AD829AR [ADI]

High-Speed, Low-Noise Video Op Amp; 高速,低噪声视频运算放大器
AD829AR
型号: AD829AR
厂家: ADI    ADI
描述:

High-Speed, Low-Noise Video Op Amp
高速,低噪声视频运算放大器

运算放大器
文件: 总12页 (文件大小:322K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High-Speed, Low-Noise  
Video Op Amp  
a
AD829  
CONNECTION DIAGRAMS  
FEATURES  
High Speed  
120 MHz Bandwidth, Gain = –1  
230 V/s Slew Rate  
8-Lead Plastic Mini-DIP (N),  
Cerdip (Q) and SOIC (R) Packages  
90 ns Settling Time to 0.1%  
Ideal for Video Applications  
0.02% Differential Gain  
0.04؇ Differential Phase  
Low Noise  
1
2
3
4
8
7
6
5
OFFSET NULL  
OFFSET NULL  
AD829  
+V  
S
–IN  
+IN  
OUTPUT  
TOP VIEW  
(Not to Scale)  
C
–V  
S
COMP  
1.7 nV/Hz Input Voltage Noise  
1.5 pA/Hz Input Current Noise  
Excellent DC Precision  
20-Lead LCC Pinout  
1 mV max Input Offset Voltage (Over Temp)  
0.3 V/؇C Input Offset Drift  
Flexible Operation  
Specified for ؎5 V to ؎15 V Operation  
؎3 V Output Swing into a 150 Load  
External Compensation for Gains 1 to 20  
5 mA Supply Current  
3
2
1 20 19  
18 NC  
+V  
4
5
6
7
8
NC  
IN  
NC  
+IN  
NC  
17  
16 NC  
AD829  
TOP VIEW  
Available in Tape and Reel in Accordance with  
EIA-481A Standard  
(Not to Scale)  
OUTPUT  
15  
14 NC  
PRODUCT DESCRIPTION  
9
10 11 12 13  
The AD829 is a low noise (1.7 nV/Hz), high speed op amp  
with custom compensation that provides the user with gains  
from 1 to 20 while maintaining a bandwidth greater than  
50 MHz. The AD829’s 0.04° differential phase and 0.02%  
differential gain performance at 3.58 MHz and 4.43 MHz,  
driving reverse-terminated 50 or 75 cables, makes it ideally  
suited for professional video applications. The AD829 achieves  
its 230 V/µs uncompensated slew rate and 750 MHz gain band-  
width product while requiring only 5 mA of current from the  
power supplies.  
NC = NO CONNECT  
The AD829 provides many of the same advantages that a trans-  
impedance amplifier offers, while operating as a traditional  
voltage feedback amplifier. A bandwidth greater than 50 MHz  
can be maintained for a range of gains by changing the external  
compensation capacitor. The AD829 and the transimpedance  
amplifier are both unity gain stable and provide similar voltage  
noise performance (1.7 nV/Hz). However, the current noise of  
the AD829 (1.5 pA/Hz) is less than 10% of the noise of trans-  
impedance amps. Furthermore, the inputs of the AD829 are  
symmetrical.  
The AD829’s external compensation pin gives it exceptional  
versatility. For example, compensation can be selected to opti-  
mize the bandwidth for a given load and power supply voltage.  
As a gain-of-two line driver, the –3 dB bandwidth can be in-  
creased to 95 MHz at the expense of 1 dB of peaking. In addi-  
tion, the AD829’s output can also be clamped at its external  
compensation pin.  
PRODUCT HIGHLIGHTS  
1. Input voltage noise of 2 nV/Hz, current noise of 1.5 pA/  
Hz and 50 MHz bandwidth, for gains of 1 to 20, make the  
AD829 an ideal preamp.  
2. Differential phase error of 0.04° and a 0.02% differential  
gain error, at the 3.58 MHz NTSC and 4.43 MHz PAL and  
SECAM color subcarrier frequencies, make it an outstanding  
video performer for driving reverse-terminated 50 and  
75 cables to 1 V (at their terminated end).  
3. The AD829 can drive heavy capacitive loads.  
4. Performance is fully specified for operation from 5 V to  
15 V supplies.  
5. Available in plastic, cerdip, and small outline packages.  
Chips and MIL-STD-883B parts are also available.  
The AD829 has excellent dc performance. It offers a minimum  
open-loop gain of 30 V/mV into loads as low as 500 , low  
input voltage noise of 1.7 nV/Hz, and a low input offset volt-  
age of 1 mV maximum. Common-mode rejection and power  
supply rejection ratios are both 120 dB.  
The AD829 is also useful in multichannel, high speed data  
conversion where its fast (90 ns to 0.1%) settling time is of  
importance. In such applications, the AD829 serves as an input  
buffer for 8-to-10-bit A/D converters and as an output I/V con-  
verter for high speed D/A converters.  
REV. E  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
(@ TA = +25؇C and VS = ؎15 V dc, unless otherwise noted)  
AD829–SPECIFICATIONS  
AD829J/AR  
AD829AQ/S  
Model  
Conditions  
VS  
5 V, 15 V  
Min  
Typ  
Max  
Min  
Typ  
Max  
Units  
INPUT OFFSET VOLTAGE  
0.2  
1
1
0.1  
0.5  
0.5  
mV  
mV  
TMIN to TMAX  
Offset Voltage Drift  
5 V, 15 V  
5 V, 15 V  
0.3  
3.3  
0.3  
3.3  
µV/°C  
INPUT BIAS CURRENT  
7
7
9.5  
µA  
µA  
TMIN to TMAX  
8.2/9.5  
INPUT OFFSET CURRENT  
5 V, 15 V  
50  
500  
500  
50  
500  
500  
nA  
nA  
T
MIN to TMAX  
Offset Current Drift  
OPEN-LOOP GAIN  
5 V, 15 V  
5 V  
0.5  
0.5  
nA/°C  
VO  
= 2.5 V  
R
T
LOAD = 500 Ω  
30  
20  
65  
30  
20  
65  
V/mV  
V/mV  
V/mV  
MIN to TMAX  
RLOAD = 150 Ω  
VOUT 10 V  
40  
40  
=
15 V  
R
LOAD = 1 kΩ  
50  
20  
100  
85  
50  
20  
100  
85  
V/mV  
V/mV  
V/mV  
TMIN to TMAX  
RLOAD = 500 Ω  
DYNAMIC PERFORMANCE  
Gain Bandwidth Product  
5 V  
15 V  
600  
750  
600  
750  
MHz  
MHz  
Full Power Bandwidth1, 2  
VO = 2 V p-p  
RLOAD = 500 Ω  
VO = 20 V p-p  
RLOAD = 1 kΩ  
RLOAD = 500 Ω  
RLOAD = 1 kΩ  
AV = –19  
5 V  
25  
25  
MHz  
15 V  
5 V  
15 V  
3.6  
150  
230  
3.6  
150  
230  
MHz  
V/µs  
V/µs  
Slew Rate2  
Settling Time to 0.1%  
–2.5 V to +2.5 V  
10 V Step  
CLOAD = 10 pF  
RLOAD = 1 kΩ  
5 V  
15 V  
15 V  
65  
90  
65  
90  
ns  
ns  
Phase Margin2  
60  
60  
Degrees  
%
DIFFERENTIAL GAIN ERROR3  
DIFFERENTIAL PHASE ERROR3  
COMMON-MODE REJECTION  
RLOAD = 100 Ω  
CCOMP = 30 pF  
15 V  
15 V  
0.02  
0.02  
RLOAD = 100 Ω  
CCOMP = 30 pF  
0.04  
0.04  
Degrees  
VCM  
VCM  
=
=
2.5 V  
12 V  
5 V  
15 V  
100  
100  
96  
120  
120  
100  
100  
96  
120  
120  
dB  
dB  
dB  
TMIN to TMAX  
POWER SUPPLY REJECTION  
VS = 4.5 V to 18 V  
TMIN to TMAX  
98  
94  
120  
98  
94  
120  
dB  
dB  
INPUT VOLTAGE NOISE  
INPUT CURRENT NOISE  
f = 1 kHz  
f = 1 kHz  
15 V  
15 V  
1.7  
1.5  
2
1.7  
1.5  
2
nV/Hz  
pA/Hz  
INPUT COMMON-MODE  
VOLTAGE RANGE  
5 V  
+4.3  
–3.8  
+14.3  
–13.8  
+4.3  
–3.8  
+14.3  
–13.8  
V
V
V
V
15 V  
OUTPUT VOLTAGE SWING  
RLOAD = 500 Ω  
RLOAD = 150 Ω  
RLOAD = 50 Ω  
RLOAD = 1 kΩ  
RLOAD = 500 Ω  
5 V  
5 V  
5 V  
15 V  
15 V  
5 V, 15 V  
3.0  
2.5  
3.6  
3.0  
1.4  
13.3  
12.2  
32  
3.0  
2.5  
3.6  
3.0  
1.4  
13.3  
12.2  
32  
V
V
V
V
V
12  
10  
12  
10  
Short Circuit Current  
mA  
INPUT CHARACTERISTICS  
Input Resistance (Differential)  
Input Capacitance (Differential)4  
Input Capacitance (Common Mode)  
13  
5
1.5  
13  
5
1.5  
kΩ  
pF  
pF  
CLOSED-LOOP OUTPUT  
RESISTANCE  
AV = +1, f = 1 kHz  
2
2
mΩ  
–2–  
REV. E  
AD829  
AD829J/AR  
Typ  
AD829AQ/S  
Model  
Conditions  
VS  
Min  
Max  
Min  
Typ  
Max  
Units  
POWER SUPPLY  
Operating Range  
Quiescent Current  
4.5  
18  
6.5  
8.0  
6.8  
8.3/8.5  
4.5  
18  
6.5  
8.2/8.7  
6.8  
V
5 V  
15 V  
5
5
mA  
mA  
mA  
mA  
T
MIN to TMAX  
5.3  
5.3  
TMIN to TMAX  
8.5/9.0  
TRANSISTOR COUNT  
NOTES  
Number of Transistors  
46  
46  
1Full Power Bandwidth = Slew Rate/2 π VPEAK  
.
2Tested at Gain = +20, CCOMP = 0 pF.  
33.58 MHz (NTSC) and 4.43 MHz (PAL & SECAM).  
4Differential input capacitance consists of 1.5 pF package capacitance plus 3.5 pF from the input differential pair.  
Specifications subject to change without notice.  
ABSOLUTE MAXIMUM RATINGS1  
METALIZATION PHOTO  
Contact factory for latest dimensions.  
Dimensions shown in inches and (mm).  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
Internal Power Dissipations2  
Plastic (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Watts  
Small Outline (R) . . . . . . . . . . . . . . . . . . . . . . . . . 0.9 Watts  
Cerdip (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Watts  
LCC (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.8 Watts  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VS  
Differential Input Voltage3 . . . . . . . . . . . . . . . . . . . . 6 Volts  
Output Short Circuit Duration . . . . . . . . . . . . . . . . Indefinite  
Storage Temperature Range (Q, E) . . . . . . . –65°C to +150°C  
Storage Temperature Range (N, R) . . . . . . . –65°C to +125°C  
Operating Temperature Range  
AD829J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to +70°C  
AD829A . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
AD829S . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C  
Lead Temperature Range (Soldering 60 sec) . . . . . . . .+300°C  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only and functional operation of  
the device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2Maximum internal power dissipation is specified so that TJ does not exceed  
+175°C at an ambient temperature of +25°C.  
ESD SUSCEPTIBILITY  
ESD (electrostatic discharge) sensitive device. Electrostatic  
charges as high as 4000 volts, which readily accumulate on the  
human body and on test equipment, can discharge without  
detection. Although the AD829 features proprietary ESD pro-  
tection circuitry, permanent damage may still occur on these  
devices if they are subjected to high energy electrostatic dis-  
charges. Therefore, proper ESD precautions are recommended  
to avoid any performance degradation or loss of functionality.  
Thermal characteristics:  
8-lead plastic package: θJA = 100°C/watt (derate at 8.7 mW/°C)  
8-lead cerdip package: θJA = 110°C/watt (derate at 8.7 mW/°C)  
20-lead LCC package: θJA = 150°C/watt  
8-lead small outline package: θJA = 155°C/watt (derate at 6 mW/°C).  
3If the differential voltage exceeds 6 volts, external series protection resistors should  
be added to limit the input current.  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option*  
AD829JN  
0°C to +70°C  
8-Lead Plastic Mini-DIP  
8-Lead Plastic SOIC  
8-Lead Plastic SOIC  
Tape and Reel 7"  
Tape and Reel 13"  
Tape and Reel 7"  
Tape and Reel 13"  
8-Lead Cerdip  
8-Lead Cerdip  
8-Lead Cerdip  
8-Lead Cerdip  
20-Lead LCC  
20-Lead LCC  
Die  
N-8  
SO-8  
SO-8  
AD829AR  
–40°C to +85°C  
0°C to +70°C  
AD829JR  
AD829AR-REEL7  
AD829AR-REEL  
AD829JR-REEL7  
AD829JR-REEL  
AD829AQ  
–40°C to +85°C  
–40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
–40°C to +85°C  
–55°C to +125°C  
–55°C to +125°C  
–55°C to +125°C  
–55°C to +125°C  
–55°C to +125°C  
0°C to +70°C  
Q-8  
Q-8  
Q-8  
Q-8  
E-20A  
E-20A  
AD829SQ  
AD829SQ/883B  
5962-9312901MPA  
AD829SE/883B  
5962-9312901M2A  
AD829JCHIPS  
AD829SCHIPS  
–55°C to +125°C  
Die  
*E = Leadless Chip Carrier (Ceramic); N = Plastic DIP; Q = Cerdip; SO = Small Outline IC (SOIC).  
REV. E  
–3–  
AD829–Typical Performance Characteristics  
20  
15  
10  
5
20  
15  
10  
5
30  
25  
20  
15  
؎15 VOLT  
SUPPLIES  
+V  
OUT  
+V  
OUT  
V  
OUT  
V  
OUT  
10  
5
؎5 VOLT  
SUPPLIES  
R
= 1k  
LOAD  
0
0
0
10  
0
5
10  
15  
20  
0
5
10  
15  
20  
1k  
100  
LOAD RESISTANCE ⍀  
10k  
SUPPLY VOLTAGE ؎Volts  
SUPPLY VOLTAGE ؎Volts  
Figure 1. Input Common-Mode  
Range vs. Supply Voltage  
Figure 2. Output Voltage Swing  
vs. Supply Voltage  
Figure 3. Output Voltage Swing  
vs. Resistive Load  
5  
6.0  
5.5  
5.0  
4.5  
4.0  
100  
10  
A
= +20  
V
C
= 0pF  
COMP  
4
1
0.1  
V
= ؎5V, ؎15V  
S
3
A
C
= +1  
V
= 68pF  
COMP  
0.01  
2  
60 40 20  
0.001  
1k  
10k  
100k  
1M  
10M  
100M  
0
20 40 60 80 100  
140  
120  
0
5
10  
15  
20  
TEMPERATURE ؇C  
FREQUENCY Hz  
SUPPLY VOLTAGE ؎Volts  
Figure 4. Quiescent Current vs.  
Supply Voltage  
Figure 5. Input Bias Current vs.  
Temperature  
Figure 6. Closed-Loop Output  
Impedance vs. Frequency  
7
6
40  
65  
60  
55  
V
A
C
= ±15V  
= +20  
S
NEGATIVE  
CURRENT LIMIT  
V
= 0pF  
COMP  
35  
30  
25  
V
= ؎15V  
S
POSITIVE  
CURRENT LIMIT  
5
4
V
= ؎5V  
S
V
= ؎5V  
S
50  
45  
20  
15  
3
60 40 20  
0
20 40 60 80 100  
140  
120  
60 40 20  
0
20 40 60 80 100  
140  
120  
60 40 20  
0
20 40 60 80 100  
140  
120  
TEMPERATURE ؇C  
AMBIENT TEMPERATURE ؇C  
TEMPERATURE ؇C  
Figure 7. Quiescent Current vs.  
Temperature  
Figure 8. Short Circuit Current  
Limit vs. Temperature  
Figure 9. –3 dB Bandwidth vs.  
Temperature  
–4–  
REV. E  
AD829  
120  
100  
80  
+100  
+80  
+60  
+40  
+20  
105  
100  
120  
100  
80  
+
PHASE  
SUPPLY  
V
= ؎15V  
GAIN  
؎15V  
Supplies  
S
95  
90  
85  
80  
75  
1kLoad  
SUPPLY  
V
S
= ؎5V  
GAIN  
؎5V  
Supplies  
60  
60  
500Load  
40  
20  
0
C
= 0pF  
COMP  
40  
20  
0
C
= 0pF  
COMP  
20  
10M 100M  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
100  
1k  
10k  
100k  
1M  
10  
100  
10k  
FREQUENCY Hz  
FREQUENCY Hz  
LOAD RESISTANCE ⍀  
Figure 11. Open-Loop Gain vs.  
Resistive Load  
Figure 12. Power Supply Rejection  
Ratio (PSRR) vs. Frequency  
Figure 10. Open-Loop Gain & Phase  
Margin vs. Frequency  
30  
25  
10  
8
120  
100  
80  
6
V
= ±15V  
= 1k⍀  
= +20  
S
4
R
A
L
V
20  
15  
10  
2
ERROR  
C
= 0pF  
1% 0.1%  
COMP  
A
= 19  
0
2  
4  
6  
8  
10  
V
1%  
V
= ±5V  
= 500⍀  
= +20  
0.1%  
C
= 0pF  
S
COMP  
60  
R
A
L
V
C
= 0pF  
100k  
COMP  
40  
20  
C
= 0pF  
5
0
COMP  
0
20  
40  
60  
80 100 120 140 160  
1
10  
INPUT FREQUENCY MHz  
100  
1k  
10k  
1M  
10M  
100M  
SETTLING TIME ns  
FREQUENCY Hz  
Figure 14. Large Signal Frequency  
Response  
Figure 15. Output Swing & Error vs.  
Settling Time  
Figure 13. Common-Mode Rejection  
Ratio vs. Frequency  
5
4
20  
70  
V
= 3V RMS  
= 1  
IN  
3rd HARMONIC  
V
= 2.24V RMS  
= 1  
75  
80  
IN  
A
C
C
V
A
R
C
C
30  
40  
50  
V
= 30pF  
= 100pF  
COMP  
LOAD  
= 250⍀  
L
= 0  
= 30pF  
LOAD  
COMP  
85  
3
2
1
0
R
= 500⍀  
L
90  
95  
2nd HARMONIC  
100  
60  
70  
R
= 2k⍀  
L
105  
110  
0
500k  
1M  
1.5M  
2M  
10  
100  
1k  
10k  
100k  
1M  
10M  
100  
300  
1k  
3k  
10k  
30k  
100k  
FREQUENCY Hz  
FREQUENCY Hz  
FREQUENCY Hz  
Figure 17. 2nd & 3rd Harmonic  
Distortion vs. Frequency  
Figure 18. Input Voltage Noise  
Spectral Density  
Figure 16. Total Harmonic Dis-  
tortion (THD) vs. Frequency  
REV. E  
–5–  
AD829–Typical Performance Characteristics  
0.03  
0.02  
0.01  
400  
C
COMP  
0.1F  
(EXTERNAL)  
A
= +20  
V
+V  
350  
300  
250  
200  
S
SLEW RATE 10 90%  
RISE  
FALL  
DIFF GAIN  
AD829  
V
= ؎15V  
S
0.043؇  
RISE  
FALL  
0.1F  
0.05  
DIFF PHASE  
20k⍀  
0.04  
0.03  
150  
100  
V
= ؎5V  
OFFSET  
NULL  
ADJUST  
S
V  
60 40 20  
0
20 40 60 80 100  
140  
120  
؎5  
؎10  
SUPPLY VOLTAGE Volts  
؎15  
S
TEMPERATURE ؇C  
Figure 20. Differential Gain & Phase  
vs. Supply  
Figure 21. Offset Null and External  
Shunt Compensation Connections  
Figure 19. Slew Rate vs. Temperature  
C
COMP  
+15V  
0.1F  
15pF  
50⍀  
CABLE  
HP8130A  
5ns RISE TIME  
50⍀  
CABLE  
TEKTRONIX  
TYPE 7A24  
PREAMP  
50⍀  
AD829  
50⍀  
50⍀  
5pF  
300⍀  
300⍀  
0.1F  
15V  
Figure 22a. Follower Connection. Gain = +2  
Figure 22b. Gain-of-2 Follower  
Large Signal Pulse Response  
Figure 22c. Gain-of-2 Follower  
Small Signal Pulse Response  
–6–  
REV. E  
AD829  
+15V  
0.1F  
50⍀  
CABLE  
100⍀  
45⍀  
HP8130A  
5ns RISE TIME  
FET PROBE  
TEKTRONIX  
TYPE 7A24  
PREAMP  
AD829  
5⍀  
2k⍀  
1pF  
0.1F  
15V  
C
= 0pF  
COMP  
105⍀  
Figure 23a. Follower Connection. Gain = +20  
Figure 23b. Gain-of-20 Follower  
Large Signal Pulse Response  
Figure 23c. Gain-of-20 Follower  
Small Signal Pulse Response  
5pF  
300⍀  
+15V  
0.1F  
50⍀  
CABLE  
300⍀  
50⍀  
HP8130A  
5ns RISE TIME  
CABLE  
TEKTRONIX  
TYPE 7A24  
PREAMP  
50⍀  
AD829  
50⍀  
C
COMP  
50⍀  
15pF  
0.1F  
15V  
Figure 24a. Unity Gain Inverter Connection  
Figure 24b. Unity Gain Inverter  
Large Signal Pulse Response  
Figure 24c. Unity Gain Inverter  
Small Signal Pulse Response  
REV. E  
–7–  
AD829  
+V  
S
THEORY OF OPERATION  
The AD829 is fabricated on Analog Devices’ proprietary comple-  
mentary bipolar (CB) process which provides PNP and NPN  
transistors with similar fTs of 600 MHz. As shown in Figure 25,  
the AD829 input stage consists of an NPN differential pair in  
which each transistor operates at 600 µA collector current. This  
gives the input devices a high transconductance and hence gives  
15⍀  
15⍀  
OUTPUT  
the AD829 a low noise figure of 2 nV/Hz @ 1 kHz.  
R
500⍀  
C
12.5pF  
The input stage drives a folded cascode which consists of a fast  
pair of PNP transistors. These PNPs then drive a current mirror  
which provides a differential-input to single-ended-output con-  
version. The high speed PNPs are also used in the current-  
amplifying output stage which provides high current gain of  
40,000. Even under conditions of heavy loading, the high fTs  
of the NPN & PNPs, produced using the CB process, permit  
cascading two stages of emitter followers while still maintaining  
60° of phase margin at closed-loop bandwidths greater than  
50 MHz.  
+IN  
IN  
1.2mA  
V  
S
C
COMP  
OFFSET NULL  
Figure 25. AD829 Simplified Schematic  
Shunt Compensation  
Two stages of complementary emitter followers also effectively  
buffer the high impedance compensation node (at the CCOMP  
pin) from the output so that the AD829 can maintain a high dc  
open-loop gain, even into low load impedances: 92 dB into a  
150 load, 100 dB into a 1 kload. Laser trimming and  
PTAT biasing assure low offset voltage and low offset voltage  
drift enabling the user to eliminate ac coupling in many  
applications.  
Figures 26 and 27 show that the first method, shunt compensa-  
tion, has an external compensation capacitor, CCOMP, connected  
between the compensation pin and ground. This external  
capacitor is tied in parallel with approximately 3 pF of inter-  
nal capacitance at the compensation node. In addition, a  
small capacitance, CLEAD, in parallel with resistor R2, compen-  
sates for the capacitance at the amplifier’s inverting input.  
For added flexibility, the AD829 provides access to the internal  
frequency compensation node. This allows the user to customize  
frequency response characteristics for a particular application.  
R2  
C
LEAD  
Unity gain stability requires a compensation capacitance of  
68 pF (Pin 5 to ground) which will yield a small signal band-  
width of 66 MHz and slew rate of 16 V/µs. The slew rate and  
gain bandwidth product will vary inversely with compensation  
capacitance. Table I and the graph of Figure 28 show the opti-  
mum compensation capacitance and the resulting slew rate for a  
desired noise gain. For gains between 1 and 20, CCOMP can be  
chosen to keep the small signal bandwidth relatively constant.  
The minimum gain which will still provide stability also de-  
pends on the value of external compensation capacitance.  
+V  
S
0.1F  
50⍀  
COAX  
CABLE  
R1  
V
IN  
V
AD829  
OUT  
50⍀  
1k⍀  
C
COMP  
0.1F  
V  
S
An RC network in the output stage (Figure 25) completely  
removes the effect of capacitive loading when the amplifier is  
compensated for closed-loop gains of 10 or higher. At low fre-  
quencies, and with low capacitive loads, the gain from the com-  
pensation node to the output is very close to unity. In this case,  
C is bootstrapped and does not contribute to the compensation  
capacitance of the device. As the capacitive load is increased, a  
pole is formed with the output impedance of the output stage–  
this reduces the gain, and subsequently, C is incompletely boot-  
strapped. Therefore, some fraction of C contributes to the  
compensation capacitance, and the unity gain bandwidth falls.  
As the load capacitance is further increased, the bandwidth  
continues to fall, and the amplifier remains stable.  
Figure 26. Inverting Amplifier Connection Using External  
Shunt Compensation  
+V  
S
0.1F  
50⍀  
CABLE  
V
IN  
V
AD829  
OUT  
50⍀  
R2  
1k⍀  
C
COMP  
0.1F  
C
LEAD  
V  
S
Externally Compensating the AD829  
The AD829 is stable with no external compensation for noise  
gains greater than 20. For lower gains, there are two methods of  
frequency compensating the amplifier to achieve closed-loop  
stability; these are the shunt and current feedback compensation  
methods.  
R1  
Figure 27. Noninverting Amplifier Connection Using  
External Shunt Compensation  
–8–  
REV. E  
AD829  
Table I. Component Selection for Shunt Compensation  
Slew  
–3 dB  
Small Signal  
Bandwidth – MHz  
Follower  
Gain  
Inverter  
Gain  
R1  
R2  
CL  
pF  
CCOMP  
pF  
Rate  
V/s  
1
2
5
10  
20  
25  
100  
Open  
1k  
511  
226  
105  
105  
20  
100  
1k  
2.0k  
2.05k  
2k  
2.49  
2k  
0
5
1
0
0
0
0
68  
25  
7
3
0
0
0
16  
38  
90  
130  
230  
230  
230  
66  
71  
76  
65  
55  
39  
7.5  
–1  
–4  
–9  
–19  
–24  
–99  
then:  
Table I gives recommended CCOMP and CLEAD values along with  
the corresponding slew rates and bandwidth. The capacitor  
values given were selected to provide a small signal frequency  
response with less than 1 dB of peaking and less than 10% over-  
shoot. For this table, supply voltages of 15 volts should be  
used. Figure 28 is a graphical extension of the table which  
shows the slew rate/gain trade-off for lower closed-loop gains,  
when using the shunt compensation scheme.  
Slew Rate  
kT  
q
= 4 π  
fT  
This shows that the slew rate will be only 0.314 V/µs for every  
MHz of bandwidth. The only way to increase slew rate is to  
increase the fT and that is difficult, due to process limitations.  
Unfortunately, an amplifier with a bandwidth of 10 MHz can  
only slew at 3.1 V/µs, which is barely enough to provide a full  
power bandwidth of 50 kHz.  
1k  
100  
10  
1
The AD829 is especially suited to a new form of compensation  
which allows for the enhancement of both the full power band-  
width and slew rate of the amplifier. The voltage gain from the  
inverting input pin to the compensation pin is large; therefore, if  
a capacitance is inserted between these pins, the amplifiers  
bandwidth becomes a function of its feedback resistor and this  
capacitance. The slew rate of the amplifier is now a function of  
its internal bias (2I) and this compensation capacitance.  
SLEW RATE  
C
COMP  
100  
Since the closed-loop bandwidth is a function of RF and CCOMP  
(Figure 29), it is independent of the amplifier closed-loop gain,  
as shown in Figure 31. To preserve stability, the time constant  
of RF and CCOMP needs to provide a bandwidth of less than  
65 MHz. For example, with CCOMP = 15 pF and RF = 1 k, the  
small signal bandwidth of the AD829 is 10 MHz, while Figure  
30 shows that the slew rate is in excess of 60 V/µs. As can be  
seen in Figure 31, the closed-loop bandwidth is constant for  
gains of 1 to 4, a property of current feedback amplifiers.  
V
= ؎15V  
S
10  
100  
1
10  
NOISE GAIN  
Figure 28. Value of CCOMP & Slew Rate vs. Noise Gain  
Current Feedback Compensation  
Bipolar nondegenerated amplifiers which are single pole and  
internally compensated have their bandwidths defined as:  
R
F
1
I
C
COMP  
fT  
=
=
2 π re CCOMP  
kT  
q
2 π  
CCOMP  
0.1F  
+V  
S
50⍀  
where:  
COAX  
CABLE  
R1  
fT is the unity gain bandwidth of the amplifier  
I is the collector current of the input transistor  
CCOMP is the compensation capacitance  
V
IN  
C *  
1
V
AD829  
IN4148  
OUT  
50⍀  
R
1k⍀  
L
0.1F  
re is the inverse of the transconductance of the input transistors  
kT/q is approximately equal to 26 mV @ 27°C.  
*RECOMMENDED VALUE  
V  
S
OF C  
FOR C  
COMP  
1
Since both fT and slew rate are functions of the same variables,  
the dynamic behavior of an amplifier is limited. Since:  
C
SHOULD NEVER EXCEED  
<7pF  
7pF  
0pF  
15pF  
COMP  
15pF FOR THIS CONNECTION  
2I  
Slew Rate =  
CCOMP  
Figure 29. Inverting Amplifier Connection Using Current  
Feedback Compensation  
REV. E  
–9–  
AD829  
Figure 32. Large Signal Pulse Response of the Inverting  
Amplifier Using Current Feedback Compensation.  
Figure 30. Large Signal Pulse Response of Inverting  
Amplifier Using Current Feedback Compensation.  
CCOMP = 15 pF, C1 = 15 pF, RF = 1 k, R1 = 1 kΩ  
CCOMP = 1 pF, RF = 3 k, R1 = 3 kΩ  
15  
GAIN = 4  
12  
3dB @ 8.2MHz  
9
GAIN = 2  
6
3dB @ 9.6MHz  
3
GAIN = 1  
0
3dB @ 10.2MHz  
3  
V
V
= 30dBM  
= ؎15V  
= 1k⍀  
IN  
6  
9  
S
R
R
C
C
L
F
= 1k⍀  
= 15pF  
12  
15  
COMP  
= 15pF  
1
100k  
1M  
10M  
FREQUENCY Hz  
100M  
Figure 33. Small Signal Pulse Response of Inverting  
Amplifier Using Current Feedback Compensation.  
CCOMP = 4 pF, RF = 1 k, R1 = 1 kΩ  
Figure 31. Closed-Loop Gain vs. Frequency for the Circuit  
of Figure 29  
Figure 32 is an oscilloscope photo of the pulse response of a  
unity gain inverter which has been configured to provide a small  
signal bandwidth of 53 MHz and a subsequent slew rate of  
180 V/µs; resistor RF = 3 k, capacitor CCOMP = 1 pF. Figure 33  
shows the excellent pulse response as a unity gain inverter, this  
time using component values of: RF = 1 kand CCOMP = 4 pF.  
15  
C
= 2pF  
= 3pF  
= 4pF  
GAIN = 4  
GAIN = 2  
COMP  
12  
9
C
COMP  
6
3
GAIN = 1  
C
COMP  
Figures 34 and 35 show the closed-loop frequency response of  
the AD829 for different closed-loop gains and for different  
supply voltages.  
0
3  
6  
9  
12  
15  
V
= ؎15V  
= 1k⍀  
S
R
R
V
L
F
If a noninverting amplifier configuration using current feedback  
compensation is desired, the circuit of Figure 36 is recom-  
mended. This circuit doubles the slew rate compared to the  
shunt compensated noninverting amplifier of Figure 27 at the  
expense of gain flatness. Nonetheless, this circuit delivers 95 MHz  
bandwidth with 1 dB flatness into a back terminated cable,  
with a differential gain error of only 0.01%, and a differential  
phase error of only 0.015° at 4.43 MHz.  
= 1k⍀  
= 30dBM  
IN  
1M  
10M  
FREQUENCY Hz  
100M  
Figure 34. Closed-Loop Frequency Response for the  
Inverting Amplifier Using Current Feedback Compensation  
–10–  
REV. E  
AD829  
+15V  
17  
20  
23  
0.1F  
50⍀  
COAX  
CABLE  
50⍀  
COAX  
V
؎5V  
IN  
CABLE  
26  
29  
32  
35  
38  
41  
44  
47  
50⍀  
2k⍀  
AD829  
V
OUT  
؎15V  
50⍀  
50⍀  
3pF  
C
15V  
0.1F  
COMP  
V
= 20dBM  
= 1k⍀  
IN  
R
R
L
2k⍀  
= 1k⍀  
F
GAIN = 1  
= 4pF  
C
COMP  
Figure 36. Noninverting Amplifier Connection Using  
Current Feedback Compensation  
1M  
10M  
100M  
FREQUENCY Hz  
+15V  
Figure 35. Closed-Loop Frequency Response vs. Supply  
for the Inverting Amplifier Using Current Feedback  
Compensation  
0.1F  
75⍀  
COAX  
V
IN  
A Low Error Video Line Driver  
CABLE  
75⍀  
V
AD829  
OUT  
The buffer circuit shown in Figure 37 will drive a back-termi-  
nated 75 video line to standard video levels (1 V p-p) with  
0.1 dB gain flatness to 30 MHz with only 0.04° and 0.02%  
differential phase and gain at the 4.43 MHz PAL color  
subcarrier frequency. This level of performance, which meets  
the requirements for high definition video displays and test  
equipment, is achieved using only 5 mA quiescent current.  
75⍀  
75⍀  
0.1F  
300⍀  
OPTIONAL  
2 7pF  
FLATNESS  
TRIM  
15V  
30pF  
C
COMP  
300⍀  
A High Gain, Video Bandwidth Three Op Amp In Amp  
Figure 38 shows a three op amp instrumentation amplifier cir-  
cuit which provides a gain of 100 at video bandwidths. At a  
circuit gain of 100 the small signal bandwidth equals 18 MHz  
into an FET probe. Small signal bandwidth equals 6.6 MHz  
with a 50 load. 0.1% settling time is 300 ns.  
Figure 37. A Video Line Driver with a Flatness over  
Frequency Adjustment  
The input amplifiers operate at a gain of 20, while the output  
op amp runs at a gain of 5. In this circuit the main bandwidth  
limitation is the gain/ bandwidth product of the output ampli-  
fier. Extra care needs to be taken while breadboarding this cir-  
cuit, since even a couple of extra picofarads of stray capacitance  
at the compensation pins of A1 and A2 will degrade circuit  
bandwidth.  
3pF  
(G = 20)  
28pF  
SETTLING TIME  
AC CMR ADJUST  
+V  
IN  
A1  
AD829  
1k⍀  
2k⍀  
1pF  
200⍀  
200⍀  
AD848  
R
G
A3  
1pF  
210⍀  
INPUT  
FREQUENCY CMRR  
2k⍀  
(G = 5)  
2k⍀  
100 Hz  
1 MHz  
10 MHz  
64.6dB  
44.7dB  
23.9dB  
3pF  
970⍀  
AD829  
DC CMR  
ADJUST  
+V  
+15V  
COMM  
15V  
PIN 7  
S
A2  
50⍀  
10F  
10F  
1F  
1F  
0.1F  
0.1F  
0.1F  
+V  
IN  
EACH  
AMPLIFIER  
(G = 20)  
0.1F  
3pF  
4000⍀  
CIRCUIT GAIN =  
+ 1 5  
(
(
R
V  
PIN 4  
G
S
Figure 38. A High Gain, Video Bandwidth Three Op Amp In Amp Circuit  
REV. E  
–11–  
AD829  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
Cerdip (Q) Package  
0.005 (0.13) MIN  
0.055 (1.40) MAX  
5
8
0.310 (7.87)  
PIN 1  
0.220 (5.59)  
1
4
0.320 (8.13)  
0.290 (7.37)  
0.405 (10.29) MAX  
0.060 (1.52)  
0.015 (0.38)  
0.200  
(5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.015 (0.38)  
0.008 (0.20)  
0.200 (5.08)  
0.125 (3.18)  
15°  
0°  
0.070 (1.78)  
0.100  
(2.54)  
BSC  
0.023 (0.58)  
0.014 (0.36)  
SEATING  
PLANE  
0.030 (0.76)  
Plastic Mini-DIP (N) Package  
8-Lead SOIC (R) Package  
0.1968 (5.00)  
0.1890 (4.80)  
8
5
4
0.25  
(6.35)  
0.31  
(7.87)  
PIN 1  
8
1
5
4
0.2440 (6.20)  
0.2284 (5.80)  
0.1574 (4.00)  
0.1497 (3.80)  
1
0.30 (7.62)  
REF  
0.39 (9.91) MAX  
PIN 1  
0.035±0.01  
(0.89±0.25)  
0.0196 (0.50)  
0.0099 (0.25)  
0.0500 (1.27)  
BSC  
؋
 45؇  
0.165±0.01  
(4.19±0.25)  
0.0688 (1.75)  
0.0532 (1.35)  
0.0098 (0.25)  
0.0040 (0.10)  
SEATING  
PLANE  
0.011±0.003  
(0.28±0.08)  
0.18±0.03  
(4.57±0.76)  
0.125  
(3.18)  
MIN  
8؇  
0؇  
0.0500 (1.27)  
0.0160 (0.41)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0098 (0.25)  
0.0075 (0.19)  
15°  
0°  
0.018±0.003  
(0.46±0.08) (2.54)  
0.10  
0.033  
(0.84)  
NOM  
SEATING  
PLANE  
BSC  
20-Lead LCC (E-20A) Package  
0.200 (5.08)  
BSC  
0.075  
(1.91)  
REF  
0.100 (2.54)  
0.064 (1.63)  
0.100 (2.54) BSC  
0.015 (0.38)  
MIN  
0.095 (2.41)  
0.075 (1.90)  
3
19  
18  
20  
4
0.028 (0.71)  
0.022 (0.56)  
0.358  
1
0.358 (9.09)  
0.011 (0.28)  
(9.09)  
MAX  
SQ  
BOTTOM  
VIEW  
0.342 (8.69)  
SQ  
0.007 (0.18)  
R TYP  
0.075 (1.91)  
REF  
0.050 (1.27)  
BSC  
14  
13  
8
9
45° TYP  
0.055 (1.40)  
0.045 (1.14)  
0.088 (2.24)  
0.054 (1.37)  
0.150 (3.81)  
BSC  
All brand or product names mentioned are trademarks or registered trademarks of their respective holders.  
–12–  
REV. E  

相关型号:

AD829AR-EBZ

High Speed, Low Noise Video Op Amp
ADI

AD829AR-REEL

High-Speed, Low-Noise Video Op Amp
ADI

AD829AR-REEL7

High-Speed, Low-Noise Video Op Amp
ADI

AD829ARZ

High Speed, Low Noise Video Op Amp
ADI

AD829ARZ-REEL

High Speed, Low Noise Video Op Amp
ADI

AD829ARZ-REEL7

High Speed, Low Noise Video Op Amp
ADI

AD829JCHIPS

High-Speed, Low-Noise Video Op Amp
ADI

AD829JN

High-Speed, Low-Noise Video Op Amp
ADI

AD829JNAD829JR

High Speed Low Noise Video Op Amp(336.85 k)
ETC

AD829JNZ

High Speed, Low Noise Video Op Amp
ADI

AD829JQ

IC VIDEO AMPLIFIER, CDIP8, CERDIP-8, Audio/Video Amplifier
ADI

AD829JR

High-Speed, Low-Noise Video Op Amp
ADI