AD608ARZ [ADI]

Low Power Mixer/Limiter/RSSI 3 V Receiver IF Subsystem; 低功率混频器/限制器/ RSSI 3 V接收器IF子系统
AD608ARZ
型号: AD608ARZ
厂家: ADI    ADI
描述:

Low Power Mixer/Limiter/RSSI 3 V Receiver IF Subsystem
低功率混频器/限制器/ RSSI 3 V接收器IF子系统

电信集成电路 电信电路 光电二极管 限制器 PC
文件: 总16页 (文件大小:326K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Power Mixer/Limiter/RSSI  
3 V Receiver IF Subsystem  
AD608  
The RF and local oscillator (LO) bandwidths both exceed  
500 MHz. In a typical IF application, the AD608 can accept the  
output of a 240 MHz surface acoustic wave (SAW) filter and down-  
convert it to a nominal 10.7 MHz IF with a conversion gain of  
24 dB (ZIF = 165 Ω). The AD608 logarithmic/limiting amplifier  
section handles any IF from low frequency (LF) up to 30 MHz.  
FEATURES  
Mixer  
−15 dBm, 1 dB compression point  
−5 dBm IP3  
24 dB conversion gain  
>500 MHz input bandwidth  
Logarithmic/limiting amplifier  
80 dB RSSI range  
3ꢀ phase stability over 80 dB range  
Low power  
The mixer is a doubly balanced gilbert-cell mixer and operates  
linearly for RF inputs spanning −95 dBm to −15 dBm. It has a  
nominal −5 dBm third-order intercept. An on-board LO pre-  
amplifier requires only −16 dBm of LO drive. The current output  
of the mixer drives a reverse-terminated, industry-standard  
10.7 MHz, 330 Ω filter.  
21 mW at 3 V power consumption  
CMOS-compatible power-down to 300 μW typical  
200 ns enable/disable time  
The nominal logarithmic scaling is such that the output is +0.2 V  
for a sinusoidal input to the IF amplifier of −75 dBm and +1.8 V  
at an input of +5 dBm; over this range, the logarithmic confor-  
mance is typically 1 dB. The logarithmic slope is proportional  
to the supply voltage. A feedback loop automatically nulls the  
input offset of the first stage down to the submicrovolt level.  
APPLICATIONS  
PHS, GSM, TDMA, FM, or PM receivers  
Battery-powered instrumentation  
Base station RSSI measurements  
The AD608 limiter output provides a hard-limited signal output  
at 400 mV p-p. The voltage gain of the limiting amplifier to this  
output is more than 100 dB. Transition times are 11 ns and the  
phase is stable to within 3ꢀ at 10.7 MHz for signals from −75 dBm  
to +5 dBm.  
GENERAL DESCRIPTION  
The AD608 provides a low power, low distortion, low noise mixer  
as well as a complete, monolithic logarithmic/limiting amplifier  
that uses a successive-detection technique. In addition, the AD608  
provides both a high speed received signal strength indicator  
(RSSI) output with 80 dB dynamic range and a hard-limited  
output. The RSSI output is from a two-pole postdemodulation  
low-pass filter and provides a loadable output voltage of 0.2 V to  
1.8 V. The AD608 operates from a single 2.7 V to 5.5 V supply  
at a typical power level of 21 mW at 3 V.  
The AD608 is enabled by a CMOS logic-level voltage input,  
with a response time of 200 ns. When disabled, the standby  
power is reduced to 300 μW within 400 ns.  
The AD608 is specified for the industrial temperature range of  
−25ꢀC to +85ꢀC for 2.7 V to 5.5 V supplies and −40ꢀC to +85ꢀC for  
3.0 V to 5.5 V supplies. This device comes in a 16-lead plastic SOIC.  
FUNCTIONAL BLOCK DIAGRAM  
3dB NOMINAL  
INSERTION LOSS  
110dB LIMITER GAIN  
90dB RSSI  
24dB MIXER GAIN  
RSSI OUTPUT  
20mV/dB  
RSSI  
7 FULL-WAVE  
IF INPUT  
11  
12  
±6mA MAX OUTPUT  
(±890mV INTO 165)  
RECTIFIER CELLS  
–75dBm TO  
0.2V TO 1.8V  
2
+15dBm  
2MHz  
LPF  
5
6
RFHI  
COM3  
VPS2  
MIXER  
10.7MHz  
BAND-PASS  
FILTER  
IFHI  
RF INPUT  
MXOP  
–95dBm TO  
7
8
9
14 +2.7V TO 5.5V  
1
–15dBm  
BPF  
DRIVER  
LMOP  
5-STAGE IF AMPLIFIER  
(16dB PER STAGE)  
330Ω  
15 LIMITER  
OUTPUT  
400mV p-p  
330Ω  
RFLO  
10nF  
LO  
PREAMP  
VMID  
FINAL  
LIMITER  
10  
13  
+
IFLO  
100nF  
100Ω  
MIDSUPPLY  
IF BIAS  
FDBK  
18nF  
±50µA  
BIAS  
AD608  
VPS1 COM1  
LOHI COM2  
4
PRUP  
1
2
3
16  
2.7V TO  
5.5V  
LO INPUT  
–16dBm  
CMOS LOGIC  
INPUT  
1
–15dBm = ±56mV MAXIMUM FOR LINEAR OPERATION.  
39.76µV RMS TO 397.6mV RMS FOR ±1dB RSSI ACCURACY.  
2
Figure 1.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©1996–2009 Analog Devices, Inc. All rights reserved.  
 
AD608  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Mixer...............................................................................................9  
Mixer Gain .....................................................................................9  
IF Filter Terminations................................................................ 10  
The Logarithmic IF Amplifier.................................................. 10  
Offset Feedback Loop................................................................ 10  
RSSI Output ................................................................................ 11  
Digitizing the RSSI..................................................................... 11  
Power Consumption .................................................................. 11  
Troubleshooting.......................................................................... 11  
Applications Information.............................................................. 12  
Outline Dimensions....................................................................... 13  
Ordering Guide .......................................................................... 13  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Typical Performance Characteristics ............................................. 6  
Test Circuits....................................................................................... 8  
Theory of Operation ........................................................................ 9  
REVISION HISTORY  
2/09—Rev. B to Rev. C  
Updated Format..................................................................Universal  
Reorganized Layout............................................................Universal  
Change to General Description Section........................................ 1  
Changes to DC Level Parameter, Operating Range Parameter,  
and TMIN to TMAX Parameter, Table 1 .......................................... 3  
Added Typical Performance Characteristics Heading ................ 6  
Added Test Circuits Heading.......................................................... 8  
Changes to Figure 17 and Figure 19............................................... 8  
Change to Figure 22 ......................................................................... 9  
Changes to Table 5............................................................................ 9  
Updated Outline Dimensions....................................................... 13  
Changes to Ordering Guide .......................................................... 13  
Rev. C | Page 2 of 16  
 
AD608  
SPECIFICATIONS  
TA = 25ꢀC, supply = 3 V, dBm is referred to 50 Ω, unless otherwise noted.  
Table 1.  
Parameter  
Conditions1  
Min  
Typ  
Max  
Unit  
MIXER PERFORMANCE  
RF and LO Frequency Range  
LO Power  
Conversion Gain  
Noise Figure  
500  
−16  
24  
MHz  
dBm  
dB  
Input terminated in 50 Ω  
Driving doubly terminated 330 Ω IF filter, ZIF = 165 Ω  
Matched input, fRF = 100 MHz  
19  
28  
11  
dB  
Matched input, fRF = 240 MHz  
16  
dB  
1 dB Compression Point  
Third-Order Intercept  
Input Resistance  
Input Capacitance  
LIMITER PERFORMANCE  
Gain  
Input terminated in 50 Ω  
fRF = 240 MHz and 240.02 MHz, fLO = 229.3 MHz  
fRF = 100 MHz (see Table 5)  
−15  
−5  
1.9  
3
dBm  
dBm  
kΩ  
fRF = 100 MHz (see Table 5)  
pF  
Full temperature and supply range  
3° rms phase jitter at 10.7 MHz  
280 kHz IF bandwidth  
110  
−75  
dB  
dBm  
Limiting Threshold  
Input Resistance  
Input Capacitance  
Phase Variation  
DC Level  
Output Level  
10  
3
3
kΩ  
pF  
Degrees  
V
mV p-p  
ns  
Ω
−75 dBm to +5 dBm IF input signal at 10.7 MHz  
Center of output swing (VPOS – 1 V)  
Limiter output driving 5 kΩ load  
Driving a 5 pF load  
2
400  
11  
200  
Rise and Fall Times  
Output Impedance  
RSSI PERFORMANCE  
Nominal Slope  
Nominal Intercept  
Minimum RSSI Voltage  
Maximum RSSI Voltage  
RSSI Voltage Intercept  
Logarithmic Linearity Error  
RSSI Response Time  
Output Impedance  
POWER-DOWN INTERFACE  
Logic Threshold  
At 10.7 MHz  
At VPOS = 3 V; proportional to VPOS  
17.27  
1.57  
20  
23.27  
1.82  
mV/dB  
dBm  
V
V
V
dB  
ns  
Ω
−85  
0.2  
1.8  
−75 dBm input signal  
+5 dBm input signal  
0 dBm input signal  
−75 dBm to +5 dBm input signal at IFHI  
90% RF to 50% RSSI  
1
200  
250  
At midscale  
System active on logic high  
For logic high  
Active limiter output  
To 200 μA supply current  
1.5  
75  
200  
400  
100  
V
Input Current  
mA  
ns  
ns  
μA  
Power-Up Response Time  
Power-Down Response Time  
Power-Down Current  
POWER SUPPLY  
Operating Range  
−25°C to +85°C  
−40°C to +85°C  
VPOS = 3 V  
2.7  
3.0  
5.5  
5.5  
V
V
mA  
Powered Up Current  
OPERATING TEMPERATURE  
TMIN to TMAX  
7.3  
VPOS = 2.7 V to 5.5 V  
VPOS = 3.0 V to 5.5 V  
−25  
−40  
+85  
+85  
°C  
°C  
1 VPOS is used to refer collectively to the VPS1 and VPS2 pins.  
Rev. C | Page 3 of 16  
 
 
AD608  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
Supply Voltages VPS1, VPS2  
Internal Power Dissipation  
Temperature Range  
Storage Temperature Range  
Lead Temperature (Soldering 60 sec)  
+6 V  
600 mW  
−40°C to +85°C  
−65°C to +150°C  
300°C  
Table 3.  
Package Type  
θJA  
Unit  
16-Lead SOIC  
110  
°C/W  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. C | Page 4 of 16  
 
AD608  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PRUP  
VPS1  
COM1  
LOHI  
1
2
3
4
5
6
7
8
16  
15 LMOP  
VPS2  
14  
AD608  
COM2  
RFHI  
13 FDBK  
12 COM3  
11 RSSI  
10 IFLO  
TOP VIEW  
(Not to Scale)  
RFLO  
MXOP  
VMID  
9
IFHI  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
VPS11  
COM1  
LOHI  
COM2  
RFHI  
Description  
1
2
3
4
5
6
Positive Supply Input  
Common  
Local Oscillator Input Connection  
Common  
RF Input, Noninverting  
RF Input, Inverting  
RFLO  
7
8
9
10  
11  
12  
13  
14  
15  
16  
MXOP  
VMID  
IFHI  
IFLO  
RSSI  
COM3  
FDBK  
VPS21  
LMOP  
PRUP  
Mixer Output  
Midpoint Supply Bias Output  
IF Input, Noninverting  
IF Input, Inverting  
Received Signal Strength Indicator Output  
Output Common  
Offset-Null Feedback Loop Output  
Limiter Positive Supply Input  
Limiter Output  
Power-Up  
1 VPOS is used to refer collectively to the VPS1 and VPS2 pins in this data sheet.  
Rev. C | Page 5 of 16  
 
AD608  
TYPICAL PERFORMANCE CHARACTERISTICS  
25.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
+85°C  
+25°C  
–25°C  
24.5  
24.0  
23.5  
23.0  
22.5  
22.0  
0
50  
100 150 200 250 300 350 400 450 500  
RF FREQUENCY (MHz)  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
10  
INPUT POWER (dBm)  
Figure 6. IF RSSI Output vs. Input Power and Temperature,  
3 V Supply (See Figure 15)  
Figure 3. Mixer Conversion Gain vs. RF Frequency  
4
3
2
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
1
3V  
0
5V  
–1  
–2  
–3  
–4  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
10  
0
10  
20  
30  
40  
50  
60  
70  
80  
INPUT POWER (dBm)  
IF FREQUENCY (MHz)  
Figure 7. RSSI Error vs. Input Power  
(See Figure 15)  
Figure 4. Mixer IF Port Bandwidth  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
800mV/DIV  
100ns/DIV  
5V  
1V/DIV  
3V  
100ns/DIV  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
10  
INPUT POWER AT IFHI (dBm)  
Figure 5. IF RSSI Output vs. Input Power at IFHI and Supply Voltage,  
Ambient Temperature (See Figure 15)  
Figure 8. RSSI Power-Up Response  
(See Figure 19)  
Rev. C | Page 6 of 16  
 
 
 
 
 
AD608  
5
4
200mV/DIV  
3
2
1
0
–1  
–2  
–3  
–4  
–5  
800mV/DIV  
50ns/DIV  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
10  
INPUT POWER AT IFHI (dBm)  
Figure 9. RSSI Pulse Response/RSSI Rise Time  
(See Figure 16)  
Figure 12. Limiter Phase Performance vs. Input Power at IFHI  
(See Figure 21)  
10  
9
8
7
6
5
4
3
2
1
0
60mV/DIV  
20ns/DIV  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
10  
INPUT POWER AT IFHI (dBm)  
Figure 10. Limiter Rise and Fall Times  
(See Figure 20)  
Figure 13. Limiter RMS Jitter Performance vs. Input Power at IFHI  
(See Figure 21)  
100ns/DIV  
220mV/DIV  
1V/DIV  
100ns/DIV  
Figure 11. Limiter Power-Up Response Time  
(See Figure 17)  
Rev. C | Page 7 of 16  
 
 
 
AD608  
TEST CIRCUITS  
PRUP INPUT  
U1A  
TRIGGER  
U1B  
47k  
4.7k  
1
2
3
4
5
6
7
8
16  
VPS1  
PRUP  
0.1µF  
VPOS  
47kΩ  
COM1  
LMOP 15  
NC  
1nF  
1nF  
18nF  
18nF  
14  
13  
12  
LO INPUT  
LOHI  
COM2  
RFHI  
VPS2  
FDBK  
COM3  
1
2
3
4
5
6
7
8
VPS1  
PRUP  
16  
15  
14  
13  
0.1µF  
0.1µF  
VPOS  
51.1  
LMOP OUTPUT  
RSSI OUTPUT  
COM1  
LMOP  
VPS2  
FDBK  
COM3  
RSSI  
IFLO  
IFHI  
0.1µF  
LOHI  
100  
RF INPUT  
51.1Ω  
51.1Ω  
RFLO  
MXOP  
VMID  
RSSI 11  
NC  
COM2  
RFHI  
10nF  
1nF  
1nF  
18nF  
IFLO  
10  
9
12  
11  
10  
9
100Ω  
1nF  
51.1Ω  
IFHI  
RFLO  
MXOP  
VMID  
10nF  
AD608  
332  
332Ω  
332  
0.1µF  
0.1µF  
0.1µF  
AD608  
301  
301Ω  
IF OUTPUT  
332Ω  
IF INPUT  
54.9  
0.1µF  
54.9Ω  
NC = NO CONNECT  
U1 – 74HC00  
Figure 14. IF Test Board Schematic  
Figure 18. Mixer Test Board Schematic  
AGILENT  
HP54120A  
DIGITAL  
OSCILLOSCOPE  
TEKRONIX  
P6201  
FLUKE 6082A  
SYNTHESIZER  
IF TEST BOARD  
DIGITAL  
MULTIMETER  
(DMM)  
IF TEST BOARD  
FLUKE 6082A  
SYNTHESIZER  
FET  
PROBE  
IFHI  
RSSI  
CH 1  
CH 2  
10.7MHz  
0dBm  
IFHI  
RSSI  
VPOS  
DMM  
PRUP  
VPOS  
10.7MHz  
AGILENT  
HP34401A  
DC POWER  
SUPPLY  
(DCPS)  
DCPS  
3V  
DCPS 3V  
AGILENT  
HP3366A  
AGILENT  
HP3366A  
Figure 15. Test Circuit for IF RSSI Output vs. Input Power at IFHI and Supply  
Voltage, Ambient Temperature (Figure 5); IF RSSI Output vs. Input Power and  
Temperature, 3 V Supply (Figure 6); and RSSI Error vs. Input Power (Figure 7)  
Figure 19. Test Circuit for RSSI Power-Up Response (Figure 8)  
AGILENT  
HP54120A  
TEKRONIX  
P6201  
FLUKE 6082A  
SYNTHESIZER  
IF TEST BOARD  
IFHI LMOP  
VPOS  
CH 1  
TEKRONIX  
P6201  
FLUKE 6082A  
SYNTHESIZER  
IF TEST BOARD  
IFHI RSSI  
FET  
PROBE  
DIGITAL  
OSCILLOSCOPE  
FET  
PROBE  
CH 2  
COUPLER  
10.7MHz  
0dBm  
10.7MHz  
0dBm  
MCL  
ZDC-20-1  
VPOS  
AGILENT  
HP54120A  
DCPS 3V  
DCPS 3V  
DIGITAL  
AGILENT  
HP3366A  
AGILENT  
HP3366A  
OSCILLOSCOPE  
Figure 16. Test Circuit for RSSI Pulse Response/RSSI Rise Time (Figure 9)  
Figure 20. Test Circuit for Limiter Rise and Fall Times (Figure 10)  
TEKTRONIX  
AGILENT  
HP54120A  
FLUKE 6082A  
MCL  
P6201  
IF TEST BOARD  
IFHI RSSI  
SYNTHESIZER ZDC-20-1  
TEKRONIX  
P6201  
DIGITAL  
FLUKE 6082A  
SYNTHESIZER  
FET  
PROBE  
IF TEST BOARD  
COUPLER  
10.7MHz  
OSCILLOSCOPE  
AGILENT  
HP8447A  
FET  
PROBE  
IFHI  
LMOP  
CH 1  
CH 2  
AGILENT  
HP8494A  
HP8495A  
10.7MHz  
0dBm  
DCPS  
3V  
BPF  
CH 1  
TRIG  
PRUP  
280kHz BW  
10.7MHz CF  
AGILENT  
HP3366A  
VPOS  
DCPS 3V  
TOKO SK107MK1-A0-10  
AGILENT  
HP54120A  
AGILENT  
HP3366A  
DIGITAL  
OSCILLOSCOPE  
Figure 17. Test Circuit for Limiter Power-Up Response Time (Figure 11)  
Figure 21. Test Circuit for Limiter Phase Performance vs. Input Power at IFHI  
(Figure 12) and Limiter RMS Jitter Performance vs. Input Power at IFHI (Figure 13)  
Rev. C | Page 8 of 16  
 
 
 
 
AD608  
THEORY OF OPERATION  
The AD608 consists of a mixer followed by a logarithmic IF  
strip with RSSI and hard-limited outputs (see Figure 22).  
MIXER GAIN  
The conversion gain of the mixer is the product of its trans-  
conductance and the impedance seen at Pin MXOP. For a 330 Ω  
parallel-terminated filter at 10.7 MHz, the load impedance is  
165 Ω, the gain is 24 dB, and the output is 15.85 × 56.2 mV (or  
891 mV) centered on the midpoint of the supply voltage. For  
other load impedances, the expression for the gain in decibels is  
MIXER  
The mixer is a doubly balanced, modified gilbert-cell mixer. Its  
maximum input level for linear operation is either 56.2 mV,  
regardless of the impedance across the mixer inputs, or −15 dBm  
for a 50 Ω input termination. The input impedance of the mixer  
can be modeled as a simple parallel RC network; the resistance  
and capacitance values vs. frequency are listed in Table 5. The  
bandwidth from the RF input to the IF output at the MXOP pin  
is −1 dB at 30 MHz and then rapidly decreases as frequency  
increases (see Figure 4).  
G
dB = 20 log10(0.0961 RL)  
where:  
G
dB is the gain in decibels.  
RL is the load impedance at Pin MXOP.  
The gain of the mixer can be increased or decreased by changing  
RL. The limitations on the gain are the 6 mA maximum output  
current at MXOP and the maximum allowable voltage swing at  
Pin MXOP, which is 1.0 V for a 3 V supply or 5 V supply.  
3dB NOMINAL  
110dB LIMITER GAIN  
90dB RSSI  
24dB MIXER GAIN  
INSERTION LOSS  
RSSI OUTPUT  
20mV/dB  
RSSI  
7 FULL-WAVE  
IF INPUT  
11  
12  
±6mA MAX OUTPUT  
RECTIFIER CELLS  
–75dBm TO  
(±890mV INTO 165)  
0.2V TO 1.8V  
2
+15dBm  
2MHz  
LPF  
5
6
RFHI  
COM3  
VPS2  
MIXER  
10.7MHz  
BAND-PASS  
FILTER  
IFHI  
RF INPUT  
MXOP  
–95dBm TO  
7
8
9
14 2.7V TO 5.5V  
1
–15dBm  
BPF  
DRIVER  
LMOP  
5-STAGE IF AMPLIFIER  
(16dB PER STAGE)  
330Ω  
15 LIMITER  
OUTPUT  
330Ω  
RFLO  
10nF  
LO  
PREAMP  
VMID  
400mV p-p  
FINAL  
LIMITER  
10  
13  
+
IFLO  
100nF  
100Ω  
MIDSUPPLY  
IF BIAS  
FDBK  
18nF  
±50µA  
BIAS  
AD608  
LOHI  
VPS1 COM1  
COM2  
4
PRUP  
1
2
3
16  
2.7V TO  
5.5V  
LO INPUT  
–16dBm  
CMOS LOGIC  
INPUT  
1
–15dBm = ±56mV MAXIMUM FOR LINEAR OPERATION.  
39.76µV RMS TO 397.6mV RMS FOR ±1dB RSSI ACCURACY.  
2
Figure 22. Functional Block Diagram  
Table 5. Mixer Input Impedance vs. Frequency  
Frequency (MHz)  
Resistance (Ω)  
Capacitance (pF)  
45  
70  
2800  
2600  
1900  
1200  
760  
3.1  
3.1  
3.0  
3.1  
3.2  
3.4  
3.6  
100  
200  
300  
400  
500  
520  
330  
Rev. C | Page 9 of 16  
 
 
 
AD608  
limiter output drive is 200 mV (400 mV p-p) into a 5 kΩ load.  
In the absence of an input signal, the limiter output limits noise  
fluctuations, producing an output that continues to swing  
400 mV p-p, but with random zero crossings.  
IF FILTER TERMINATIONS  
The AD608 was designed to drive a parallel-terminated 10.7 MHz  
band-pass filter (BPF) with a 330 Ω impedance. With a 330 Ω  
parallel-terminated filter, Pin MXOP sees a 165 Ω termination,  
and the gain is nominally 24 dB. Other filter impedances and  
gains can be accommodated by either accepting an increase or  
decrease in gain in proportion to the filter impedance or by  
keeping the impedance seen by MXOP at a nominal 165 Ω (by  
using resistive dividers or matching networks). Figure 23 shows a  
simple resistive voltage divider for matching an assortment of  
filter impedances, and Table 6 lists component values.  
OFFSET FEEDBACK LOOP  
Because the logarithmic amplifier is dc-coupled and has more  
than 110 dB of gain from the input to the limiter output, a dc  
offset at its input of even a few microvolts causes the output to  
saturate. Therefore, the AD608 uses a low frequency feedback  
loop to null the input offset. Referring to Figure 23, the loop  
consists of a current source driven by the limiter, which sends  
50 μA current pulses to Pin FDBK. The pulses are low-pass filtered  
by a π-network consisting of C1, R4, and C5. The smoothed dc  
voltage that results is subtracted from the input to the IF amplifier  
at Pin IFLO. Because this is a high gain amplifier with a feedback  
loop, care should be taken in layout and component values to  
prevent oscillation. Recommended values for the common IFs  
of 450 kHz, 455 kHz, 6.5 MHz, and 10.7 MHz are listed in Table 6.  
THE LOGARITHMIC IF AMPLIFIER  
The logarithmic IF amplifier consists of five amplifier stages  
of 16 dB gain each, plus a final limiter. The IF bandwidth is  
30 MHz (−1 dB), and the limiting gain is 110 dB. The phase  
skew is 3ꢀ from −75 dBm to +5 dBm (approximately 111 μV p-p  
to 1.1 V p-p). The limiter output impedance is 200 Ω, and the  
12dB NOMINAL  
110dB LIMITER GAIN  
90dB RSSI  
24dB MIXER GAIN  
INSERTION LOSS  
(ASSUMES 6dB IN FILTER)  
7 FULL-WAVE  
RECTIFIER CELLS  
2MHz  
BAND-PASS  
FILTER  
11  
RSSI  
5
6
RFHI  
COM3  
VPS2  
LPF  
12  
14  
R2  
MIXER  
IFHI  
MXOP  
7
8
9
BPF  
DRIVER  
5-STAGE IF AMPLIFIER  
(16dB PER STAGE)  
R3  
15 LMOP  
R1  
RFLO  
C5  
R4  
LO  
VMID  
FINAL  
LIMITER  
10  
13  
PREAMP  
+
IFLO  
100nF  
MIDSUPPLY  
IF BIAS  
C1  
FDBK  
±50µA  
BIAS  
AD608  
VPS1 COM1  
LOHI COM2  
4 16  
PRUP  
1
2
3
5V  
47kΩ  
C1  
1µF  
C2  
100pF  
LO INPUT  
–16dBm  
CMOS LOGIC  
INPUT  
Figure 23. Applications Diagram for Common IFs and Filter Impedances  
Table 6. AD608 Filter Termination and Offset-Null Feedback Loop Resistor and Capacitor Values for Common IFs  
Filter Termination Resistor  
Offset-Null  
Feedback Loop Values  
Values1 for 24 dB of Mixer Gain  
IF  
Filter Impedance  
1500 Ω  
1500 Ω  
1000 Ω  
330 Ω  
R1  
R2  
R3  
R4  
C1  
C5  
450 kHz2  
455 kHz  
6.5 MHz  
10.7 MHz  
174 Ω  
174 Ω  
178 Ω  
330 Ω  
1330 Ω  
1330 Ω  
825 Ω  
0 Ω  
1500 Ω  
1500 Ω  
1000 Ω  
330 Ω  
1000 Ω  
1000 Ω  
100 Ω  
100 Ω  
200 nF  
200 nF  
18 nF  
18 nF  
100 nF  
100 nF  
10 nF  
10 nF  
1 Resistor values were calculated so that R1 + R2 = ZFILTER and R1||(R2 + ZFILTER) = 165 Ω.  
2 Operation at IFs of 450 kHz and 455 kHz requires use of an external low-pass filter with at least one pole at a cutoff frequency of 90 kHz (a decade below the ripple at 900 kHz).  
Rev. C | Page 10 of 16  
 
 
 
AD608  
supply as a reference, but also causes the RSSI output and the  
ADC output to track over power supply variations, reducing  
system errors and component costs.  
RSSI OUTPUT  
The logarithmic amplifier uses a successive-detection architecture.  
Each of the five stages has a full-wave detector; two additional  
high level detectors are driven by attenuators at the input to the  
limiting amplifiers, for a total of seven detector stages. Because  
each detector is a full-wave rectifier, the ripple component in  
the resulting dc is at twice the IF. The AD608 low-pass filter has  
a 2 MHz cutoff frequency, which is one decade below the 21.4 MHz  
ripple that results from a 10.7 MHz IF.  
POWER CONSUMPTION  
The total power supply current of the AD608 is a nominal  
7.3 mA. The power is signal dependent, partly because the RSSI  
output increases (the current is increased by 200 μA at an RSSI  
output of +1.8 V), but mostly due to the IF consumption of the  
band-pass filter when driven to 891 mV, assuming a 4 dB loss  
in this filter and a peak input of +5 dBm to the log-IF amp. In  
addition, the power is temperature dependent because the  
biasing system used in the AD608 is proportional to the  
absolute temperature (PTAT).  
For operation at lower IFs, such as 450 kHz or 455 kHz, the  
AD608 requires an external low-pass filter with a single pole  
located at 90 kHz, a decade below the 900 kHz ripple frequency  
for these IFs. The RSSI range is from the noise level at approx-  
imately −80 dBm to overload at +15 dBm and is specified for  
1 dB accuracy from −75 dBm to +5 dBm. The +15 dBm  
maximum IF input is provided to accommodate band-pass  
filters of lower insertion loss than the nominal 4 dB for  
10.7 MHz ceramic filters.  
TROUBLESHOOTING  
The most common causes of problems with the AD608 are  
incorrect component values for the offset feedback loop, poor  
board layout, and pickup of radio frequency interference (RFI),  
which all cause the AD608 to lose the low end (typically below  
−65 dBm) of its RSSI output and cause the limiter to swing  
randomly. Both poor board layout and incorrect component  
values in the offset feedback loop can cause low level oscillations.  
Pickup of RFI can be caused by improper layout and shielding  
of the circuit.  
DIGITIZING THE RSSI  
In typical cellular radio applications, the RSSI output of the  
AD608 is digitized by an analog-to-digital converter (ADC).  
The RSSI output of the AD608 is proportional to the power  
supply voltage, which not only allows the ADC to use the  
Rev. C | Page 11 of 16  
 
AD608  
APPLICATIONS INFORMATION  
Figure 24 shows the AD608 configured for operation in a digital  
system at a 10.7 MHz IF. The input and output impedance of the  
filter are parallel terminated using 330 Ω resistors, and the  
conversion gain is 24 dB. The RF port is terminated in 50 Ω; in  
a typical application, the input is matched to a SAW filter using  
the impedance data provided in Table 5.  
Figure 25 shows the AD608 configured for narrow-band FM  
operation at a 450 kHz or 455 kHz with an external discriminator.  
The IF filter has 1500 Ω input and output impedances—the  
input is matched via a resistive divider, and the output is  
terminated in 1500 Ω. The discriminator requires a 1 V p-p  
drive from a 1 kΩ source impedance, which in Figure 25 is  
provided by a Class A amplifier with a gain of 2.5.  
VPOS  
SUPPLY  
2.7V TO 5.5V  
C1  
1µF  
1
2
3
4
5
6
7
VPS1  
PRUP 16  
R4  
POWER-UP  
3V CMOS  
47k  
LO INPUT  
–16dBm  
C2  
COM1  
LOHI  
LMOP 15  
VPS2 14  
FDBK 13  
COM3 12  
RSSI 11  
IFLO 10  
100pF  
LIMO  
LIMITER  
OUTPUT  
VPOS –1V  
±200mV  
R5  
51.1Ω  
COM2  
RFHI  
+
C7  
R3  
18nF  
100Ω  
C3  
100pF  
RF INPUT  
RFLO  
MXOP  
–95dBm  
TO  
RSSI OUTPUT  
+0.2V TO +1.8V  
(20mV/dB)  
C4  
100pF  
R6  
–15dBm  
51.1Ω  
8
VMID  
IFHI  
9
+
C6  
10nF  
AD608  
10.7MHz BPF Z = 330Ω  
BIAS POINT  
AT VPOS/2  
OFFSET-CONTROL  
LOOP FILTER  
R2  
330Ω  
R1  
330Ω  
+
C5  
0.1µF  
BPF REVERSE  
TERMINATION  
BPF  
TEMINATION  
IF BIAS POINT  
DECOUPLING  
Figure 24. Application at 10.7 MHz (the Band-Pass Filter Can Be a Toko SK107 or Murata SFE10.7)  
JUMPER  
PRUP  
R16  
+5V  
GND  
R13  
47kΩ  
R14  
402Ω  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VPS1  
PRUP  
LMOP  
8.66kΩ  
C1  
C5 0.1µF  
R10  
3.3kΩ  
F2  
0.1µF  
COM1  
Q1  
LOHI  
AUDIO  
C8 0.1µF  
R1  
C2  
LOHI  
COM2  
RFHI  
VPS2  
FDBK  
COM3  
RSSI  
IFLO  
IFHI  
R8  
R12  
1kΩ  
C11  
0.1µF  
R15  
24.9kΩ  
51.1Ω  
1nF  
CR1  
CR2  
1kΩ  
R11  
3.3kΩ  
C10  
0.01µF  
C9  
0.2µF  
R9  
1kΩ  
R6  
1kΩ  
RFHI  
R5  
200Ω  
R2  
51.1Ω  
C3  
1nF  
RFLO  
MXOP  
VMID  
RSSI  
C6 0.1µF  
C4  
1nF  
R3  
374Ω  
AD608  
F1: TOKO HCFM2–455B  
F2: MURATA CFY455S  
CR1, CR2: 1N60  
R7  
1130Ω  
R4  
1.5kΩ  
F1  
Q1: 2N3906  
C7  
0.1µF  
Figure 25. Narrow-Band FM Application at 450 kHz or 455 kHz  
Rev. C | Page 12 of 16  
 
 
 
AD608  
OUTLINE DIMENSIONS  
10.00 (0.3937)  
9.80 (0.3858)  
9
8
16  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AC  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 26. 16-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-16)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
AD608AR  
AD608AR-REEL  
AD608ARZ1  
AD608ARZ-RL1  
EVAL-AD608EBZ1  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
16-Lead Standard Small Outline Package [SOIC_N]  
16-Lead Standard Small Outline Package [SOIC_N]  
16-Lead Standard Small Outline Package [SOIC_N]  
16-Lead Standard Small Outline Package [SOIC_N]  
Evaluation Board  
R-16  
R-16  
R-16  
R-16  
1 Z = RoHS Compliant Part.  
Rev. C | Page 13 of 16  
 
AD608  
NOTES  
Rev. C | Page 14 of 16  
AD608  
NOTES  
Rev. C | Page 15 of 16  
AD608  
NOTES  
©1996–2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07886-0-2/09(C)  
Rev. C | Page 16 of 16  

相关型号:

AD608ARZ-RL

Low Power Mixer/Limiter/RSSI 3 V Receiver IF Subsystem
ADI

AD60F

Fast Asymmetric Thyristors
ETC

AD60F08KAC

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|60A I(T)
ETC

AD60F08KAF

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|60A I(T)
ETC

AD60F08KBC

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|60A I(T)
ETC

AD60F08KBF

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|60A I(T)
ETC

AD60F08KCC

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|60A I(T)
ETC

AD60F08KCF

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|60A I(T)
ETC

AD60F08KDC

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|60A I(T)
ETC

AD60F08KDF

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|60A I(T)
ETC

AD60F08KEC

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|60A I(T)
ETC

AD60F08KEF

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|60A I(T)
ETC