-op-amp architecture of the AD8426 applies gain in  
the first stage before removing common-mode voltage in the  
difference amplifier stage. In addition, the input transistors in  
the first stage shift the common-mode voltage up one diode  
drop. Therefore, internal nodes between the first and second  
stages (Node 1 and Node 2 in Figure 61) experience a combina-  
tion of gained signal, common-mode signal, and a diode drop.  
This combined signal can be limited by the voltage supplies even  
when the individual input and output signals are not limited.  
Figure 9 to Figure 15 and Figure 18 show the allowable common-  
mode input voltage ranges for various output voltages and  
supply voltages.  
A typical part functions up to the boundaries described in this  
section. However, for best performance, designing with a few  
hundred millivolts of extra margin is recommended. As signals  
approach the boundary, internal transistors begin to saturate,  
which can affect frequency and linearity performance.  
Rev. 0 | Page 22 of 28  
 
 
 
 
 
AD8426  
Common-Mode Rejection Ratio over Frequency  
LAYOUT  
Poor layout can cause some of the common-mode signals to be  
converted to differential signals before reaching the in-amp. Such  
conversions occur when one input path has a frequency response  
that is different from the other. To keep CMRR over frequency  
high, the input source impedance and capacitance of each path  
should be closely matched. Additional source resistance in the  
input paths (for example, for input protection) should be placed  
close to the in-amp inputs to minimize the interaction of the  
inputs with parasitic capacitance from the PCB traces.  
To ensure optimum performance of the AD8426 at the PCB  
level, care must be taken in the design of the board layout.  
The AD8426 pins are arranged in a logical manner to aid in  
this task.  
16 15 14 13  
AD8426  
12 –IN2  
–IN1  
RG1  
RG1  
+IN1  
1
2
3
4
RG2  
RG2  
+IN2  
11  
10  
9
Parasitic capacitance at the gain setting pins can also affect CMRR  
over frequency. If the board design has a component at the gain  
setting pins (for example, a switch or jumper), the component  
should be chosen so that the parasitic capacitance is as small as  
possible.  
5
6
7
8
Power Supplies  
Figure 63. Pinout Diagram  
A stable dc voltage should be used to power the instrumenta-  
tion amplifier. Noise on the supply pins can adversely affect  
performance. See the PSRR performance curves in Figure 22  
and Figure 25 for more information.  
Package Considerations  
The AD8426 is available in a 16-lead, 4 mm × 4 mm LFCSP with  
no exposed paddle. The footprint from another 4 mm × 4 mm  
LFCSP part should not be copied because it may not have the  
correct lead pitch and lead width dimensions. Refer to the  
Outline Dimensions section to verify that the corresponding  
dimensional symbol has the correct dimensions.  
A 0.1 μF capacitor should be placed as close as possible to each  
supply pin. As shown in Figure 65, a 10 μF capacitor can be used  
farther away from the part. In most cases, it can be shared by  
other precision integrated circuits.  
+V  
S
Hidden Paddle Package  
The AD8426 is available in an LFCSP package with a hidden  
paddle. Unlike chip scale packages where the pad limits routing  
capability, this package allows routes and vias directly beneath  
the chip. In this way, the full space savings of the small LFCSP  
can be realized. Although the package has no metal in the center  
of the part, the manufacturing process leaves a very small section  
of exposed metal at each of the package corners, as shown in  
Figure 64 and in Figure 73 in the Outline Dimensions section.  
This metal is connected to −VS through the part. Because of the  
possibility of a short, vias should not be placed beneath these  
exposed metal tabs.  
0.1µF  
10µF  
+IN  
–IN  
OUT  
LOAD  
R
G
AD8426  
REF  
0.1µF  
10µF  
–V  
S
Figure 65. Supply Decoupling, REF, and Output Referred to Local Ground  
HIDDEN  
PADDLE  
References  
The output voltage of the AD8426 is developed with respect to  
the potential on the reference terminal. Care should be taken to  
tie the REFx pins to the appropriate local ground. This should  
also help minimize crosstalk between the two channels.  
EXPOSED METAL  
TABS  
BOTTOM VIEW  
NOTES  
1. EXPOSED METAL TABS AT THE FOUR  
CORNERS OF THE PACKAGE ARE  
INTERNALLY CONNECTED TO –V .  
S
Figure 64. Hidden Paddle Package, Bottom View  
Rev. 0 | Page 23 of 28  
 
 
 
AD8426  
The other AD8426 terminals should be kept within the supplies.  
All terminals of the AD8426 are protected against ESD.  
INPUT BIAS CURRENT RETURN PATH  
The input bias current of the AD8426 must have a return path  
to ground. When the source, such as a thermocouple, cannot  
provide a current return path, one should be created, as shown  
in Figure 66.  
For applications where the AD8426 encounters voltages beyond  
the allowed limits, external current limiting resistors and low  
leakage diode clamps such as the BAV199L, the FJH1100, or the  
SP720 should be used.  
INCORRECT  
+V  
CORRECT  
+V  
RADIO FREQUENCY INTERFERENCE (RFI)  
S
S
RF interference is often a problem when amplifiers are used in  
applications where there are strong RF signals. The precision  
circuits in the AD8426 can rectify the RF signals so that they  
appear as a dc offset voltage error. To avoid this rectification,  
place a low-pass RC filter at the input of the instrumentation  
amplifier (see Figure 67). The filter limits both the differential  
and common-mode bandwidth, as shown in the following  
equations:  
AD8426  
AD8426  
REF  
REF  
REF  
REF  
–V  
–V  
S
S
TRANSFORMER  
TRANSFORMER  
1
+V  
S
+V  
S
FilterFrequencyDIFF  
FilterFrequencyCM  
=
R(2CD +CC )  
1
=
RCC  
AD8426  
AD8426  
REF  
where CD 10 CC.  
+V  
10M  
S
–V  
–V  
S
S
0.1µF  
+IN  
10µF  
THERMOCOUPLE  
THERMOCOUPLE  
C
1nF  
C
+V  
+V  
S
S
R
4.02k  
C
C
C
OUT  
C
10nF  
D
R
G
AD8426  
R
R
1
R
REF  
fHIGH-PASS  
=
AD8426  
2πRC  
AD8426  
–IN  
4.02kꢀ  
C
REF  
C
C
1nF  
0.1µF  
10µF  
–V  
–V  
S
S
–V  
S
CAPACITIVELY COUPLED  
CAPACITIVELY COUPLED  
Figure 67. RFI Suppression  
Figure 66. Creating an Input Bias Current Return Path  
CD affects the differential signal, and CC affects the common-  
mode signal. Values of R and CC should be chosen to minimize  
RFI. Any mismatch between the R × CC at the positive input  
and the R × CC at the negative input degrades the CMRR of the  
AD8426. By using a value of CD one order of magnitude larger  
than CC, the effect of the mismatch is reduced, and performance  
is improved.  
INPUT PROTECTION  
The AD8426 has very robust inputs and typically does not  
need additional input protection. Input voltages can be up to  
40 V from the opposite supply rail. For example, with a +5 V  
positive supply and a −8 V negative supply, the part can safely  
withstand voltages from −35 V to +32 V. Unlike some other  
instrumentation amplifiers, the part can handle large differen-  
tial input voltages even when the part is in high gain. Figure 16,  
Figure 17, Figure 19, and Figure 20 show the behavior of the  
part under overvoltage conditions.  
Rev. 0 | Page 24 of 28  
 
 
 
AD8426  
APPLICATIONS INFORMATION  
A common application sets the common-mode output voltage  
to the midscale of a differential ADC. In this case, the ADC  
reference voltage is sent to the +IN2 terminal, and ground is  
connected to the REF2 terminal. This produces a common-  
mode output voltage of half the ADC reference voltage.  
PRECISION STRAIN GAGE  
The low offset and high CMRR over frequency of the AD8426  
make it an excellent candidate for bridge measurements. The  
bridge can be connected directly to the inputs of the amplifier  
(see Figure 68).  
2-Channel Differential Output Using a Dual Op Amp  
5V  
10µF  
0.1µF  
Another differential output topology is shown in Figure 70.  
Instead of a second in-amp, one-half of a dual op amp creates  
the inverted output. The recommended dual op amps (the  
AD8642 and the AD822) are packaged in an MSOP. This  
configuration allows the creation of a dual-channel, precision  
differential output in-amp with little board area.  
350  
350ꢀ  
350ꢀ  
350ꢀ  
+IN  
–IN  
+
R
AD8426  
G
2.5V  
Figure 70 shows how to configure the AD8426 for differential  
output.  
Figure 68. Precision Strain Gage  
DIFFERENTIAL DRIVE  
+IN  
The differential output configuration of the AD8426 has the  
same excellent dc precision specifications as the single-ended  
output configuration.  
V
AD8426  
OUT+  
–IN  
R
R
REF  
V
BIAS  
Differential Output Using Both AD8426 Amplifiers  
+
The circuit configuration is shown in Figure 69. The differential  
output specifications in Table 2, Table 4, Table 5, and Table 7  
refer to this configuration only. The circuit includes an RC filter  
that maintains the stability of the loop.  
OP AMP  
V
OUT–  
RECOMMENDED OP AMPS: AD8642, AD822.  
RECOMMENDED R VALUES: 5kTO 20k.  
+IN1  
R
+
V
OUT+  
G
AD8426  
Figure 70. Differential Output Using an Op Amp  
–IN1  
10kꢀ  
The differential output voltage is set by the following equation:  
100pF  
V
DIFF_OUT = VOUT+ VOUT− = G × (VIN+ VIN−)  
AD8426  
where:  
+INx  
+
REF2  
49.4 kΩ  
G = 1+  
V
OUT–  
RG  
Figure 69. Differential Circuit Schematic  
The common-mode output voltage is set by the following  
equation:  
The differential output voltage is set by the following equation:  
V
DIFF_OUT = VOUT+ VOUT− = G × (VIN+ VIN−)  
V
CM_OUT = (VOUT+ VOUT−)/2 = VBIAS  
where:  
The advantage of this circuit is that the dc differential accuracy  
depends on the AD8426 and not on the op amp or the resistors.  
This circuit takes advantage of the precise control of the AD8426  
over its output voltage relative to the reference voltage. Op amp  
dc performance and resistor matching do affect the dc common-  
mode output accuracy. However, because common-mode errors  
are likely to be rejected by the next device in the signal chain, these  
errors typically have little effect on overall system accuracy.  
49.4 kΩ  
G = 1+  
RG  
The common-mode output voltage is set by the average of +IN2  
and REF2. The transfer function is  
V
CM_OUT = (VOUT+ + VOUT−)/2 = (V+IN2 + VREF2)/2  
For best ac performance, an op amp with gain bandwidth of at  
least 2 MHz and a slew rate of at least 1 V/μs is recommended.  
Good choices for op amps are the AD8642 and the AD822.  
Rev. 0 | Page 25 of 28  
 
 
 
 
AD8426  
Tips for Best Differential Output Performance  
DRIVING A CABLE  
Keep trace lengths from resistors to the inverting terminal of  
the op amp as short as possible. Excessive capacitance at this  
node can cause the circuit to be unstable. If capacitance cannot  
be avoided, use lower value resistors.  
All cables have a certain capacitance per unit length, which varies  
widely with cable type. The capacitive load from the cable may  
cause peaking in the output response of the AD8426. To reduce  
the peaking, use a resistor between the AD8426 outputs and the  
cable (see Figure 71). Because cable capacitance and desired output  
response vary widely, this resistor is best determined empirically.  
A good starting point is 50 Ω.  
For best linearity and ac performance, a minimum positive supply  
voltage (+VS) is required. Table 13 shows the minimum supply  
voltage required for optimum performance, where VCM_MAX  
indicates the maximum common-mode voltage expected at the  
input of the AD8426.  
AD8426  
Table 13. Minimum Positive Supply Voltage  
Temperature  
Equation  
DIFFERENTIAL OUTPUT  
Less than −10°C  
−10°C to +25°C  
More than +25°C  
+VS > (VCM_MAX + VBIAS)/2 + 1.4 V  
+VS > (VCM_MAX + VBIAS)/2 + 1.25 V  
+VS > (VCM_MAX + VBIAS)/2 + 1.1 V  
AD8426  
SINGLE OUTPUT  
Figure 71. Driving a Cable  
The AD8426 operates at such a relatively low frequency that  
transmission line effects are rarely an issue; therefore, the resistor  
need not match the characteristic impedance of the cable.  
Rev. 0 | Page 26 of 28  
 
 
 
AD8426  
Option 2 shows a circuit for driving higher frequency signals.  
It uses a precision op amp (AD8616) with relatively high band-  
width and output drive. This amplifier can drive a resistor and  
capacitor with a much higher time constant and is, therefore,  
suited for higher frequency applications.  
DRIVING AN ADC  
Figure 72 shows several different methods of driving an ADC.  
The ADC in the ADuC7026 microcontroller was chosen for  
this example because it has an unbuffered, charge sampling  
architecture that is typical of most modern ADCs. This type of  
architecture typically requires an RC buffer stage between the  
ADC and the amplifier to work correctly.  
Option 3 is useful for applications where the AD8426 must  
operate from a large voltage supply but drives a single-supply  
ADC. In normal operation, the AD8426 output signal stays  
within the ADC range, and the AD8616 simply buffers the signal.  
However, in a fault condition, the output of the AD8426 may  
go outside the supply range of both the AD8616 and the ADC.  
This is not a problem in this circuit, because the 10 kΩ resistor  
between the two amplifiers limits the current into the AD8616  
to a safe level.  
Option 1 shows the minimum configuration required to drive  
a charge sampling ADC. The capacitor provides charge to the  
ADC sampling capacitor, and the resistor shields the AD8426  
from the capacitance. To keep the AD8426 stable, the RC time  
constant of the resistor and capacitor needs to stay above 5 μs.  
This circuit is mainly useful for lower frequency signals.  
OPTION 1: DRIVING LOW FREQUENCY SIGNALS  
3.3V  
3.3V  
AV  
DD  
ADC0  
100  
AD8426  
REF  
100nF  
ADuC7026  
OPTION 2: DRIVING HIGH FREQUENCY SIGNALS  
3.3V  
3.3V  
AD8426  
10ꢀ  
REF  
ADC1  
AD8616  
10nF  
OPTION 3: PROTECTING ADC FROM LARGE VOLTAGES  
+15V  
AD8426  
–15V  
3.3V  
10kꢀ  
10ꢀ  
REF  
AD8616  
ADC2  
AGND  
10nF  
Figure 72. Driving an ADC  
Rev. 0 | Page 27 of 28  
 
 
AD8426  
OUTLINE DIMENSIONS  
0.60 MAX  
4.00  
BSC SQ  
0.60 MAX  
13  
12  
16  
1
4
0.65  
BSC  
PIN 1  
INDICATOR  
3.75  
BCS SQ  
1.95 REF  
SQ  
9
8
5
0.75  
0.60  
0.50  
TOP VIEW  
BOTTOM VIEW  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
0.20 REF  
0.35  
0.30  
0.25  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-263-VBBC  
Figure 73. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad, with Hidden Paddle  
(CP-16-19)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
AD8426ACPZ-R7  
AD8426ACPZ-WP  
AD8426BCPZ-R7  
AD8426BCPZ-WP  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
CP-16-19  
CP-16-19  
CP-16-19  
CP-16-19  
16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
1 Z = RoHS Compliant Part.  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09490-0-7/11(0)  
Rev. 0 | Page 28 of 28  
 
 
 

相关型号:

AD8426ACPZ-WP

Wide Supply Range, Rail-to-Rail
ADI

AD8426BCPZ-R7

Wide Supply Range, Rail-to-Rail
ADI

AD8426BCPZ-WP

Wide Supply Range, Rail-to-Rail
ADI

AD8426_1108

Wide Supply Range, Rail-to-Rail
ADI

AD8428

Low Noise, Low Gain Drift, G = 2000
ADI

AD8428-KGD-WP

Instrumentation Amplifier
ADI

AD8428ARZ

Low Noise, Low Gain Drift, G = 2000
ADI

AD8428ARZ-RL

Low Noise, Low Gain Drift, G = 2000
ADI

AD8428BRZ

Low Noise, Low Gain Drift, G = 2000
ADI

AD8428BRZ-RL

Low Noise, Low Gain Drift, G = 2000
ADI

AD8428_12

Low Noise, Low Gain Drift, G = 2000
ADI

AD8429

Low Noise, Low Gain Drift, G = 2000
ADI