AD829AQ [ADI]

High Speed, Low Noise Video Op Amp; 高速,低噪声视频运算放大器
AD829AQ
型号: AD829AQ
厂家: ADI    ADI
描述:

High Speed, Low Noise Video Op Amp
高速,低噪声视频运算放大器

运算放大器
文件: 总16页 (文件大小:275K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Speed, Low Noise  
Video Op Amp  
AD829  
FEATURES  
High Speed  
120 MHz Bandwidth, Gain = –1  
230 V/s Slew Rate  
CONNECTION DIAGRAMS  
8-Lead  
PDIP(N), Cerdip (Q), and SOIC (R) Packages  
90 ns Settling Time to 0.1%  
Ideal for Video Applications  
0.02% Differential Gain  
0.04؇ Differential Phase  
Low Noise  
1
2
3
4
8
7
6
5
OFFSET NULL  
OFFSET NULL  
AD829  
+V  
S
–IN  
+IN  
OUTPUT  
TOP VIEW  
(Not to Scale)  
C
–V  
S
COMP  
1.7 nV/Hz Input Voltage Noise  
1.5 pA/Hz Input Current Noise  
Excellent DC Precision  
20-Lead LCC Pinout  
1 mV Max Input Offset Voltage (Over Temp)  
0.3 mV/؇C Input Offset Drift  
Flexible Operation  
3
2
1 20 19  
Specified for ؎5 V to ؎15 V Operation  
؎3 V Output Swing into a 150 Load  
External Compensation for Gains 1 to 20  
5 mA Supply Current  
Available in Tape and Reel in Accordance with  
EIA-481A Standard  
18 NC  
+V  
4
5
6
7
8
NC  
–IN  
NC  
+IN  
NC  
17  
16 NC  
AD829  
TOP VIEW  
(Not to Scale)  
OUTPUT  
15  
14 NC  
9
10 11 12 13  
GENERAL DESCRIPTION  
The AD829 is a low noise (1.7 nV/Hz), high speed op amp  
with custom compensation that provides the user with gains of  
1 to 20 while maintaining a bandwidth greater than 50 MHz.  
The AD829’s 0.04° differential phase and 0.02% differential  
gain performance at 3.58 MHz and 4.43 MHz, driving reverse-  
terminated 50 or 75 cables, makes it ideally suited for  
professional video applications. The AD829 achieves its 230 V/µs  
uncompensated slew rate and 750 MHz gain bandwidth while  
requiring only 5 mA of current from power supplies.  
NC = NO CONNECT  
Operating as a traditional voltage feedback amplifier, the AD829  
provides many of the advantages a transimpedance amplifier  
offers. A bandwidth greater than 50 MHz can be maintained for  
a range of gains through the replacement of the external com-  
pensation capacitor. The AD829 and the transimpedance  
amplifier are both unity gain stable and provide similar voltage  
noise performance (1.7 nV/Hz); however, the current noise of  
the AD829 (1.5 pA/Hz) is less than 10% of the noise of  
transimpedance amps. The inputs of the AD829 are symmetrical.  
The AD829’s external compensation pin gives it exceptional  
versatility. For example, compensation can be selected to  
optimize the bandwidth for a given load and power supply voltage.  
As a gain-of-two line driver, the –3 dB bandwidth can be increased  
to 95 MHz at the expense of 1 dB of peaking. The AD829’s  
output can also be clamped at its external compensation pin.  
PRODUCT HIGHLIGHTS  
1. Input voltage noise of 2 nV/Hz, current noise of 1.5 pA/Hz,  
and 50 MHz bandwidth, for gains of 1 to 20, make the AD829  
an ideal preamp.  
The AD829 exhibits excellent dc performance. It offers a mini-  
mum open-loop gain of 30 V/mV into loads as low as 500 ,  
low input voltage noise of 1.7 nV/Hz, and a low input offset  
voltage of 1 mV maximum. Common-mode rejection and power  
supply rejection ratios are both 120 dB.  
2. Differential phase error of 0.04° and a 0.02% differential  
gain error, at the 3.58 MHz NTSC and 4.43 MHz PAL and  
SECAM color subcarrier frequencies, make the op amp an  
outstanding video performer for driving reverse-terminated  
50 and 75 cables to 1 V (at their terminated end).  
This op amp is also useful in multichannel, high speed data  
conversion where its fast (90 ns to 0.1%) settling time is impor-  
tant. In such applications, the AD829 serves as an input buffer  
for 8-bit to 10-bit A/D converters and as an output I/V con-  
verter for high speed DACs.  
3. The AD829 can drive heavy capacitive loads.  
4. Performance is fully specified for operation from 5 V to  
15 V supplies.  
5. The AD829 is available in plastic, CERDIP, and small outline  
packages. Chips and MIL-STD-883B parts are also available.  
The SOIC-8 package is available for the extended tempera-  
ture range of –40°C to +125°C.  
REV. G  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
(@ TA = 25؇C and VS = ؎15 V dc, unless otherwise noted.)  
AD829–SPECIFICATIONS  
AD829JR  
AD829AR  
AD829AQ/S  
Model  
Conditions  
VS  
5 V, 15 V  
Min Typ Max Min Typ Max Min Typ Max Unit  
INPUT OFFSET VOLTAGE  
0.2  
1
1
0.2  
1
1
0.1  
0.5  
0.5  
mV  
TMIN to TMAX  
mV  
Offset Voltage Drift  
5 V, 15 V  
5 V, 15 V  
0.3  
3.3  
0.3  
3.3  
0.3  
3.3  
µV/°C  
INPUT BIAS CURRENT  
7
8.2  
7
9.5  
7
9.5  
µA  
µA  
TMIN to TMAX  
INPUT OFFSET CURRENT  
5 V, 15 V  
50  
500  
500  
50  
500  
500  
50  
500  
500  
nA  
nA  
T
MIN to TMAX  
Offset Current Drift  
OPEN-LOOP GAIN  
5 V, 15 V  
5 V  
0.5  
0.5  
0.5  
nA/°C  
VO  
LOAD = 500 Ω  
TMIN to TMAX  
LOAD = 150 Ω  
VOUT 10 V  
RLOAD = 1 kΩ  
MIN to TMAX  
=
2.5 V  
R
30  
20  
65  
30  
20  
65  
30  
20  
65  
V/mV  
V/mV  
V/mV  
R
40  
40  
40  
=
15 V  
50  
20  
100  
85  
50  
20  
100  
85  
50  
20  
100  
85  
V/mV  
V/mV  
V/mV  
T
RLOAD = 500 Ω  
DYNAMIC PERFORMANCE  
Gain Bandwidth Product  
5 V  
15 V  
600  
750  
600  
750  
600  
750  
MHz  
MHz  
Full Power Bandwidth1, 2  
VO = 2 V p-p  
RLOAD = 500 Ω  
VO = 20 V p-p  
RLOAD = 1 kΩ  
RLOAD = 500 Ω  
RLOAD = 1 kΩ  
AV = –19  
5 V  
25  
25  
25  
MHz  
15 V  
5 V  
15 V  
3.6  
150  
230  
3.6  
150  
230  
3.6  
150  
230  
MHz  
V/µs  
V/µs  
Slew Rate2  
Settling Time to 0.1%  
–2.5 V to +2.5 V  
10 V Step  
CLOAD = 10 pF  
5 V  
15 V  
15 V  
65  
90  
65  
90  
65  
90  
ns  
ns  
Phase Margin2  
RLOAD = 1 kΩ  
60  
60  
60  
Degrees  
%
DIFFERENTIAL GAIN ERROR3  
DIFFERENTIAL PHASE ERROR3  
COMMON-MODE REJECTION  
RLOAD = 100 Ω  
CCOMP = 30 pF  
15 V  
15 V  
0.02  
0.02  
0.04  
0.02  
RLOAD = 100 Ω  
CCOMP = 30 pF  
0.04  
0.04  
Degrees  
VCM  
VCM  
TMIN to TMAX  
=
=
2.5 V  
12 V  
5 V  
15 V  
100  
100  
96  
120  
120  
100  
100  
96  
120  
120  
100  
100  
96  
120  
120  
dB  
dB  
dB  
POWER SUPPLY REJECTION  
VS 4.5 V to 18 V  
TMIN to TMAX  
=
98  
94  
120  
98  
94  
120  
98  
94  
120  
dB  
dB  
INPUT VOLTAGE NOISE  
INPUT CURRENT NOISE  
f = 1 kHz  
15 V  
15 V  
1.7  
1.5  
2
1.7  
2
1.7  
1.5  
2
nV/Hz  
pA/Hz  
f = 1 kHz  
1.5  
INPUT COMMON-MODE  
VOLTAGE RANGE  
5 V  
+4.3  
–3.8  
+14.3  
–13.8  
+4.3  
–3.8  
+14.3  
–13.8  
+4.3  
–3.8  
+14.3  
–13.8  
V
V
V
V
15 V  
OUTPUT VOLTAGE SWING  
RLOAD = 500 Ω  
RLOAD = 150 Ω  
RLOAD = 50 Ω  
RLOAD = 1 kΩ  
RLOAD = 500 Ω  
5 V  
5 V  
5 V  
15 V  
15 V  
5 V, 15 V  
3.0  
2.5  
3.6  
3.0  
1.4  
13.3  
12.2  
32  
3.0  
2.5  
3.6  
3.0  
1.4  
13.3  
12.2  
3.0  
2.5  
3.6  
3.0  
1.4  
13.3  
12.2  
32  
V
V
V
V
V
mA  
12  
10  
12  
10  
12  
10  
Short Circuit Current  
32  
INPUT CHARACTERISTICS  
Input Resistance (Differential)  
Input Capacitance (Differential)4  
Input Capacitance (Common Mode)  
13  
5
1.5  
13  
5
1.5  
13  
5
1.5  
kΩ  
pF  
pF  
CLOSED-LOOP OUTPUT  
RESISTANCE  
AV = +1, f = 1 kHz  
2
2
2
mΩ  
–2–  
REV. G  
AD829  
AD829JR  
Typ  
AD829AR  
Min Typ Max  
AD829AQ/S  
Model  
Conditions  
VS  
Min  
Max  
Min  
Typ  
Max  
Unit  
POWER SUPPLY  
Operating Range  
Quiescent Current  
4.5  
18  
6.5  
8.0  
6.8  
8.3  
4.5  
18  
6.5  
8.0  
6.8  
9.0  
4.5  
18  
6.5  
8.2/8.7 mA  
V
mA  
15 V  
15 V  
5
5
5
T
MIN to TMAX  
5.3  
5.3  
5.3 6.8  
mA  
TMIN to TMAX  
8.5/9.0 mA  
TRANSISTOR COUNT  
NOTES  
Number of Transistors  
46  
46  
46  
1Full Power Bandwidth = Slew Rate/2 π VPEAK  
.
2Tested at Gain = +20, CCOMP = 0 pF.  
33.58 MHz (NTSC) and 4.43 MHz (PAL and SECAM).  
4Differential input capacitance consists of 1.5 pF package capacitance plus 3.5 pF from the input differential pair.  
Specifications subject to change without notice.  
REV. G  
–3–  
AD829  
ABSOLUTE MAXIMUM RATINGS1  
METALLIZATION PHOTO  
Contact factory for latest dimensions.  
Dimensions shown in inches and (mm).  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
Internal Power Dissipation2  
PDIP (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.3 W  
SOIC (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.9 W  
CERDIP (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.3 W  
LCC (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.8 W  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
V
Differential Input Voltage3 . . . . . . . . . . . . . . . . . . . . . . . 6 V  
Output Short Circuit Duration . . . . . . . . . . . . . . . . . Indefinite  
Storage Temperature Range (Q, E) . . . . . . . . –65°C to +150°C  
Storage Temperature Range (N, R) . . . . . . . . –65°C to +125°C  
Operating Temperature Range  
AD829J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
AD829A . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +125°C  
AD829S . . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C  
Lead Temperature Range (Soldering 60 sec) . . . . . . . . . 300°C  
NOTES  
1 Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; the functional operation of  
the device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2 Maximum internal power dissipation is specified so that TJ does not exceed  
150°C at an ambient temperature of 25°C.  
SUBSTRATE CONNECTED TO +VS  
2.5  
2.0  
1.5  
1.0  
0.5  
0
PDIP  
Thermal characteristics:  
LCC  
8-lead PDIP package: θJA = 100°C/W (derate at 8.7 mW/°C)  
8-lead CERDIP package: θJA = 110°C/W (derate at 8.7 mW/°C)  
20-lead LCC package: θJA = 77°C/W  
8-lead SOIC package: θJA = 125°C/W (derate at 6 mW/°C).  
3 If the differential voltage exceeds 6 V, external series protection resistors should  
be added to limit the input current.  
CERDIP  
SOIC  
–5545352515 –5  
5 15 25 35 45 55 65 75 85 95 105 115 125  
AMBIENT TEMPERATURE (؇C)  
Figure 1. Maximum Power Dissipation vs. Temperature  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
AD829 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
–4–  
REV. G  
AD829  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
AD829AR  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
0°C to 70°C  
8-Lead Plastic SOIC  
8-Lead Plastic SOIC  
8-Lead Plastic SOIC  
8-Lead Plastic SOIC  
8-Lead Plastic SOIC  
8-Lead Plastic SOIC  
8-Lead Plastic PDIP  
8-Lead Plastic SOIC  
8-Lead Plastic SOIC  
8-Lead Plastic SOIC  
8-Lead CERDIP  
8-Lead CERDIP  
8-Lead CERDIP  
8-Lead CERDIP  
20-Lead LCC  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
N-8  
R-8  
R-8  
AD829AR-REEL  
AD829AR-REEL7  
AD829ARZ*  
AD829ARZ-REEL*  
AD829ARZ-REEL7*  
AD829JN  
AD829JR  
0°C to 70°C  
AD829JR-REEL  
AD829JR-REEL7  
AD829AQ  
0°C to 70°C  
0°C to 70°C  
R-8  
–40°C to +125°C  
–55°C to +125°C  
–55°C to +125°C  
–55°C to +125°C  
–55°C to +125°C  
–55°C to +125°C  
Q-8  
Q-8  
Q-8  
Q-8  
E-20A  
E-20A  
AD829SQ  
AD829SQ/883B  
5962-9312901MPA  
AD829SE/883B  
5962-9312901M2A  
AD829JCHIPS  
AD829SCHIPS  
20-Lead LCC  
Die  
Die  
*Z = Pb-free part.  
REV. G  
–5–  
AD829–Typical Performance Characteristics  
20  
15  
10  
5
30  
25  
20  
15  
20  
15  
10  
5
؎15 V  
SUPPLIES  
+V  
OUT  
+V  
OUT  
–V  
OUT  
–V  
OUT  
10  
5
؎5 V  
SUPPLIES  
R
= 1k  
LOAD  
0
10  
0
0
0
5
10  
15  
20  
0
5
10  
15  
20  
1k  
100  
LOAD RESISTANCE ()  
10k  
SUPPLY VOLTAGE (؎V)  
SUPPLY VOLTAGE ( V)  
TPC 2. Output Voltage Swing  
vs. Supply Voltage  
TPC 3. Output Voltage Swing  
vs. Resistive Load  
TPC 1. Input Common-Mode  
Range vs. Supply Voltage  
6.0  
5.5  
5.0  
4.5  
4.0  
–5  
100  
10  
1
A
= +20  
V
C
= 0pF  
4
COMP  
V
= ؎5V, ؎15V  
S
0.1  
3
A
C
= +1  
V
= 68pF  
COMP  
0.01  
–2  
–60 40 –20  
0.001  
0
5
10  
15  
20  
1k  
10k  
100k  
1M  
10M  
100M  
0
20 40 60 80 100  
140  
120  
SUPPLY VOLTAGE (؎V)  
TEMPERATURE (؇C)  
FREQUENCY (Hz)  
TPC 4. Quiescent Current vs.  
Supply Voltage  
TPC 5. Input Bias Current vs.  
Temperature  
TPC 6. Closed-Loop Output  
Impedance vs. Frequency  
7
6
5
40  
35  
30  
25  
65  
60  
55  
V
A
C
=
15V  
S
NEGATIVE  
CURRENT LIMIT  
= +20  
V
= 0pF  
COMP  
V
= ؎15V  
S
POSITIVE  
CURRENT LIMIT  
V
= ؎5V  
S
V
= ؎5V  
S
4
3
50  
45  
20  
15  
–60 40 –20  
0
20 40 60 80 100  
140  
120  
–60 40 –20  
0
20 40 60 80 100  
140  
120  
–60 40 –20  
0
20 40 60 80 100  
140  
120  
TEMPERATURE (؇C)  
TEMPERATURE (؇C)  
AMBIENT TEMPERATURE (؇C)  
TPC 7. Quiescent Current vs.  
Temperature  
TPC 8. Short-Circuit Current  
Limit vs. Temperature  
TPC 9. –3 dB Bandwidth vs.  
Temperature  
–6–  
REV. G  
AD829  
120  
100  
80  
105  
100  
100  
120  
100  
80  
+
PHASE  
SUPPLY  
80  
60  
V
= ؎15V  
S
GAIN  
؎15V  
95  
90  
85  
80  
75  
SUPPLIES  
1kLOAD  
SUPPLY  
V
S
= ؎5V  
60  
40  
20  
GAIN  
؎5V  
60  
SUPPLIES  
500LOAD  
40  
20  
0
C
= 0pF  
COMP  
40  
20  
0
C
= 0pF  
COMP  
–20  
10M 100M  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10  
100  
10k  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
LOAD RESISTANCE ()  
TPC 12. Power Supply Rejection  
Ratio (PSRR) vs. Frequency  
TPC 10. Open-Loop Gain and  
Phase Margin vs. Frequency  
TPC 11. Open-Loop Gain vs.  
Resistive Load  
10  
8
30  
25  
20  
15  
120  
6
100  
80  
V
= 15V  
S
4
R
A
= 1k⍀  
= +20  
L
V
2
ERROR  
C
= 0pF  
1% 0.1%  
COMP  
A
= –19  
0
– 2  
– 4  
– 6  
– 8  
–10  
V
V
=
5V  
1%  
0.1%  
C
= 0pF  
S
COMP  
60  
R
A
= 500⍀  
= +20  
L
V
10  
C
= 0pF  
100k  
COMP  
40  
20  
C
= 0pF  
5
0
COMP  
1k  
10k  
1M  
10M  
100M  
0
20  
40  
60 80 100 120 140 160  
1
10  
INPUT FREQUENCY (MHz)  
100  
SETTLING TIME (ns)  
FREQUENCY (Hz)  
TPC 15. Output Swing and Error vs.  
Settling Time  
TPC 13. Common-Mode  
Rejection Ratio vs. Frequency  
TPC 14. Large Signal Frequency  
Response  
–20  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
5
4
V
= 3V RMS  
= –1  
IN  
THIRD HARMONIC  
V
= 2.24V RMS  
= –1  
A
C
C
IN  
V
A
R
C
C
= 30pF  
= 100pF  
–30  
–40  
–50  
V
COMP  
LOAD  
= 250  
L
= 0  
= 30pF  
LOAD  
COMP  
R
= 500⍀  
3
2
1
0
L
SECOND HARMONIC  
–60  
–70  
R
= 2k⍀  
L
–105  
–110  
0
500k  
FREQUENCY (Hz)  
1.5M  
1.0M  
2.0M  
100  
300  
1k  
3k  
10k  
30k  
100k  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TPC 16. Total Harmonic  
Distortion (THD) vs. Frequency  
TPC 17. Second and Third  
Harmonic Distortion vs.  
Frequency  
TPC 18. Input Voltage Noise  
Spectral Density  
REV. G  
–7–  
AD829  
400  
350  
300  
250  
200  
0.03  
0.02  
0.01  
C
COMP  
A
= +20  
V
0.1F  
(EXTERNAL)  
SLEW RATE 10% to 90%  
+V  
S
RISE  
DIFF GAIN  
FALL  
RISE  
FALL  
AD829  
V
= ؎15V  
S
0.043؇  
DIFF PHASE  
0.05  
0.1F  
20k⍀  
0.04  
0.03  
150  
100  
V
= ؎5V  
S
OFFSET  
NULL  
ADJUST  
–60 40 –20  
0
20 40 60 80 100  
140  
120  
؎5  
؎10  
SUPPLY VOLTAGE (V)  
؎15  
–V  
S
TEMPERATURE (؇C)  
TPC 19. Slew Rate vs. Temperature  
TPC 20. Differential Gain and Phase  
vs. Supply  
Figure 2. Offset Null and  
External Shunt Compensation  
Connections  
C
15pF  
COMP  
+15V  
0.1F  
50⍀  
CABLE  
HP8130A  
50⍀  
5ns RISE TIME  
CABLE  
TEKTRONIX  
TYPE 7A24  
PREAMP  
50⍀  
AD829  
50⍀  
50⍀  
5pF  
300⍀  
0.1F  
–15V  
300⍀  
Figure 3a. Follower Connection. Gain = +2  
Figure 3c. Gain-of-2 Follower Small  
Signal Pulse Response  
Figure 3b. Gain-of-2 Follower  
Large Signal Pulse Response  
–8–  
REV. G  
AD829  
+15V  
0.1F  
50⍀  
CABLE  
100⍀  
45⍀  
HP8130A  
FET PROBE  
5ns RISE TIME  
TEKTRONIX  
TYPE 7A24  
PREAMP  
AD829  
5⍀  
2k⍀  
1pF  
0.1F  
–15V  
C
= 0pF  
COMP  
105⍀  
Figure 4a. Follower Connection. Gain = +20  
Figure 4b. Gain-of-20 Follower  
Large Signal Pulse Response  
Figure 4c. Gain-of-20 Follower  
Small Signal Pulse Response  
5pF  
300⍀  
+15V  
0.1F  
50⍀  
CABLE  
300⍀  
HP8130A  
50⍀  
5ns RISE TIME  
CABLE  
TEKTRONIX  
TYPE 7A24  
PREAMP  
50⍀  
AD829  
50⍀  
C
15pF  
COMP  
50⍀  
0.1F  
–15V  
Figure 5a. Unity Gain Inverter Connection  
Figure 5b. Unity Gain Inverter  
Large Signal Pulse Response  
Figure 5c. Unity Gain Inverter  
Small Signal Pulse Response  
REV. G  
–9–  
AD829  
THEORY OF OPERATION  
+V  
S
The AD829 is fabricated on Analog Devices’ proprietary comple-  
mentary bipolar (CB) process, which provides PNP and NPN  
transistors with similar fTs of 600 MHz. As shown in Figure 6,  
the AD829 input stage consists of an NPN differential pair in  
which each transistor operates at 600 µA collector current. This  
gives the input devices a high transconductance, which in turn  
15⍀  
15⍀  
OUTPUT  
gives the AD829 a low noise figure of 2 nV/Hz @ 1 kHz.  
R
500⍀  
C
12.5pF  
The input stage drives a folded cascode that consists of a fast  
pair of PNP transistors. These PNPs drive a current mirror that  
provides a differential-input-to-single-ended-output conversion.  
The high speed PNPs are also used in the current-amplifying  
output stage, which provides high current gain of 40,000. Even  
under conditions of heavy loading, the high fTs of the NPN and  
PNPs, produced using the CB process, permits cascading two  
stages of emitter followers while maintaining 60° phase margin  
at closed-loop bandwidths greater than 50 MHz.  
+IN  
–IN  
1.2mA  
–V  
S
C
COMP  
OFFSET NULL  
Two stages of complementary emitter followers also effectively  
buffer the high impedance compensation node (at the CCOMP pin)  
from the output so the AD829 can maintain a high dc open-loop  
gain, even into low load impedances: 92 dB into a 150 load and  
100 dB into a 1 kload. Laser trimming and PTAT biasing  
ensure low offset voltage and low offset voltage drift, enabling  
the user to eliminate ac coupling in many applications.  
Figure 6. Simplified Schematic  
Shunt Compensation  
Figures 7 and 8 show that shunt compensation has an external  
compensation capacitor, CCOMP, connected between the com-  
pensation pin and ground. This external capacitor is tied in  
parallel with approximately 3 pF of internal capacitance at the  
compensation node. In addition, a small capacitance, CLEAD  
in parallel with resistor R2, compensates for the capacitance at  
the amplifier’s inverting input.  
,
For added flexibility, the AD829 provides access to the internal  
frequency compensation node. This allows the user to customize  
frequency response characteristics for a particular application.  
Unity gain stability requires a compensation capacitance of 68 pF  
(Pin 5 to ground), which will yield a small signal bandwidth of  
66 MHz and slew rate of 16 V/µs. The slew rate and gain band-  
width product will vary inversely with compensation capacitance.  
Table I and Figure 8 show the optimum compensation capacitance  
and the resulting slew rate for a desired noise gain. For gains  
between 1 and 20, CCOMP can be chosen to keep the small signal  
bandwidth relatively constant. The minimum gain that will still  
provide stability depends on the value of external compensation  
capacitance.  
R2  
C
LEAD  
+V  
S
0.1F  
50⍀  
COAX  
CABLE  
R1  
V
IN  
V
AD829  
OUT  
50⍀  
1k⍀  
C
COMP  
An RC network in the output stage (Figure 6) completely  
removes the effect of capacitive loading when the amplifier is  
compensated for closed-loop gains of 10 or higher. At low frequen-  
cies, and with low capacitive loads, the gain from the compensation  
node to the output is very close to unity. In this case, C is  
bootstrapped and does not contribute to the compensation  
capacitance of the device. As the capacitive load is increased, a  
pole is formed with the output impedance of the output stage  
this reduces the gain, and subsequently, C is incompletely boot-  
strapped. Therefore, some fraction of C contributes to the  
compensation capacitance, and the unity gain bandwidth falls. As  
the load capacitance is further increased, the bandwidth continues  
to fall and the amplifier remains stable.  
0.1F  
–V  
S
Figure 7. Inverting Amplifier Connection Using External  
Shunt Compensation  
+V  
S
0.1F  
50⍀  
CABLE  
V
IN  
V
AD829  
OUT  
50⍀  
R2  
1k⍀  
C
COMP  
Externally Compensating the AD829  
0.1F  
C
LEAD  
The AD829 is stable with no external compensation for noise  
gains greater than 20. For lower gains, two different methods of  
frequency compensating the amplifier can be used to achieve  
closed-loop stability: shunt and current feedback compensation.  
–V  
S
R1  
Figure 8. Noninverting Amplifier Connection Using  
External Shunt Compensation  
–10–  
REV. G  
AD829  
Table I. Component Selection for Shunt Compensation  
Slew  
Follower  
Gain  
Inverter  
Gain  
R1  
()  
R2  
()  
CL  
CCOMP  
Rate  
(V/s)  
–3 dB Small Signal  
Bandwidth (MHz)  
(pF) (pF)  
1
2
5
10  
20  
25  
100  
Open  
1 k  
100  
1 k  
2.0 k  
2.05 k  
2 k  
0
5
1
0
0
0
0
68  
25  
7
3
0
16  
38  
90  
130  
230  
230  
230  
66  
71  
76  
65  
55  
39  
7.5  
–1  
–4  
–9  
–19  
–24  
–99  
511  
226  
105  
105  
20  
2.49  
2 k  
0
0
then  
Table I gives the recommended CCOMP and CLEAD values, as  
well as the corresponding slew rates and bandwidth. The capacitor  
values were selected to provide a small signal frequency response  
with less than 1 dB of peaking and less than 10% overshoot. For  
this table, supply voltages of 15 V should be used. Figure 9 is  
a graphical extension of the table that shows the slew rate/gain  
trade-off for lower closed-loop gains, when using the shunt  
compensation scheme.  
Slew Rate  
kT  
q
= 4 π  
fT  
This shows that the slew rate will be only 0.314 V/µs for every  
MHz of bandwidth. The only way to increase slew rate is to  
increase the fT, and that is difficult because of process limitations.  
Unfortunately, an amplifier with a bandwidth of 10 MHz can  
only slew at 3.1 V/µs, which is barely enough to provide a full  
power bandwidth of 50 kHz.  
1k  
100  
10  
1
The AD829 is especially suited to a new form of compensation  
that allows for the enhancement of both the full power band-  
width and slew rate of the amplifier. The voltage gain from the  
inverting input pin to the compensation pin is large; therefore, if  
a capacitance is inserted between these pins, the amplifier’s  
bandwidth becomes a function of its feedback resistor and the  
capacitance. The slew rate of the amplifier is now a function of  
its internal bias (2I) and the compensation capacitance.  
SLEW RATE  
C
COMP  
100  
Since the closed-loop bandwidth is a function of RF and CCOMP  
(Figure 10), it is independent of the amplifier closed-loop gain,  
as shown in Figure 12. To preserve stability, the time constant  
of RF and CCOMP needs to provide a bandwidth of less than  
65 MHz. For example, with CCOMP = 15 pF and RF = 1 k, the  
small signal bandwidth of the AD829 is 10 MHz. Figure 11 shows  
that the slew rate is in excess of 60 V/µs. As shown in Figure 12,  
the closed-loop bandwidth is constant for gains of –1 to –4; this is  
a property of current feedback amplifiers.  
V
= ؎15V  
S
10  
100  
1
10  
NOISE GAIN  
Figure 9. Value of CCOMP and Slew Rate vs. Noise Gain  
Current Feedback Compensation  
Bipolar, nondegenerated, single pole, and internally compensated  
amplifiers have their bandwidths defined as  
R
F
1
I
C
COMP  
fT  
=
=
2 π re CCOMP  
kT  
q
2 π  
CCOMP  
0.1F  
+V  
S
50⍀  
COAX  
where  
CABLE  
R1  
V
fT is the unity gain bandwidth of the amplifier.  
I is the collector current of the input transistor.  
COMP is the compensation capacitance.  
IN  
C *  
1
V
AD829  
IN4148  
OUT  
50⍀  
C
R
1k⍀  
L
0.1F  
re is the inverse of the transconductance of the input transistors.  
kT/q approximately equals 26 mV @ 27°C.  
*RECOMMENDED VALUE  
–V  
S
OF C  
FOR C  
COMP  
1
C
SHOULD NEVER EXCEED  
<7pF  
7pF  
0pF  
15pF  
COMP  
15pF FOR THIS CONNECTION  
Since both fT and slew rate are functions of the same variables,  
the dynamic behavior of an amplifier is limited. Since  
Figure 10. Inverting Amplifier Connection Using Current  
Feedback Compensation  
2I  
Slew Rate =  
CCOMP  
REV. G  
–11–  
AD829  
Figure 11. Large Signal Pulse Response of Inverting  
Amplifier Using Current Feedback Compensation,  
CCOMP = 15 pF, C1 = 15 pF, RF = 1 k, R1 = 1 kΩ  
Figure 13. Large Signal Pulse Response of the Inverting  
Amplifier Using Current Feedback Compensation,  
C
COMP = 1 pF, RF = 3 k, R1 = 3 kΩ  
15  
GAIN = –4  
12  
–3dB @ 8.2MHz  
9
GAIN = –2  
6
–3dB @ 9.6MHz  
3
GAIN = –1  
0
–3dB @ 10.2MHz  
–3  
V
V
R
R
C
C
= –30dBM  
= ؎15V  
= 1k⍀  
IN  
–6  
–9  
S
L
F
= 1k⍀  
= 15pF  
–12  
–15  
COMP  
= 15pF  
1
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
Figure 14. Small Signal Pulse Response of Inverting  
Amplifier Using Current Feedback Compensation,  
CCOMP = 4 pF, RF = 1 k, R1 = 1 kΩ  
Figure 12. Closed-Loop Gain vs. Frequency for the Circuit  
of Figure 9  
Figure 13 is an oscilloscope photo of the pulse response of a  
unity gain inverter that has been configured to provide a small  
signal bandwidth of 53 MHz and a subsequent slew rate of  
180 V/µs; resistor RF = 3 kand capacitor CCOMP = 1 pF. Figure 14  
shows the excellent pulse response as a unity gain inverter, this  
using component values of RF = 1 kand CCOMP = 4 pF.  
15  
C
= 2pF  
= 3pF  
= 4pF  
GAIN = –4  
GAIN = –2  
COMP  
12  
9
C
COMP  
6
3
Figures 15 and 16 show the closed-loop frequency response of the  
AD829 for different closed-loop gains and different supply voltages.  
GAIN = –1  
C
COMP  
0
–3  
–6  
–9  
–12  
–15  
If a noninverting amplifier configuration using current feedback  
compensation is needed, the circuit of Figure 17 is recommended.  
This circuit provides a slew rate twice that of the shunt com-  
pensated noninverting amplifier of Figure 18 at the expense of  
gain flatness. Nonetheless, this circuit delivers 95 MHz bandwidth  
with 1 dB flatness into a back terminated cable, with a differ-  
ential gain error of only 0.01% and a differential phase error of  
only 0.015° at 4.43 MHz.  
V
= ؎15V  
= 1k⍀  
= 1k⍀  
S
R
R
V
L
F
= –30dBM  
IN  
1
10  
FREQUENCY (MHz)  
100  
Figure 15. Closed-Loop Frequency Response for the  
Inverting Amplifier Using Current Feedback Compensation  
–12–  
REV. G  
AD829  
+15V  
–17  
–20  
–23  
0.1F  
50⍀  
COAX  
CABLE  
50⍀  
COAX  
V
؎5V  
IN  
CABLE  
–26  
–29  
–32  
–35  
–38  
–41  
–44  
–47  
50⍀  
2k⍀  
AD829  
V
OUT  
؎15V  
50⍀  
50⍀  
3pF  
C
–15V  
0.1F  
COMP  
V
R
R
= –20dBM  
= 1k⍀  
= 1k⍀  
IN  
L
2k⍀  
F
GAIN = –1  
= 4pF  
C
COMP  
Figure 17. Noninverting Amplifier Connection Using  
Current Feedback Compensation  
1
10  
100  
FREQUENCY (MHz)  
+15V  
Figure 16. Closed-Loop Frequency Response vs. Supply  
for the Inverting Amplifier Using Current Feedback  
Compensation  
0.1F  
75⍀  
COAX  
V
IN  
CABLE  
A Low Error Video Line Driver  
75⍀  
V
AD829  
OUT  
The buffer circuit shown in Figure 18 will drive a back-terminated  
75 video line to standard video levels (1 V p-p) with 0.1 dB  
gain flatness to 30 MHz with only 0.04° and 0.02% differential  
phase and gain at the 4.43 MHz PAL color subcarrier frequency.  
This level of performance, which meets the requirements for high  
definition video displays and test equipment, is achieved using  
only 5 mA quiescent current.  
75⍀  
75⍀  
0.1F  
300⍀  
OPTIONAL  
2pF to 7pF  
FLATNESS  
TRIM  
–15V  
30pF  
C
COMP  
300⍀  
A High Gain, Video Bandwidth, Three Op Amp In Amp  
Figure 19 shows a three op amp instrumentation amplifier circuit  
that provides a gain of 100 at video bandwidths. At a circuit gain  
of 100, the small signal bandwidth equals 18 MHz into a FET  
probe. Small signal bandwidth equals 6.6 MHz with a 50 load.  
The 0.1% settling time is 300 ns.  
Figure 18. A Video Line Driver with a Flatness over  
Frequency Adjustment  
The input amplifiers operate at a gain of 20, while the output  
op amp runs at a gain of 5. In this circuit, the main bandwidth  
limitation is the gain/bandwidth product of the output amplifier.  
Extra care should be taken while breadboarding this circuit, since  
even a couple of extra picofarads of stray capacitance at the com-  
pensation pins of A1 and A2 will degrade circuit bandwidth.  
3pF  
(G = 20)  
2pF to 8pF  
SETTLING TIME  
AC CMR ADJUST  
+V  
IN  
A1  
AD829  
1k⍀  
2k⍀  
1pF  
200⍀  
200⍀  
AD848  
R
G
A3  
1pF  
210⍀  
INPUT  
2k⍀  
FREQUENCY CMRR  
(G = 5)  
2k⍀  
100 Hz  
1 MHz  
10 MHz  
64.6dB  
44.7dB  
23.9dB  
3pF  
970⍀  
AD829  
DC CMR  
ADJUST  
50⍀  
+V  
+15V  
COMM  
–15V  
PIN 7  
S
A2  
10F  
10F  
1F  
1F  
0.1F  
0.1F  
0.1F  
+V  
IN  
EACH  
AMPLIFIER  
(G = 20)  
0.1F  
3pF  
4000⍀  
G
CIRCUIT GAIN =  
+ 1 5  
(
(
R
–V  
PIN 4  
S
Figure 19. A High Gain, Video Bandwidth, Three Op Amp In Amp Circuit  
REV. G  
–13–  
AD829  
OUTLINE DIMENSIONS  
8-Lead Standard Small Outline Package [SOIC]  
8-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body  
(R-8)  
(N-8)  
Dimensions shown in inches and (millimeters)  
Dimensions shown in millimeters and (inches)  
0.375 (9.53)  
0.365 (9.27)  
0.355 (9.02)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
8
1
5
4.00 (0.1574)  
3.80 (0.1497)  
0.295 (7.49)  
0.285 (7.24)  
0.275 (6.98)  
4
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
0.100 (2.54)  
BSC  
؋
 45؇  
0.150 (3.81)  
0.135 (3.43)  
0.120 (3.05)  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
0.015  
(0.38)  
MIN  
0.180  
(4.57)  
MAX  
8؇  
0.51 (0.0201)  
0.31 (0.0122)  
0؇ 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
0.015 (0.38)  
0.010 (0.25)  
0.008 (0.20)  
SEATING  
PLANE  
0.40 (0.0157)  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
0.060 (1.52)  
0.050 (1.27)  
0.045 (1.14)  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MO-095AA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
20-Terminal Ceramic Leadless Chip Carrier [LCC]  
(E-20A)  
8-Lead Ceramic Dual In-Line Package [CERDIP]  
(Q-8)  
Dimensions shown in inches and (millimeters)  
Dimensions shown in inches and (millimeters)  
0.005 (0.13) 0.055 (1.40)  
0.200 (5.08)  
0.075 (1.91)  
MIN  
MAX  
REF  
REF  
0.100 (2.54)  
0.064 (1.63)  
0.100 (2.54) REF  
0.095 (2.41)  
0.075 (1.90)  
8
5
0.015 (0.38)  
MIN  
0.310 (7.87)  
0.220 (5.59)  
3
19  
18  
20  
4
PIN 1  
0.028 (0.71)  
0.022 (0.56)  
1
0.358  
0.358 (9.09)  
0.342 (8.69)  
SQ  
1
4
0.011 (0.28)  
0.007 (0.18)  
R TYP  
(9.09)  
MAX  
SQ  
BOTTOM  
VIEW  
0.050 (1.27)  
BSC  
0.100 (2.54) BSC  
0.405 (10.29) MAX  
8
14  
13  
0.320 (8.13)  
0.290 (7.37)  
0.075 (1.91)  
REF  
9
0.060 (1.52)  
0.015 (0.38)  
45 TYP  
0.088 (2.24)  
0.054 (1.37)  
0.055 (1.40)  
0.045 (1.14)  
0.200 (5.08)  
MAX  
0.150 (3.81)  
BSC  
0.150 (3.81)  
0.200 (5.08)  
0.125 (3.18)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
MIN  
0.015 (0.38)  
0.008 (0.20)  
0.023 (0.58)  
0.014 (0.36)  
SEATING  
PLANE  
15  
0
0.070 (1.78)  
0.030 (0.76)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
–14–  
REV. G  
AD829  
Revision History  
Location  
Page  
4/04—Data Sheet changed from REV. F to REV. G.  
Added new Figure 1 and renumbered all figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Updated Table I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Updated Figure 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Updated Figure 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2/03—Data Sheet changed from REV. E to REV. F.  
Renumbered Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal  
Changes made to PRODUCT HIGHLIGHTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes made to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Changes made to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Changes made to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
REV. G  
–15–  
–16–  

相关型号:

AD829AR

High-Speed, Low-Noise Video Op Amp
ADI

AD829AR-EBZ

High Speed, Low Noise Video Op Amp
ADI

AD829AR-REEL

High-Speed, Low-Noise Video Op Amp
ADI

AD829AR-REEL7

High-Speed, Low-Noise Video Op Amp
ADI

AD829ARZ

High Speed, Low Noise Video Op Amp
ADI

AD829ARZ-REEL

High Speed, Low Noise Video Op Amp
ADI

AD829ARZ-REEL7

High Speed, Low Noise Video Op Amp
ADI

AD829JCHIPS

High-Speed, Low-Noise Video Op Amp
ADI

AD829JN

High-Speed, Low-Noise Video Op Amp
ADI

AD829JNAD829JR

High Speed Low Noise Video Op Amp(336.85 k)
ETC

AD829JNZ

High Speed, Low Noise Video Op Amp
ADI

AD829JQ

IC VIDEO AMPLIFIER, CDIP8, CERDIP-8, Audio/Video Amplifier
ADI