AD607ARSZ-REEL [ADI]

Low Power Mixer/AGC/RSSI 3V Receiver IF Subsystem;
AD607ARSZ-REEL
型号: AD607ARSZ-REEL
厂家: ADI    ADI
描述:

Low Power Mixer/AGC/RSSI 3V Receiver IF Subsystem

电信 光电二极管 电信集成电路
文件: 总25页 (文件大小:621K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Power Mixer  
3 V Receiver IF Subsystem  
a
AD607  
PIN CONFIGURATION  
FEATURES  
Complete Receiver-on-a-Chip: Monoceiver® Mixer  
–15 dBm 1 dB Compression Point  
–8 dBm Input Third Order Intercept  
500 MHz RF and LO Bandwidths  
Linear IF Amplifier  
20-Lead SSOP  
(RS Suffix)  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
Linear-in-dB Gain Control  
Manual Gain Control  
Quadrature Demodulator  
On-Board Phase-Locked Quadrature Oscillator  
Demodulates IFs from 400 kHz to 12 MHz  
Can Also Demodulate AM, CW, SSB  
Low Power  
VPS1  
FLTR  
IOUT  
QOUT  
VPS2  
DMIP  
IFOP  
COM2  
GAIN  
IFLO  
FDIN  
COM1  
PRUP  
LOIP  
3
4
5
RFLO  
RFHI  
AD607  
TOP VIEW  
(Not to Scale)  
6
7
GREF  
MXOP  
VMID  
IFHI  
25 mW at 3 V  
8
CMOS Compatible Power-Down  
Interfaces to AD7013 and AD7015 Baseband Converters  
9
10  
APPLICATIONS  
GSM, CDMA, TDMA, and TETRA Receivers  
Satellite Terminals  
Battery-Powered Communications Receivers  
GENERAL DESCRIPTION  
The I and Q demodulators provide in-phase and quadrature  
baseband outputs to interface with Analog Devices’ AD7013  
(IS54, TETRA, MSAT) and AD7015 (GSM) baseband con-  
verters. A quadrature VCO phase-locked to the IF drives the I  
and Q demodulators. The I and Q demodulators can also  
demodulate AM; when the AD607’s quadrature VCO is phase-  
locked to the received signal, the in-phase demodulator becomes  
a synchronous product detector for AM. The VCO can also be  
phase-locked to an external beat-frequency oscillator (BFO),  
and the demodulator serves as a product detector for CW or  
SSB reception. Finally, the AD607 can be used to demodulate  
BPSK using an external Costas Loop for carrier recovery.  
The AD607 is a 3 V low power receiver IF subsystem for opera-  
tion at input frequencies as high as 500 MHz and IFs from  
400 kHz to 12 MHz. It consists of a mixer, IF amplifiers, I and  
Q demodulators, a phase-locked quadrature oscillator, and a  
biasing system with external power-down.  
The AD607’s low noise, high intercept mixer is a doubly  
balanced Gilbert cell type. It has a nominal –15 dBm input  
referred 1 dB compression point and a –8 dBm input referred  
third order intercept. The mixer section of the AD607 also  
includes a local oscillator (LO) preamplifier, which lowers the  
required LO drive to –16 dBm.  
In MGC operation, the AD607 accepts an external gain-control  
voltage input from an external AGC detector or a DAC.  
Monoceiver is a registered trademark of Analog Devices, Inc.  
REV. C  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
AD607* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
AD607 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
EVALUATION KITS  
AD607 Evaluation Board  
DOCUMENTATION  
Application Notes  
DISCUSSIONS  
View all AD607 EngineerZone Discussions.  
AN-778: Using the PRUP Pin on the AD607 and AD61009  
Data Sheet  
SAMPLE AND BUY  
AD607: Low Power Mixer 3 V Receiver IF Subsystem Data  
Visit the product page to see pricing options.  
Sheet  
AD61009: Low Power Mixer 3 V Receiver IF Subsystem  
Data Sheet  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
Product Highlight  
IS-54/IS-136 IF Baseband CHIPSET  
DOCUMENT FEEDBACK  
TOOLS AND SIMULATIONS  
• ADIsimPLL™  
Submit feedback for this data sheet.  
ADIsimRF  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD607–SPECIFICATIONS (@ TA = 25؇C, Supply = 3.0 V, IF = 10.7 MHz, unless otherwise noted.)  
AD607ARS  
Typ  
Model  
Conditions  
Min  
Max  
Unit  
DYNAMIC PERFORMANCE  
MIXER  
Maximum RF and LO Frequency Range  
Maximum Mixer Input Voltage  
Input 1 dB Compression Point  
Input Third-Order Intercept  
Noise Figure  
For Conversion Gain > 20 dB  
500  
54  
–15  
–5  
14  
12  
1.3  
45  
–16  
1
MHz  
mV  
dBm  
dBm  
dB  
For Linear Operation; Between RFHI and RFLO  
RF Input Terminated in 50 Ω  
RF Input Terminated in 50 Ω  
Matched Input, Max Gain, f = 83 MHz, IF = 10.7 MHz  
Matched Input, Max Gain, f = 144 MHz, IF = 10.7 MHz  
dB  
V
Maximum Output Voltage at MXOP  
Mixer Output Bandwidth at MXOP  
LO Drive Level  
LO Input Impedance  
Isolation, RF to IF  
Isolation, LO to IF  
Isolation, LO to RF  
Isolation, IF to RF  
Z
IF = 165 , at Input Compression  
–3 dB, ZIF = 165 Ω  
MHz  
dBm  
kΩ  
dB  
dB  
Mixer LO Input Terminated in 50 Ω  
LOIP to VMID  
RF = 240 MHz, IF = 10.7 MHz, LO = 229.3 MHz  
RF = 240 MHz, IF = 10.7 MHz, LO = 229.3 MHz  
RF = 240 MHz, IF = 10.7 MHz, LO = 229.3 MHz  
RF = 240 MHz, IF = 10.7 MHz, LO = 229.3 MHz  
30  
20  
40  
70  
dB  
dB  
IF AMPLIFIERS  
Noise Figure  
Max Gain, f = 10.7 MHz  
IF = 10.7 MHz  
IF = 10.7 MHz  
ZIF = 600 Ω  
From IFOP to VMID  
–3 dB at IFOP, Max Gain  
17  
–15  
18  
560  
15  
45  
dB  
Input 1 dB Compression Point  
Output Third-Order Intercept  
Maximum IF Output Voltage at IFOP  
Output Resistance at IFOP  
Bandwidth  
dBm  
dBm  
mV  
MHz  
GAIN CONTROL  
Gain Control Range  
Gain Scaling  
(See Figures 23 and 24)  
Mixer + IF Section, GREF to 1.5 V  
GREF to 1.5 V  
GREF to General Reference Voltage VR  
GREF to 1.5 V, 80 dB Span  
90  
20  
75/VR  
1
5
dB  
mV/dB  
dB/V  
dB  
Gain Scaling Accuracy  
Bias Current at GAIN  
Bias Current at GREF  
Input Resistance at GAIN, GREF  
µA  
1
1
µA  
MΩ  
I AND Q DEMODULATORS  
Required DC Bias at DMIP  
Input Resistance at DMIP  
Input Bias Current at DMIP  
Maximum Input Voltage  
VPOS/2  
50  
2
150  
75  
0.2  
–1.2  
–100  
18  
1.23  
+10  
1.5  
V dc  
kΩ  
From DMIP to VMID  
µA  
IF > 3 MHz  
IF 3 MHz  
mV  
mV  
dB  
Degrees  
dBc/Hz  
dB  
V
mV  
Amplitude Balance  
Quadrature Error  
IF = 10.7 MHz, Outputs at 600 mV p-p, F = 100 kHz  
IF = 10.7 MHz, Outputs at 600 mV p-p, F = 100 kHz  
IF = 10.7 MHz, F = 10 kHz  
Phase Noise in Degrees  
Demodulation Gain  
Maximum Output Voltage  
Output Offset Voltage  
Output Bandwidth  
Sine Wave Input, Baseband Output  
RL 20 kΩ  
Measured from IOUT, QOUT to VMID  
Sine Wave Input, Baseband Output  
–150  
+150  
MHz  
PLL  
Required DC Bias at FDIN  
Input Resistance at FDIN  
Input Bias Current at FDIN  
Frequency Range  
Required Input Drive Level  
Acquisition Time to 3°  
VPOS/2  
50  
200  
0.4 to 12  
400  
16.5  
V dc  
kΩ  
From FDIN to VMID  
nA  
MHz  
mV  
µs  
Sine Wave Input at Pin 1  
IF = 10.7 MHz  
POWER-DOWN INTERFACE  
Logical Threshold  
Input Current for Logical High  
Turn-On Response Time  
Standby Current  
For Power Up on Logical High  
To PLL Locked  
2
75  
16.5  
550  
V dc  
µA  
µs  
µA  
POWER SUPPLY  
Supply Range  
2.92  
5.5  
V
Supply Current  
Midgain, IF = 10.7 MHz  
8.5  
mA  
OPERATING TEMPERATURE  
TMIN to TMAX  
Operation to 2.92 V Minimum Supply Voltage  
Operation to 4.5 V Minimum Supply Voltage  
–25  
–40  
+85  
+85  
°C  
°C  
Specifications subject to change without notice.  
REV. C  
–2–  
AD607  
ABSOLUTE MAXIMUM RATINGS1  
ORDERING GUIDE  
Supply Voltage VPS1, VPS2 to COM1, COM2 . . . . . . . 5.5 V  
Internal Power Dissipation2 . . . . . . . . . . . . . . . . . . . . 600 mW  
2.92 V to 5.5 V Operating Temperature Range  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25°C to +85°C  
4.5 V to 5.5 V Operating Temperature Range  
AD607ARS 25°C to +85°C  
20-Lead Plastic RS-20  
for 2.92 V to 5.5 V SSOP  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature Range (Soldering 60 sec) . . . . . . . . . 300°C  
Operation; –40°C  
to +85°C for 4.5 V  
to 5.5 V Operation  
NOTES  
1 Stresses above those listed under Absolute Maximum Rating may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2 Thermal Characteristics: 20-lead SSOP Package: θJA = 126°C/W.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
AD607 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
–3–  
REV. C  
AD607  
PIN FUNCTION DESCRIPTIONS  
Function  
Pin Mnemonic  
Reads  
1
FDIN  
Frequency Detector Input  
PLL Input for I/Q Demodulator Quadrature Oscillator, 400 mV  
Drive Required from External Oscillator. Must be biased at VP/2.  
2
3
COM1  
PRUP  
Common #1  
Power-Up Input  
Supply Common for RF Front End and Main Bias  
3 V/5 V CMOS compatible power-up control; logical high =  
powered-up; max input level = VPS1 = VPS2.  
4
LOIP  
Local Oscillator Input  
LO input, ac-coupled 54 mV LO input is required (–16 dBm for  
50 input termination).  
5
6
7
8
RFLO  
RFHI  
GREF  
MXOP  
RF “Low” Input  
RF “High” Input  
Gain Reference Input  
Mixer Output  
Usually Connected to AC Ground  
AC-Coupled, 56 mV, Max RF Input for Linear Operation  
High Impedance Input, typically 1.5 V, sets gain scaling.  
High Impedance, Single-Sided Current Output, 1.3 V Max  
Voltage Output ( 6 mA Max Current Output)  
9
VMID  
IFHI  
IFLO  
GAIN  
Midsupply Bias Voltage  
IF “High” Input  
IF “Low” Input  
Output of the Midsupply Bias Generator (VMID = VPOS/2)  
AC-Coupled IF Input, 56 mV Max Input for Linear Operation  
Reference Node for IF Input; Auto-Offset Null  
High Impedance Input, 0 V–2 V Using 3 V Supply, Max Gain at  
V = 0  
10  
11  
12  
Gain Control Input  
13  
14  
COM2  
IFOP  
Common #2  
IF Output  
Supply Common for IF Stages and Demodulator  
Low Impedance, Single-Sided Voltage Output, 5 dBm  
( 560 mV) Max  
15  
DMIP  
Demodulator Input  
Signal input to I and Q demodulators has a 150 mV max input  
at IF > 3 MHz for linear operation; 75 mV max input at IF < 3 MHz  
for linear operation. Must be biased at VP/2.  
16  
17  
VPS2  
QOUT  
VPOS Supply #2  
Quadrature Output  
Supply to High Level IF, PLL, and Demodulators  
Low Impedance Q Baseband Output; 1.23 V Full Scale in 20 kΩ  
Min Load; AC-Coupled  
18  
IOUT  
In-Phase Output  
Low Impedance I Baseband Output; 1.23 V Full Scale in 20 kΩ  
Min Load; AC-Coupled  
19  
20  
FLTR  
VPS1  
PLL Loop Filter  
VPOS Supply #1  
Series RC PLL Loop Filter, Connected to Ground  
Supply to Mixer, Low Level IF, PLL, and Gain Control  
PIN CONNECTION  
20-Lead SSOP (RS-20)  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VPS1  
FLTR  
IOUT  
QOUT  
VPS2  
DMIP  
IFOP  
COM2  
GAIN  
IFLO  
FDIN  
COM1  
PRUP  
LOIP  
3
4
5
RFLO  
RFHI  
AD607  
TOP VIEW  
(Not to Scale)  
6
7
GREF  
MXOP  
VMID  
IFHI  
8
9
10  
–4–  
REV. C  
AD607  
HP8764B  
0
50  
HP8656B  
IEEE  
RF_OUT  
1
0
SYNTHESIZER  
HP8656B  
S0  
S1  
V
HP8764B  
0
50⍀  
CHARACTERIZATION  
BOARD  
RF_OUT  
IEEE  
1
50⍀  
SYNTHESIZER  
1
0
S0  
S1  
V
RFHI  
MXOP  
X
R
L
1
HP8656B  
50⍀  
LOIP  
IFHI  
RF_OUT  
IEEE  
SYNTHESIZER  
HP6633A  
P6205  
TEK1105  
OUT1  
IFOP  
X10  
OUT IN1  
HP8765B  
VPOS  
0
1
FET PROBE  
HP8594E  
VNEG  
SPOS  
SNEG  
C
IEEE  
IN2  
OUT2  
PROBE  
SUPPLY  
IEEE  
RF_IN  
SPEC  
S0  
V
S1  
DMIP  
FDIN  
IOUT  
AN  
DCPS  
PLL  
HP34401A  
QOUT  
HI  
LO  
I
CPIB  
IEEE  
VPOS  
PRUP  
GAIN  
BIAS  
DMM  
R5  
DP8200  
1k⍀  
VPOS  
VNEG  
SPOS  
HP8765B  
0
1
SNEG  
C
V
REF  
S0  
V
S1  
Figure 1. Mixer/Amplifier Test Set  
HP8720C  
PORT_1  
PORT_2  
NETWORK AN  
IEEE_488  
CHARACTERIZATION  
BOARD  
HP8765B  
HP8765B  
50⍀  
0
1
0
HP346B  
NOISE  
HP8970A  
28V_OUT  
NOISE FIGURE METER  
1
C
RFHI  
C
MXOP  
X
RF_IN  
28V  
R
S0  
V
S1  
S0  
S1  
V
L
NOISE SOURCE  
HP8656B  
RF_OUT  
IEEE  
SYNTHESIZER  
LOIP  
IFHI  
IFOP  
IOUT  
DMIP  
FDIN  
PLL  
QOUT  
HP6633A  
VPOS  
PRUP  
GAIN  
VPOS  
BIAS  
VNEG  
SPOS  
SNEG  
IEEE  
IEEE  
DCPS  
DP8200  
VPOS  
VNEG  
SPOS  
SNEG  
V
REF  
Figure 2. Mixer Noise Figure Test Set  
REV. C  
–5–  
AD607  
CHARACTERIZATION  
BOARD  
RFHI  
MXOP  
X
R
L
LOIP  
IFHI  
HP346B  
NOISE  
NOISE SOURCE  
HP8970A  
28V_OUT  
NOISE FIGURE METER  
P6205  
TEK1103  
OUT1  
X10  
IFOP  
OUT IN1  
28V  
RF_IN  
PROBE  
FET  
IN2  
OUT2  
PROBE SUPPLY  
DMIP  
FDIN  
IOUT  
PLL  
QOUT  
HP6633A  
VPOS  
PRUP  
GAIN  
VPOS  
BIAS  
VNEG  
SPOS  
SNEG  
IEEE  
IEEE  
DCPS  
DP8200  
VPOS  
VNEG  
SPOS  
SNEG  
V
REF  
Figure 3. IF Amp Noise Figure Test Set  
CHARACTERIZATION  
BOARD  
HP8764B  
50⍀  
50⍀  
MXOP  
RFHI  
LOIP  
IFHI  
0
X
R
HP8656B  
L
IEEE  
SYNTHESIZER  
1
0
RF_OUT  
S0  
S1  
V
1
IFOP  
HP3326A  
OUTPUT_1  
OUTPUT_2  
1103  
OUT1  
P6205  
OUT  
DCFM  
IEEE  
DMIP  
FDIN  
IOUT  
IN1  
X10  
HP8694E  
RF_IN  
FET PROBE  
HP8765B  
HP8765B  
PLL  
0
1
DUAL SYNTHESIZER  
0
1
IEEE  
QOUT  
P6205  
C
C
SPEC AN  
OUT IN2  
PROBE  
SUPPLY  
OUT2  
X10  
HP6633A  
VPOS  
S0  
S1  
S0  
V
V
S1  
VPOS  
PRUP  
GAIN  
FET PROBE  
BIAS  
VNEG  
IEEE  
HP54120  
SPOS  
CH1  
CH2  
CH3  
CH4  
TRIG  
SNEG  
DCPS  
DP8200  
VPOS  
IEEE_488  
DIGITAL  
VNEG  
IEEE  
OSCILLOSCOPE  
SPOS  
SNEG  
V
REF  
Figure 4. PLL/Demodulator Test Set  
–6–  
REV. C  
AD607  
CHARACTERIZATION  
BOARD  
RFHI  
MXOP  
R
X
L
LOIP  
IFHI  
HP6633A  
VPOS  
VNEG  
SPOS  
SNEG  
IFOP  
IEEE  
DCPS  
DP8200  
IOUT  
DMIP  
FDIN  
VPOS  
PLL  
VNEG  
SPOS  
SNEG  
IEEE  
GPIB  
QOUT  
VPOS  
PRUP  
GAIN  
V
REF  
BIAS  
R1  
499k  
HP34401A  
HI  
LO  
I
DMM  
Figure 5. GAIN Pin Bias Test Set  
CHARACTERIZATION  
BOARD  
MXOP  
RFHI  
R
X
L
LOIP  
IFHI  
HP6633A  
VPOS  
IFOP  
VNEG  
SPOS  
SNEG  
IEEE  
DCPS  
DP8200  
DMIP  
FDIN  
IOUT  
VPOS  
PLL  
VNEG  
SPOS  
SNEG  
IEEE  
GPIB  
QOUT  
VPOS  
PRUP  
GAIN  
V
REF  
BIAS  
R1  
499k  
HP34401A  
HI  
LO  
I
DMM  
Figure 6. Demodulator Bias Test Set  
CHARACTERIZATION  
BOARD  
HP3325B  
MXOP  
RFHI  
RF_OUT  
IEEE  
SYNTHESIZER  
R
X
L
LOIP  
IFHI  
HP6633A  
VPOS  
VNEG  
SPOS  
SNEG  
HP8594E  
IFOP  
IEEE  
RF_IN  
SPEC AN  
IEEE  
DCPS  
HP6633A  
DMIP  
FDIN  
IOUT  
VPOS  
VNEG  
SPOS  
SNEG  
PLL  
IEEE  
GPIB  
QOUT  
VPOS  
PRUP  
GAIN  
DCPS  
R1  
10k  
BIAS  
HP34401A  
HI  
LO  
I
DMM  
Figure 7. Power-Up Threshold Test Set  
–7–  
REV. C  
AD607  
CHARACTERIZATION  
BOARD  
MXOP  
RFHI  
R
X
L
LOIP  
IFHI  
P6205  
1103  
HP54120  
IFOP  
X10  
OUT IN1  
OUT1  
OUT2  
CH1  
CH2  
CH3  
CH4  
TRIG  
FET PROBE  
P6205  
50  
OUT  
IN2  
X10  
PROBE SUPPLY  
FET PROBE  
FL6082A  
RF_OUT  
MOD_OUT  
IOUT  
DMIP  
FDIN  
IEEE_488  
DIGITAL  
OSCILLOSCOPE  
IEEE  
IEEE  
PLL  
QOUT  
HP6633A  
NOTE: MUST BE 3 RESISTOR POWER DIVIDER  
VPOS  
PRUP  
GAIN  
VPOS  
VNEG  
SPOS  
SNEG  
BIAS  
DCPS  
DP8200  
VPOS  
VNEG  
SPOS  
IEEE  
IEEE  
SNEG  
V
REF  
HP8112  
PULSE_OUT  
PULSE GENERATOR  
Figure 8. Power-Up Test Set  
CHARACTERIZATION  
BOARD  
RFHI  
MXOP  
R
X
L
LOIP  
IFHI  
HP8656B  
RF_OUT  
SYNTHESIZER  
HP8594E  
1103  
P6205  
IFOP  
X10  
IEEE  
OUT IN1  
OUT1  
RF_IN  
IEEE  
FET PROBE  
R1  
1k  
SPEC AN  
IN2  
OUT2  
PROBE SUPPLY  
IOUT  
DMIP  
FDIN  
PLL  
QOUT  
HP6633A  
DCPS  
VPOS  
PRUP  
GAIN  
VPOS  
VNEG  
SPOS  
BIAS  
IEEE  
SNEG  
Figure 9. IF Output Impedance Test Set  
–8–  
REV. C  
AD607  
CHARACTERIZATION  
BOARD  
RFHI  
MXOP  
R
X
L
LOIP  
IFHI  
IFOP  
20⍀  
dB  
HP54120  
P6205  
1103  
FL6082A  
RF_OUT  
MOD_OUT  
DMIP  
FDIN  
IOUT  
OUT IN1  
OUT1  
X10  
CH1  
CH2  
CH3  
CH4  
TRIG  
IEEE  
IEEE  
FET PROBE  
P6205  
PLL  
QOUT  
OUT IN2  
OUT2  
X10  
HP6633A  
VPOS  
PRUP  
IEEE_488  
DIGITAL  
FET PROBE PROBE SUPPLY  
VPOS  
VNEG  
SPOS  
SNEG  
BIAS  
OSCILLOSCOPE  
GAIN  
DCPS  
DP8200  
VPOS  
VNEG  
SPOS  
SNEG  
IEEE  
V
REF  
Figure 10. PLL Settling Time Test Set  
CHARACTERIZATION  
BOARD  
MXOP  
RFHI  
R
X
L
HP3325B  
LOIP  
IFHI  
IEEE  
RF_OUT  
IFOP  
SYNTHESIZER  
HP3326  
OUTPUT_1  
OUTPUT_2  
P6205  
1103  
DCFM  
IEEE  
DMIP  
FDIN  
IOUT  
OUT IN1  
OUT1  
X10  
HP8765B  
FET PROBE  
P6205  
DUAL SYNTHESIZER  
0
1
PLL  
HP8694E  
RF_IN  
QOUT  
C
OUT IN2  
OUT2  
X10  
IEEE  
HP6633A  
VPOS  
S0  
S1  
V
SPEC AN  
VPOS  
PRUP  
GAIN  
FET PROBE PROBE SUPPLY  
BIAS  
VNEG  
IEEE  
SPOS  
SNEG  
DCPS  
DP8200  
VPOS  
VNEG  
IEEE  
SPOS  
SNEG  
V
REF  
Figure 11. Quadrature Accuracy Test Set  
–9–  
REV. C  
AD607  
VPOS  
GND  
C15  
0.1F  
4.99k⍀  
R10  
C11  
10nF  
0.1F  
C13  
0.1F  
C1  
FDIN  
R8  
51.1⍀  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
9
FDIN  
VPS1  
FLTR  
IOUT  
QOUT  
VPS2  
DMIP  
IFOP  
0⍀  
R12  
COM1  
PRUP  
LOIP  
C3  
10nF  
R1  
C10  
1nF  
1k⍀  
PRUP  
LOIP  
IOUT  
0.1F  
C2  
C16  
1nF  
*
AD607  
R7  
RFLO  
51.1⍀  
QOUT  
*
RFHI  
C9  
1nF  
R2  
316⍀  
GREF  
RFHI  
R6  
MXOP  
VMID  
IFOP  
*
COM2  
GAIN  
IFLO  
51.1⍀  
R13  
301⍀  
C5  
1nF  
GAIN  
*
10 IFHI  
MXOP  
*
R9  
51.1⍀  
R14  
54.9⍀  
R5  
332⍀  
C6  
0.1F  
C7  
1nF  
DMIP  
*
C8  
0.1F  
IFHI  
0.1F  
*CONNECTIONS ARE DC-COUPLED.  
Figure 12. Characterization Board  
–10–  
REV. C  
Typical Performance Characteristics–AD607  
30  
20  
19  
18  
V
= 0.3V  
25  
20  
GAIN  
17  
16  
15  
14  
13  
12  
11  
10  
V
= 0.6V  
GAIN  
15  
10  
5
VPOS = 5V, IF = 20MHz  
VPOS = 3V, IF = 20MHz  
V
= 1.2V  
= 1.8V  
GAIN  
V
GAIN  
0
V
= 2.4V  
GAIN  
–5  
–10  
VPOS = 5V, IF = 10MHz  
VPOS = 3V, IF = 10MHz  
50  
70  
90  
110 130 150 170 190 210 230 250  
RF FREQUENCY – MHz  
0.1  
1
10  
100  
INTERMEDIATE FREQUENCY – MHz  
TPC 1. Mixer Noise Figure vs. Frequency  
TPC 4. Mixer Conversion Gain vs. IF, T = 25°C,  
VPOS = 3 V, VREF = 1.5 V  
4500  
4.0  
3.5  
3.0  
2.5  
80  
4000  
3500  
3000  
70  
CUBIC FIT OF IF_GAIN (TEMP)  
60  
IF AMP GAIN  
C SHUNT COMPONENT  
50  
40  
30  
2500  
2000  
1500  
1000  
500  
2.0  
1.5  
20  
CUBIC FIT OF CONV_GAIN (TEMP)  
10  
MIXER CG  
R SHUNT COMPONENT  
1.0  
0.5  
0
0
–10  
–20  
0
0
50  
100 150 200 250 300 350 400 450 500  
FREQUENCY – MHz  
–50 –40 –30 –2010  
0
10 20 30 40 50 60 70 80 90 100 110 120 130  
TEMPERATURE – ؇C  
TPC 2. Mixer Input Impedance vs. Frequency,  
VPOS = 3 V, V GAIN = 0.8 V  
TPC 5. Mixer Conversion Gain and IF Amplifier Gain vs.  
Temperature, VPOS = 3 V, VGAIN = 0.3 V, VREF = 1.5 V, IF =  
10.7 MHz, RF = 250 MHz  
30  
80  
70  
25  
20  
15  
10  
5
V
= 0.00V  
GAIN  
V
= 0.54V  
= 1.62V  
GAIN  
CUBIC FIT OF IF_GAIN (V  
POS  
)
IF AMP GAIN  
60  
50  
V
= 1.08V  
GAIN  
V
GAIN  
40  
30  
20  
10  
0
–5  
–10  
CUBIC FIT OF CONV_GAIN (V  
)
POS  
V
= 2.16V  
GAIN  
–15  
–20  
MIXER CG  
2.4 2.6 2.8 3.2 3.4 3.6 3.8  
SUPPLY – V  
3
4
4.2 4.4 4.6 4.8  
5 5.2 5.4 5.6 5.8 6  
0
50 100 150 200 250 300 350 400 450 500 550 600  
RADIO FREQUENCY – MHz  
TPC 6. Mixer Conversion Gain and IF Amplifier Gain vs.  
Supply Voltage, T = 25°C, VGAIN = 0.3 V, VREF = 1.5 V, IF =  
10.7 MHz, RF = 250 MHz  
TPC 3. Mixer Conversion Gain vs. Frequency,  
T = 25°C, VPOS = 2.92 V, VREF = 1.35 V, IF = 10.7 MHz  
–11–  
REV. C  
AD607  
80  
–90.00  
V
= 0.3V  
GAIN  
70  
60  
50  
40  
30  
20  
10  
0
–100.00  
V
V
= 0.6V  
= 1.2V  
GAIN  
–110.00  
–120.00  
–130.00  
–140.00  
–150.00  
GAIN  
V
= 1.8V  
= 2.4V  
GAIN  
V
GAIN  
–10  
0.1  
1
10  
100  
1.00E+02  
1.00E+03  
1.00E+04  
1.00E+05  
1.00E+06  
1.00E+07  
INTERMEDIATE FREQUENCY – MHz  
CARRIER FREQUENCY OFFSET, f(fm) – Hz  
TPC 7. IF Amplifier Gain vs. Frequency,  
TPC 10. PLL Phase Noise L (F) vs. Frequency,  
T = 25°C, VPOS = 3 V, VREF = 1.5 V  
VPOS = 3 V, C3 = 0.1 µF, IF = 10.7 MHz  
2.5  
10  
8
6
IF AMP  
4
2
2
0
–2  
–4  
–6  
–8  
–10  
MIXER  
1.5  
0.1  
1
10  
100  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6 2.8 3  
PLL FREQUENCY – MHz  
GAIN VOLTAGE – V  
TPC 8. Gain Error vs. Gain Control Voltage,  
Representative Part  
TPC 11. PLL Loop Voltage at FLTR (KVCO) vs. Frequency  
8
7
6
5
4
3
2
1
0
996.200s  
1.00870ms  
2.5s/DIV  
1.02120ms  
TIMEBASE  
MEMORY 1  
TIMEBASE  
MEMORY 2  
TIMEBASE  
DELTA T  
=
DELAY  
OFFSET  
DELAY  
OFFSET  
DELAY  
=
=
=
=
=
1.00870ms  
127.3mV  
=
=
=
=
=
=
100.0mV/DIV  
2.50s/DIV  
20.00mV/DIV  
2.50s/DIV  
16.5199s  
1.00870ms  
155.2mV  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
1.00870ms  
QUADRATURE ANGLE – Degrees  
START  
1.00048ms  
STOP  
=
1.01700ms  
TRIGGER ON EXTERNAL AT POS. EDGE AT 134.0mV  
TPC 12. Demodulator Quadrature Angle, Histogram,  
T = 25°C, VPOS = 3 V, IF = 10.7 MHz  
TPC 9. PLL Acquisition Time  
–12–  
REV. C  
AD607  
30  
25  
20  
20  
19  
I_GAIN_CORR  
18  
17  
16  
15  
14  
13  
12  
11  
10  
CUBIC FIT OF I_GAIN_CORR (TEMP)  
15  
10  
5
0
–2  
–1  
0
1
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
IQ GAIN BALANCE – dB  
SUPPLY – V  
TPC 13. Demodulator Gain Balance, Histogram,  
TPC 16. Demodulator Gain vs. Supply Voltage  
T = 25°C, VPOS = 3 V, IF = 10.7 MHz  
20  
19  
40  
35  
30  
25  
20  
15  
10  
5
18  
17  
I_GAIN_CORR  
16  
15  
QUADRATIC FIT OF I_GAIN_CORR (IFF)  
14  
13  
12  
11  
10  
0
0
0.2  
0.4 0.6 0.8  
1.0  
1.2 1.4 1.6  
1.8 2.0  
17  
17.2 17.4 17.6 17.8  
18  
18.2 18.4 18.6 18.8  
BASEBAND FREQUENCY – MHz  
DEMODULATOR GAIN – dB  
TPC 14. Demodulator Gain vs. Frequency  
TPC 17. Demodulator Gain Histogram,  
T = 25°C, VPOS = 3 V, IF = 10.7 MHz  
20  
I_GAIN_CORR  
19  
18  
17  
CUBIC FIT OF I_GAIN_CORR (TEMP)  
16  
15  
14  
13  
12  
11  
10  
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100110 120 130  
TEMPERATURE – ؇C  
TPC 15. Demodulator Gain vs. Temperature  
–13–  
REV. C  
AD607  
PRODUCT OVERVIEW  
The AD607 provides most of the active circuitry required to  
realize a complete low power, single-conversion superhetero-  
dyne receiver, or most of a double-conversion receiver, at input  
frequencies up to 500 MHz, and an IF from 400 kHz to 12 MHz.  
The internal I/Q demodulators and their associated phase-  
locked loop, which can provide carrier recovery from the IF,  
support a wide variety of modulation modes, including  
n-PSK, n-QAM, and AM. A single positive supply voltage of 3 V  
is required (2.92 V minimum, 5.5 V maximum) at a typical  
supply current of 8.5 mA at midgain. In the following discus-  
sion, VP will be used to denote the power supply voltage, which  
will be assumed to be 3 V.  
40.2127ms  
40.2377ms  
500s/DIV  
40.2627ms  
40.2377ms  
154.0mV  
TIMEBASE  
MEMORY 1  
TIMEBASE  
MEMORY 2  
TIMEBASE  
DELTA T  
=
DELAY  
OFFSET  
DELAY  
OFFSET  
DELAY  
=
=
=
=
=
=
=
=
=
=
=
100.0mV/DIV  
5.00s/DIV  
60.00mV/DIV  
5.00s/DIV  
15.7990s  
40.2377ms  
209.0mV  
Figure 13 shows the main sections of the AD607. It consists of a  
variable gain UHF mixer and linear four-stage IF strip, which  
together provide a voltage controlled gain range of more than  
90 dB; dual demodulators, each comprising a multiplier fol-  
lowed by a two-pole, 2 MHz low-pass filter; and a phase-locked  
loop providing the inphase and quadrature clocks. A biasing  
system with CMOS compatible power-down completes the  
AD607.  
40.2377ms  
START  
40.2327ms  
STOP  
=
40.2485ms  
TRIGGER ON EXTERNAL AT POS. EDGE AT 40.0mV  
TPC 18. Power-Up Response Time to PLL Stable  
15  
Mixer  
The UHF mixer is an improved Gilbert cell design, and can  
operate from low frequencies (it is internally dc-coupled) up to  
an RF input of 500 MHz. The dynamic range at the input of the  
mixer is determined at the upper end by the maximum input  
signal level of 56 mV between RFHI and RFLO up to which the  
mixer remains linear, and at the lower end by the noise level. It is  
customary to define the linearity of a mixer in terms of the 1 dB  
gain-compression point and third order intercept, which for the  
AD607 are –15 dBm and –8 dBm, respectively, in a 50 system.  
10  
5
0
0.5  
1
1.5  
2
2.5  
GAIN VOLTAGE – V  
TPC 19. Power Supply Current vs. Gain Control Voltage,  
GREF = 1.5 V  
LOIP  
RFHI  
VMID  
IOUT  
IFHI  
MXOP  
VMID  
BPF  
FDIN  
DMIP  
IFOP  
BPF OR  
LPF  
VQFO  
RFLO  
FLTR  
IFLO  
QOUT  
MIDPOINT  
BIAS  
GENERATOR  
GAIN  
VPS1  
VPS2  
PRUP  
GREF  
BIAS  
GENERATOR  
PTAT  
VOLTAGE  
AD607  
COM1 COM2  
Figure 13. Functional Block Diagram  
–14–  
REV. C  
AD607  
The mixer’s RF input port is differential, that is, pin RFLO is  
functionally identical to RFHI, and these nodes are internally  
biased; we will generally assume that RFLO is decoupled to ac  
ground. The RF port can be modeled as a parallel RC circuit as  
shown in Figure 14.  
Table I. Filter Termination Resistor Values for  
Common IFs  
Filter  
Filter Termination Resistor  
Values for 24 dB of Mixer Gain  
*
IF  
Impedance  
R1  
R2  
R3  
450 kHz  
455 kHz  
6.5 MHz  
1500 Ω  
1500 Ω  
1000 Ω  
174 Ω  
174 Ω  
215 Ω  
330 Ω  
1330 Ω  
1330 Ω  
787 Ω  
0 Ω  
1500 Ω  
1500 Ω  
1000 Ω  
330 Ω  
AD607  
C1  
C2  
RFHI  
10.7 MHz 330 Ω  
R
IN  
C
IN  
L1  
RFLO  
*Resistor values were calculated such that R1+ R2 = ZFILTER and  
R1ʈ (R2 + ZFILTER) = 165 .  
C3  
The maximum permissible signal level at MXOP is determined  
by both voltage and current limitations. Using a 3 V supply and  
VMID at 1.5 V, the maximum swing is about 1.3 V. To attain  
a voltage swing of 1 V in the standard IF filter load of 165 Ω  
requires a peak drive current of about 6 mA, which is well  
within the linear capability of the mixer. However, these upper  
limits for voltage and current should not be confused with issues  
related to the mixer gain, already discussed. In an operational  
system, the AGC voltage will determine the mixer gain, and  
hence the signal level at the IF input Pin IFHI; it will always be  
less than 56 mV (–15 dBm into 50 ), which is the limit of the  
IF amplifier’s linear range.  
C1, C2, L1: OPTIONAL MATCHING CIRCUIT  
C3: COUPLES RFLO TO AC GROUND  
Figure 14. Mixer Port Modeled as a Parallel RC Network;  
an Optional Matching Network Is also Shown  
The local oscillator (LO) input is internally biased at VP/2 via a  
nominal 1000 resistor internally connected from pin LOIP to  
VMID. The LO interface includes a preamplifier that minimizes  
the drive requirements, thus simplifying the oscillator design  
and reducing LO leakage from the RF port. Internally, this  
single-sided input is actually differential; the noninverting input  
is referenced to Pin VMID. The LO requires a single-sided  
drive of 50 mV, or –16 dBm in a 50 system.  
IF Amplifier  
Most of the gain in the AD607 arises in the IF amplifier strip,  
which comprises four stages. The first three are fully differential  
and each has a gain span of 25 dB for the nominal AGC voltage  
range. Thus, in conjunction with the mixer’s variable gain, the  
total gain exceeds 90 dB. The final IF stage has a fixed gain of  
20 dB, and it also provides differential to single-ended conversion.  
The mixer’s output passes through both a low-pass filter and a  
buffer, which provides an internal differential to single-ended  
signal conversion with a bandwidth of approximately 45 MHz.  
Its output at Pin MXOP is in the form of a single-ended cur-  
rent. This approach eliminates the 6 dB voltage loss of the usual  
series termination by replacing it with shunt terminations at  
both the input and the output of the filter. The nominal conver-  
sion gain is specified for operation into a total IF band-pass  
filter (BPF) load of 165 , that is, a 330 filter doubly-termi-  
nated as shown in Figure 14. Note that these loads are con-  
nected to bias point VMID, which is always at the midpoint of  
the supply (that is, VP/2).  
The IF input is differential, at IFHI (noninverting relative to the  
output IFOP) and IFLO (inverting). Figure 16 shows a simpli-  
fied schematic of the IF interface. The offset voltage of this  
stage would cause a large dc output error at high gain, so it is  
nulled by a low pass feedback path from the IF output, also  
shown in TPC 13. Unlike the mixer output, the signal at IFOP  
is a low-impedance single-sided voltage, centered at VP/2 by the  
dc feedback loop. It may be loaded by a resistance as low as  
50 , which will normally be connected to VMID.  
The conversion gain is measured between the mixer input and  
the input of this filter, and varies between 1.5 dB and 26.5 dB  
for a 165 load impedance. Using filters of higher impedance,  
the conversion gain can always be maintained at its specified  
value or made even higher; for filters of lower impedance, of say  
ZO, the conversion gain will be lowered by 10 log10(165/ZO).  
Thus, the use of a 50 filter will result in a conversion gain that  
is 5.2 dB lower. Figure 15 shows filter matching networks and  
Table I lists resistor values.  
AD607  
10k  
IFHI  
VMID  
IFOP  
IFLO  
10k⍀  
OFFSET FEEDBACK  
LOOP  
1nF  
R2  
BPF  
MXOP  
VMID  
8
9
10 IFHI  
11 IFLO  
Figure 16. Simplified Schematic of the IF Interface  
R3  
R1  
100nF  
100nF  
Figure 15. Suggested IF Filter Matching Network. The  
Values of R1 and R2 Are Selected to Keep the Impedance  
at Pin MXOP at 165 Ω  
–15–  
REV. C  
AD607  
The IF’s small-signal bandwidth is approximately 45 MHz from  
IFHI and IFLO through IFOP. The peak output at IFOP is  
560 mV at VP = 3 V and 400 mV at the minimum VP of  
2.92 V. This allows some headroom at the demodulator inputs  
(Pin DMIP), which accept a maximum input of 150 mV for  
IFs > 3 MHz and 75 mV for IFs 3 MHz (at IFs 3 MHz,  
the drive to the demodulators must be reduced to avoid saturat-  
ing the output amplifiers with higher order mixing products that  
are no longer removed by the on-board low pass filters).  
Table II lists gain control voltages and scale factors for power  
supply voltages from 2.92 V to 5.5 V  
Alternatively, Pin GREF can be tied to an external voltage  
reference (VR) from, for example, an AD1582 (2.5 V) or  
AD1580 (1.21 V) voltage reference, to provide supply-  
independent gain scaling of VR/75 (volts per dB). When using  
the Analog Devices’ AD7013 and AD7015 baseband converters,  
the external reference may also be provided by the reference  
output of the baseband converter (Figure 18). For example, the  
AD7015 baseband converter provides a VR of 1.23 V; when  
connected to GREF, the gain scaling is 16.4 mV/dB (60 dB/V).  
An auxiliary DAC in the AD7015 can be used to generate the  
MGC voltage. Since it uses the same reference voltage, the  
numerical input to this DAC provides an accurate RSSI value  
in digital form, no longer requiring the reference voltage to have  
high absolute accuracy.  
Since there is no band-limiting in the IF strip, the output-  
referred noise can be quite high; in a typical application and  
at a gain of 75 dB, it is about 100 mV rms, making post-IF filtering  
desirable. IFOP may be also used as an IF output for driving  
an A/D converter, external demodulator, or external AGC  
detector. Figure 17 shows methods of matching the optional  
second IF filter.  
VPOS  
AD7013 OR  
AD607  
AD7015  
R
AD607  
2R  
T
IOUT  
QOUT  
VMID  
IADC  
R
T
C
R
IFOP  
DMIP  
BPF  
QADC  
2R  
C
T
IADC  
QADC  
GREF  
GAIN  
(AD7015)  
(AD7013)  
REFOUT  
BYPASS  
10nF  
AUX DAC  
a. Biasing DMIP from Power Supply (Assumes BPF  
AC-Coupled Internally)  
1nF  
Figure 18. Interfacing the AD607 to the AD7013 or AD7015  
Baseband Converters  
AD607  
R
T
IFOP  
DMIP  
VMID  
BPF  
I/Q Demodulators  
Both demodulators (I and Q) receive their inputs at Pin DMIP.  
Internally, this single-sided input is actually differential; the  
noninverting input is referenced to Pin VMID. Each demodula-  
tor comprises a full-wave synchronous detector followed by a  
2 MHz, two-pole low-pass filter, producing single-sided outputs  
at pins IOUT and QOUT. Using the I and Q demodulators for  
IFs above 12 MHz is precluded by the 400 kHz to 12 MHz  
response of the PLL used in the demodulator section. Pin DMIP  
requires an external bias source at VP/2; Figure 19 shows  
suggested methods.  
R
T
C
BYPASS  
b. Biasing DMIP from VMID (Assumes BPF AC-Coupled  
Internally)  
Figure 17. Input and Output Matching of the Optional  
Second IF Filter  
Outputs IOUT and QOUT are centered at VP/2 and can swing  
up to 1.23 V even at the low supply voltage of 2.92 V. They can  
therefore directly drive the RX ADCs in the AD7015 baseband  
converter, which require an amplitude of 1.23 V to fully load  
them when driven by a single-sided signal. The conversion gain of  
the I and Q demodulators is 18 dB (X8), requiring a maxi-  
mum input amplitude at DMIP of 150 mV for IFs > 3 MHz.  
Gain Scaling and RSSI  
The AD607’s overall gain, expressed in decibels, is linear-in-dB  
with respect to the AGC voltage VG at Pin GAIN. The gain of  
all sections is maximum when VG is zero, and reduces progres-  
sively up to VG = 2.2 V (for VP = 3 V; in general, up to a limit  
VP – 0.8 V). The gain of all stages changes in parallel. The AD607  
features temperature compensation of the gain scaling. The gain  
control scaling is proportional to the reference voltage applied to  
the Pin GREF. When this pin is tied to the midpoint of the  
supply (VMID), the scale is nominally 20 mV/dB (50 dB/V) for  
VP = 3 V. Under these conditions, the lower 80 dB of gain range  
(mixer plus IF) corresponds to a control voltage of 0.4 V ≤  
VG 2.0 V. The final centering of this 1.6 V range depends on  
the insertion losses of the IF filters used. More generally, the gain  
scaling using these connections is VP/150 (volts per dB), so scale  
becomes 33.3 mV/dB (30 dB/V) using a 5 V supply, with a  
proportional change in the AGC range, to 0.33 V VG 3 V.  
–16–  
REV. C  
AD607  
VPOS  
2R  
are generated at IOUT and QOUT, respectively. The quadra-  
ture accuracy of this VFQO is typically –1.2°C at 10.7 MHz. The  
PLL uses a sequential-phase detector that comprises low power  
emitter-coupled logic and a charge pump (Figure 20).  
AD607  
T
R
T
IFOP  
BPF  
2R  
T
DMIP  
I
U
~
40A  
V
F
I-CLOCK  
a. Biasing DMIP from Power Supply (Assumes BPF  
AC-Coupled Internally)  
VARIABLE-  
FREQUENCY  
QUADRATURE  
OSCILLATOR  
F
U
D
SEQUENTIAL  
PHASE  
DETECTOR  
90؇  
R
C
AD607  
R
T
Q-CLOCK  
(ECL OUTPUTS)  
R
IFOP  
BPF  
I ~  
D
40A  
REFERENCE CARRIER  
(FDIN AFTER LIMITING)  
DMIP  
VMID  
R
T
Figure 20. Simplified Schematic of the PLL and  
Quadrature VCO  
C
BYPASS  
The reference signal may be provided from an external source  
in the form of a high level clock, typically a low level signal  
( 400 mV) since there is an input amplifier between FDIN and  
the loop’s phase detector. For example, the IF output itself can  
be used by connecting DMIP to FDIN, which will then provide  
automatic carrier recover for synchronous AM detection and  
take advantage of any post-IF filtering. Pin FDIN must be  
biased at VP/2; Figure 22 shows suggested methods.  
b. Biasing DMIP from VMID (Assumes BPF  
AC-Coupled Internally)  
Figure 19. Suggested Methods for Biasing Pin DMIP  
at VP/2  
For IFs < 3 MHz, the on-chip low-pass filters (2 MHz cutoff)  
do not attenuate the IF or feedthrough products. Thus, the  
maximum input voltage at DMIP must be limited to 75 mV  
to allow sufficient headroom at the I and Q outputs for not only  
the desired baseband signal, but also the unattenuated higher-  
order demodulation products. These products can be removed  
by an external low-pass filter. In the case of IS54 applications  
using a 455 kHz IF and the AD7013 baseband converter, a simple  
one-pole RC filter with its corner above the modulation band-  
width is sufficient to attenuate undesired outputs.  
The VFQO operates from 400 kHz to 12 MHz and is controlled  
by the voltage between VPOS and FLTR. In normal operation,  
a series RC network forming the PLL loop filter is connected  
from FLTR to ground. The use of an integral sample-hold  
system ensures that the frequency-control voltage on Pin FLTR  
remains held during power-down, so reacquisition of the carrier  
typically occurs in 16.5 µs.  
In practice, the probability of a phase mismatch at power-up is  
high, so the worst-case linear settling period to full lock needs  
to be considered in making filter choices. This is typically 16.5 µs  
at an IF of 10.7 MHz for a 100 mV signal at DMIP and FDIN.  
Phase-Locked Loop  
The demodulators are driven by quadrature signals that are  
provided by a variable frequency quadrature oscillator (VFQO),  
phase-locked to a reference signal applied to Pin FDIN. When  
this signal is at the IF, in-phase and quadrature baseband outputs  
Table II. AD607 Gain and Manual Gain Control Voltage vs. Power Supply Voltage  
Power Supply  
Voltage  
(V)  
GREF  
(= VMID)  
(V)  
Gain Control  
Voltage Input Range  
(V)  
Scale Factor  
(dB/V)  
Scale Factor  
(mV/dB)  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
1.5  
1.75  
2.0  
2.25  
2.5  
2.75  
50.00  
42.86  
37.50  
33.33  
30.00  
27.27  
20.00  
23.33  
26.67  
30.00  
33.33  
36.67  
0.400–2.000  
0.467–2.333  
0.533–2.667  
0.600–3.000  
0.667–3.333  
0.733–3.667  
Maximum gain occurs for gain control voltage = 0 V.  
–17–  
REV. C  
AD607  
Bias System  
USING THE AD607  
The AD607 operates from a single supply, VP, usually of 3 V, at  
a typical supply current of 8.5 mA at midgain and T = 27°C,  
corresponding to a power consumption of 25 mW. Any voltage  
from 2.92 V to 5.5 V may be used.  
In this section, we will focus on a few areas of special impor-  
tance and include a few general application tips. As is true of  
any wideband high gain component, great care is needed in PC  
board layout. The location of the particular grounding points  
must be considered with due regard to the possibility of unwanted  
signal coupling, particularly from IFOP to RFHI or IFHI or both.  
The bias system includes a fast-acting active-high CMOS-  
compatible power-up switch, allowing the part to idle at 550 µA  
when disabled. Biasing is proportional-to-absolute temperature  
(PTAT) to ensure stable gain with temperature.  
The high sensitivity of the AD607 leads to the possibility that  
unwanted local EM signals may have an effect on the perfor-  
mance. During system development, carefully-shielded test  
assemblies should be used. The best solution is to use a fully-  
enclosed box enclosing all components, with the minimum  
number of needed signal connectors (RF, LO, I, and Q outputs)  
in miniature coax form.  
An independent regulator generates a voltage at the midpoint  
of the supply (VP/2) that appears at the VMID pin at a low  
impedance. This voltage does not shut down, ensuring that the  
major signal interfaces (e.g., mixer-to-IF and IF-to-demodulators)  
remain biased at all times, thus minimizing transient disturbances  
at power-up and allowing the use of substantial decoupling  
capacitors on this node. The quiescent consumption of this  
regulator is included in the idling current.  
The I and Q output leads can include small series resistors  
(about 100 ) inside the shielded box without significant loss  
of performance, provided the external loading during testing  
is light (that is, a resistive load of more than 20 kand capaci-  
tances of a few picofarads). These help to keep unwanted RF  
emanations out of the interior.  
VPOS  
AD607  
50k⍀  
The power supply should be connected via a through-hole  
capacitor with a ferrite bead on both inside and outside leads.  
Close to the IC pins, two capacitors of different value should be  
used to decouple the main supply (VP) and the midpoint supply  
pin, VMID. Guidance on these matters is also generally included  
in applications schematics.  
FDIN  
EXTERNAL  
FREQUENCY  
REFERENCE  
50k⍀  
a. Biasing FDIN from Supply when Using  
External Frequency Reference  
Gain Distribution  
As in all receivers, the most critical decisions in effectively using  
the AD607 relate to the partitioning of gain between the various  
subsections (Mixer, IF Amplifier, Demodulators) and the place-  
ment of filters so as to achieve the highest overall signal-to-noise  
ratio and lowest intermodulation distortion.  
AD607  
FDIN  
EXTERNAL  
FREQUENCY  
50k⍀  
REFERENCE  
VMID  
Figure 22 shows the main RF/IF signal path at maximum and  
minimum signal levels.  
C
BYPASS  
b. Biasing FDIN from VMID when Using  
External Frequency Reference  
Figure 21. Suggested Methods for Biasing Pin FDIN at VP/2  
I
؎1.23V  
MAX OUTPUT  
؎54mV  
MAX INPUT  
؎1.3V  
؎54mV  
؎560mV  
؎154mV  
IOUT  
MAX OUTPUT MAX INPUT  
MAX OUTPUT MAX INPUT  
IFOP DMIP  
MXOP IFHI  
RFHI  
QOUT  
IF BPF  
IF BPF  
Q
LOIP  
(VMID)  
330330⍀  
CONSTANT  
–16dBm  
(؎50mV)  
(TYPICAL  
IMPEDANCE)  
(LOCATION OF OPTIONAL  
SECOND IF FILTER)  
Figure 22. Signal Levels for Minimum and Maximum Gain  
–18–  
REV. C  
AD607  
As noted earlier, the gain in dB is reduced linearly with the voltage  
VG on the GAIN pin. Figure 23 shows how the mixer and IF strip  
gains vary with VG when GREF is connected to VMID (1.5 V) and  
a supply voltage of 3 V is used. Figure 24 shows how these vary  
when GREF is connected to a 1.23 V reference.  
Fortunately, there is a very simple solution to the fast PRUP  
problem. If the PRUP signal (Pin 3) is slowed down so that  
the rise time of the signal edge is greater than 35 µs, the  
anomalous behavior will not occur. This can be realized by a  
simple RC circuit connected to the PRUP pin, where R = 4.7 kΩ  
and C = 1.5 nF. This circuit is shown in Figure 25.  
90dB  
80dB  
FROM PRUP  
CONTROL SIGNAL  
70dB  
(67.5dB)  
AD607  
60dB  
4.7k⍀  
PRUP  
50dB  
40dB  
30dB  
20dB  
10dB  
0dB  
IF GAIN  
1.5nF  
(21.5dB)  
Figure 25. Proper Configuration of AD607 PRUP Signal  
MIXER GAIN  
All designs incorporating the AD607 should include this circuitry.  
(7.5dB)  
(1.5dB)  
Note that connecting the PRUP pin to the supply voltage will  
not eliminate the problem, since the supply voltage may have a  
rise time faster than 35 µs. With this configuration, the 4.7 kΩ  
series R and 1.5 nF shunt C should be placed between the  
supply and the PRUP pin as shown in Figure 25.  
2.2V  
0.4V  
1.8V  
0
1V  
NORMAL OPERATING RANGE  
2V  
V
G
Figure 23. Gain Distribution for GREF = 1.5 V  
90dB  
AD607 EVALUATION BOARD  
80dB  
70dB  
60dB  
50dB  
40dB  
30dB  
20dB  
10dB  
0dB  
The AD607 evaluation board (Figures 26 and 27) consists of an  
AD607, ground plane, I/O connectors, and a 10.7 MHz band-  
pass filter. The RF and LO ports are terminated in 50 to  
provide a broadband match to external signal generators to  
allow a choice of RF and LO input frequencies. The IF filter is  
at 10.7 MHz and has 330 input and output terminations; the  
board is laid out to allow the user to substitute other filters for  
other IFs.  
(67.5dB)  
IF GAIN  
(21.5dB)  
The board provides SMA connectors for the RF and LO port  
inputs, the demodulated I and Q outputs, the manual gain con-  
trol (MGC) input, the PLL input, and the power-up input. In  
addition, the IF output is also available at an SMA connector;  
this may be connected to the PLL input for carrier recovery to  
realize synchronous AM and FM detection via the I and Q  
demodulators, respectively. Table III lists the AD607 Evalua-  
tion Board’s I/O Connectors and their functions.  
MIXER GAIN  
1V  
(7.5dB)  
(1.5dB)  
0.328V  
1.64V  
0
2V  
V
G
NORMAL OPERATING RANGE  
Figure 24. Gain Distribution for GREF = 1.23 V  
Using the AD607 with a Fast PRUP Control Signal  
If the AD607 is used in a system in which the PRUP signal  
(Pin 3) is applied with a rise time less than 35 µs, anomalous  
behavior occasionally occurs. The problem is intermittent, so it  
will not occur every time the part is powered up under these  
conditions. It does not occur for any other normal operating condi-  
tions when the PRUP signal has a rise time slower than 35 µs.  
Symptoms of operation with too fast a PRUP signal include low  
gain, oscillations at the I or Q outputs of the device, or no valid  
data occurring at the output of the AD607. The problem causes  
no permanent damage to the AD607, so it will often operate  
normally when reset.  
–19–  
REV. C  
AD607  
VPOS  
GND  
C15  
0.1F  
JUMPER  
R10  
4.99k⍀  
R11  
OPEN  
C11  
10nF  
C12  
C1  
0.1F  
FDIN  
0.1F  
R8  
51.1⍀  
FDIN  
COM1  
VPS1  
FLTR  
C3 10nF  
R12  
4.7k⍀  
R1  
1k⍀  
PRUP  
PRUP  
C10  
1nF  
IOUT  
QOUT  
VPS2  
DMIP  
C17  
1.5nF  
I
C13  
C14  
0
0
LOIP  
LO  
RF  
C2 0.1F  
R7  
C4  
AD607  
C16  
1nF  
Q
51.1⍀  
C9  
1nF  
RFLO  
47pF  
RFHI  
R2  
R6  
51.1⍀  
316⍀  
IFOP  
COM2  
GAIN  
IFLO  
GREF  
R5  
JUMPER  
IF  
MXOP  
R4  
OPEN  
332⍀  
VMID  
IFHI  
GAIN  
C5  
1nF  
R3  
C6  
332⍀  
C7  
1nF  
0.1F  
C8  
0.1F  
AD607 EVALUATION BOARD  
(AS RECEIVED)  
VPOS  
VPOS  
R15  
50k⍀  
R17  
OPEN  
R18  
OPEN  
R13  
50k⍀  
C18  
SHORT  
C19  
ANYTHING  
FDIN  
FDIN  
FDIN  
R14  
FDIN  
C20  
SHORT  
R16  
OPEN  
C17  
10nF  
R12  
51.1⍀  
R19  
RSOURCE  
OPEN  
VMID  
VMID  
MOD FOR DC-COUPLED INPUT  
MOD FOR LARGE MAGNITUDE  
AC-COUPLED INPUT  
Figure 26. Evaluation Board  
Figure 27a. Evaluation Board Layout, Topside  
–20–  
REV. C  
AD607  
Figure 27b. Evaluation Board Layout, Bottom Side  
Table III. AD607 Evaluation Board Input and Output Connections  
Approximate  
Reference  
Designation  
Connector  
Type  
Description  
Coupling  
Signal Level  
Comments  
J1  
SMA  
Frequency  
Detector Input  
DC  
400 mV  
This pin needs to be biased at VMID  
and ac-coupled when driven by an  
external signal generator.  
J2  
J3  
J4  
J5  
SMA  
SMA  
SMA  
SMA  
Power-Up  
LO Input  
RF Input  
DC  
AC  
AC  
DC  
CMOS Logic  
Level Input  
–16 dBm  
( 50 mV)  
–15 dBm max  
( 54 mV)  
0.4 V to 2.0 V  
(3 V Supply)  
(GREF = VMID)  
NA  
Tied to Positive Supply by Jumper J10  
Input is terminated in 50 .  
Input is terminated in 50 .  
MGC Input  
Jumper is set for manual gain control  
input; see Table I for control voltage  
values.  
This signal level depends on the  
AD607’s gain setting.  
This signal level depends on the  
AD607’s gain setting.  
This signal level depends on the  
AD607’s gain setting.  
J6  
J7  
J8  
J9  
SMA  
SMA  
SMA  
Jumper  
IF Output  
Q Output  
I Output  
AC  
AC  
AC  
NA  
NA  
NA  
NA  
Ties GREF  
to VMID  
Sets gain-control scale factor (SF);  
SF = 75/VMID in dB/V, where  
VMID = VPOS/2.  
J10  
T1  
Jumper  
Ties Power-Up  
to Positive  
Supply  
Power Supply  
Positive Input  
(VPS1, VPS2)  
NA  
DC  
DC  
NA  
DC  
0 V  
Remove to test power-up/-down.  
Terminal Pin  
Terminal Pin  
2.92 V to 5.5 V  
Draws 8.5 mA at midgain connection.  
T2  
Power Supply  
Return (GND)  
–21–  
REV. C  
AD607  
In operation (Figure 28), the AD607 evaluation board draws  
about 8.5 mA at midgain (59 dB). Use high impedance probes  
to monitor signals from the demodulated I and Q outputs and  
the IF output. The MGC voltage should be set such that the  
signal level at DMIP does not exceed 150 mV; signal levels  
above this will overload the I and Q demodulators. The insertion  
loss between IFOP and DMIP is typically 3 dB if a simple low-pass  
filter (R8 and C2) is used, and higher if a reverse-terminated  
band-pass filter is used.  
HP 3326  
SYNTHESIZED  
SIGNAL GENERATOR  
10.710MHz  
HP 6632A  
PROGRAMMABLE  
POWER SUPPLY  
2.92V–6V  
FLUKE 6082A  
SYNTHESIZED  
SIGNAL GENERATOR  
240MHz  
VPOS  
FDIN  
I OUTPUT  
TEKTRONIX  
11402A  
MCL  
RF  
AD607  
EVALUATION  
BOARD  
ZFSC–2–1  
COMBINER  
OSCILLOSCOPE  
WITH 11A32  
PLUGIN  
Q OUTPUT  
HP 8656A  
SYNTHESIZED  
LO  
MGC  
SIGNAL GENERATOR  
240.02MHz  
HP 9920  
HP 8656A  
DATA PRECISION  
IEEE CONTROLLER  
HP9121  
SYNTHESIZED  
DVC8200  
SIGNAL GENERATOR  
229.3MHz  
PROGRAMMABLE  
VOLTAGE SOURCE  
DISK DRIVE  
IEEE–488 BUS  
Figure 28. Evaluation Board Test Setup  
–22–  
REV. C  
AD607  
OUTLINE DIMENSIONS  
20-Lead Shrink Small Outline Package [SSOP]  
(RS-20)  
Dimensions shown in millimeters  
7.50  
7.20  
6.90  
20  
11  
10  
8.20  
7.80  
7.40  
5.60  
5.30  
5.00  
1
1.85  
1.75  
1.65  
2.00 MAX  
0.25  
0.09  
8؇  
4؇  
0؇  
0.65  
BSC  
0.95  
0.75  
0.55  
0.38  
0.22 SEATING  
PLANE  
0.05 MIN  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-150AE  
–23–  
REV. C  
AD607  
Revision History  
Location  
Page  
11/02—Data Sheet changed from REV. B to REV. C.  
Edits to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Changes to TPC 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Edits to PRODUCT OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Edits to IF Amplifier section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Edits to Gain Scaling and RSSI section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Edits to I/Q Demodulators section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Edits to Table II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Edits to Bias System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Edits to Table III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Edits to Figure 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
OUTLINE DIMENSIONS Updated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
–24–  
REV. C  

相关型号:

AD608

Low Power Mixer/Limiter/RSSI 3 V Receiver IF Subsystem
ADI

AD608AR

Low Power Mixer/Limiter/RSSI 3 V Receiver IF Subsystem
ADI

AD608AR-REEL

Low Power Mixer/Limiter/RSSI 3 V Receiver IF Subsystem
ADI

AD608ARZ

Low Power Mixer/Limiter/RSSI 3 V Receiver IF Subsystem
ADI

AD608ARZ-RL

Low Power Mixer/Limiter/RSSI 3 V Receiver IF Subsystem
ADI

AD60F

Fast Asymmetric Thyristors
ETC

AD60F08KAC

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|60A I(T)
ETC

AD60F08KAF

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|60A I(T)
ETC

AD60F08KBC

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|60A I(T)
ETC

AD60F08KBF

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|60A I(T)
ETC

AD60F08KCC

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|60A I(T)
ETC

AD60F08KCF

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|60A I(T)
ETC