AD5544ARSZ-REEL7 [ADI]

Quad, Current-Output, Serial-Input 16-/14-Bit DACs; 四,电流输出,串行输入16位/ 14位DAC
AD5544ARSZ-REEL7
型号: AD5544ARSZ-REEL7
厂家: ADI    ADI
描述:

Quad, Current-Output, Serial-Input 16-/14-Bit DACs
四,电流输出,串行输入16位/ 14位DAC

转换器 数模转换器 光电二极管 PC
文件: 总24页 (文件大小:694K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad, Current-Output,  
Serial-Input 16-/14-Bit DACs  
Data Sheet  
AD5544/AD5554  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
VREFA B C D  
AD5544: 16-bit resolution  
INL of 1 LSB (B Grade)  
AD5554: 14-bit resolution  
INL of 0.5 LSB (B Grade)  
2 mA full-scale current 20%, with VREF  
0.9 µs settling time to 0.1%  
12 MHz multiplying bandwidth  
Midscale glitch of −1 nV-sec  
Midscale or zero-scale reset  
4 separate, 4-quadrant multiplying reference inputs  
SPI-compatible, 3-wire interface  
Double-buffered registers enable  
Simultaneous multichannel change  
Internal power-on reset  
VDD  
RFB  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
A
SDI  
INPUT  
REGISTER  
DAC A  
REGISTER  
IOUT  
AGND  
FBB  
A
DAC A  
R
R
R
R
R
R
R
R
A
= 10 V  
R
INPUT  
REGISTER  
DAC B  
REGISTER  
16  
D9  
IOUT  
B
DAC B  
DAC C  
DAC D  
D10  
D11  
D12  
D13  
D14  
D15  
A0  
AGND  
B
RFBC  
INPUT  
REGISTER  
DAC C  
REGISTER  
IOUT  
C
SDO  
A1  
AGND  
C
CS  
RFBD  
CLK  
EN  
INPUT  
REGISTER  
DAC D  
REGISTER  
IOUT  
D
DAC  
A
B
C
D
AGND  
D
2:4  
Temperature range: −40°C to +125°C  
Compact 28-lead SSOP and 32-lead LFCSP  
AD5544  
POWER-ON  
RESET  
DECODE  
AGND  
F
DGND  
RS  
MSB  
LDAC  
VSS  
APPLICATIONS  
Figure 1.  
Automatic test equipment  
Instrumentation  
Digitally controlled calibration  
The AD5544 is packaged in the compact 28-lead SSOP and 32-  
lead LFCSP. The AD5554 is packed in the compact 28-lead SSOP.  
GENERAL DESCRIPTION  
The AD5544/AD5554 quad, 16-/14-bit, current output, digital-  
to-analog converters (DACs) are designed to operate from a  
2.7 V to 5.5 V supply range.  
The EV-AD5544/45SDZ is available for evaluating DAC perfor-  
mance. For more information, see the UG-285 evaluation board  
user guide.  
The applied external reference input voltage (VREFx) determines  
the full-scale output current. Integrated feedback resistors (RFB)  
provide temperature-tracking, full-scale voltage outputs when  
combined with an external I-to-V precision amplifier.  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
A double-buffered serial data interface offers high speed, 3-wire,  
SPI- and microcontroller-compatible inputs using serial data in  
CS  
(SDI), a chip select ( ), and clock (CLK) signals. In addition,  
a serial data out pin (SDO) allows for daisy-chaining when multiple  
packages are used. A common, level-sensitive, load DAC strobe  
LDAC  
(
) input allows the simultaneous update of all DAC outputs  
from previously loaded input registers. Additionally, an internal  
power-on reset forces the output voltage to 0 at system turn-on.  
–0.1  
–0.2  
RS  
The MSB pin allows system reset assertion ( ) to force all registers  
0
10,000 20,000 30,000 40,000 50,000 60,000 70,000  
CODE  
to zero code when MSB = 0 or to half-scale code when MSB = 1.  
Figure 2. AD5544 INL vs. Code Plot (TA = 25°C)  
Rev. G  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2000–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD5544/AD5554  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Digital-to-Analog Converter (DAC) ....................................... 13  
Serial Data Interface....................................................................... 15  
Truth Tables................................................................................. 16  
Power-On Reset.......................................................................... 17  
ESD Protection Circuits ............................................................ 17  
Power Supply Sequence ............................................................. 17  
Layout and Power Supply Bypassing ....................................... 18  
Grounding................................................................................... 18  
Applications Information .............................................................. 19  
Reference Selection .................................................................... 19  
Amplifier Selection .................................................................... 19  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 22  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AD5544 Electrical Characteristics ............................................. 3  
AD5554 Electrical Characteristics ............................................. 4  
Timing Diagrams.......................................................................... 6  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configurations and Function Descriptions ........................... 8  
Typical Performance Characteristics ........................................... 10  
Theory of Operation ...................................................................... 13  
REVISION HISTORY  
8/09—Rev. B to Rev. C  
5/13—Rev. F to Rev. G  
Change to Table 1 ..............................................................................3  
Change to Table 2 ..............................................................................4  
Changes to General Description Section ...................................... 1  
Deleted Evaluation Board for the AD5544 Section and  
Figure 30 to Figure 35; Renumbered Sequentially ..................... 22  
Updated Outline Dimensions....................................................... 21  
Changes to Ordering Guide .......................................................... 22  
8/09—Rev. A to Rev. B  
Changes to Features Section ............................................................1  
Changes to Figure 2...........................................................................1  
Changes to Table 1.............................................................................3  
Changes to Table 2.............................................................................4  
Moved Timing Diagram...................................................................5  
Added Figure 4; Renumbered Sequentially ...................................5  
Change to Table 3 ..............................................................................6  
Changes to Table 4.............................................................................7  
Changes to Typical Performance Characteristics Section ...........8  
Changes to Figure 19...................................................................... 10  
Moved Table 5, Table 6, and Table 7 ............................................ 12  
Moved Truth Tables Section ......................................................... 13  
Deleted Figure 27; Renumbered Sequentially ............................ 14  
Updated Outline Dimensions....................................................... 16  
Changes to Ordering Guide.......................................................... 16  
1/12—Rev. E to Rev. F  
Changes to Figure 1.......................................................................... 1  
Added Figure 18; Renumbered Sequentially .............................. 11  
Changes to Evaluation Board Schematics Section..................... 22  
6/11—Rev. D to Rev. E  
Added 32-Lead LFCSP.................................................. Throughout  
Changes to Table 1, Supply Characteristics Parameters.............. 3  
Changes to Table 2, Supply Characteristics Parameters.............. 5  
Added Figure 6, Renumbered Subsequent Figures, Changes  
to Table 4 ............................................................................................ 7  
Changed Applications Section to Applications Information  
Section, Added Reference Selection and Amplifier Selection  
Sections ............................................................................................ 19  
Added Evaluation Board for the AD5544 Section ..................... 21  
Updated Outline Dimensions....................................................... 17  
Changes to Ordering Guide .......................................................... 18  
12/04—Rev. 0 to Rev. A  
Updated Format..................................................................Universal  
Change to Electrical Characteristics Tables...................................4  
Change to Pin Description Table ................................................. 10  
Addition of Power Supply Sequence Section.............................. 19  
Addition of Layout and Power Supply Bypassing Section ........ 19  
Addition of Grounding Section.................................................... 19  
Addition of Figure 32..................................................................... 19  
9/09—Rev. C to Rev. D  
Changes to Features Section............................................................ 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 4  
Changes to Figure 12........................................................................ 9  
Changes to Figure 19...................................................................... 10  
Changes to Table 8 and Table 9..................................................... 13  
Changes to Ordering Guide .......................................................... 16  
4/00—Revision 0: Initial Version  
Rev. G | Page 2 of 24  
 
Data Sheet  
AD5544/AD5554  
SPECIFICATIONS  
AD5544 ELECTRICAL CHARACTERISTICS  
VDD = 2.7 V to 5.5 V, VSS = 0 V, IOUTx = virtual GND, AGNDx = 0 V, V REFA = VREFB = VREFC = VREFD = 10 V, TA = full operating temperature  
range of −40°C to +125°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Test Condition/Comments  
Min Typ  
Max  
Unit  
STATIC PERFORMANCE1  
Resolution  
Relative Accuracy  
N
INL  
1 LSB = VREFx/216 = 153 µV when VREF = 10 V  
AD5544BRSZ  
16  
1
2
1
4
1
1.5  
1
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
nA  
AD5544ARSZ  
AD5544BCPZ  
AD5544ACPZ-1  
Differential Nonlinearity  
DNL  
AD5544BRSZ  
AD5544ARSZ  
AD5544BCPZ  
AD5544ACPZ-1  
1
Output Leakage Current  
IOUT  
x
Data = 0x0000, TA = 25°C  
Data = 0x0000, TA = 85°C  
Data = 0xFFFF  
10  
20  
3
nA  
mV  
Full-Scale Gain Error  
Full-Scale Tempco2  
Feedback Resistor  
GFSE  
TCVFS  
RFBx  
0.75  
1
6
ppm/°C  
kΩ  
VDD = 5 V  
4
8
REFERENCE INPUT  
VREFx Range  
Input Resistance  
Input Resistance Match  
Input Capacitance2  
ANALOG OUTPUT  
VREF  
x
−15  
4
+15  
8
V
kΩ  
%
RREF  
RREF  
x
x
6
0.35  
5
Channel-to-channel  
CREF  
x
pF  
Output Current  
IOUT  
COUT  
x
x
Data = 0xFFFF  
Code dependent  
1.25  
2.4  
4
2.5  
0.8  
mA  
pF  
Output Capacitance2  
LOGIC INPUT AND OUTPUT  
Logic Input Low Voltage  
Logic Input High Voltage  
Input Leakage Current  
Input Capacitance2  
Logic Output Low Voltage  
Logic Output High Voltage  
INTERFACE TIMING2, 3  
Clock Width High  
35  
VIL  
VIH  
IIL  
CIL  
VOL  
VOH  
V
V
µA  
pF  
V
1
10  
0.4  
IOL = 1.6 mA  
IOH = 100 µA  
V
tCH  
tCL  
tCSS  
tCSH  
tPD  
25  
25  
0
ns  
ns  
ns  
ns  
ns  
Clock Width Low  
CS to Clock Setup  
Clock to CS Hold  
25  
2
Clock to SDO Propagation  
Delay  
20  
Load DAC Pulse Width  
Data Setup  
Data Hold  
Load Setup  
Load Hold  
tLDAC  
tDS  
tDH  
tLDS  
tLDH  
25  
20  
20  
5
ns  
ns  
ns  
ns  
ns  
25  
SUPPLY CHARACTERISTICS  
Power Supply Range  
Positive Supply Current  
Negative Supply Current  
VDD RANGE  
IDD  
ISS  
2.7  
5.5  
5
9
V
µA  
µA  
Logic inputs = 0 V  
Logic inputs = 0 V, VSS = −5 V  
0.001  
Rev. G | Page 3 of 24  
 
 
 
AD5544/AD5554  
Data Sheet  
Parameter  
Symbol  
PDISS  
PSS  
Test Condition/Comments  
Min Typ  
Max  
1.25  
0.006  
Unit  
mW  
%/%  
Power Dissipation  
Logic inputs = 0 V  
Power Supply Sensitivity  
AC CHARACTERISTICS4  
Output Voltage Settling Time  
Reference Multiplying  
Bandwidth (BW)  
∆VDD  
=
5%  
tS  
To 0.1% of full scale, data = 0x0000 to 0xFFFF to 0x0000  
VREFx = 5 V p-p, data = 0xFFFF, CFB = 2.0 pF,  
0.9  
12  
µs  
MHz  
BW − 3 dB  
DAC Glitch Impulse  
Feedthrough Error  
Crosstalk Error  
Q
VREFx = 8 V, data = 0x0000 to 0x8000 to 0x0000  
Data = 0x0000, VREFx = 100 mV rms, f = 100 kHz  
Data = 0x0000, VREFB = 100 mV rms, adjacent channel,  
f = 100 kHz  
−1  
−65  
−90  
nV-sec  
dB  
dB  
VOUTx/VREF  
VOUTA/VREF  
x
B
Digital Feedthrough  
Q
CS = 1, fCLK = 1 MHz  
0.6  
−98  
7
nV-sec  
dB  
nV/Hz  
Total Harmonic Distortion  
Output Spot Noise Voltage  
THD  
eN  
VREFx = 5 V p-p, data = 0xFFFF, f = 1 kHz  
f = 1 kHz, BW = 1 Hz  
1 All static performance tests (except IOUTx) are performed in a closed-loop system using an external precision OP177 I-to-V converter amplifier. The AD5544 RFB terminal  
is tied to the amplifier output. Typical values represent average readings measured at 25°C.  
2 These parameters are guaranteed by design and not subject to production testing.  
3 All input control signals are specified with tR = tF = 2.5 ns (10% to 90% of 3 V) and timed from a voltage level of 1.5 V.  
4 All ac characteristic tests are performed in a closed-loop system using an AD8038 I-to-V converter amplifier.  
AD5554 ELECTRICAL CHARACTERISTICS  
VDD = 2.7 V to 5.5 V, V SS = 0 V, IOUTx = virtual GND, AGNDx = 0 V, V REFA = VREFB = VREFC = VREFD = 10 V, TA = full operating temperature  
range of −40°C to +125°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Test Condition/Comments  
Min Typ  
Max  
Unit  
STATIC PERFORMANCE1  
Resolution  
N
1 LSB = VREFx/214 = 610 µV when VREFx = 10 V  
14  
0.5  
1
10  
20  
10  
Bits  
LSB  
LSB  
nA  
nA  
mV  
Relative Accuracy  
Differential Nonlinearity  
Output Leakage Current  
INL  
DNL  
IOUT  
x
Data = 0x0000, TA = 25°C  
Data = 0x0000, TA = 85°C  
Data = 0x3FFF  
Full-Scale Gain Error  
Full-Scale Tempco2  
Feedback Resistor  
GFSE  
TCVFS  
RFBx  
2
1
6
ppm/°C  
kΩ  
VDD = 5 V  
4
8
REFERENCE INPUT  
VREFx Range  
Input Resistance  
Input Resistance Match  
Input Capacitance2  
ANALOG OUTPUT  
VREF  
x
−15  
4
+15  
8
V
kΩ  
%
RREF  
RREF  
x
x
6
1
5
Channel-to-channel  
CREF  
x
pF  
Output Current  
IOUT  
COUT  
x
x
Data = 0x3FFF  
Code dependent  
1.25  
2.4  
4
2.5  
0.8  
mA  
pF  
Output Capacitance2  
LOGIC INPUT AND OUTPUT  
Logic Input Low Voltage  
Logic Input High Voltage  
Input Leakage Current  
Input Capacitance2  
Logic Output Low Voltage  
Logic Output High Voltage  
INTERFACE TIMING2, 3  
Clock Width High  
80  
VIL  
VIH  
IIL  
CIL  
VOL  
VOH  
V
V
µA  
pF  
V
1
10  
0.4  
IOL = 1.6 mA  
IOH = 100 µA  
V
tCH  
tCL  
tCSS  
tCSH  
25  
25  
0
ns  
ns  
ns  
ns  
Clock Width Low  
CS to Clock Setup  
Clock to CS Hold  
25  
Rev. G | Page 4 of 24  
 
 
 
Data Sheet  
AD5544/AD5554  
Parameter  
Symbol  
Test Condition/Comments  
Min Typ  
Max  
Unit  
Clock to SDO Propagation  
Delay  
tPD  
2
20  
ns  
Load DAC Pulse Width  
Data Setup  
Data Hold  
Load Setup  
Load Hold  
tLDAC  
tDS  
tDH  
tLDS  
tLDH  
25  
20  
20  
5
ns  
ns  
ns  
ns  
ns  
25  
SUPPLY CHARACTERISTICS  
Power Supply Range  
Positive Supply Current  
Negative Supply Current  
Power Dissipation  
Power Supply Sensitivity  
AC CHARACTERISTICS4  
Output Voltage Settling Time  
VDD RANGE  
IDD  
ISS  
PDISS  
PSS  
2.7  
5.5  
5
9
1.25  
0.006  
V
µA  
µA  
mW  
%/%  
Logic inputs = 0 V  
Logic inputs = 0 V, VSS = −5 V  
Logic inputs = 0 V  
0.001  
∆VDD  
= 5%  
tS  
To 0.1% of full scale, data = 0x0000 to 0x3FFF to 0x0000  
VREFx = 5 V p-p, data = 0xFFFF, CFB = 2.0 pF  
0.9  
12  
µs  
MHz  
Reference Multiplying  
Bandwidth (BW)  
BW − 3 dB  
DAC Glitch Impulse  
Feedthrough Error  
Crosstalk Error  
Q
VREFx = 8 V, data = 0x0000 to 0x2000 to 0x0000  
Data = 0x0000, VREFx = 100 mV rms, f = 100 kHz  
Data = 0x0000, VREFB = 100 mV rms, adjacent channel,  
f = 100 kHz  
−1  
−65  
−90  
nV-sec  
dB  
dB  
VOUTx/VREF  
VOUTA/VREF  
x
B
Digital Feedthrough  
Q
CS = 1, fCLK = 1 MHz  
0.6  
−98  
7
nV-sec  
dB  
nV/Hz  
Total Harmonic Distortion  
Output Spot Noise Voltage  
THD  
eN  
VREFx = 5 V p-p, data = 0x3FFF, f = 1 kHz  
f = 1 kHz, BW = 1 Hz  
1 All static performance tests (except IOUT) are performed in a closed-loop system using an external precision OP177 I-to-V converter amplifier. The AD5554 RFB terminal is  
tied to the amplifier output. Typical values represent average readings measured at 25°C.  
2 These parameters are guaranteed by design and not subject to production testing.  
3 All input control signals are specified with tR = tF = 2.5 ns (10% to 90% of 3 V) and timed from a voltage level of 1.5 V.  
4 All ac characteristic tests are performed in a closed-loop system using an AD8038 I-to-V converter amplifier,.  
Rev. G | Page 5 of 24  
 
AD5544/AD5554  
Data Sheet  
TIMING DIAGRAMS  
SDI  
A1  
A0  
D15 D14 D13 D12  
D11 D10  
D1  
D0  
INPUT  
REG  
LD  
CLK  
tDS  
tDH  
tCH  
tCL  
tCSH  
tCSS  
CS  
tLDS  
tLDAC  
tLDH  
LDAC  
tPD  
SDO  
Figure 3. AD5544 Timing Diagram  
SDI  
A1  
A0  
D13 D12 D11 D10 D09 D08  
D1  
D0  
INPUT  
REG  
LD  
CLK  
tDS  
tDH  
tCH  
tCL  
tCSH  
tCSS  
CS  
tLDS  
tLDAC  
tLDH  
LDAC  
tPD  
SDO  
Figure 4. AD5554 Timing Diagram  
Rev. G | Page 6 of 24  
 
 
 
Data Sheet  
AD5544/AD5554  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to  
absolute maximum rating conditions for extended periods may  
affect device reliability.  
Parameter  
Rating  
VDD to GND  
VSS to GND  
VREFx to GND  
Logic Input and Output to GND  
V(IOUTx) to GND  
−0.3 V, +8 V  
+0.3 V, −7 V  
−18 V, +18 V  
−0.3 V, +8 V  
−0.3 V, VDD + 0.3 V  
−0.3 V, +0.3 V  
50 mA  
(TJ max − TA)/θJA  
θJA  
100°C/W  
AGNDx to DGND  
Input Current to Any Pin Except Supplies  
Package Power Dissipation  
Thermal Resistance  
28-Lead SSOP  
ESD CAUTION  
32-Lead LFCSP  
32.5°C/W  
Maximum Junction Temperature (TJ Max)  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature  
150°C  
−40°C to +125°C  
−65°C to +150°C  
Vapor Phase, 60 Sec  
Infrared, 15 Sec  
215°C  
220°C  
Rev. G | Page 7 of 24  
 
 
AD5544/AD5554  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
A
A
A
A
A
GND  
A
D
GND  
2
I
OUT  
I
D
OUT  
3
V
REF  
V
D
REF  
A
I
V
A
A
A
A
MSB  
RS  
1
2
3
4
5
6
7
8
24 DGND  
4
R
R
D
GND  
FB  
FB  
23  
22  
21  
20  
19  
18  
17  
V
SS  
GND  
LDAC  
SDO  
NC  
OUT  
5
MSB  
RS  
DGND  
A
F
REF  
AD5544  
TOP VIEW  
(Not to Scale)  
R
6
V
FB  
SS  
AD5544/  
AD5554  
TOP VIEW  
(Not to Scale)  
7
V
A
F
DD  
GND  
V
8
CS  
CLK  
SDI  
DD  
R
C
LDAC  
SDO  
FB  
CS  
V
C
REF  
9
10  
11  
12  
13  
14  
NC  
R
B
B
B
B
FB  
R
C
FB  
V
REF  
OUT  
GND  
V
C
REF  
I
I
C
OUT  
NOTES  
1. NC = NO CONNECT.  
2. CONNECT EXPOSED PAD TO AGND.  
A
A
C
GND  
NC = NO CONNECT  
Figure 6. LFCSP Pin Configuration  
Figure 5. TSSOP Pin Configuration  
Table 4. Pin Function Descriptions  
LFCSP  
Pin No.  
TSSOP  
Pin No.  
Mnemonic  
Description  
1
2
3
1
2
3
AGND  
A
DAC A Analog Ground.  
DAC A Current Output.  
IOUT  
A
VREF  
A
DAC A Reference Voltage Input Terminal. Establishes DAC A full-scale output voltage. This pin can be  
tied to the VDD pin.  
4
5
6
4
5
6
RFBA  
MSB  
RS  
Establish the voltage output for DAC A by connecting to an external amplifier output.  
MSB Bit. Set pin during a reset pulse (RS) or at system power-on if tied to ground or VDD  
.
Reset Pin, Active Low Input. Input registers and DAC registers are set to all 0s or half-scale code  
(0x8000 for the AD5544 and 0x2000 for the AD5554), determined by the voltage on the MSB pin.  
Register data = 0x0000 when MSB = 0.  
7
8
7
8
VDD  
CS  
Positive Power Supply Input. Specified range of operation: 5 V 10ꢀ.  
Chip Select, Active Low Input. Disables shift register loading when high. Transfers serial register data  
to the input register when CS/LDAC returns high. Does not affect LDAC operation.  
9
9
CLK  
SDI  
RFBB  
Clock Input. Positive edge clocks data into the shift register.  
Serial Data Input. Input data loads directly into the shift register.  
Establish the voltage output for DAC B by connecting to an external amplifier output.  
DAC B Reference Voltage Input Terminal. Establishes DAC B full-scale output voltage. This pin can be  
tied to the VDD pin.  
10  
11  
12  
10  
11  
12  
VREF  
B
13  
14  
15  
16  
17  
13  
14  
15  
16  
17  
IOUT  
AGND  
AGND  
IOUT  
B
B
C
C
C
DAC B Current Output.  
DAC B Analog Ground.  
DAC C Analog Ground.  
DAC C Current Output.  
VREF  
DAC C Reference Voltage Input Terminal. Establishes DAC C full-scale output voltage. This pin can be  
tied to the VDD pin.  
18  
19  
20  
18  
19  
20  
RFBC  
NC  
SDO  
Establish the voltage output for DAC C by connecting to an external amplifier output.  
No Connect. Leave the pin unconnected.  
Serial Data Output. Input data loads directly into the shift register. Data appears at SDO at 19 clock  
pulses for the AD5544 and 17 clock pulses for the AD5554 after input at the SDI pin.  
21  
21  
LDAC  
Load DAC Register Strobe, Level Sensitive Active Low. Transfers all input register data to DAC  
registers. Asynchronous active low input. See Table 8 and Table 9 for operation.  
22  
23  
24  
25  
22  
23  
24  
25  
AGND  
VSS  
DGND  
RFBD  
F
High Current Analog Force Ground.  
Negative Bias Power Supply Input. Specified range of operation: −5.5 V to +0.3 V.  
Digital Ground Pin.  
Establish the voltage output for DAC D by connecting to an external amplifier output.  
Rev. G | Page 8 of 24  
 
Data Sheet  
AD5544/AD5554  
LFCSP  
Pin No.  
26  
TSSOP  
Pin No.  
Mnemonic  
VREF  
Description  
26  
D
DAC D Reference Voltage Input Terminal. Establishes DAC D full-scale output voltage. This pin can be  
tied to the VDD pin.  
27  
28  
27  
28  
29  
30  
31  
32  
33  
IOUT  
D
D
DAC D Current Output.  
DAC D Analog Ground.  
Do not connect.  
Do not connect.  
Do not connect.  
AGND  
NC  
NC  
NC  
NC  
N/A  
N/A  
N/A  
N/A  
N/A  
Do not connect.  
Connect the exposed pad to AGNDx.  
EPAD  
Rev. G | Page 9 of 24  
AD5544/AD5554  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.10  
1.5  
1.0  
V
V
= 5V  
REF  
DD  
0x0FFF  
0x7FFF  
= 10V  
0.05  
0
0xF000  
0x8000  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
–0.35  
–0.40  
0.5  
0
–0.5  
–1.0  
–1.5  
–2000 –1500 –1000 –500  
0
500  
1000  
1500  
2000  
0
0
0
10,000 20,000 30,000 40,000 50,000 60,000 70,000  
CODE  
OFFSET VOLTAGE (µV)  
Figure 7. AD5544 DNL vs. Code, TA = 25°C  
Figure 10. AD5544 Integral Nonlinearity Error vs. Op Amp Offset  
0.20  
0.15  
0.10  
0.05  
0
1.00  
V
V
= 5V  
REF  
DD  
= 10V  
0.75  
0.50  
0.25  
0
0x0FFF  
0xF000  
0x8000  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.50  
–0.75  
–1.00  
–1000 –750  
–500  
–250  
0
250  
500  
750  
1000  
2000 4000 6000 8000 10,000 12,000 14,000 16,000 18,000  
CODE  
OP AMP OFFSET (µV)  
Figure 8. AD5554 INL vs. Code, TA = 25°C  
Figure 11. AD5544 Differential Nonlinearity Error vs. Op Amp Offset  
0.10  
0.05  
0
10  
V
V
= 5V  
REF  
DD  
= 10V  
5
0
–5  
–0.05  
–0.10  
–0.15  
–10  
–15  
–20  
–1500  
–1000  
–500  
0
500  
1000  
1500  
2000 4000 6000 8000 10,000 12,000 14,000 16,000 18,000  
CODE  
OP AMP OFFSET (µV)  
Figure 9. AD5554 DNL vs. Code, TA = 25°C  
Figure 12. AD5544 Gain Error vs. Op Amp Offset  
Rev. G | Page 10 of 24  
 
Data Sheet  
AD5544/AD5554  
10,000  
1000  
100  
10  
–3.88  
–3.90  
–3.92  
–3.94  
–3.96  
–3.98  
–4.00  
–4.02  
–4.04  
–4.06  
–4.08  
ZERO SCALE  
MIDSCALE  
FULL SCALE  
0x5555  
1
1k  
10k  
100k  
1M  
10M  
100M  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
CLOCK FREQUENCY (Hz)  
TIME (µs)  
Figure 13. AD5544 Midscale Transition  
Figure 16. AD5544 Power Supply Current vs. Clock Frequency  
100  
V
V
= 5V  
REF  
DD  
V
V
= 5V  
REF  
DD  
= 10V  
= 10V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
OUT  
LDAC  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 14. AD5544 Large Signal Settling Time  
Figure 17. AD5544/AD5554 Power Supply Rejection vs. Frequency  
0.1  
4
0
20  
0
–20  
0
–4  
–40  
–60  
–8  
–80  
–0.1  
–0.2  
–12  
–16  
–20  
–100  
–120  
–140  
–160  
–2  
0
2
4
6
8
10  
0
5k  
10k  
15k  
20k  
25k  
FREQUENCY (Hz)  
TIME (µs)  
Figure 18. AD5544/AD5554 Analog THD  
Figure 15. AD5544 Small Signal Settling Time  
Rev. G | Page 11 of 24  
AD5544/AD5554  
Data Sheet  
300  
250  
200  
150  
100  
50  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
LOGIC INPUT (V)  
Figure 19. AD5544/AD5554 Power Supply Current vs. Logic Input Voltage  
Rev. G | Page 12 of 24  
Data Sheet  
AD5544/AD5554  
THEORY OF OPERATION  
The AD5544 and the AD5554 contain four 16-bit and 14-bit,  
current output DACs, respectively. Each DAC has its own inde-  
pendent multiplying reference input. Both the AD5544 and the  
AD5554 use a 3-wire, SPI-compatible serial data interface, with  
These DACs are also designed to accommodate ac reference input  
signals. Both the AD5544 and the AD5554 accommodate input  
reference voltages in the range of −15 V to +15 V. The reference  
voltage inputs exhibit a constant nominal input resistance of 5 kΩ  
RS  
30%. On the other hand, the IOUTA, IOUTB, IOUTC, and IOUTD  
a configurable asynchronous  
pin for half-scale (MSB = 1) or  
LDAC  
DAC outputs are code dependent and produce various output  
resistances and capacitances. The choice of external amplifier  
should take into account the variation in impedance generated by  
the AD5544/AD5554 on the inverting input node of the amplifier.  
The feedback resistance, in parallel with the DAC ladder resistance,  
dominates output voltage noise. For multiplying mode applications,  
an external feedback compensation capacitor, CFB, may be needed  
to provide a critically damped output response for step changes in  
reference input voltages. Figure 21 shows the gain vs. frequency  
performance at various attenuation settings using a 23 pF external  
feedback capacitor connected across the IOUTx and RFBx terminals  
for the AD5544 and the AD5554, respectively. To maintain good  
analog performance, power supply bypassing of 0.01 μF, in parallel  
with 1 μF, is recommended. Under these conditions, a clean power  
supply with low ripple voltage capability should be used. Switching  
power supplies is usually not suitable for this application due to  
the higher ripple voltage and PSS frequency-dependent charac-  
teristics. It is best to derive the supply of the AD5544/AD5554  
from system analog supply voltages. Do not use the digital  
supply (see Figure 22).  
zero-scale (MSB = 0) preset. In addition, an  
4-channel, simultaneous updates for hardware synchronized  
output voltage changes.  
strobe enables  
DIGITAL-TO-ANALOG CONVERTER (DAC)  
Each part contains four current-steering R-R ladder DACs.  
Figure 20 shows a typical equivalent DAC. Each DAC contains  
a matching feedback resistor for use with an external I-to-V  
converter amplifier. The RFBx pin connects to the output of the  
external amplifier. The IOUTx terminal connects to the inverting  
input of the external amplifier. The AGNDx pin should be Kelvin-  
connected to the load point, requiring full 16-bit accuracy. These  
DACs are designed to operate with both negative and positive  
reference voltage.  
The VDD power pin is used only by the logic to drive the DAC  
switches on and off. Note that a matching switch is used in series  
with the internal 5 kΩ feedback resistor. If users attempt to  
measure the value of RFB, power must be applied to VDD to achieve  
continuity. An additional VSS bias pin is used to guard the substrate  
during high temperature applications, minimizing zero-scale  
leakage currents that double every 10°C. The DAC output  
voltage is determined by VREF and the digital data (D) in the  
following equations:  
2
0
–2  
–4  
–6  
–8  
D
(1)  
VOUT VREF  
VOUT VREF  
for the AD5544  
65,536  
D
(2)  
for the AD5554  
16,384  
Note that the output polarity is opposite the VREF polarity for dc  
reference voltages.  
V
DD  
R
R
R
R
X
V
X
FB  
REF  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
2R  
2R  
2R  
R
5k  
Figure 21. AD5554 Reference Multiplying Bandwidth vs. Code  
S2  
S1  
I
X
OUT  
A
F
GND  
A
X
GND  
FROM OTHER DACS A  
GND  
V
DGND  
SS  
DIGITAL INTERFACE CONNECTIONS OMITTED FOR CLARITY.  
SWITCHES S1 AND S2 ARE CLOSED, AND V MUST BE POWERED.  
DD  
Figure 20. Typical Equivalent DAC Channel  
Rev. G | Page 13 of 24  
 
 
 
 
AD5544/AD5554  
Data Sheet  
15V  
ANALOG  
POWER  
SUPPLY  
2R  
R
5V  
+
V
DD  
AD5544  
R
FB  
X
RR  
R
V
X
REF  
2R  
2R  
2R  
R
5k  
15V  
S2  
S1  
V
I
X
CC  
OUT  
V
A
F
OUT  
GND  
A1  
A
X
GND  
+
V
EE  
LOAD  
FROM OTHER DACS A  
GND  
DGND  
V
SS  
DIGITAL INTERFACE CONNECTIONS OMITTED.  
FOR CLARITY SWITCHES S1 AND S2 ARE CLOSED,  
AND V MUST BE POWERED.  
DD  
Figure 22. Recommended Kelvin-Sensed Hookup  
Rev. G | Page 14 of 24  
 
Data Sheet  
AD5544/AD5554  
SERIAL DATA INTERFACE  
Similarly, two right-justified data bytes can be written to the  
CS  
The AD5544/AD5554 use a 3-wire ( , SDI, CLK), SPI-compatible  
CS  
AD5554. Keeping the  
line low between the first and second  
serial data interface. Serial data of the AD5544/AD5554 is clocked  
into the serial input register in an 18-bit and 16-bit data-word  
format, respectively. The MSB bits are loaded first. Table 5 defines  
the 18 data-word bits for the AD5544, and Table 6 defines the  
16 data-word bits for the AD5554. Data is placed on the SDI pin  
and clocked into the register on the positive clock edge of CLK,  
subject to the data setup and data hold time requirements specified  
in the interface timing specifications (see Table 1 and Table 2).  
byte transfer results in a successful serial register update.  
When the data is properly aligned in the shift register, the posi-  
CS  
tive edge of the  
initiates the transfer of new data to the target  
DAC register, determined by the decoding of Address Bit A1  
and Address Bit A0. For the AD5544, Table 5, Table 7, Table 8,  
and Figure 3 define the characteristics of the software serial  
interface.  
CS  
Data can be clocked in only while the  
low. For the AD5544, only the last 18 bits clocked into the serial  
CS  
chip select pin is active  
For the AD5554, Table 6, Table 7, Table 9, and Figure 4 define  
the characteristics of the software serial interface. Figure 23 and  
Figure 24 show the equivalent logic interface for the key digital  
control pins for the AD5544. The AD5554 has a similar configu-  
register are interrogated when the  
pin returns to the logic high  
state; extra data bits are ignored. For the AD5554, only the last  
16 bits clocked into the serial register are interrogated when the  
RS  
ration, except that it has 14 data bits. Two additional pins, and  
CS  
MSB, provide hardware control over the preset function and  
pin returns to the logic high state. Because most microcon-  
trollers output serial data in 8-bit bytes, three right-justified data  
CS  
RS  
DAC register loading. If these functions are not needed, the  
RS  
pin  
bytes can be written to the AD5544. Keeping the  
line low  
pin can be tied to logic high. The asynchronous input  
between the first, second, and third byte transfers results in a  
successful serial register update.  
forces all input and the DAC registers to either the zero-code  
state (MSB = 0) or the half-scale state (MSB = 1).  
Table 5. AD5544 Serial Input Register Data Format (Data Is Loaded in the MSB-First Format)1  
MSB  
LSB  
B0  
B17  
A1  
B16  
A0  
B15  
D15  
B14  
D14  
B13  
D13  
B12  
D12  
B11  
D11  
B10  
D10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
CS  
Only the last 18 bits of data clocked into the serial register (address + data) are inspected when the positive edge of the line returns to logic high. At this point, an  
internally generated load strobe transfers the serial register data contents (Bit D15 to Bit D0) to the decoded DAC input register address determined by Bit A1 and Bit A0.  
LDAC  
Any extra bits clocked into the AD5544 shift register are ignored; only the last 18 bits clocked in are used. If double-buffered data is not needed, the  
tied logic low to disable the DAC registers.  
pin can be  
Table 6. AD5554 Serial Input Register Data Format (Data Is Loaded in the MSB-First Format)1  
MSB  
LSB  
B0  
B15  
A1  
B14  
A0  
B13  
D13  
B12  
D12  
B11  
D11  
B10  
D10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
CS  
Only the last 16 bits of data clocked into the serial register (address + data) are inspected when the positive edge of the line returns to logic high. At this point, an  
internally generated load strobe transfers the serial register data contents (Bit D13 to Bit D0) to the decoded DAC input register address determined by Bit A1 and Bit A0.  
LDAC  
Any extra bits clocked into the AD5554 shift register are ignored; only the last 16 bits clocked in are used. If double-buffered data is not needed, the  
tied logic low to disable the DAC registers.  
pin can be  
Table 7. Address Decode  
A1  
A0  
0
DAC Decoded  
DAC A  
0
0
1
DAC B  
1
0
DAC C  
1
1
DAC D  
Rev. G | Page 15 of 24  
 
 
 
 
 
 
AD5544/AD5554  
Data Sheet  
TRUTH TABLES  
Table 8. AD55441 Control Logic Truth Table  
CS  
LDAC  
High  
High  
High  
RS  
CLK  
X
Low  
MSB2 Serial Shift Register Function3  
Input Register Function  
Latched  
Latched  
DAC Register  
High  
Low  
Low  
High  
High  
High  
X
X
X
No effect  
No effect  
Latched  
Latched  
Latched  
+3  
Shift register data advanced one bit Latched  
Low  
+3  
High  
Low  
High  
High  
High  
High  
X
X
No effect  
No effect  
Latched  
Latched  
Latched  
Selected DAC updated with  
current shift register contents4  
High  
High  
High  
X
X
X
Low  
High  
+3  
High  
High  
High  
X
X
X
No effect  
No effect  
No effect  
Latched  
Latched  
Latched  
Transparent  
Latched  
Latched  
High  
High  
X
X
High  
High  
Low  
Low  
0
High  
No effect  
No effect  
Latched data = 0x0000  
Latched data = 0x8000  
Latched data = 0x0000  
Latched data = 0x8000  
1 For the AD5544, data appears at the SDO pin 19 clock pulses after input at the SDI pin.  
2 X = don’t care.  
3
+is a positive logic transition.  
4 At power-on, both the input register and the DAC register are loaded with all 0s.  
Table 9. AD55541 Control Logic Truth Table  
CLK  
MSB2 Serial Shift Register Function3  
Input Register Function3  
DAC Register  
CS  
LDAC RS  
High  
Low  
Low  
X
L
+3  
High  
High  
High  
High  
High  
High  
X
X
X
No effect  
No effect  
Latched  
Latched  
Latched  
Latched  
Latched  
Shift register data advanced one bit Latched  
Low  
+3  
High  
Low  
High  
High  
High  
High  
X
X
No effect  
No effect  
Latched  
Latched  
Latched  
Selected DAC updated with  
current shift register contents4  
High  
High  
High  
X
X
X
Low  
High  
+3  
High  
High  
High  
X
X
X
No effect  
No effect  
No effect  
Latched  
Latched  
Latched  
Transparent  
Latched  
Latched  
High  
High  
X
X
High  
High  
Low  
Low  
0
High  
No effect  
No effect  
Latched data = 0x0000  
Latched data = 0x2000  
Latched data = 0x0000  
Latched data = 0x2000  
1 For the AD5554, data appears at the SDO pin 17 clock pulses after input at the SDI pin.  
2 X = don’t care.  
3
+is a positive logic transition.  
4 At power-on, both the input register and the DAC register are loaded with all 0s.  
Rev. G | Page 16 of 24  
 
 
 
 
 
Data Sheet  
AD5544/AD5554  
V
A B C D  
REF  
CS  
EN  
AD5544  
V
DD  
CLK  
R
I
A
FB  
SDI  
16  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
DAC A  
REGISTER  
INPUT  
REGISTER  
A
DAC A  
OUT  
R
R
R
R
R
A
A
GND  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
A0  
R B  
FB  
INPUT  
REGISTER  
DAC B  
REGISTER  
I
B
DAC B  
OUT  
R
R
R
A
B
DAC A  
GND  
SDO  
B
C
D
A1  
2:4  
DECODE  
R
I
C
FB  
INPUT  
REGISTER  
DAC C  
REGISTER  
C
DAC C  
OUT  
A
C
GND  
R
I
D
FB  
INPUT  
REGISTER  
DAC D  
REGISTER  
D
DAC D  
OUT  
A
D
GND  
SET  
MSB  
SET  
MSB  
A
F
POWER-  
ON  
GND  
RESET  
DGND  
MSB  
V
RS  
LDAC  
SS  
Figure 23. System Level Digital Interfacing  
TO INPUT REGISTER  
ESD PROTECTION CIRCUITS  
A
B
C
D
All logic input pins contain back-biased ESD protection Zener  
diodes that are connected to ground (DGND) and VDD, as  
shown in Figure 25.  
ADDRESS  
DECODER  
CS  
EN  
V
DD  
SHIFT REGISTER  
CLK  
SDI  
5k  
DIGITAL  
TH  
TH  
CLOCK  
INPUTS  
19 /17  
SDO  
DGND  
Figure 24. AD5544/AD5554 Equivalent Logic Interface  
Figure 25. Equivalent ESD Production Circuits  
POWER-ON RESET  
POWER SUPPLY SEQUENCE  
When the VDD power supply is turned on, an internal reset strobe  
forces all the input and DAC registers to the zero-code state or  
half-scale state, depending on the MSB pin voltage. The VDD power  
supply should have a smooth positive ramp without drooping to  
have consistent results, especially in the region of VDD = 1.5 V to  
2.3 V. The VSS supply has no effect on the power-on reset perform-  
ance. The DAC register data stays at a zero-scale or half-scale  
setting until a valid serial register data load takes place.  
As standard practice, it is recommended that VDD, VSS, and ground  
be powered up prior to any reference. The ideal power-up sequence  
is as follows: AGNDx, DGND, VDD, VSS, VREFx, and the digital inputs.  
A noncompliance power-up sequence may elevate the reference  
current, but the devices resume normal operation once VDD and  
V
SS are powered up.  
Rev. G | Page 17 of 24  
 
 
 
 
 
 
AD5544/AD5554  
Data Sheet  
AD5544/AD5554  
LAYOUT AND POWER SUPPLY BYPASSING  
V
V
DD  
DD  
It is good practice to employ a compact, minimum lead length  
layout design. The leads to the input should be as direct as possible  
with a minimum conductor length. Ground paths should have  
low resistance and low inductance.  
+
C3  
10µF  
C1  
0.1µF  
A
X
GND  
C4  
10µF  
C2  
0.1µF  
V
V
SS  
SS  
DGND  
Similarly, it is good practice to bypass the power supplies with  
quality capacitors for optimum stability. Supply leads to the device  
should be bypassed with 0.01 μF to 0.1 μF disc or chip ceramic  
capacitors. Low ESR 1 μF to 10 μF tantalum or electrolytic capaci-  
tors should also be applied at VDD to minimize any transient  
disturbance and filter any low frequency ripple (see Figure 26).  
Users should not apply switching regulators for VDD due to the  
power supply rejection ratio (PSRR) degradation over frequency.  
Figure 26. Power Supply Bypassing and Grounding Connection  
GROUNDING  
The DGND and AGNDx pins of the AD5544/AD5554 serve as  
digital and analog ground references. To minimize the digital  
ground bounce, the DGND terminal should be joined remotely  
at a single point to the analog ground plane (see Figure 26).  
Rev. G | Page 18 of 24  
 
 
 
Data Sheet  
AD5544/AD5554  
REFERENCE SELECTION  
APPLICATIONS INFORMATION  
When selecting a reference for use with the AD55xx series  
of current output DACs, pay attention to the output voltage,  
temperature coefficient specification of the reference. Choosing  
a precision reference with a low output temperature coefficient  
minimizes error sources. Table 10 lists some of the references  
available from Analog Devices, Inc., that are suitable for use  
with this range of current output DACs.  
The AD5544/AD5554 are, inherently, two-quadrant multiplying  
DACs. That is, they can be easily set up for unipolar output  
operation. The full-scale output polarity is the inverse of the  
reference input voltage.  
In some applications, it may be necessary to generate the full  
four-quadrant multiplying capability or a bipolar output swing.  
This is easily accomplished using an additional external ampli-  
fier (A2) configured as a summing amplifier (see Figure 27).  
AMPLIFIER SELECTION  
The primary requirement for the current-steering mode is an  
amplifier with low input bias currents and low input offset voltage.  
Because of the code-dependent output resistance of the DAC,  
the input offset voltage of an op amp is multiplied by the variable  
gain of the circuit. A change in this noise gain between two  
adjacent digital fractions produces a step change in the output  
voltage due to the amplifiers input offset voltage. This output  
voltage change is superimposed upon the desired change in  
output between the two codes and gives rise to a differential  
linearity error, which, if large enough, can cause the DAC to be  
nonmonotonic.  
10k  
10kΩ  
10V  
5kΩ  
V
REF  
A2  
V
OUT  
AD588  
–10V <  
V
OUT  
< +10V  
V
DD  
V
X
R
X
REF  
FB  
I
X
OUT  
ONE CHANNEL  
AD5544  
A1  
V
A
F
SS  
GND  
A
X
GND  
DIGITAL INTERFACE CONNECTIONS  
OMITTED FOR CLARITY.  
The input bias current of an op amp also generates an offset at  
the voltage output because of the bias current flowing in the  
feedback resistor, RFB.  
Figure 27. Four-Quadrant Multiplying Application Circuit  
In this circuit, the first and second amplifiers (A1 and A2)  
provide a total gain of 2, which increases the output voltage span  
to 20 V. Biasing the external amplifier with a 10 V offset from  
the reference voltage results in a full four-quadrant multiplying  
circuit. The transfer equation of this circuit shows that both  
negative and positive output voltages are created as the input  
data (D) is incremented from code zero (VOUT = −10 V) to  
midscale (VOUT = 0 V) to full scale (VOUT = 10 V).  
Common-mode rejection of the op amp is important in voltage-  
switching circuits because it produces a code-dependent error  
at the voltage output of the circuit.  
Provided that the DAC switches are driven from true wideband,  
low impedance sources (VIN and AGND), they settle quickly.  
Consequently, the slew rate and settling time of a voltage-switching  
DAC circuit is determined largely by the output op amp. To obtain  
minimum settling time in this configuration, minimize capacitance  
at the VREF node (the voltage output node in this application) of  
the DAC. This is done by using low input capacitance buffer  
amplifiers and careful board design.  
D
(3)  
(4)  
VOUT  
1 × − V  
(
for the AD5544  
)
REF  
32,768  
D
8192  
1 × − V  
VOUT  
(
for the AD5554  
)
REF  
Analog Devices offers a wide range of amplifiers for both precision  
dc and ac applications, as listed in Table 11 and Table 12.  
Rev. G | Page 19 of 24  
 
 
 
 
AD5544/AD5554  
Data Sheet  
Table 10. Suitable Analog Devices Precision References  
Maximum Temperature  
Part No. Output Voltage (V) Initial Tolerance (%) Drift (ppm/°C)  
ISS (mA) Output Noise (μV p-p) Package(s)  
ADR01  
ADR01  
ADR02  
ADR02  
ADR03  
ADR03  
ADR06  
ADR06  
ADR420  
ADR421  
ADR423  
ADR425  
ADR431  
ADR435  
ADR391  
ADR395  
10  
10  
5.0  
5.0  
2.5  
2.5  
3.0  
3.0  
2.048  
2.50  
3.00  
5.00  
2.500  
5.000  
2.5  
0.05  
0.05  
0.06  
0.06  
0.1  
0.1  
0.1  
0.1  
0.05  
0.04  
0.04  
0.04  
0.04  
0.04  
0.16  
0.10  
3
9
3
9
3
9
3
9
3
3
3
3
3
3
9
9
1
1
1
1
1
1
1
1
0.5  
0.5  
0.5  
0.5  
0.8  
0.8  
0.12  
0.12  
20  
20  
10  
10  
6
SOIC-8  
TSOT-5, SC70-5  
SOIC-8  
TSOT-5, SC70-5  
SOIC-8  
TSOT-5, SC70-5  
SOIC-8  
TSOT-5, SC70-5  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
TSOT-5  
6
10  
10  
1.75  
1.75  
2
3.4  
3.5  
8
5
8
5.0  
TSOT-5  
Table 11. Suitable Analog Devices Precision Op Amps  
OS Maximum  
Supply Voltage (V) (μV)  
V
IB Maximum  
(nA)  
0.1 Hz to 10 Hz  
Noise (μV p-p)  
Supply  
Current (μA)  
Part No.  
OP97  
Package(s)  
2 ꢀo 20  
2.5 ꢀo 15  
5 ꢀo 18  
5 ꢀo 15  
5 ꢀo 15  
1.8 ꢀo 5  
25  
60  
75  
75  
125  
50  
50  
65  
65  
65  
0.1  
2
2
12  
0.5  
0.4  
0.1  
0.077  
0.1  
2.3  
2.3  
2.3  
2.4  
2.4  
600  
500  
2300  
3000  
2000  
40  
SOIC-8, PDIP-8  
MSOP-8, SOIC-8  
MSOP-8, SOIC-8  
MSOP-8, SOIC-8  
SOIC-8, SOT-23-5  
TSOT-5  
MSOP-8, SOIC-8  
WLCSP-5, SOT-23-5  
TSOT-5  
OP1177  
AD8675  
AD8671  
ADA4004-1  
AD8603  
AD8607  
AD8605  
AD8615  
AD8616  
90  
0.001  
0.001  
0.001  
0.001  
0.001  
1.8 ꢀo 5  
2.7 ꢀo 5  
40  
1000  
2000  
2000  
2.7 ꢀo 5  
2.7 ꢀo 5  
MSOP-8, SOIC-8  
Table 12. Suitable Analog Devices High Speed Op Amps  
Slew Rate  
Supply Voltage (V) BW at ACL (MHz) (V/μs)  
Part No.  
AD8065  
AD8066  
AD8021  
AD8038  
ADA4899-1  
AD8057  
AD8058  
AD8061  
AD8062  
AD9631  
VOS (Max) (μV)  
1500  
1500  
1000  
3000  
35  
5000  
5000,  
6000  
6000  
IB (Max) (nA)  
0.006  
0.006  
10,500  
750  
100  
500  
500  
350  
Package(s)  
5 ꢀo 24  
5 ꢀo 24  
5 ꢀo 24  
3 ꢀo 12  
5 ꢀo 12  
3 ꢀo 12  
3 ꢀo 12  
2.7 ꢀo 8  
2.7 ꢀo 8  
3 ꢀo 6  
145  
145  
490  
350  
600  
325  
325  
320  
320  
320  
180  
180  
120  
425  
310  
1000  
850  
650  
650  
1300  
SOIC-8, SOT-23-5  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
SOIC-8, SC70-5  
LFCSP-8, SOIC-8  
SOT-23-5, SOIC-8  
SOIC-8, MSOP-8  
SOT-23-5, SOIC-8  
SOIC-8, MSOP-8  
SOIC-8, PDIP-8  
350  
7000  
10,000  
Rev. G | Page 20 of 24  
 
 
 
Data Sheet  
AD5544/AD5554  
OUTLINE DIMENSIONS  
10.50  
10.20  
9.90  
15  
28  
5.60  
5.30  
5.00  
8.20  
7.80  
7.40  
1
14  
0.25  
0.09  
1.85  
1.75  
1.65  
2.00 MAX  
0.05 MIN  
8°  
4°  
0°  
0.95  
0.75  
0.55  
0.38  
0.22  
SEATING  
PLANE  
COPLANARITY  
0.10  
0.65 BSC  
COMPLIANT TO JEDEC STANDARDS MO-150-AH  
Figure 28. 28-Lead Shrink Small Outline Package [SSOP]  
(RS-28)  
Dimensions shown in millimeters  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
25  
24  
32  
1
0.50  
BSC  
3.65  
3.50 SQ  
3.45  
EXPOSED  
PAD  
8
9
17  
16  
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
3.50 REF  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD.  
Figure 29. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
5 mm × 5 mm Body, Very Very Thin Quad  
(CP-32-11)  
Dimensions shown in millimeters  
Rev. G | Page 21 of 24  
 
AD5544/AD5554  
Data Sheet  
ORDERING GUIDE  
Temperature  
RES Bit INL LSB DNL LSB Range  
Package  
Option  
Model1  
Package Description  
AD5544ARS  
AD5544ARSZ  
AD5544ARSZ-REEL7  
AD5544BRSZ  
AD5544BRSZ-REEL7  
AD5544ACPZ-1-R2  
AD5544ACPZ-1-RL7  
AD5544BCPZ-R2  
AD5544BCPZ-RL7  
AD5554BRSZ  
16  
2
2
2
1
1
4
4
1
1.5  
1.5  
1.5  
1
1
1
1
1
1
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
28-Lead Shrink Small Outline Package [SSOP]  
28-Lead Shrink Small Outline Package [SSOP]  
28-Lead Shrink Small Outline Package [SSOP]  
28-Lead Shrink Small Outline Package [SSOP]  
28-Lead Shrink Small Outline Package [SSOP]  
32-Lead LFCSP_WQ  
32-Lead LFCSP_WQ  
32-Lead LFCSP_WQ  
32-Lead LFCSP_WQ  
RS-28  
RS-28  
RS-28  
RS-28  
16  
16  
16  
16  
16  
16  
16  
16  
14  
RS-28  
CP-32-11  
CP-32-11  
CP-32-11  
CP-32-11  
RS-28  
1
0.5  
1
28-Lead Shrink Small Outline Package [SSOP]  
Evaluation Board  
EV-AD5544/45SDZ  
1 Z = RoHS Compliant Part.  
Rev. G | Page 22 of 24  
 
 
Data Sheet  
NOTES  
AD5544/AD5554  
Rev. G | Page 23 of 24  
AD5544/AD5554  
NOTES  
Data Sheet  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2000–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00943-0-5/13(G)  
Rev. G | Page 24 of 24  

相关型号:

AD5544BCPZ-R2

Quad, Current-Output, Serial-Input 16-/14-Bit DACs
ADI

AD5544BCPZ-RL7

Quad, Current-Output, Serial-Input 16-/14-Bit DACs
ADI

AD5544BRSZ

Quad, Current-Output, Serial-Input 16-/14-Bit DACs
ADI

AD5544BRSZ-REEL7

Quad, Current-Output, Serial-Input 16-/14-Bit DACs
ADI

AD5544EVAL

Quad, Current-Output, Serial-Input 16-/14-Bit DACs
ADI

AD5544LRS

IC QUAD, SERIAL INPUT LOADING, 3 us SETTLING TIME, 16-BIT DAC, PDSO28, SSOP-28, Digital to Analog Converter
ADI

AD5544SRS-EP

Quad, Current-Output, Serial-Input 16-/14-Bit DACs
ADI

AD5544_04

Quad, Current-Output, Serial-Input 16-/14-Bit DACs
ADI

AD5544_12

Quad, Current-Output, Serial-Input 16-/14-Bit DACs
ADI

AD5544_13

Quad, Current-Output, Serial-Input 16-/14-Bit DACs
ADI

AD5545

Dual, Current-Output, Serial-Input, 16-/14-Bit DAC
ADI

AD5545-KGD-WP

Precision DUAL 16-Bit and 14-Bit DACs in Compact TSSOP Packages
ADI