AD608AR [ADI]

Low Power Mixer/Limiter/RSSI 3 V Receiver IF Subsystem; 低功率混频器/限制器/ RSSI 3 V接收器IF子系统
AD608AR
型号: AD608AR
厂家: ADI    ADI
描述:

Low Power Mixer/Limiter/RSSI 3 V Receiver IF Subsystem
低功率混频器/限制器/ RSSI 3 V接收器IF子系统

限制器
文件: 总12页 (文件大小:199K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Power Mixer/Limiter/RSSI  
3 V Receiver IF Subsystem  
a
AD608  
T he RF and LO bandwidths both exceed 500 MHz. In a typical  
IF application, the AD608 will accept the output of a 240 MHz  
SAW filter and downconvert it to a nominal 10.7 MHz IF with  
a conversion gain of 24 dB (ZIF = 165 ). T he AD608s loga-  
rithmic/limiting amplifier section handles any IF from LF to as  
high as 30 MHz.  
FEATURES  
Mixer  
–15 dBm 1 dB Com pression Point  
–5 dBm IP3  
24 dB Conversion Gain  
>500 MHz Input Bandw idth  
Logarithm ic/ Lim iting Am plifier  
80 dB RSSI Range  
؎3؇ Phase Stability over 80 dB Range  
Low Pow er  
21 m W at 3 V Pow er Consum ption  
CMOS-Com patible Pow er-Dow n to 300 W typ  
200 ns Enable/ Disable Tim e  
T he mixer is a doubly-balanced “Gilbert-Cell” type and oper-  
ates linearly for RF inputs spanning –95 dBm to –15 dBm. It  
has a nominal –5 dBm third-order intercept. An onboard LO  
preamplifier requires only –16 dBm of LO drive. T he mixer’s  
current output drives a reverse-terminated, industry-standard  
10.7 MHz 330 filter.  
T he nominal logarithmic scaling is such that the output is  
+0.2 V for a sinusoidal input to the IF amplifier of –75 dBm  
and +1.8 V at an input of +5 dBm; over this range the logarith-  
mic conformance is typically ±1 dB. T he logarithmic slope is  
proportional to the supply voltage. A feedback loop automati-  
cally nulls the input offset of the first stage down to the sub-  
microvolt level.  
APPLICATIONS  
PHS, GSM, TDMA, FM, or PM Receivers  
Battery-Pow ered Instrum entation  
Base Station RSSI Measurem ent  
T he AD608s limiter output provides a hard-limited signal out-  
put at 400 mV p-p. T he voltage gain of the limiting amplifier to  
this output is more than 100 dB. T ransition times are 11 ns and  
the phase is stable to within ±3° at 10.7 MHz for signals from  
–75 dBm to +5 dBm.  
GENERAL D ESCRIP TIO N  
T he AD608 provides both a low power, low distortion, low  
noise mixer and a complete, monolithic logarithmic/limiting  
amplifier using a “successive-detection” technique. It provides  
both a high speed RSSI (Received Signal Strength Indicator)  
output with 80 dB dynamic range and a hard-limited output.  
T he RSSI output is from a two-pole post-demodulation low-  
pass filter and provides a loadable output voltage of +0.2 V to  
+1.8 V. T he AD608 operates from a single 2.7 V to 5.5 V sup-  
ply at a typical power level of 21 mW at 3 V.  
T he AD608 is enabled by a CMOS logic-level voltage input,  
with a response time of 200 ns. When disabled, the standby  
power is reduced to 300 µW within 400 ns.  
T he AD608 is specified for the industrial temperature range of  
–25°C to +85°C for 2.7 V to 5.5 V supplies and –40°C to +85°C  
for 4.5 V to 5.5 V supplies. It comes in a 16-pin plastic SOIC.  
FUNCTIO NAL BLO CK D IAGRAM  
110dB LIMITER GAIN  
90dB RSSI  
24dB MIXER GAIN  
3dB NOMINAL  
INSERTION LOSS  
RSSI OUTPUT  
20mV/dB  
0.2V TO 1.8V  
RSSI  
IF INPUT  
7 FULL-WAVE  
RECTIFIER CELLS  
±6mA MAX OUTPUT  
(±890mV INTO 165)  
11  
12  
14  
15  
–75dBm TO  
2
+15dBm  
RFHI  
5
6
2MHz  
LPF  
COM3  
VPS2  
MIXER  
10.7MHz  
BANDPASS  
FILTER  
IFHI  
RF INPUT  
–95 TO  
MXOP  
7
8
+2.7V TO 5.5V  
9
1
–15dBm  
BPF  
DRIVER  
LMOP  
5-STAGE IF AMPLIFIER  
(16dB PER STAGE)  
330Ω  
LIMITER  
OUTPUT  
400mVp-p  
330Ω  
RFLO  
10nF  
LO  
PREAMP  
VMID  
FINAL  
LIMITER  
10  
13  
IFLO  
100nF  
100Ω  
MID-SUPPLY  
IF BIAS  
LOHI  
FDBK  
18nF  
±50µA  
BIAS  
AD608  
COM2  
VPS1 COM1  
PRUP  
16  
1
2
4
3
1
NOTES:  
–15dBm = ±56mV MAX FOR LINEAR OPERATION  
+2.7V TO  
5.5V  
LO INPUT  
–16dBm  
CMOS LOGIC  
INPUT  
2
39.76µV RMS TO 397.6mV RMS FOR ±1dB RSSI  
ACCURACY  
REV. B  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
© Analog Devices, Inc., 1996  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700 Fax: 617/ 326-8703  
(@ T = + 25؇C, Supply = 3 V, dBm is referred to 50 , unless otherwise noted)  
AD608–SPECIFICATIONS  
A
Model  
AD 608  
Conditions  
Min  
Typ  
Max  
Units  
MIXER PERFORMANCE  
RF and LO Frequency Range  
LO Power  
Conversion Gain  
Noise Figure  
500  
–16  
24  
MHz  
dBm  
dB  
Input T erminated in 50 Ω  
Driving Doubly-Terminated 330 IF Filter, ZIF = 165 Ω  
Matched Input, fRF = 100 MHz  
19  
28  
11  
dB  
Matched Input, fRF = 240 MHz  
16  
dB  
1 dB Compression Point  
T hird-Order Intercept  
Input Resistance  
Input T erminated in 50 Ω  
fRF = 240 MHz and 240.02 MHz, fLO = 229.3 MHz  
fRF = 100 MHz (See T able I)  
–15  
–5  
1.9  
3
dBm  
dBm  
kΩ  
Input Capacitance  
fRF = 100 MHz (See T able I)  
pF  
LIMIT ER PERFORMANCE  
Gain  
Limiting T hreshold  
Full T emperature and Supply Range  
3° rms Phase Jitter at 10.7 MHz  
280 kHz IF Bandwidth  
110  
–75  
dB  
dBm  
Input Resistance  
Input Capacitance  
Phase Variation  
DC Level  
Output Level  
Rise and Fall T imes  
Output Impedance  
10  
3
±3  
2
400  
11  
200  
kΩ  
pF  
Degree  
V
mV p-p  
ns  
–75 dBm to +5 dBm IF Input Signal at 10.7 MHz  
Center of Output Swing (VPOS-1)  
Limiter Output Driving 5 kLoad  
Driving a 5 pF Load  
RSSI PERFORMANCE  
Nominal Slope  
Nominal Intercept  
Minimum RSSI Voltage  
Maximum RSSI Voltage  
RSSI Voltage Intercept  
Logarithmic Linearity Error  
RSSI Response T ime  
Output Impedance  
At 10.7 MHz  
At VPOS = 3 V; Proportional to VPOS  
17.27  
1.57  
20  
23.27  
1.82  
mV/dB  
dBm  
V
V
V
dB  
ns  
–85  
0.2  
1.8  
–75 dBm Input Signal  
+5 dBm Input Signal  
0 dBm Input Signal  
–75 dBm to +5 dBm Input Signal at IFHI  
90% RF to 50% RSSI  
At Midscale  
±1  
200  
250  
POWER-DOWN INT ERFACE  
Logical T hreshold  
Input Current  
Power-Up Response T ime  
Power-Down Response T ime  
Power-Down Current  
System Active on Logical High  
For Logical High  
Active Limiter Output  
T o 200 µA Supply Current  
1.5  
75  
200  
400  
100  
V
µA  
ns  
ns  
µA  
POWER SUPPLY  
Operating Range  
–25°C to +85°C  
–40°C to +85°C  
VPOS = 3 V  
2.7  
4.5  
5.5  
5.5  
V
V
mA  
Powered Up Current  
7.3  
OPERAT ING T EMPERAT URE  
TMIN to TMAX  
TMIN to TMAX  
VPOS = 2.7 V to 5.5 V  
VPOS = 4.5 V to 5.5 V  
–25  
–40  
+85  
+85  
°C  
°C  
Specifications subject to change without notice.  
–2–  
REV. B  
AD608  
ABSO LUTE MAXIMUM RATINGS1  
P IN D ESCRIP TIO NS  
Supply Voltage VPS1, VPS2 . . . . . . . . . . . . . . . . . . . . . . +6 V  
Internal Power Dissipation2 . . . . . . . . . . . . . . . . . . . . 600 mW  
T emperature Range . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Storage T emperature Range . . . . . . . . . . . . . –65°C to +150°C  
Lead T emperature (Soldering 60 sec) . . . . . . . . . . . . . +300°C  
P in  
Mnem onic  
D escription  
1
2
3
4
5
6
7
8
VPS1  
Positive Supply Input  
Common  
COM1  
LOHI  
COM2  
RFHI  
Local Oscillator Input Connection  
Common  
NOT ES  
1Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. T his is a stress rating only, and functional  
operation of the device at these or any other conditions above those indicated in the  
operational section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended rating conditions for extended periods  
may affect device reliability.  
RF Input, Noninverting  
RF Input, Inverting  
Mixer Output  
RFLO  
MXOP  
VMID  
2T hermal Characteristics:  
16-Pin SOIC Package: θJA = 110°C/W.  
Midpoint Supply Bias  
Output  
O RD ERING GUID E  
9
IFHI  
IFLO  
RSSI  
IF Input, Noninverting  
IF Input, Inverting  
10  
11  
Tem perature  
Range  
P ackage  
O ption  
Received Signal Strength Indicator  
Output  
Model  
AD608AR  
–25°C to +85°C,  
2.7 V to 5.5 V Supplies;  
–40°C to +85°C,  
R-16A*  
12  
13  
14  
15  
16  
COM3  
FDBK  
VPS2  
Output Common  
Offset-Null Feedback Loop Output  
Limiter Positive Supply Input  
Limiter Output  
4.5 V to 5.5 V Supplies  
LMOP  
PRUP  
*R = Small Outline IC (SOIC).  
Power-Up  
TERMINAL D IAGRAM  
VPS1  
COM1  
LOHI  
1
2
3
4
5
6
7
8
16 PRUP  
15 LMOP  
14 VPS2  
13 FDBK  
12 COM3  
11 RSSI  
10 IFLO  
AD608  
TOP VIEW  
COM2  
RFHI  
(Not to Scale)  
RFLO  
MXOP  
VMID  
9
IFHI  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD608 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. B  
–3–  
AD608  
PRUP IN  
U1A  
U1B  
TRIGGER  
47k  
4.7k  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
VPS1  
PRUP  
LMOP  
VPOS  
LO IN  
0.1µF  
COM1  
47k  
NC  
18nF  
18nF  
1nF  
LOHI  
VPS2  
FDBK  
COM3  
1
2
3
4
5
6
7
8
VPS1  
PRUP  
LMOP  
VPS2  
FDBK  
COM3  
RSSI  
IFLO  
16  
15  
14  
13  
51.1Ω  
0.1µF  
0.1µF  
VPOS  
COM2  
RFHI  
COM1  
1nF  
LMOP OUT  
0.1µF  
LOHI  
100Ω  
RF IN  
51.1Ω  
RFLO  
MXOP  
VMID  
RSSI 11  
NC  
51.1Ω  
10nF  
COM2  
RFHI  
1nF  
1nF  
IFLO  
10  
9
18nF  
100Ω  
12  
11  
10  
9
1nF  
IFHI  
51.1Ω  
RFLO  
MXOP  
VMID  
RSSI OUTPUT  
AD608  
10nF  
332Ω  
0.1µF  
332Ω  
332Ω  
0.1µF  
IFHI  
301Ω  
0.1µF  
AD608  
301Ω  
IF OUT  
332Ω  
54.9Ω  
NC = NO CONNECT  
0.1µF  
IF INPUT  
54.9Ω  
U1 – 74HC00  
Figure 2. Mixer Test Board Schem atic  
Figure 1. IF Test Board Schem atic  
3.0  
2.5  
0
25.0  
24.5  
24.0  
23.5  
23.0  
22.5  
22.0  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
2.0  
5V  
1.5  
1.0  
3V  
0.5  
0
–80 –70 –60 –50 –40 –30 –20 –10  
0
10  
0
10  
20  
30  
40  
50  
60  
70 80  
0
50 100 150 200 250 300 350 400 450 500  
RF FREQUENCY – MHz  
INPUT POWER AT IFHI – dBm  
IF FREQUENCY – MHz  
Figure 3. Mixer Conversion Gain vs.  
Frequency  
Figure 4. Mixer IF Port Bandwidth  
Figure 5. IF RSSI Output vs. Supply  
Voltage (Am bient Tem perature)  
4.0  
3.0  
2.0  
3.0  
+85  
2.5  
+25  
IF TEST BOARD  
FLUKE 6082A  
SYNTHESIZER  
–25  
2.0  
1.0  
3V  
IFHI  
RSSI  
VPOS  
DMM  
0
1.5  
1.0  
0.5  
0
HP34401A  
10.7 MHz  
5V  
–1.0  
DCPS 3V  
HP3366A  
–2.0  
–3.0  
–4.0  
Figure 7. Test Circuit for IF RSSI Out-  
put vs. Supply Voltage (Am bient Tem -  
perature) (Figure 5) and IF RSSI  
Output vs. Tem perature (3 V Supply)  
(Figure 6) and RSSI Error vs. Input  
Power (Figure 8)  
–80 –70 –60 –50 –40 –30 –20 –10  
INPUT POWER – dBm  
0
10  
–80 –70 –60 –50 –40 –30 –20 –10  
INPUT POWER – dBm  
0
10  
Figure 8. RSSI Error vs. Input Power  
Figure 6. IF RSSI Output vs.  
Tem perature (3 V Supply)  
–4–  
REV. B  
AD608  
60mV/DIV  
800mV/DIV  
100ns/DIV  
1V /DIV  
100ns/DIV  
20ns/DIV  
Figure 9. RSSI Power-Up Response  
Figure 13. Lim iter Rise and Fall Tim es  
HP54120A  
DIGITAL  
OSCILLOSCOPE  
FLUKE 6082A  
SYNTHESIZER  
IF TEST BOARD  
IFHI RSSI  
FLUKE 6082A  
SYNTHESIZER  
TEK P6201  
IF TEST BOARD  
IFHI LMOP  
VPOS  
HP54120A  
TEK P6201  
FET  
PROBE  
CH 1  
CH 2  
FET  
PROBE  
DIGITAL  
OSCILLOSCOPE  
10.7 MHz  
0dBm  
PRUP TRIGGER  
VPOS  
10.7 MHz  
0dBm  
DCPS 3V  
HP3366A  
DCPS 3V  
HP3366A  
Figure 10. Test Circuit for RSSI Power-Up Response  
(Figure 9)  
Figure 14. Test Circuit for Lim iter Rise and Fall Tim es  
(Figure 13)  
200mV/DIV  
100ns/DIV  
220mV/DIV  
1V/DIV  
800mV/DIV  
50ns/DIV  
100ns/DIV  
Figure 11. RSSI Pulse Response/RSSI Rise Tim e  
Figure 15. Lim iter Power-Up Response Tim e  
HP54120A  
DIGITAL  
OSCILLOSCOPE  
FLUKE 6082A  
SYNTHESIZER  
CH 1  
CH 2  
FLUKE 6082A  
SYNTHESIZER  
IF TEST BOARD  
IFHI LMOP  
IF TEST BOARD  
IFHI RSSI  
TEK P6201  
TEK P6201  
FET  
PROBE  
FET  
PROBE  
CH 1  
CH 2  
COUPLER  
MCL  
ZDC-20-1  
10.7 MHz  
0dBm  
PRUP TRIGGER  
VPOS  
10.7 MHz  
0dBm  
VPOS  
HP54120A  
DIGITAL  
OSCILLOSCOPE  
DCPS 3V  
HP3366A  
DCPS  
3V  
HP6633A  
Figure 12. Test Circuit for RSSI Pulse Response/RSSI Rise  
Tim e (Figure 11)  
Figure 16. Test Circuit for Lim iter Power-Up Response  
Tim e (Figure 15)  
REV. B  
–5–  
AD608  
5
4
10  
9
3
8
2
7
1
6
0
5
–1  
–2  
–3  
4
3
2
1
0
–4  
–5  
–80 –70 –60 –50 –40 –30 –20 –10  
INPUT POWER AT IFHI – dBm  
0
10  
–80 –70 –60 –50 –40 –30 –20 –10  
INPUT POWER – dBm  
0
10  
Figure 17. Lim iter Phase Perform ance vs.  
Input Power at IFHI  
Figure 19. Lim iter J itter Perform ance vs.  
Input Power at IFHI  
FLUKE 6082A  
SYNTHESIZER ZDC-20-1  
MCL  
IF TEST BOARD TEK P6201  
FET  
COUPLER  
IFHI RSSI  
PROBE  
HP8447A  
10.7 MHz  
HP8494A  
HP8495A  
DCPS  
BPF  
CH 1  
TRIG  
3V  
280kHz BW  
10.7MHz CF  
HP3366A  
TOKO SK107MK1-A0-10  
HP54120A  
DIGITAL  
OSCILLOSCOPE  
Figure 18. Test Circuit for Lim iter Phase Perform ance vs.  
Input Power at IFHI (Figure 17) and Lim iter J itter Perfor-  
m ance vs. Input Power at IFHI (Figure 19)  
–6–  
REV. B  
AD608  
TH EO RY O F O P ERATIO N  
Mixer Gain  
T he AD608 (Figure 20) consists of a mixer followed by a loga-  
rithmic IF strip with RSSI and hard limited outputs. Each sec-  
tion will be described below.  
T he mixer’s conversion gain is the product of its transcon-  
ductance and the impedance seen at pin MXOP. For a 330 Ω  
parallel-terminated filter at 10.7 MHz, the load impedance is  
165 , the gain is 24 dB, and the output is 15.85 × 56.2 mV, or  
±891 mV, centered on the midpoint of the supply voltage. For  
other load impedances, the expression for the gain in dB is  
Mixer  
T he mixer is a doubly-balanced modified Gilbert cell mixer. Its  
maximum input level for linear operation is ±56.2 mV regard-  
less of the impedance across the mixer’s inputs, or –15 dBm for  
a 50 input termination. T he input impedance of the mixer  
can be modeled as a simple parallel RC network; the values ver-  
sus frequency are listed in T able I. T he bandwidth from the RF  
input to the IF output at MXOP pin is –1 dB at 30 MHz and  
then falls off rapidly (Figure 4).  
GdB = 20 log10 0.0961 R  
(
)
L
T he mixer’s gain can be increased or decreased by changing RL,  
the load impedance at pin MXOP. T he limitations on the  
mixer’s gain are the ±6 mA maximum output current at MXOP  
and the maximum allowable voltage swing at pin MXOP, which  
is ±1.0 V for a 3 V supply or 5 V supply.  
3dB NOMINAL  
INSERTION LOSS  
24dB MIXER GAIN  
110dB LIMITER GAIN  
90dB RSSI  
RSSI OUTPUT  
20mV/dB  
0.2V TO 1.8V  
RSSI  
IF INPUT  
–75dBm TO  
+15dBm 2.  
7 FULL-WAVE  
RECTIFIER CELLS  
±6mA MAX OUTPUT  
(±890mV INTO 165)  
11  
5
6
RFHI  
COM3 12  
IFHI  
10.7MHz  
BANDPASS  
FILTER  
RF INPUT  
–95 TO  
–15dBm 1.  
MIXER  
MXOP  
VPS2  
14  
7
8
9
+2.7V TO 5.5V  
BPF  
DRIVER  
LMOP  
15  
5-STAGE IF AMPLIFIER  
(16dB PER STAGE)  
LIMITER  
OUTPUT  
400mVp-p  
330Ω  
330Ω  
10nF  
RFLO  
LO  
PREAMP  
VMID  
FINAL  
LIMITER  
10  
IFLO  
100nF  
100Ω  
MID-SUPPLY  
IF BIAS  
13  
LOIP  
18nF  
FDBK  
±50µA  
BIAS  
AD608  
COM2  
VPS1 COM1  
PRUP  
1
2
3
4
16  
1. –15dBm = ±56mV MAX FOR LINEAR OPERATION  
NOTES:  
+2.7V TO 5.5V LO INPUT  
–16dBm  
CMOS LOGIC  
INPUT  
2. 39.76mV RMS TO 396.6mV RMS FOR ±1 dB  
RSSI ACCURACY  
Figure 20. Functional Block Diagram  
Table I. Mixer Input Im pedance vs. Frequency  
Frequency  
(MH z)  
Resistance  
(O hm s)  
Capacitance  
(pF)  
45  
70  
2800  
2600  
1800  
1200  
760  
3.1  
3.1  
3.1  
3.1  
3.2  
3.4  
3.6  
100  
200  
300  
400  
500  
520  
330  
REV. B  
–7–  
AD608  
5 kload. In the absence of an input signal, the limiter’s output  
will limit on noise fluctuations, which produces an output that  
continues to swing 400 mV p-p but with random zero crossings.  
IF Filter Ter m inations  
T he AD608 was designed to drive a parallel-terminated 10.7 MHz  
bandpass filter with a 330 impedance. With a 330 parallel-  
terminated filter, pin MXOP sees a 165 termination and the  
gain is nominally 24 dB. Other filter impedances and gains can  
be accommodated by either accepting an increase or decrease in  
gain in proportion to the filter impedance or by keeping the im-  
pedance seen by MXOP a nominal 165 (by using resistive di-  
viders or matching networks). Figure 21 shows a simple resistive  
voltage divider for matching an assortment of filter impedances,  
and T able II lists component values.  
O ffset Feedback Loop  
Because the logarithmic amplifier is dc coupled and has more  
than 110 dB of gain from the input to the limiter output, a dc  
offset at its input of even a few µV would cause the output to  
saturate. T hus, the AD608 uses a low frequency feedback loop  
to null out the input offset. Referring to Figure 21, the loop  
consists of a current source driven by the limiter, which sends  
50 µA current pulses to pin FDBK. T he pulses are low pass  
filtered by a π-network consisting of C1, R4, and C5. T he  
smoothed dc voltage that results is subtracted from the input to  
the IF amplifier at pin IFLO. Because this is a high gain ampli-  
fier with a feedback loop, care should be taken in layout and  
component values to prevent oscillation. Recommended values  
for the common IFs of 450 kH z, 455 kH z, 6.5 MH z, and  
10.7 MHz are listed in T able II.  
The Logar ithm ic IF Am plifier  
T he logarithmic IF amplifier consists of five amplifier stages  
of 16 dB gain each, plus a final limiter. T he IF bandwidth is  
30 MHz (–1 dB) and the limiting gain is 110 dB. T he phase  
skew is ±3° from –75 dBm to +5 dBm (approximately 111 µV  
p-p to 1.1 V p-p). T he limiter output impedance is 200 Ω  
and the limiter’s output drive is ±200 mV (400 mV p-p) into a  
110dB LIMITER GAIN  
90dB RSSI  
12dB NOMINAL  
INSERTION LOSS  
24dB MIXER GAIN  
(ASSUMES 6dB IN FILTER)  
7 FULL-WAVE  
RECTIFIER CELLS  
BANDPASS  
FILTER  
11  
12  
14  
15  
RSSI  
5
6
RFHI  
2M Hz  
LPF  
COM3  
VPS2  
LMOP  
IFHI  
MIXER  
R2  
MXOP  
BPF  
7
8
9
5-STAGE IF AMPLIFIER  
(16dB PER STAGE)  
DRIVER  
R1  
R3  
RFLO  
C5  
LO  
PREAMP  
VM ID  
FINAL  
10  
13  
LIMITER  
IFLO  
100nF  
R4  
MID-SUPPLY  
IF BIAS  
LOHI  
C1  
FDBK  
±50µA  
BIAS  
AD608  
COM2  
VPS1 COM1  
PRUP  
1
2
3
4
16  
+5V  
47kΩ  
C2  
100pF  
C1  
1µF  
CMOS  
LOGIC  
INPUT  
LO INPUT  
16dBm  
Figure 21. Applications Diagram for Com m on IFs and Filter Im pedances  
Table II. AD 608 Filter Term ination and O ffset-Null Feedback Loop Resistor and Capacitor Values for Com m on IFs  
Filter  
Im pedance  
Filter Term ination Resistor  
O ffset Null  
Feedback Loop Values  
IF  
Values1 for 24 dB of Mixer Gain  
R1  
R2  
R3  
R4  
C1  
C5  
450 kHz2  
455 kHz  
6.5 MHz  
10.7 MHz  
1500 Ω  
1500 Ω  
1000 Ω  
330 Ω  
174 Ω  
174 Ω  
178 Ω  
330 Ω  
1330 Ω  
1330 Ω  
825 Ω  
0 Ω  
1500 Ω  
1500 Ω  
1000 Ω  
330 Ω  
1000 Ω  
1000 Ω  
100 Ω  
200 nF  
200 nF  
18 nF  
100 nF  
100 nF  
10 nF  
100 Ω  
18 nF  
10 nF  
NOT ES  
1Resistor values were calculated so that R1 + R2 = Z FILT ER and R1ʈ(R2+ZFILT ER) = 165 .  
2Operation at IFs of 450 kHz and 455 kHz requires an external low pass filter with at least one pole at a cutoff frequency of 90 kHz (a decade below the ripple  
at 900 kHz).  
–8–  
REV. B  
AD608  
P ower Consum ption  
RSSI O utput  
T he total power-supply current of the AD608 is a nominal  
7.3 mA. T he power is signal-dependent, partly as the RSSI  
output increases (the current is increased by 200 µA at an RSSI  
output of +1.8 V) but mostly due to the IF BPF consumption  
when being driven to ±891 mV assuming a 4 dB loss in this  
filter and a peak input of +5 dBm to the log-IF amp, and tem-  
perature dependent, as the biasing system used in the AD608 is  
proportional to absolute temperature (PT AT ).  
T he logarithmic amplifier uses a successive detection architec-  
ture. Each of the five stages has a full-wave detector; two addi-  
tional high level detectors are driven through attenuators at the  
input to the limiting amplifiers, for a total of seven detector  
stages. Because each detector is a full-wave rectifier, the ripple  
component in the resulting dc is at twice the IF. T he AD608’s  
low-pass filter has a 2 MHz cutoff frequency, which is one  
decade below the 21.4 MHz ripple that results from a 10.7 MHz  
IF.  
Tr oubleshooting  
T he most common causes of problems with the AD608 are  
incorrect component values for the offset feedback loop, poor  
board layout, and pickup of RFI, which all cause the AD608 to  
“lose” the low end (typically below –65 dBm) of its RSSI output  
and cause the limiter to swing randomly. Both poor board lay-  
out and incorrect component values in the offset feedback loop  
can cause low level oscillations. Pickup of RFI can be caused by  
improper layout and shielding of the circuit.  
For operation at lower IFs such as 450 kHz or 455 kHz, the  
AD608 requires an external low-pass filter with a single pole lo-  
cated at 90 kHz, a decade below the 900 kHz ripple frequency  
for these IFs. T he RSSI range is from the noise level at approxi-  
mately –80 dBm to overload at +15 dBm and is specified for  
±1 dB accuracy from –75 dBm to +5 dBm. T he +15 dBm  
maximum IF input is provided to accommodate bandpass filters  
of lower insertion loss than the nominal 4 dB for 10.7 MHz  
ceramic filters.  
D igitizing the RSSI  
In typical cellular radio applications, the RSSI output of the  
AD608 will be digitized by an A/D converter. T he AD608s  
RSSI output is proportional to the power-supply voltage, which  
not only allows the A/D converter to use the supply as a refer-  
ence but also causes the RSSI output and the A/D converter’s  
output to track over power supply variations, reducing system  
errors and component costs.  
REV. B  
–9–  
AD608  
Applications  
Figure 23 shows the AD608 configured for narrowband FM op-  
eration at a 450 kHz or 455 kHz with an external discriminator.  
T he IF filter has 1500 input and output impedances— the  
input is matched via a resistive divider and the output is termi-  
nated in 1500 . T he discriminator requires 1 V p-p drive from  
a 1 ksource impedance, here provided by a gain-of-2.5 Class  
A amplifier.  
Figure 22 shows the AD608 configured for operation in a digital  
system at a 10.7 MHz IF. T he filter’s input and output imped-  
ance are parallel terminated using 330 resistors and the con-  
version gain is 24 dB. T he RF port is terminated in 50 ; in a  
typical application the input would be matched to a SAW filter  
using the impedance data shown previously in T able I.  
VPOS  
C1  
1µF  
SUPPLY  
2.7V TO 5.5V  
1
VPS1  
PRUP  
16  
R4  
47k  
POWER-UP  
3V CMOS  
C2  
100pF  
LO INPUT  
–16dBm  
2
3
COM1  
LOHI  
LMOP 15  
VPS2 14  
LIMO  
LIMITER  
OUTPUT  
VPOS –1V  
±200mV  
R5  
51.1Ω  
4
5
6
7
8
COM2  
RFHI  
FDBK 13  
COM3 12  
C7  
18nF  
R3  
100Ω  
C3  
100pF  
RF INPUT  
–95dBm  
TO  
RFLO  
RSSI 11  
RSSI OUTPUT  
+0.2V TO +1.8V  
(20mV/dB)  
C4  
100pF  
R6  
51.1Ω  
–15dBm  
MXOP  
VMID  
IFLO  
10  
IFHI  
9
C6  
10nF  
AD608  
10.7MHz BPF Z = 330Ω  
BIAS POINT  
AT VPOS/2  
OFFSET-CONTROL  
LOOP FILTER  
R1  
330Ω  
R2  
330Ω  
C5  
0.1µF  
BPF REVERSE  
TERMINATION  
BPF  
TERMINATION  
IF BIAS POINT  
DECOUPLING  
Figure 22. Application at 10.7 MHz. The Bandpass Filter  
Can Be a Toko Type SK107 or Murata Type SFE10.7  
JUMPER  
PRUP  
R16  
47kΩ  
+5V  
GND  
R13  
402  
R14  
8.66k  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VPS1  
PRUP  
LMOP  
C11  
0.1µF  
Q1  
C5 0.1µF  
C8 0.1µF  
C1 0.1µF  
R10  
3.3kΩ  
F2  
COM1  
LOHI  
AUDIO  
R1  
51.1Ω  
C2  
1nF  
R15  
24.9k  
LOHI  
VPS2  
FDBK  
COM3  
RSSI  
IFLO  
R8  
1k  
R12  
1k  
CR1  
CR2  
R11  
3.3k  
COM2  
RFHI  
C10  
0.01µF  
C9  
0.2µF  
R9  
1k  
R6  
1kΩ  
RFHI  
R5 200Ω  
RSSI  
C3  
1nF  
R2  
51.1Ω  
RFLO  
MXOP  
VMID  
C6 0.1µF  
C4  
1nF  
R3  
374Ω  
IFHI  
AD608  
F1: TOKO HCFM2–455B  
F2: MURATA CFY455S  
CR1, CR2: 1N60  
R7  
1130Ω  
R4  
1.5kΩ  
F1  
Q1: 2N3906  
C7  
0.1µF  
Figure 23. Narrowband FM Application at 450 kHz or 455 kHz  
–10–  
REV. B  
AD608  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
16-Lead SO IC  
(R-16A)  
16  
1
9
0.1574 (4.00)  
0.1497 (3.80)  
PIN 1  
0.2440 (6.20)  
0.2284 (5.80)  
8
0.3937 (10.00)  
0.3859 (9.80)  
0.0196 (0.50)  
0.0099 (0.25)  
x 45°  
0.0688 (1.75)  
0.0532 (1.35)  
8°  
0°  
0.0098 (0.25)  
0.0040 (0.10)  
0.0500 (1.27)  
0.0160 (0.41)  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.0099 (0.25)  
0.0075 (0.19)  
REV. B  
–11–  
–12–  

相关型号:

AD608AR-REEL

Low Power Mixer/Limiter/RSSI 3 V Receiver IF Subsystem
ADI

AD608ARZ

Low Power Mixer/Limiter/RSSI 3 V Receiver IF Subsystem
ADI

AD608ARZ-RL

Low Power Mixer/Limiter/RSSI 3 V Receiver IF Subsystem
ADI

AD60F

Fast Asymmetric Thyristors
ETC

AD60F08KAC

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|60A I(T)
ETC

AD60F08KAF

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|60A I(T)
ETC

AD60F08KBC

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|60A I(T)
ETC

AD60F08KBF

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|60A I(T)
ETC

AD60F08KCC

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|60A I(T)
ETC

AD60F08KCF

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|60A I(T)
ETC

AD60F08KDC

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|60A I(T)
ETC

AD60F08KDF

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|60A I(T)
ETC