AD8295ACPZ-RL [ADI]

Precision Instrumentation Amplifier with Signal Processing Amplifiers; 精密仪表放大器与信号处理放大器
AD8295ACPZ-RL
型号: AD8295ACPZ-RL
厂家: ADI    ADI
描述:

Precision Instrumentation Amplifier with Signal Processing Amplifiers
精密仪表放大器与信号处理放大器

仪表放大器 放大器电路
文件: 总28页 (文件大小:674K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Instrumentation Amplifier  
with Signal Processing Amplifiers  
AD8295  
CONNECTION DIAGRAM  
FEATURES  
+V  
OUT  
15  
A2 +IN  
14  
A2 –IN  
13  
S
Saves board space  
16  
Includes precision in-amp, 2 op amps, and  
2 matched resistors  
4 mm × 4 mm LFCSP  
No heat slug for more routing room  
Differential output fully specified  
In-amp specifications  
Gain set with 1 external resistor (gain range: 1 to 1000)  
8 nV/√Hz @ 1 kHz, maximum input voltage noise  
90 dB minimum CMRR (G = 1)  
AD8295  
1
2
3
4
12  
11  
10  
9
–IN  
A2 OUT  
A1 +IN  
A1 R1  
A2  
R
G
IA  
R
G
R1  
A1  
20k  
R2  
20kΩ  
+IN  
A1 –IN  
5
6
7
8
0.8 nA maximum input bias current  
1.2 MHz, −3 dB bandwidth (G = 1)  
2 V/μs slew rate  
–V  
REF  
A1 OUT  
A1 R2  
S
Figure 1.  
Wide power supply range: 2.3 V to 18 V  
1 ppm/°C, 0.03% resistor matching  
Table 1. Instrumentation Amplifiers by Category  
APPLICATIONS  
General  
Purpose  
Zero  
Drift  
Military  
Grade  
Low  
Power  
AD6271  
AD6231  
AD82231  
High Speed  
PGA  
Industrial process controls  
Wheatstone bridges  
Precision data acquisition systems  
Medical instrumentation  
Strain gages  
AD82201  
AD8221  
AD8222  
AD82241  
AD8228  
AD8295  
AD82311  
AD85531  
AD85551  
AD85561  
AD85571  
AD82931  
AD620  
AD621  
AD524  
AD526  
AD624  
AD8250  
AD8251  
AD8253  
Transducer interfaces  
Differential output  
1 Rail-to-rail output.  
The AD8295 includes a high performance, programmable gain  
instrumentation amplifier. Gain is set from 1 to 1000 with a  
single resistor. The low noise and excellent common-mode  
rejection of the AD8295 enable the part to easily detect small  
signals even in the presence of large common-mode interference.  
For a similar instrumentation amplifier without the associated  
signal conditioning circuitry, see the AD8221 or AD8222 data  
sheet.  
GENERAL DESCRIPTION  
The AD8295 contains all the components necessary for a  
precision instrumentation amplifier front end in one small  
4 mm × 4 mm package. It contains a high performance  
instrumentation amplifier, two general-purpose operational  
amplifiers, and two precisely matched 10 kΩ resistors.  
The AD8295 is designed to make PCB routing easy and  
efficient. The AD8295 components are arranged in a logical  
way so that typical application circuits have short routes and  
few vias. Unlike most chip scale packages, the AD8295 does not  
have an exposed metal pad on the back of the part, which frees  
additional space for routing and vias. The AD8295 comes in a  
4 mm × 4 mm LFCSP that requires half the board space of an  
8-pin SOIC package.  
The AD8295 operates on both single and dual supplies and is  
well suited for applications where 10 ꢀ input voltages are  
encountered. Performance is specified over the entire industrial  
temperature range of −40°C to +85°C for all grades. The  
AD8295 is operational from −40°C to +125°C; see the Typical  
Performance Characteristics section for expected operation up  
to 125°C.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
 
AD8295  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
System .......................................................................................... 18  
Theory of Operation ...................................................................... 19  
Uncommitted Op Amps............................................................ 19  
Instrumentation Amplifier........................................................ 19  
Layout .......................................................................................... 20  
Input Protection ......................................................................... 21  
Input Bias Current Return Path ............................................... 21  
RF Interference ........................................................................... 21  
Differential Output .................................................................... 22  
Applications Information.............................................................. 23  
Creating a Reference oltage at Midscale............................... 23  
High Accuracy G = −1 Configuration with Low-Pass Filter .. 23  
2-Pole Sallen-Key Filter ............................................................. 24  
AC-Coupled Instrumentation Amplifier................................ 24  
Driving Differential ADCs........................................................ 25  
Outline Dimensions....................................................................... 26  
Ordering Guide .......................................................................... 26  
Applications....................................................................................... 1  
Connection Diagram ....................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Instrumentation Amplifier Specifications, Single-Ended and  
Differential Output Configurations........................................... 3  
Op Amp Specifications................................................................ 5  
Internal Resistor Network ........................................................... 6  
Power and Temperature Specifications ..................................... 6  
Absolute Maximum Ratings............................................................ 7  
Thermal Characteristics .............................................................. 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
In-Amp .......................................................................................... 9  
Op Amps...................................................................................... 16  
REVISION HISTORY  
10/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 28  
 
AD8295  
SPECIFICATIONS  
INSTRUMENTATION AMPLIFIER SPECIFICATIONS, SINGLE-ENDED AND DIFFERENTIAL OUTPUT  
CONFIGURATIONS  
S = 15 , REF = 0 , TA = 25°C, G = 1, RL = 2 kꢁ, unless otherwise noted. The differential configuration is shown in Figure 59.  
Table 2.  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Test Conditions  
Min  
Max  
Min  
Max  
Unit  
COMMON-MODE REJECTION  
RATIO (CMRR)  
VCM = −10 V to +10 V  
CMRR, DC to 60 Hz  
G = 1  
G = 10  
G = 100  
G = 1000  
1 kΩ source imbalance  
80  
90  
dB  
dB  
dB  
dB  
100  
120  
130  
110  
130  
140  
CMRR at 8 kHz  
G = 1  
G = 10  
G = 100  
G = 1000  
80  
90  
100  
110  
80  
dB  
dB  
dB  
dB  
100  
120  
120  
NOISE  
Voltage Noise, 1 kHz  
RTI noise =  
√(eNI2 + (eNO/G)2)  
Input Voltage Noise, eNI  
Output Voltage Noise, eNO  
RTI  
VIN+, VIN−, VREF = 0 V  
VIN+, VIN−, VREF = 0 V  
f = 0.1 Hz to 10 Hz  
8
75  
8
75  
nV/√Hz  
nV/√Hz  
G = 1  
G = 10  
G = 100 to 1000  
Current Noise  
2
2
μV p-p  
μV p-p  
μV p-p  
fA/√Hz  
pA p-p  
0.5  
0.25  
40  
6
0.5  
0.25  
40  
6
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
RTI VOS = (VOSI) + (VOSO/G)  
VS = 5 V to 15 V  
TA = −40°C to +85°C  
VOLTAGE OFFSET  
Input Offset, VOSI  
Over Temperature  
Average TC  
Output Offset, VOSO  
Over Temperature  
Average TC  
120  
150  
0.4  
500  
0.8  
9
60  
80  
0.3  
350  
0.5  
5
μV  
μV  
μV/°C  
μV  
mV  
VS = 5 V to 15 V  
TA = −40°C to +85°C  
μV/°C  
Offset RTI vs. Supply (PSR)  
G = 1  
G = 10  
G = 100  
G = 1000  
VS = 2.3 V to 18 V  
90  
110  
120  
130  
140  
94  
110  
130  
140  
150  
dB  
dB  
dB  
dB  
110  
124  
130  
114  
130  
140  
INPUT CURRENT  
Input Bias Current  
Over Temperature  
Average TC  
Input Offset Current  
Over Temperature  
Average TC  
0.5  
2.0  
3.0  
0.2  
0.8  
1.5  
nA  
nA  
pA/°C  
nA  
nA  
TA = −40°C to +85°C  
TA = −40°C to +85°C  
1
0.2  
1
0.1  
1
1.5  
0.5  
0.6  
2
1
0.5  
pA/°C  
Rev. 0 | Page 3 of 28  
 
 
AD8295  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
GAIN  
Test Conditions  
Min  
Max  
Min  
Max  
Unit  
G = 1 + (49.4 kΩ/RG)  
Gain Range  
Gain Error  
G = 1  
G = 10  
G = 100  
G = 1000  
Gain Nonlinearity  
G = 1  
G = 10  
G = 100  
1
1000  
1
1000  
V/V  
VOUT 10 V  
0.05  
0.3  
0.3  
0.02  
0.1  
0.1  
%
%
%
%
0.3  
0.1  
VOUT = −10 V to +10 V  
3
7
7
10  
20  
20  
1
7
7
5
20  
20  
ppm  
ppm  
ppm  
Gain vs. Temperature  
G = 1  
G > 1  
5
−50  
1
−50  
ppm/°C  
ppm/°C  
DYNAMIC RESPONSE (SINGLE-  
ENDED CONFIGURATION)  
Small Signal −3 dB Bandwidth  
G = 1  
G = 10  
G = 100  
G = 1000  
1200  
750  
140  
15  
1200  
750  
140  
15  
kHz  
kHz  
kHz  
kHz  
Settling Time 0.01%  
G = 1 to 100  
G = 1000  
Settling Time 0.001%  
G = 1 to 100  
G = 1000  
10 V step  
10 V step  
10  
80  
10  
80  
μs  
μs  
13  
110  
13  
110  
μs  
μs  
Slew Rate  
G = 1  
G = 5 to 1000  
1.5  
2
2
2.5  
1.5  
2
2
2.5  
V/μs  
V/μs  
DYNAMIC RESPONSE (DIFFERENTIAL  
OUTPUT CONFIGURATION)  
Small Signal −3 dB Bandwidth  
G = 1  
G = 10  
G = 100  
G = 1000  
1200  
1000  
140  
15  
1200  
1000  
140  
15  
kHz  
kHz  
kHz  
kHz  
Settling Time 0.01%  
G = 1 to 100  
G = 1000  
Settling Time 0.001%  
G = 1 to 100  
G = 1000  
10 V step  
10 V step  
10  
80  
10  
80  
μs  
μs  
13  
110  
13  
110  
μs  
μs  
Slew Rate  
G = 1  
1.5  
2
2
2.5  
1.5  
2
2
2.5  
V/μs  
V/μs  
G = 5 to 1000  
REFERENCE INPUT  
RIN  
20  
50  
20  
50  
kΩ  
μA  
V
IIN  
VIN+, VIN−, VREF = 0 V  
60  
+VS  
60  
+VS  
Voltage Range  
Gain to Output  
−VS  
1
−VS  
1
0.0001  
0.0001  
V/V  
Rev. 0 | Page 4 of 28  
AD8295  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Test Conditions  
Min  
Max  
Min  
Max  
Unit  
INPUT  
Input Impedance  
Differential  
Common Mode  
Input Operating Voltage Range1 VS = 2.3 V to 5 V  
Over Temperature  
Input Operating Voltage Range1  
100||2  
100||2  
100||2  
100||2  
GΩ||pF  
GΩ||pF  
V
V
V
V
−VS + 1.9  
−VS + 2.0  
−VS + 1.9  
−VS + 2.0  
+VS − 1.1 −VS + 1.9  
+VS − 1.2 −VS + 2.0  
+VS − 1.2 −VS + 1.9  
+VS − 1.2 −VS + 2.0  
+VS − 1.1  
+VS − 1.2  
+VS − 1.2  
+VS − 1.2  
TA = −40°C to +85°C  
VS = 5 V to 18 V  
TA = −40°C to +85°C  
RL = 10 kΩ  
Over Temperature  
OUTPUT  
Output Swing  
Over Temperature  
Output Swing  
Over Temperature  
Short-Circuit Current  
VS = 2.3 V to 5 V  
TA = −40°C to +85°C  
VS = 5 V to 18 V  
TA = −40°C to +85°C  
−VS + 1.1  
−VS + 1.4  
−VS + 1.2  
−VS + 1.6  
+VS − 1.2 −VS + 1.1  
+VS − 1.3 −VS + 1.4  
+VS − 1.4 −VS + 1.2  
+VS − 1.5 −VS + 1.6  
+VS − 1.2  
+VS − 1.3  
+VS − 1.4  
+VS − 1.5  
V
V
V
V
18  
18  
mA  
1 One input grounded; G = 1.  
OP AMP SPECIFICATIONS  
S = 15 , TA = 25°C, RL = 2 kꢁ, unless otherwise noted.  
Table 3.  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Test Conditions  
Min  
Max  
Min  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage, VOS  
Average TC  
40  
4
10  
20  
10  
2
20  
2
8
16  
8
0.5  
0.5  
μV  
μV/°C  
nA  
nA  
nA  
TA = −40°C to +85°C  
Input Bias Current1  
TA = −40°C  
TA = +85°C  
Input Offset Current  
Over Temperature  
nA  
nA  
TA = −40°C to +85°C  
2
Input Voltage Range  
Open-Loop Gain  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Voltage Noise Density  
Voltage Noise  
−VS + 1.2  
100  
100  
+VS − 1.2 −VS + 1.2  
+VS − 1.2  
V
dB  
dB  
dB  
nV/√Hz  
μV p-p  
125  
116  
100  
94  
125  
90  
110  
40  
2.2  
110  
40  
2.2  
f = 0.1 Hz to 10 Hz  
DYNAMIC PERFORMANCE  
Gain Bandwidth Product  
Slew Rate  
1
2.6  
1
2.6  
MHz  
V/μs  
OUTPUT CHARACTERISTICS  
Output Swing  
Over Temperature  
Output Swing  
VS = 2.3 V to 5 V  
TA = −40°C to +85°C  
VS = 5 V to 18 V  
TA = −40°C to +85°C  
−VS + 1.1  
−VS + 1.4  
−VS + 1.2  
−VS + 1.6  
+VS − 1.2 −VS + 1.1  
+VS − 1.3 −VS + 1.4  
+VS − 1.4 −VS + 1.2  
+VS − 1.5 −VS + 1.6  
+VS − 1.2  
+VS − 1.3  
+VS − 1.4  
+VS − 1.5  
V
V
V
V
Over Temperature  
Short-Circuit Current  
18  
18  
mA  
1 Op amp uses an npn input stage, so input bias current always flows into the inputs.  
Rev. 0 | Page 5 of 28  
 
 
 
 
AD8295  
INTERNAL RESISTOR NETWORK  
When used with internal Op Amp A1, TA = 25°C, unless otherwise noted. Use in external op amp feedback loops is not recommended.  
Table 4.  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Test Conditions  
Min  
Max  
Min  
Max  
Unit  
kΩ  
%
ppm/°C  
%
ppm/°C  
Nominal Resistor Value  
Resistor Matching  
Matching Temperature Coefficient  
Absolute Resistor Accuracy  
Absolute Temperature Coefficient  
20  
20  
0.1  
5
0.2  
−50  
0.03  
1
0.1  
−50  
TA = −40°C to +85°C  
TA = −40°C to +85°C  
POWER AND TEMPERATURE SPECIFICATIONS  
S = 15 , REF = 0 , TA = 25°C, unless otherwise noted.  
Table 5.  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Test Conditions  
Min  
Max  
Min  
Max  
Unit  
POWER SUPPLY  
Operating Range  
2.3  
18  
2.3  
2.5  
2.3  
18  
2.3  
2.5  
V
mA  
mA  
Quiescent Current  
Over Temperature  
TEMPERATURE RANGE  
Specified Performance  
Operational Performance1  
In-amp + two op amps  
TA = −40°C to +85°C  
2
2
−40  
−40  
+85  
+125  
−40  
−40  
+85  
+125  
°C  
°C  
1 See the Typical Performance Characteristics section for expected operation from 85°C to 125°C.  
Rev. 0 | Page 6 of 28  
 
 
AD8295  
ABSOLUTE MAXIMUM RATINGS  
THERMAL CHARACTERISTICS  
Table 6.  
Specifications are provided for a device in free air.  
Parameter  
Rating  
Supply Voltage  
Output Short-Circuit Current  
Input Voltage  
18 V  
Indefinite  
Table 7.  
Package  
θJA  
Unit  
°C/W  
16-Lead LFCSP_VQ  
86  
Common-Mode  
VS  
Differential  
VS  
Storage Temperature Range  
Operating Temperature Range1  
Lead Temperature (Soldering, 10 sec)  
Junction Temperature  
ESD (Human Body Model)  
ESD (Charge Device Model)  
ESD (Machine Model)  
−65°C to +130°C  
−40°C to +125°C  
300°C  
130°C  
2000 V  
ESD CAUTION  
500 V  
200 V  
1 Temperature range for specified performance is −40°C to +85°C. See the  
Typical Performance Characteristics section for expected operation from  
85°C to 125°C.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 7 of 28  
 
 
AD8295  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
12 A2 OUT  
11 A1 +IN  
10 A1 R1  
–IN  
1
2
3
4
R
R
G
AD8295  
TOP VIEW  
(Not to Scale)  
G
+IN  
9 A1 –IN  
Figure 2. Pin Configuration  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
−IN  
In-Amp Negative Input.  
2, 3  
4
RG  
+IN  
In-Amp Gain-Setting Resistor Terminals.  
In-Amp Positive Input.  
5
−VS  
Negative Supply.  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
REF  
In-Amp Reference Terminal. Drive with a low impedance source. Output is referred to this pin.  
Op Amp A1 Output.  
Resistor R2 Terminal. Connected internally to Op Amp A1 inverting input.  
Op Amp A1 Inverting Input. Midpoint of resistor divider.  
Resistor R1 Terminal. Connected internally to Op Amp A1 inverting input.  
Op Amp A1 Noninverting Input.  
Op Amp A2 Output.  
Op Amp A2 Inverting Input.  
Op Amp A2 Noninverting Input.  
In-Amp Output.  
A1 OUT  
A1 R2  
A1 −IN  
A1 R1  
A1 +IN  
A2 OUT  
A2 −IN  
A2 +IN  
OUT  
+VS  
Positive Supply.  
Rev. 0 | Page 8 of 28  
 
AD8295  
TYPICAL PERFORMANCE CHARACTERISTICS  
IN-AMP  
S = 15 , REF = 0 , TA = 25°C, RL = 10 kꢁ, unless otherwise noted.  
800  
600  
400  
200  
0
800  
600  
400  
200  
0
–100  
–50  
0
50  
100  
–1.0  
–0.5  
0
0.5  
1.0  
CMRR (µV/V)  
INPUT OFFSET CURRENT (nA)  
Figure 6. Typical Distribution of Input Offset Current  
Figure 3. Typical Distribution for CMRR, G = 1  
5
4
800  
700  
600  
500  
400  
300  
200  
100  
0
G = 1  
S
V
= ±2.5V, ±5V  
3
2
1
0
–1  
–2  
–3  
–4  
–100  
–50  
0
50  
100  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
V
(µV)  
OSI  
OUTPUT VOLTAGE (V)  
Figure 4. Typical Distribution of Input Offset Voltage  
Figure 7. Input Common-Mode Range vs. Output Voltage, G = 1,  
VS = 2.5 V, 5 V, REF = 0 V  
15  
700  
600  
500  
400  
300  
200  
100  
0
G = 1  
S
V
= ±15V  
10  
5
0
–5  
–10  
–15  
–15  
–10  
–5  
0
5
10  
15  
–2  
–1  
0
1
2
OUTPUT VOLTAGE (V)  
INPUT BIAS CURRENT (nA)  
Figure 8. Input Common-Mode Range vs. Output Voltage, G = 1,  
VS = 15 V, REF = 0 V  
Figure 5. Typical Distribution of Input Bias Current  
Rev. 0 | Page 9 of 28  
 
 
 
 
AD8295  
5
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
G = 100  
= ±2.5V, ±5V  
V
S
4
3
2
1
0
–1  
–2  
–3  
–4  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
0
2
4
6
8
10  
WARM-UP TIME (Min)  
OUTPUT VOLTAGE (V)  
Figure 12. Change in Input Offset Voltage vs. Warm-Up Time  
Figure 9. Input Common-Mode Range vs. Output Voltage, G = 100,  
VS = 2.5 V, 5 V, REF = 0 V  
5
4
3
15  
G = 100  
S
V
= ±15V  
10  
5
NEGATIVE BIAS  
2
POSITIVE BIAS  
1
0
0
–1  
–5  
–10  
–15  
–2  
–3  
–4  
OFFSET  
–5  
–40  
–15  
–10  
–5  
0
5
10  
15  
–20  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
Figure 10. Input Common-Mode Range vs. Output Voltage, G = 100,  
VS = 15 V, REF = 0 V  
Figure 13. Input Bias Current and Offset Current vs. Temperature  
180  
0
160  
–0.050  
GAIN = 1000  
±15V  
140  
120  
100  
80  
GAIN = 100  
GAIN = 10  
–0.100  
–0.150  
–0.200  
GAIN = 1  
±5V  
–0.250  
60  
–0.300  
–0.350  
40  
20  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
–15  
–10  
–5  
0
5
10  
15  
FREQUENCY (Hz)  
COMMON-MODE VOLTAGE (V)  
Figure 11. Input Bias Current vs. Common-Mode Voltage  
Figure 14. Positive PSRR vs. Frequency, RTI, G = 1 to 1000  
Rev. 0 | Page 10 of 28  
 
 
AD8295  
180  
160  
140  
120  
100  
80  
180  
170  
160  
150  
140  
130  
GAIN = 1000  
GAIN = 100  
GAIN = 1000  
GAIN = 100  
GAIN = 10  
GAIN = 1  
120 GAIN = 10  
110  
GAIN = 1  
100  
90  
80  
70  
60  
50  
40  
60  
40  
20  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
140  
10M  
0.1  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 15. Negative PSRR vs. Frequency, RTI, G = 1 to 1000  
Figure 18. CMRR vs. Frequency, RTI  
200  
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
150  
100  
50  
GAIN = 1000  
GAIN = 100  
GAIN = 10  
0
GAIN = 1  
–50  
–100  
–150  
–200  
80  
70  
60  
50  
40  
0.1  
1
10  
100  
1k  
10k  
100k  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 19. CMRR vs. Frequency, RTI, 1 kΩ Source Imbalance  
Figure 16. Gain Error vs. Temperature, G = 1  
+V –0  
70  
60  
S
GAIN = 1000  
GAIN = 100  
GAIN = 10  
GAIN = 1  
–0.4  
FROM +V  
–0.8  
–1.2  
–1.6  
–2.0  
50  
40  
30  
20  
10  
+2.0  
+1.6  
+1.2  
+0.8  
+0.4  
FROM –V  
0
–10  
–20  
–30  
–40  
–V +0  
S
2
6
10  
SUPPLY VOLTAGE (V)  
14  
18  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 20. Input Voltage Limit vs. Supply Voltage, G = 1  
Figure 17. Gain vs. Frequency  
Rev. 0 | Page 11 of 28  
 
AD8295  
+V –0  
S
4
3
–0.4  
–0.8  
–1.2  
–1.6  
R
L
= 10k  
2
R
R
= 2kΩ  
= 2kΩ  
L
1
10kLOAD  
0
2kLOAD  
+1.6  
+1.2  
+0.8  
+0.4  
–1  
–2  
–3  
–4  
L
600LOAD  
R
L
= 10kΩ  
–V +0  
S
2
6
10  
14  
18  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
SUPPLY VOLTAGE (V)  
V
(V)  
OUT  
Figure 21. Output Voltage Swing vs. Supply Voltage, G = 1  
Figure 24. Gain Nonlinearity, G = 1  
30  
40  
30  
20  
2kLOAD  
20  
10  
0
10  
0
600LOAD  
–10  
–20  
–30  
–40  
10kLOAD  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
1
10  
100  
1k  
10k  
V
(V)  
LOAD RESISTANCE ()  
OUT  
Figure 22. Output Voltage Swing vs. Load Resistance  
Figure 25. Gain Nonlinearity, G = 100  
+V –0  
S
1k  
100  
10  
–1  
–2  
–3  
SOURCING  
GAIN = 1  
GAIN = 10  
+3  
+2  
+1  
GAIN = 100  
GAIN = 1000  
SINKING  
GAIN = 1000  
BW LIMIT  
1
–V +0  
S
1
10  
100  
1k  
10k  
100k  
0
1
2
3
4
5
6
7
8
9
10 11 12  
FREQUENCY (Hz)  
OUTPUT CURRENT (mA)  
Figure 23. Output Voltage Swing vs. Output Current, G = 1  
Figure 26. Voltage Noise Spectral Density vs. Frequency, G = 1 to 1000  
Rev. 0 | Page 12 of 28  
AD8295  
2µV/DIV  
1s/DIV  
5pA/DIV  
1s/DIV  
Figure 27. 0.1 Hz to 10 Hz RTI Voltage Noise, G = 1  
Figure 30. 0.1 Hz to 10 Hz Current Noise  
30  
25  
20  
15  
10  
5
GAIN = 10, 100, 1000  
GAIN = 1  
0
1k  
0.1µV/DIV  
1s/DIV  
10k  
100k  
FREQUENCY (Hz)  
1M  
Figure 28. 0.1 Hz to 10 Hz RTI Voltage Noise, G = 1000  
Figure 31. Large Signal Frequency Response  
1k  
100  
10  
5V/DIV  
7.4µs TO 0.01%  
8.3µs TO 0.001%  
0.002%/DIV  
20µs/DIV  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 32. Large Signal Pulse Response and Settling Time, G = 1  
Figure 29. Current Noise Spectral Density vs. Frequency  
Rev. 0 | Page 13 of 28  
AD8295  
5V/DIV  
4.8µs TO 0.01%  
6.6µs TO 0.001%  
0.002%/DIV  
20µs/DIV  
20mV/DIV  
4µs/DIV  
Figure 33. Large Signal Pulse Response and Settling Time, G = 10  
Figure 36. Small Signal Pulse Response, G = 1, RL = 2 kΩ, CL = 100 pF  
5V/DIV  
9.2µs TO 0.01%  
16.2µs TO 0.001%  
0.002%/DIV  
20mV/DIV  
4µs/DIV  
20µs/DIV  
Figure 34. Large Signal Pulse Response and Settling Time, G = 100  
Figure 37. Small Signal Pulse Response, G = 10, RL = 2 kΩ, CL = 100 pF  
5V/DIV  
83µs TO 0.01%  
112µs TO 0.001%  
0.002%/DIV  
20mV/DIV  
10µs/DIV  
200µs/DIV  
Figure 38. Small Signal Pulse Response, G = 100, RL = 2 kΩ, CL = 100 pF  
Figure 35. Large Signal Pulse Response and Settling Time, G = 1000  
Rev. 0 | Page 14 of 28  
AD8295  
1k  
100  
10  
SETTLED TO 0.001%  
SETTLED TO 0.01%  
20mV/DIV  
100µs/DIV  
1
1
10  
100  
1k  
GAIN  
Figure 39. Small Signal Pulse Response, G = 1000, RL = 2 kΩ, CL = 100 pF  
Figure 41. Settling Time vs. Gain for a 10 V Step  
15  
10  
SETTLED TO 0.001%  
SETTLED TO 0.01%  
5
0
0
5
10  
15  
20  
OUTPUT VOLTAGE STEP SIZE (V)  
Figure 40. Settling Time vs. Step Size, G = 1  
Rev. 0 | Page 15 of 28  
AD8295  
OP AMPS  
S = 15 , TA = 25°C, RL = 10 kꢁ, Op Amp A1 and Op Amp A2, unless otherwise noted.  
80  
70  
60  
50  
40  
30  
20  
10  
0
8
6
GAIN = 1000  
GAIN = 100  
GAIN = 10  
GAIN = 1  
4
2
0
–2  
–4  
–6  
–8  
–10  
–20  
0.1  
1
10  
100  
1k  
10k 100k  
1M  
10M 100M  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (Hz)  
TIME (Sec)  
Figure 42. Closed-Loop Gain vs. Frequency, G = 1 to 1000  
Figure 45. 0.1 Hz to 10 Hz Noise  
140  
14  
12  
10  
8
120  
100  
80  
–BIAS CURRENT  
+PSRR  
6
+BIAS CURRENT  
4
–PSRR  
2
60  
0
–2  
–4  
–6  
40  
OFFSET CURRENT  
20  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 43. PSRR vs. Frequency  
Figure 46. Input Bias Current and Input Offset Current vs. Temperature  
1k  
100  
10  
40  
30  
20  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
1
10  
100  
1k  
10k  
100k  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 44. Voltage Noise Density vs. Frequency  
Figure 47. Gain Drift Using On-Chip Resistor Divider, G = 1  
Rev. 0 | Page 16 of 28  
 
AD8295  
40  
30  
20  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE (°C)  
Figure 48. Gain Drift Using On-Chip Resistor Divider, G = 2  
Rev. 0 | Page 17 of 28  
AD8295  
SYSTEM  
S = 15 , REF = 0 , TA = 25°C, unless otherwise noted.  
80  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
GAIN = 1000  
60  
+125°C  
GAIN = 100  
40  
+85°C  
+25°C  
GAIN = 10  
20  
–40°C  
GAIN = 1  
0
–20  
–40  
10  
100  
1k  
10k  
100k  
1M  
10M  
2
4
6
8
10  
12  
14  
16  
SUPPLY VOLTAGE (±V)  
FREQUENCY (Hz)  
Figure 49. Differential Output Configuration, Gain vs. Frequency  
Figure 51. Supply Current vs. Supply Voltage  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 50. Differential Output Configuration,  
Common-Mode Output vs. Frequency  
Rev. 0 | Page 18 of 28  
 
 
 
AD8295  
THEORY OF OPERATION  
As shown in Figure 52, the AD8295 contains a precision  
instrumentation amplifier, two uncommitted op amps, and a  
precision resistor array. These components allow many common  
applications to be wired using simple pin-strapping, directly at  
the IC. This not only saves printed circuit board (PCB) space  
but also improves circuit performance because both temperature  
drift and resistor tolerance errors are reduced.  
Resistor values can be obtained by referring to Table 9 or by  
using the following gain equation:  
49.4 kΩ  
RG =  
G 1  
Table 9. Gains Achieved Using 1% Resistors  
1% Standard Table Value of RG  
Calculated Gain  
+V  
OUT  
A2 +IN  
A2 –IN  
S
49.9 kΩ  
12.4 kΩ  
5.49 kΩ  
2.61 kΩ  
1.00 kΩ  
499 Ω  
249 Ω  
100 Ω  
49.9 Ω  
1.990  
4.984  
9.998  
19.93  
50.40  
100  
199.4  
495  
991  
16  
15  
14  
13  
AD8295  
1
2
3
4
12  
11  
10  
9
–IN  
A2 OUT  
A1 +IN  
A1 R1  
A2  
R
G
IA  
R
G
R1  
20k  
A1  
R2  
20kΩ  
+IN  
A1 –IN  
The AD8295 defaults to G = 1 when no gain resistor is used.  
Gain accuracy is a combination of both the RG accuracy and  
the accuracy listed in the specifications in Table 2, including  
accuracy over temperature. Gain error and gain drift are kept  
to a minimum when the gain resistor is not used.  
5
6
7
8
–V  
REF  
A1 OUT  
A1 R2  
S
Figure 52. Functional Block Diagram  
UNCOMMITTED OP AMPS  
The AD8295 has two uncommitted op amps that can be used  
independently. These op amps allow simple pin-strapping for  
many common applications circuits.  
Common-Mode Input Voltage Range  
The AD8295 in-amp architecture applies gain internally and  
then removes the common-mode voltage. Therefore, internal  
nodes in the AD8295 experience a combination of both the  
gained signal and the common-mode signal. This combined  
signal can be limited by the voltage supplies even when the  
individual input and output signals are not. Figure 7 through  
Figure 10 show the allowable common-mode input voltage  
ranges for various output voltages and supply voltages.  
Op Amp A1 has its inverting input connected to a precision 2:1  
voltage divider resistor network. Because this network is internal  
to the IC, these resistors are closely matched and also track each  
other, with temperature variations. Op Amp A1 and the associated  
resistor network can be used to create either a noninverting gain  
stage of 2 or an inverting gain stage of −1 with excellent gain  
accuracy and gain drift.  
If Figure 7 through Figure 10 indicate that internal voltage  
limiting may be an issue, the common-mode range can be  
improved by lowering the gain in the instrumentation amplifier  
by one half and applying a second G = 2 stage. Figure 53 shows  
how to do this amplification with the internal circuitry of the  
AD8295, requiring no additional external components.  
A1 TOTAL GAIN = IN-AMP × 2  
Op Amp A2 is a more conventional op amp, with standard  
inverting and noninverting inputs and an output.  
INSTRUMENTATION AMPLIFIER  
Gain Selection  
The transfer function of the AD8295 is  
V
OUT = G × (VIN+ VIN−) + VREF  
+IN  
R
+
IN-AMP  
+
G
where placing a resistor across the RG terminals sets the gain of  
the AD8295 according to the following equation:  
A1 OUT  
A1  
–IN  
REF  
R2  
20k  
49.4 kΩ  
G =1 +  
RG  
R1  
20kΩ  
Figure 53. Applying Gain in a Later Stage Allows Wider Input  
Common-Mode Range  
Rev. 0 | Page 19 of 28  
 
 
 
 
AD8295  
Reference Terminal  
Common-Mode Rejection over Frequency  
The output voltage of the AD8295 instrumentation amplifier  
is developed with respect to the potential on the reference  
terminal. This is useful when the output signal needs to be  
offset to a precise dc level.  
The AD8295 has a higher CMRR over frequency than typical  
in-amps, which gives it greater immunity to disturbances such  
as line noise and its associated harmonics. The AD8295 pinout  
and hidden paddle package were designed so that the board  
designer can take full advantage of this performance with a  
well-implemented layout.  
The reference pin input can be driven slightly beyond the rails.  
The REF pin is protected with ESD diodes, and the REF voltage  
should not exceed either +ꢀS or −ꢀS by more than 0.3 .  
Poor layout can cause some of the common-mode signal to be  
converted to a differential signal before it reaches the in-amp.  
Such conversions occur when one input path has a frequency  
response that is different from the other. To keep CMRR across  
frequency high, the input source impedance and capacitance of  
each path should be closely matched. Additional source resistance  
in the input path (for example, for input protection) should be  
placed close to the in-amp inputs to minimize their interaction  
with parasitic capacitance from the PCB traces.  
For best performance, the source impedance to the REF terminal  
should be kept below 1 ꢁ. Additional impedance at the REF  
terminal can significantly degrade the CMRR of the amplifier.  
When the reference source has significant output impedance  
(for example, a resistive voltage divider), buffer the signal before  
driving the REF pin. Internal Op Amp A1 or A2 can be used for  
this purpose, as shown in Figure 54.  
INCORRECT  
CORRECT  
Parasitic capacitance at the gain setting pins can also affect  
CMRR over frequency. The traces to the RG resistor should be  
kept as short as possible. If the board design has a component at  
the gain setting pins (for example, a switch or jumper), the part  
should be chosen so that the parasitic capacitance is as small as  
possible.  
AD8295  
AD8295  
+V  
S
REF  
REF  
+V  
S
R
A
B
R
R
A
+
OP AMP  
BUFFER  
R
Unused Op Amps  
C
B
When not in use, the internal op amps should be connected  
in a unity-gain configuration, with the noninverting input  
connected to a bias point in the input range of the op amp.  
These connections ensure that the AD8295 op amp uses  
minimum power and does not disturb the internal power  
supplies of the AD8295. These connections are shown as  
dotted lines in several of the applications figures.  
Figure 54. Driving the Reference Pin  
Noise at the reference feeds directly to the output. Therefore, in  
Figure 54, Capacitor C is added to filter out any high frequency  
noise on the positive power supply line. For very clean supplies,  
the capacitor may not be needed. The filter frequency is a trade-  
off between noise rejection and start-up time, and is given by  
the following equation:  
Reference  
The output voltage of the instrumentation amplifier section of  
the AD8295 is developed with respect to the potential on the  
reference terminal (REF); care should be taken to tie the REF  
pin to the appropriate local ground.  
1
fLOWPASS  
=
RA RB  
RA + RB  
2πC  
LAYOUT  
The AD8295 is a high precision device. To ensure optimum  
performance at the PCB level, care must be taken in the board  
layout. The AD8295 pins are arranged in a logical manner to  
aid in this task. Unlike most LFCSP packages, the AD8295  
package was designed without the thermal pad to allow routes  
and vias directly beneath the chip.  
Careful board layout maximizes system performance. Traces  
from the gain setting resistor to the RG pins should be kept as  
short as possible to minimize parasitic inductance. To ensure  
the most accurate output, the trace from the REF pin should  
either be connected to the local ground of the AD8295 or to a  
voltage that is referenced to the local ground of the AD8295.  
Rev. 0 | Page 20 of 28  
 
 
AD8295  
INCORRECT  
+V  
CORRECT  
+V  
Power Supplies  
S
S
A stable dc voltage should be used to power the instrumentation  
amplifier. Noise on the supply pins can adversely affect perfor-  
mance. See the PSRR performance curves in Figure 14 and  
Figure 15 for more information.  
AD8295  
AD8295  
IN-AMP  
IN-AMP  
REF  
REF  
REF  
REF  
A 0.1 μF capacitor should be placed as close as possible to each  
supply pin. An additional capacitor, a 10 μF tantalum for the  
lower frequencies, can be used farther away from the IC. In  
most cases, the 10 μF bypass capacitor can be shared by other  
integrated circuits on the same PCB.  
–V  
–V  
S
S
TRANSFORMER  
TRANSFORMER  
+V  
S
+V  
S
+V  
S
0.1µF  
10µF  
AD8295  
AD8295  
IN-AMP  
IN-AMP  
+IN  
–IN  
REF  
V
OUT  
AD8295  
IN-AMP  
R
G
10M  
LOAD  
–V  
–V  
S
S
REF  
THERMOCOUPLE  
THERMOCOUPLE  
+V  
+V  
S
S
0.1µF  
10µF  
C
C
C
–V  
S
Figure 55. Supply Decoupling, REF, and Output Referred to Local Ground  
R
R
1
fHIGH-PASS  
=
AD8295  
AD8295  
2πRC  
IN-AMP  
IN-AMP  
C
INPUT PROTECTION  
REF  
All terminals of the AD8295 are protected against ESD  
by diodes at the inputs. If voltages beyond the supplies are  
anticipated, resistors should be placed in series with the inputs  
to limit the current. Resistors should be chosen so that current  
does not exceed 6 mA into the internal ESD diodes in the over-  
load condition. These resistors can be the same as those used  
for RFI protection. (See the RF Interference section for more  
information.)  
–V  
–V  
S
S
CAPACITIVELY COUPLED  
CAPACITIVELY COUPLED  
Figure 56. Creating an Input Bias Current Return Path  
RF INTERFERENCE  
RF interference is often a problem when amplifiers are used in  
applications where there are strong RF signals. The precision  
circuits in the AD8295 can rectify the RF signals so that they  
appear as a dc offset voltage error. To avoid this rectification,  
place a low-pass filter before the input. Figure 57 shows such a  
network in front of the instrumentation amplifier. The filter  
limits both the differential and common-mode bandwidth, as  
shown in the following equations:  
For applications where the AD8295 encounters extreme  
overload voltages, as in cardiac defibrillators, external series  
resistors and low leakage diode clamps, such as BA199Ls,  
FJH1100s, or SP720s can be used.  
INPUT BIAS CURRENT RETURN PATH  
The input bias currents of the AD8295 must have a return path  
to common. When the source, such as a thermocouple, cannot  
provide a return current path, one should be created, as shown  
in Figure 56. Otherwise, the input currents charge up the input  
capacitance until the in-amp is turned off or saturated.  
1
f
f
FILTER (Diff ) =  
FILTER (CM) =  
R(2CD + CC )  
1
RCC  
where CD ≥ 10CC.  
Rev. 0 | Page 21 of 28  
 
 
 
AD8295  
+V  
+V  
S
S
0.1µF  
+V  
0.1µF  
10µF  
A2  
–IN  
A2  
+IN  
S
OUT  
16  
15  
14  
13  
C
1nF  
A2  
C
D
C
–IN  
AD8295  
OUT  
1
2
3
4
12  
–INPUT  
R
+IN  
A2  
4.02kΩ  
A1  
+IN  
V
OUT  
R
R
G
AD8295  
G
C
10nF  
1nF  
V
REF  
INPUT  
11  
10  
9
IN-AMP  
R
REF  
IA  
–IN  
A1  
R1  
4.02kΩ  
R
G
C
+OUT  
R1  
A1  
7
20kΩ  
0.1µF  
10µF  
+IN  
A1  
–IN  
R2  
20kΩ  
+INPUT  
NOTES  
–V  
S
5
6
8
–V  
REF  
A1  
OUT  
A1  
R2  
S
Figure 57. RFI Suppression  
–OUT  
0.1µF  
Lower cutoff frequencies improve RFI robustness. Accuracy of  
the CC capacitors is important, because any mismatch between  
the R × CC at the positive input and the R × CC at the negative  
input degrades the CMRR of the AD8295. Keeping CD at least  
10 times larger than CC is recommended.  
–V  
S
1. CONNECT AS SHOWN IF A2 IS NOT BEING USED.  
Figure 59. Minimum Component Connections for Differential Output  
An alternative differential output configuration, which also  
requires no external components, is shown in Figure 60. Unlike  
the previous circuit, this configuration uses an inverting op amp  
configuration to double the gain from the instrumentation  
amplifier. Because this configuration requires less gain from  
the instrumentation amplifier, it can have a wider frequency  
response and a wider input common-mode range vs. output  
voltage. However, because it does not take advantage of feed-  
back at the reference pin of the instrumentation amplifier, dc  
performance includes the errors from the op amp and the  
resistor network. When using the internal precision components  
of the AD8295, these errors have a minimal effect on overall  
accuracy. This configuration is not specified in this data sheet.  
+OUT  
DIFFERENTIAL OUTPUT  
The AD8295 can be pin-strapped to provide a differential  
output; the simplified schematic is shown in Figure 58 and the  
full pin connection is shown in Figure 59. This configuration  
uses the instrumentation amplifier to maintain the differential  
voltage, while the op amp maintains the common-mode voltage.  
Because the in-amp precisely controls the output relative to its  
reference pin, this circuit has the same excellent dc performance  
as the single-ended output configuration. The transfer function  
for the differential and common-mode outputs are as follows:  
V
V
DIFF_OUT = VOUT+ VOUT− = G × (VIN+ VIN−  
CM_OUT = (VOUT+ + VOUT−)/2 = VREF  
)
R1  
R2  
+IN  
+
20k20kΩ  
where:  
R
IN-AMP  
G
–IN  
49.4 kΩ  
REF  
G =1 +  
–OUT  
A1  
RG  
+
This configuration is fully specified (see Table 2, Figure 49, and  
Figure 50). DC performance is the same as for the single-ended  
configuration; ac performance is slightly different.  
V
INPUT  
REF  
Figure 60. Alternative Differential Output Configuration  
+IN  
+
IN-AMP  
+OUT  
–IN  
20k  
20kΩ  
REF  
V
INPUT  
REF  
+
A1  
–OUT  
Figure 58. Differential Output Using an Op Amp  
Rev. 0 | Page 22 of 28  
 
 
 
 
 
AD8295  
APPLICATIONS INFORMATION  
CREATING A REFERENCE VOLTAGE AT MIDSCALE  
HIGH ACCURACY G = −1 CONFIGURATION WITH  
LOW-PASS FILTER  
A reference voltage other than ground is often useful, for  
example, when driving a single-supply ADC. Creating a  
reference voltage derived from a voltage divider is straight-  
forward with the AD8295 (see Figure 61). In this configuration,  
Op Amp A2 is used to provide a buffered ꢀS/2 reference for the  
in-amp section. This configuration is very similar to the one  
described in the Reference Terminal section.  
The circuit in Figure 62 uses Op Amp A1 and the resistor string  
to provide a precise G = −1 configuration. Because no external  
resistors are used to set the gain, gain accuracy and gain drift  
depend only on the internally matched resistors, yielding excel-  
lent performance.  
Adding a capacitor across Resistor R2 is a simple way to provide  
a single-pole low-pass filter that rolls off at 20 dB per decade.  
This capacitor is shown as C1 in Figure 62.  
Note that the internal resistors of Op Amp A1 are not used  
to provide ꢀS/2. Instead, external 1% (or better) resistors are  
used. Because the negative input of Op Amp A1 is permanently  
connected to the junction of internal resistors R1 and R2,  
Op Amp A1 operates as a low voltage clamp, preventing the  
resistor string from providing a convenient ꢀS/2 voltage.  
A2  
A2  
+V  
S
OUT  
+IN  
–IN  
V
REF  
16  
15  
14  
13  
A2  
BUFFERED  
–IN  
AD8295  
OUT  
1
2
3
4
12  
–INPUT  
Noise at the reference feeds directly to the output, so if the  
reference voltage is derived from a noisy source, filtering is  
required. In Figure 61, Capacitor C1 has been added to filter  
out high frequency noise on the positive power supply line.  
The 10 uF capacitor and the 100 kΩ resistors shown in Figure 61  
roll off noise starting at 0.3 Hz. The filter frequency is a trade-  
off between noise rejection and start-up time.  
A2  
R
R
11  
10  
9
V
REF  
INPUT  
G
IA  
A1  
R1  
G
R1  
A1  
7
20kΩ  
A1  
–IN  
+IN  
R2  
+INPUT  
NOTES  
20kΩ  
+V  
S
5
6
INPUT  
8
A1  
OUT  
A1  
R2  
100kΩ  
100kΩ  
–V  
V
REF  
S
C1  
C1  
10µF  
LP FILTERED  
OUTPUT  
OUTPUT  
+V  
S
1. fLOW PASS = 1/(2π 20kC1).  
0.1µF  
A2  
+IN  
A2  
–IN  
Figure 62. Single-Pole Output Filter Using a Single External Capacitor  
+V  
1
S
OUT  
16  
15  
14  
13  
A2  
If the connections to Pin 10 and Pin 11 in Figure 62 are changed  
so that Pin 10 connects to ground and Pin 11 connects to the  
in-amp output, the result is a G = 2 circuit, also with excellent  
gain accuracy and drift. In the G = 2 configuration, Capacitor C1  
lowers the gain from 2 to 1 at higher frequencies.  
–IN  
OUT  
AD8295  
12  
–INPUT  
A2  
A1  
+IN  
R
G
G
2
3
4
11  
10  
9
V /2  
S
BUFFERED  
IA  
R
A1  
R1  
R1  
20kΩ  
A1  
7
A1  
–IN  
+IN  
R2  
20kΩ  
+INPUT  
5
6
8
REF  
A1  
A1  
OUT R2  
Figure 61. Single-Supply Connection with Buffered Reference  
Rev. 0 | Page 23 of 28  
 
 
 
AD8295  
2-POLE SALLEN-KEY FILTER  
AC-COUPLED INSTRUMENTATION AMPLIFIER  
Figure 63 shows the in-amp output section of the AD8295 being  
low-pass filtered using a 2-pole Sallen-Key filter. The filter section  
consists of Op Amp A2, External Resistors R1 and R2, as well as  
Capacitors C1 and C2. Resistor R3 compensates for input offset  
current errors and is equal to the parallel combination of R1 and  
R2. The ratio of capacitance between C1 and C2 sets the filter  
quality factor, Q. For most applications, a filter Q of 0.5 to 0.7  
provides a good trade-off between performance and stability.  
High Q, non-polarized capacitors, such as NPO ceramic, should  
be used. The exact pole frequencies are dependent on the  
tolerance of the resistors and capacitors used.  
The circuit in Figure 64 provides a one-pole high-pass filter,  
using only one external capacitor.  
At low frequencies, Capacitor C1 has a high impedance, thus  
operating Op Amp A1 at high gain (G = XC/20 kΩ). Because of  
its high gain, Op Amp A1 is able to drive the in-amp reference  
pin until it forces the output of the in-amp to 0 . Therefore, no  
signal appears at the circuit output.  
At higher frequencies, the gain of Op Amp A1 drops and the  
op amp is no longer able to maintain the in-amp output at 0 .  
Therefore, at frequencies above the RC filter bandwidth, the  
in-amp operates in a normal manner, and the signal appears at  
the output.  
The design equations for a Sallen-Key filter can be greatly  
simplified if the resistors and capacitors are made equal.  
When C1 = C2 and R1 = R2, Q is 0.5 and the design equation  
simplifies to  
The 3 dB corner frequency is set by Internal Resistor R1 and  
External Capacitor C1 as follows:  
f = 1/((2π × 20 kΩ) × C1)  
f = 1/(2πRC)  
The precision of R1 (better than 0.2%) means that the filter  
bandwidth depends mainly on the tolerance of Capacitor C1.  
where R is in ohms and C is in farads.  
For example, with R1 = R2 = 10 kΩ, and C1 = C2 = 2.2 nF,  
f = 7.2 kHz  
At low frequencies, Op Amp A1 drives the appropriate voltage  
on the reference pin to null out the original signal. oltage  
supplies should be chosen so that Op Amp A1 has enough  
output headroom to produce the nulling voltage.  
OUTPUT  
When C1 is not equal to C2 and R1 is not equal to R2, the  
values of Q and the cutoff frequency are calculated as follows:  
R1R2C1C2  
Q =  
+V  
S
OUT  
A2 +IN  
A2 –IN  
12  
C2(R1+ R2)  
16  
15  
14  
13  
–IN  
AD8295  
1
1
2
3
4
–INPUT  
f =  
A2 OUT  
A1 +IN  
A2  
2π R1R2C1C2  
R
G
G
R2  
11  
10  
C1  
+V  
S
C2  
IA  
R1  
OUT  
R3  
0.1µF  
+V  
R
A1 R1  
A2  
–IN  
A2  
+IN  
S
R1  
16  
15  
14  
13  
LP FILTERED  
OUTPUT  
A1  
7
20kΩ  
A2  
OUT  
–IN  
AD8295  
A1 –IN  
+IN  
1
2
3
4
12  
R2  
20kΩ  
–INPUT  
9
+INPUT  
A2  
5
6
REF A1 OUT  
8
A1  
+IN  
R
G
G
–V  
S
11  
10  
9
C1  
A1 R2  
IA  
Figure 64. AC-Coupled Connection  
R
A1  
R1  
R1  
20k  
A1  
7
A1  
–IN  
+IN  
R2  
20kΩ  
+INPUT  
5
6
8
–V  
REF  
A1  
OUT  
A1  
R2  
S
0.1µF  
–V  
S
Figure 63. 2-Pole Sallen-Key Filter  
Rev. 0 | Page 24 of 28  
 
 
 
AD8295  
changes. If the application requires a lower frequency anti-  
DRIVING DIFFERENTIAL ADCs  
aliasing filter than the one shown, increasing the capacitor  
values produces much better distortion results than increasing  
the resistor values.  
Figure 65 shows how to configure the AD8295 to drive a differ-  
ential ADC. The circuit shown uses very little board space and  
consumes little power. With the AD7690, this configuration  
gives excellent dc performance and a THD of 83 dB (10 kHz  
input). For applications that need better distortion performance,  
a dedicated ADC driver, such as the ADA4941-1 or ADA4922-1  
is recommended.  
The 500 Ω resistors also give the ADC protection against over-  
voltage. Because the AD8295 runs on wider supply voltages  
than a typical ADC, there is a possibility of overdriving some  
converters. This is not an issue with a PulSAR® ADC, such as  
the AD7690, because its input can handle a 130 mA overdrive,  
which is much higher than the short-circuit limit of the AD8295.  
However, other converters have less robust inputs and may  
benefit from the resistive protection.  
The 500 Ω resistors and the 2.2 nF capacitors form a low-pass,  
antialiasing filter at 144 kHz. The four elements of the filter also  
prevent the switching transients produced by a typical SAR  
converter from destabilizing the AD8295. The capacitors provide  
charge to the switched capacitor front end of the ADC, and the  
resistors shield the AD8295 from driving any sharp current  
+7V  
+7V  
0.1µF  
0.1µF  
+V  
A2  
A2  
+IN  
S
–IN  
OUT  
ADR435  
16  
15  
14  
13  
A2  
–IN  
AD8295  
OUT  
1
2
3
4
12  
–INPUT  
+5V  
A2  
0.1µF  
10kΩ  
A1  
+IN  
+5V  
R
G
G
11  
10  
9
10kΩ  
500Ω  
+2.5V  
0.1µF  
IA  
A1  
R1  
R
IN+  
VDD  
+OUT  
R1  
A1  
7
20kΩ  
2.2nF  
+IN  
A1  
–IN  
R2  
20kΩ  
+INPUT  
AD7690  
+5V  
REF  
5
6
8
2.2nF  
+
–V  
REF  
A1  
OUT  
A1  
R2  
S
10µF  
500Ω  
–OUT  
0.1µF  
GND  
IN–  
–7V  
Figure 65. Driving a Differential ADC  
Rev. 0 | Page 25 of 28  
 
 
AD8295  
OUTLINE DIMENSIONS  
0.60 MAX  
4.00  
BSC SQ  
0.60 MAX  
13  
12  
16  
1
4
0.65  
BSC  
PIN 1  
INDICATOR  
3.75  
BCS SQ  
1.95 REF  
SQ  
9
8
5
0.75  
0.60  
0.50  
TOP VIEW  
BOTTOM VIEW  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
0.20 REF  
0.35  
0.30  
0.25  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-263-VBBC  
Figure 66. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad, with Hidden Paddle  
CP-16-19  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
CP-16-19  
CP-16-19  
CP-16-19  
CP-16-19  
AD8295ACPZ-R71  
AD8295ACPZ-RL1  
AD8295ACPZ-WP1  
AD8295BCPZ-R71  
AD8295BCPZ-RL1  
AD8295BCPZ-WP1  
16-Lead LFCSP_VQ, 7-Inch Tape and Reel  
16-Lead LFCSP_VQ, 13-Inch Tape and Reel  
16-Lead LFCSP_VQ, Waffle Pack  
16-Lead LFCSP_VQ, 7-Inch Tape and Reel  
16-Lead LFCSP_VQ, 13-Inch Tape and Reel  
16-Lead LFCSP_VQ, Waffle Pack  
CP-16-19  
CP-16-19  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 26 of 28  
 
 
 
AD8295  
NOTES  
Rev. 0 | Page 27 of 28  
AD8295  
NOTES  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07343-0-10/08(0)  
Rev. 0 | Page 28 of 28  
 
 
 
 

相关型号:

AD8295ACPZ-WP

Precision Instrumentation Amplifier with Signal Processing Amplifiers
ADI

AD8295BCPZ-R7

Precision Instrumentation Amplifier with Signal Processing Amplifiers
ADI

AD8295BCPZ-RL

Precision Instrumentation Amplifier with Signal Processing Amplifiers
ADI

AD8295BCPZ-WP

Precision Instrumentation Amplifier with Signal Processing Amplifiers
ADI

AD829AQ

High Speed, Low Noise Video Op Amp
ADI

AD829AR

High-Speed, Low-Noise Video Op Amp
ADI

AD829AR-EBZ

High Speed, Low Noise Video Op Amp
ADI

AD829AR-REEL

High-Speed, Low-Noise Video Op Amp
ADI

AD829AR-REEL7

High-Speed, Low-Noise Video Op Amp
ADI

AD829ARZ

High Speed, Low Noise Video Op Amp
ADI

AD829ARZ-REEL

High Speed, Low Noise Video Op Amp
ADI

AD829ARZ-REEL7

High Speed, Low Noise Video Op Amp
ADI