AD5544_04 [ADI]

Quad, Current-Output, Serial-Input 16-/14-Bit DACs; 四,电流输出,串行输入16位/ 14位DAC
AD5544_04
型号: AD5544_04
厂家: ADI    ADI
描述:

Quad, Current-Output, Serial-Input 16-/14-Bit DACs
四,电流输出,串行输入16位/ 14位DAC

文件: 总20页 (文件大小:1150K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad, Current-Output,  
Serial-Input 16-/14-Bit DACs  
AD5544/AD5554  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
A B C D  
AD5544 16-bit resolution  
AD5554 14-bit resolution  
2 mA full-scale current 20ꢀ, with VREF  
2 µs settling time  
VSS BIAS for zero-scale error reduction @ temp  
midscale or zero-scale reset  
REF  
V
DD  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
R
A
FB  
=
10 V  
SDO  
INPUT  
REGISTER  
DAC A  
REGISTER  
DAC A  
DAC B  
DAC C  
DAC D  
I
A
OUT  
R
R
R
R
R
R
R
R
A
A
GND  
R
B
FB  
INPUT  
REGISTER  
DAC B  
REGISTER  
16  
D9  
I
B
OUT  
D10  
D11  
D12  
D13  
D14  
D15  
A0  
Four separate, 4-Q multiplying reference inputs  
A
B
GND  
SPI®-compatible 3-wire interface  
Double buffered registers enable  
Simultaneous multichannel change  
Internal power ON reset  
R
I
C
FB  
INPUT  
REGISTER  
DAC C  
REGISTER  
C
OUT  
SDI  
A1  
A
C
GND  
CS  
R
I
D
FB  
CLK  
EN  
Compact SSOP-28 package  
INPUT  
REGISTER  
DAC D  
REGISTER  
D
OUT  
DAC  
A
B
C
D
A
D
GND  
APPLICATIONS  
Automatic test equipment  
Instrumentation  
2:4  
POWER-  
ON  
RESET  
AD5544  
DECODE  
A
F
GND  
Digitally controlled calibration  
DGND  
RS  
MSB  
LDAC  
V
SS  
Figure 1.  
GENERAL DESCRIPTION  
1.0  
The AD5544/AD5554 quad, 16-/14-bit, current-output, digital  
to-analog converters are designed to operate from a single  
5 V supply.  
DAC A  
DAC B  
DAC C  
DAC D  
0.5  
0
–0.5  
–1.0  
1.0  
The applied external reference input voltage (VREF) determines  
the full-scale output current. Integrated feedback resistors (RFB)  
provide temperature-tracking, full-scale voltage outputs when  
combined with an external I-to-V precision amplifier.  
0.5  
0
–0.5  
–1.0  
1.0  
A double-buffered serial-data interface offers high speed,  
3-wire, SPI- and microcontroller-compatible inputs using serial-  
0.5  
0
CS  
data-in (SDI), a chip-select ( ), and clock (CLK) signals. In  
addition, a serial-data-out pin (SDO) allows for daisy-chaining  
when multiple packages are used. A common, level-sensitive,  
–0.5  
–1.0  
1.0  
LDAC  
load-DAC strobe (  
) input allows the simultaneous update  
0.5  
0
of all DAC outputs from previously loaded input registers.  
Additionally, an internal power ON reset forces the output  
voltage to zero at system turn ON. An MSB pin allows system  
–0.5  
–1.0  
RS  
0
8192 16384 24576 32768 40960 49152 57344 65536  
CODE (Decimal)  
reset assertion ( ) to force all registers to zero code when  
MSB = 0, or to half-scale code when MSB = 1.  
Figure 2. AD5544 INL vs. Code Plot (TA = 25°C)  
The AD5544/AD5554 are packaged in the compact SSOP-28.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD5554/AD5554  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
AD5544 Electrical Characteristics ............................................. 3  
AD5554 Electrical Characteristics ............................................. 4  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ........................................... 10  
Circuit Operation ........................................................................... 14  
D/A Converter............................................................................ 14  
Serial Data Interface....................................................................... 16  
Power On Reset .......................................................................... 17  
Applications ................................................................................ 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
REVISION HISTORY  
12/04—Rev. 0 to Rev. A  
Updated Format...................................................................... Universal  
Change to Electrical Characteristics Tables .......................................4  
Change to Pin Description Table.......................................................10  
Addition of Power Supply Sequence Section...................................19  
Addition of Layout and Power Supply Bypassing Section .............19  
Addition of Grounding Section.........................................................19  
Addition of Figure 32..........................................................................19  
4/00—Revision 0: Initial Version  
Rev. A | Page 2 of 20  
AD5544/AD5554  
SPECIFICATIONS  
AD5544 ELECTRICAL CHARACTERISTICS  
VDD = 5 V 10ꢀ, VSS = 0 V, IOUTX = virtual GND, AGNDX = 0 V, VREFA, B, C, D = 10 V, TA = full operating temperature range, unless  
otherwise noted.  
Table 1.  
Parameter  
Symbol  
Condition  
Min Typ  
Max  
Unit  
STATIC PERFORMANCE1  
Resolution  
N
INL  
DNL  
1 LSB = VREF/216 = 153 µV when VREF = 10 V  
16  
Bits  
LSB  
LSB  
nA  
nA  
mV  
Relative Accuracy  
Differential Nonlinearity  
Output Leakage Current  
±±  
±1.5  
10  
20  
±3  
IOUT  
IOUT  
X
X
Data = 0000H, TA = 25°C  
Data = 0000H, TA = TA max  
Data = FFFFH  
Full-Scale Gain Error  
Full-Scale Tempco2  
Feedback Resistor  
GFSE  
TCVFS  
RFBX  
±0.ꢀ5  
1
6
ppm/°C  
kΩ  
VDD = 5 V  
±
8
REFERENCE INPUT  
VREFX Range  
Input Resistance  
Input Resistance Match  
Input Capacitance2  
ANALOG OUTPUT  
VREF  
RREF  
RREF  
X
X
X
−15  
±
+15  
8
V
kΩ  
%
6
1
5
Channel-to-channel  
CREF  
X
pF  
Output Current  
IOUT  
COUT  
X
X
Data = FFFFH  
Code-dependent  
1.25  
2.±  
±
2.5  
0.8  
mA  
pF  
Output Capacitance2  
LOGIC INPUT AND OUTPUT  
Logic Input Low Voltage  
Logic Input High Voltage  
Input Leakage Current  
Input Capacitance2  
Logic Output Low Voltage  
Logic Output High Voltage  
INTERFACE TIMING2, 3  
Clock Width High  
80  
VIL  
VIH  
IIL  
CIL  
VOL  
VOH  
V
V
µA  
pF  
V
1
10  
0.±  
IOL = 1.6 mA  
IOH = 100 µA  
V
tCH  
tCL  
tCSS  
tCSH  
tPD  
tLDAC  
tDS  
tDH  
25  
25  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock Width Low  
CS  
to Clock Setup  
CS  
25  
2
25  
20  
20  
5
Clock to  
Hold  
Clock to SDO Prop Delay  
Load DAC Pulse Width  
Data Setup  
Data Hold  
Load Setup  
20  
tLDS  
tLDH  
Load Hold  
25  
SUPPLY CHARACTERISTICS  
Power Supply Range  
Positive Supply Current  
Negative Supply Current  
Power Dissipation  
Power Supply Sensitivity  
VDD RANGE  
IDD  
ISS  
PDISS  
PSS  
±.5  
5.5  
250  
1
1.25  
0.006 %/%  
V
Logic inputs = 0 V  
Logic inputs = 0 V, VSS = –5 V  
Logic inputs = 0 V  
∆VDD = ±5%  
50  
0.001  
µA  
µA  
mW  
Rev. A | Page 3 of 20  
 
 
AD5554/AD5554  
Parameter  
AC CHARACTERISTICS±  
Symbol  
Condition  
Min Typ  
Max  
Unit  
Output Voltage Settling Time tS  
To ±0.1% of full scale, data = 0000H to FFFFH to  
0x0000  
To ±0.0015% of full scale, data = 0000H to FFFFH to  
0000H  
1
2
µs  
Output Voltage Settling Time  
tS  
µs  
Reference Multiplying BW  
DAC Glitch Impulse  
Feedthrough Error  
Crosstalk Error  
BW − 3 dB  
Q
VREFX = 100 mV rms, data = FFFFH, CFB = 15 pF  
VREFX = 10 V, data 0000H to 8000H to 0000H  
Data = 0000H, VREFX = 100 mV rms, f = 100 kHz  
Data = 0000H, VREFB = 100 mV rms, adjacent  
channel, f = 100 kHz  
2
12  
−65  
−90  
MHz  
nV-s  
dB  
VOUTX/VREF  
X
VOUTA/VREF  
B
dB  
Digital Feedthrough  
Q
CS  
5
nV-s  
dB  
nVHz  
= 1, and fCLK = 1 MHz  
Total Harmonic Distortion  
Output Spot Noise Voltage  
THD  
eN  
VREF = 5 V p-p, data = FFFFH, f = 1 kHz  
f = 1 kHz, BW = 1 Hz  
−90  
1 All static performance tests (except IOUT) are performed in a closed-loop system using an external precision OP1ꢀꢀ I-to-V converter amplifier. The AD55±± RFB terminal is  
tied to the amplifier output. Typical values represent average readings measured at 25 °C.  
2 These parameters are guaranteed by design and not subject to production testing.  
3 All input control signals are specified with tR = tF = 2.5 ns (10% to 90% of 3 V) and timed from a voltage level of 1.5 V.  
± All ac characteristic tests are performed in a closed-loop system using an OP±2 I-to-V converter amplifier.  
AD5554 ELECTRICAL CHARACTERISTICS  
VDD = 5 V 10ꢀ, VSS = 0 V, IOUTX = virtual GND, AGNDX = 0 V, VREFA, B, C, D = 10 V, TA = full operating temperature range, unless  
otherwise noted.  
Table 2.  
Parameter  
Symbol  
Condition  
Min Typ  
Max  
Unit  
STATIC PERFORMANCE1  
Resolution  
N
INL  
DNL  
1 LSB = VREF/2= 610 µV when VREF = 10 V  
1±  
Bits  
LSB  
LSB  
nA  
nA  
mV  
Relative Accuracy  
Differential Nonlinearity  
Output Leakage Current  
±1  
±1  
10  
20  
±10  
IOUT  
IOUT  
X
X
Data = 0000H, TA = 25°C  
Data = 0000H, TA = TA Max  
Data = 3FFFH  
Full-Scale Gain Error  
Full-Scale Tempco2  
Feedback Resistor  
REFERENCE INPUT  
VREFX Range  
GFSE  
TCVFS  
RFBX  
±2  
1
ppm/°C  
kΩ  
VDD = 5 V  
±
6
8
VREF  
RREF  
RREF  
X
X
X
−15  
±
+15  
8
V
kΩ  
%
Input Resistance  
6
1
5
Input Resistance Match  
Input Capacitance2  
ANALOG OUTPUT  
Channel-to-channel  
CREF  
X
pF  
Output Current  
IOUT  
X
Data = 3FFFH  
Code-dependent  
1.25  
2.±  
2.5  
0.8  
mA  
pF  
Output Capacitance2  
C
OUTX  
80  
LOGIC INPUT AND OUTPUT  
Logic Input Low Voltage  
Logic Input High Voltage  
Input Leakage Current  
Input Capacitance2  
VIL  
VIH  
IIL  
CIL  
VOL  
VOH  
V
V
µA  
pF  
V
1
10  
0.±  
Logic Output Low Voltage  
Logic Output High Voltage  
IOL = 1.6 mA  
IOH = 100 µA  
±
V
Rev. A | Page ± of 20  
 
 
AD5544/AD5554  
Parameter  
Symbol  
Condition  
Min Typ  
Max  
Unit  
INTERFACE TIMING2, 3  
Clock Width High  
Clock Width Low  
tCH  
tCL  
25  
25  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS  
tCSS  
tCSH  
tPD  
tLDAC  
tDS  
tDH  
tLDS  
tLDH  
to Clock Setup  
CS  
25  
2
25  
20  
20  
5
Clock to  
Hold  
Clock to SDO Prop Delay  
Load DAC Pulse Width  
Data Setup  
Data Hold  
Load Setup  
20  
Load Hold  
25  
SUPPLY CHARACTERISTICS  
Power Supply Range  
Positive Supply Current  
Negative Supply Current  
Power Dissipation  
Power Supply Sensitivity  
AC CHARACTERISTICS±  
Output Voltage Settling Time  
Output Voltage Settling Time  
VDD RANGE  
IDD  
ISS  
PDISS  
PSS  
±.5  
50  
5.5  
250  
1
1.25  
0.006 %/%  
V
Logic inputs = 0 V  
Logic inputs = 0 V, VSS = –5 V  
Logic inputs = 0 V  
∆VDD = ±5%  
µA  
µA  
mW  
0.001  
tS  
tS  
To ±0.1% of full scale, data = 0000H to 3FFFH to 0000H  
To ±0.0015% of full scale, data = 0000H to 3FFFH  
to 0000H  
1
2
µs  
µs  
Reference Multiplying BW  
DAC Glitch Impulse  
Feedthrough Error  
Crosstalk Error  
BW – 3 dB  
Q
VREFX = 100 mV rms, data = 3FFFH, CFB = 15 pF  
VREFX = 10 V, data 0000H to 2000H to 0000H  
Data = 0000H, VREFX = 100 mV rms, f = 100 kHz  
Data = 0000H, VREFB = 100 mV rms, adjacent channel,  
f = 100 kHz  
2
12  
–65  
–90  
MHz  
nV-s  
dB  
VOUTX/VREF  
X
VOUTA/VREF  
B
dB  
Digital Feedthrough  
Q
CS  
5
nV-s  
dB  
nVHz  
= 1, and fCLK = 1 MHz  
Total Harmonic Distortion  
Output Spot Noise Voltage  
THD  
eN  
VREF= 5 V p-p, data = 3FFFH, f = 1 kHz  
f = 1 kHz, BW = 1 Hz  
–90  
1 All static performance tests (except IOUT) are performed in a closed-loop system using an external precision OP1ꢀꢀ I-to-V converter amplifier. The AD555± RFB terminal is  
tied to the amplifier output. Typical values represent average readings measured at 25°C.  
2 These parameters are guaranteed by design and not subject to production testing.  
3 All input control signals are specified with tR = tF = 2.5 ns (10% to 90% of 3 V) and timed from a voltage level of 1.5 V.  
± All ac characteristic tests are performed in a closed-loop system using an OP±2 I-to-V converter amplifier.  
Rev. A | Page 5 of 20  
 
AD5554/AD5554  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Parameter  
VDD to GND  
VSS to GND  
VREF to GND  
Logic Input and Output to GND  
V(IOUT) to GND  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to  
absolute maximum rating conditions for extended periods may  
affect device reliability.  
Rating  
−0.3 V, +8 V  
+0.3 V, −ꢀ V  
−18 V, +18 V  
−0.3 V, +8 V  
−0.3 V, VDD+ 0.3 V  
−0.3 V, + 0.3 V  
±50 mA  
AGNDX to DGND  
Input Current to Any Pin Except Supplies  
Package Power Dissipation  
Thermal Resistance  
(TJ Max − TA)/θJA  
θJA  
28-Lead Shrink Surface-Mount (RS-28)  
Maximum Junction Temperature (TJ Max)  
Operating Temperature Range: Model A  
Storage Temperature Range  
Lead Temperature:  
100°C/W  
150°C  
−±0°C to +85°C  
−65°C to +150°C  
RS-28 (Vapor Phase, 60 secs)  
RS-28 (Infrared, 15 secs)  
215°C  
220°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as ±000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 6 of 20  
 
AD5544/AD5554  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
28  
27  
26  
25  
24  
23  
22  
A
A
A
A
A
GND  
A
D
GND  
I
OUT  
I
D
OUT  
3
V
REF  
V
D
REF  
4
R
R
D
FB  
FB  
5
MSB  
RS  
DGND  
AD5544/  
AD5554  
TOP VIEW  
6
V
SS  
7
V
A
F
DD  
GND  
8
(Not to Scale) 21  
CS  
CLK  
SDI  
LDAC  
SDO  
9
20  
19  
18  
17  
16  
15  
10  
11  
12  
13  
14  
NC  
R
B
B
B
B
FB  
R
C
FB  
V
REF  
OUT  
GND  
V
C
REF  
I
I
C
OUT  
A
A
C
GND  
NC = NO CONNECT  
Figure 3. AD5544/AD5554 Pin Configuration  
Table 4. Pin Function Descriptions  
Pin  
No.  
Name  
Function  
1
2
3
±
AGND  
IOUT  
VREF  
RFBA  
MSB  
RS  
A
A
A
DAC A Analog Ground.  
DAC A Current Output.  
DAC A Reference Voltage Input Terminal. Establishes DAC A full-scale output voltage. Pin can be tied to VDD pin.  
Establish voltage output for DAC A by connecting to external amplifier output.  
MSB Bit. Set pin during a reset pulse (RS) or at system power ON if tied to ground or VDD.  
5
6
Reset Pin, Active Low Input. Input registers and DAC registers are set to all zeros or half-scale code (8000H for AD55±±  
and 2000H for AD555±) determined by the voltage on the MSB pin. Register Data = 0000H when MSB = 0.  
Register Data = 8000H for AD55±± and 2000H.  
8
VDD  
CS  
Positive Power Supply Input. Specified range of operation 5 V ±10%.  
Chip Select, Active Low Input. Disables shift register loading when high. Transfers serial register data to the input  
register when CS/LDAC returns high. Does not effect LDAC operation.  
9
CLK  
SDI  
RFBB  
Clock Input. Positive edge clocks data into shift register.  
Serial Data Input. Input data loads directly into the shift register.  
Establish voltage output for DAC B by connecting to external amplifier output.  
DAC B Reference Voltage Input Terminal. Establishes DAC B full-scale output voltage. Pin can be tied to VDD pin.  
DAC B Current Output.  
DAC B Analog Ground.  
DAC C Analog Ground.  
DAC C Current Output.  
DAC C Reference Voltage Input Terminal. Establishes DAC C full-scale output voltage. Pin can be tied to VDD pin.  
Establish voltage output for DAC C by connecting to external amplifier output.  
No Connect. Leave pin unconnected.  
Serial Data Output. Input data loads directly into the shift register. Data appears at SDO, 19 clock pulses for AD55±±  
and 1ꢀ clock pulses for AD555± after input at the SDI pin.  
10  
11  
12  
13  
1±  
15  
16  
1ꢀ  
18  
19  
20  
VREF  
B
IOUTB  
AGND  
AGND  
B
C
IOUTC  
VREF  
C
RFBC  
NC  
SDO  
21  
LDAC  
Load DAC Register Strobe, Level Sensitive Active Low. Transfers all input register data to DAC registers. Asynchronous  
active low input. See Table 5 and Table 6 for operation.  
22  
23  
2±  
25  
26  
2ꢀ  
28  
AGNDF  
VSS  
DGND  
RFBD  
High Current Analog Force Ground.  
Negative Bias Power Supply Input. Specified range of operation: −5.5 V to +0.3 V.  
Digital Ground Pin.  
Establish Voltage Output for DAC D by Connecting to External Amplifier Output.  
DAC D Reference Voltage Input Terminal. Establishes DAC D full-scale output voltage. Pin can be tied to VDD pin.  
DAC D Current Output.  
VREF  
IOUT  
AGND  
D
D
D
DAC D Analog Ground.  
Rev. A | Page ꢀ of 20  
 
AD5554/AD5554  
SDI  
A1  
A0  
D15 D14 D13 D12 D11 D10  
D1  
D0  
INPUT  
REG  
LD  
CLK  
tDS  
tDH  
tCH  
tCL  
tCSH  
tCSS  
CS  
tLDS  
tLDAC  
tLDH  
LDAC  
tPD  
SDO  
Figure 4. AD5544 Timing Diagram  
SDI  
A1  
A0  
D13 D12 D11 D10 D09 D08  
D1  
D0  
INPUT  
REG  
LD  
CLK  
tDS  
tDH  
tCH  
tCL  
tCSH  
tCSS  
CS  
tLDS  
tLDAC  
tLDH  
LDAC  
tPD  
SDO  
Figure 5. AD5554 Timing Diagram  
Table 5. AD55441 Control-Logic Truth Table  
CS CLK LDAC RS MSB Serial Shift Register Function Input Register Function  
DAC Register  
H
L
L
X
L
H
H
H
H
H
H
X
X
X
No Effect  
No Effect  
Shift-Register-Data Advanced  
One Bit  
Latched  
Latched  
Latched  
Latched  
Latched  
Latched  
+  
L
H
L
H
H
H
H
X
X
No Effect  
No Effect  
Latched  
Latched  
Latched  
Selected DAC Updated with Current  
SR Contents  
+  
H
H
H
X
X
X
L
H
H
H
H
X
X
X
No Effect  
No Effect  
No Effect  
Latched  
Latched  
Latched  
Transparent  
Latched  
Latched  
+  
H
H
H
H
X
X
L
L
0
H
No Effect  
No Effect  
Latched Data = 0000H  
Latched Data = 8000H  
Latched Data = 0000H  
Latched Data = 8000H  
1 For the AD55±±, data appears at the SDO Pin 19 clock pulses after input at the SDI pin.  
Rev. A | Page 8 of 20  
 
 
 
AD5544/AD5554  
Table 6. AD55541 Control-Logic Truth Table  
CS  
CLK LDAC RS MSB Serial Shift Register2 Function  
Input Register2 Function  
DAC Register  
H
L
L
X
L
+2  
H
H
H
H
H
H
X3  
X
X
No Effect  
No Effect  
Shift-Register-Data Advanced  
One Bit  
Latched  
Latched  
Latched  
Latched  
Latched  
Latched  
L
+2  
H
L
H
H
H
H
X
X
No Effect  
No Effect  
Latched  
Latched  
Latched  
Selected DAC Updated with Current  
Shift-Register Contents±  
H
H
H
X
X
X
L
H
H
H
H
X
X
X
No Effect  
No Effect  
No Effect  
Latched  
Latched  
Latched  
Transparent  
Latched  
Latched  
+  
H
H
H
H
X
X
L
L
0
H
No Effect  
No Effect  
Latched Data = 0000H  
Latched Data = 2000H  
Latched Data = 0000H  
Latched Data = 2000H  
1 For the AD555±, data appears at the SDO Pin 1ꢀ clock pulses after input at the SDI pin.  
2
+ positive logic transition.  
3 X = don’t care.  
± At power on both the input register and the DAC register are loaded with all zeros.  
Table 7. AD5544 Serial Input Register Data Format, Data Is Loaded in the MSB-First Format1  
MSB  
LSB  
Bit Position  
Data Word  
B1ꢀ  
A1  
B16 B15 B1± B13 B12 B11 B10 B9 B8 Bꢀ B6 B5 B± B3 B2 B1 B0  
A0 D15 D1± D13 D12 D11 D10 D9 D8 Dꢀ D6 D5 D± D3 D2 D1 D0  
1
CS  
Only the last 18 bits of data clocked into the serial register (address + data) are inspected when the  
line’s positive edge returns to logic high. At this point an inter-  
nally generated load strobe transfers the serial register data contents (Bits D15 to D0) to the decoded DAC-input-register address determined by Bits A1 and A0. Any  
LDAC  
extra bits clocked into the AD55±± shift register are ignored; only the last 18 bits clocked in are used. If double-buffered data is not needed, the  
logic low to disable the DAC registers.  
pin can be tied  
Table 8. AD5554 Serial Input Register Data Format, Data Is Loaded in the MSB-First Format1  
MSB  
LSB  
Bit Position  
Data Word  
B15  
A1  
B1±  
A0  
B13  
D13  
B12  
D12  
B11  
D11  
B10  
D10  
B9  
D9  
B8  
D8  
Bꢀ  
Dꢀ  
B6  
D6  
B5  
D5  
B±  
D±  
B3  
D3  
B2  
D2  
B1  
D1  
B0  
D0  
1
CS  
Only the last 16 bits of data clocked into the serial register (address + data) are inspected when the  
line’s positive edge returns to logic high. At this point an  
internally generated load strobe transfers the serial register data contents (Bits D13 to D0) to the decoded DAC-input-register address determined by Bits A1 and A0.  
LDAC  
Any extra bits clocked into the AD555± shift register are ignored; only the last 16 bits clocked in are used. If double-buffered data is not needed, the  
tied logic low to disable the DAC registers.  
pin can be  
Table 9. Address Decode  
A1  
A0  
0
DAC Decoded  
DAC A  
0
0
1
DAC B  
1
0
DAC C  
1
1
DAC D  
Rev. A | Page 9 of 20  
 
 
 
 
 
 
 
 
 
 
 
 
AD5554/AD5554  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.75  
0.50  
0.25  
0
–0.25  
–0.50  
–0.75  
0.50  
0.25  
DAC A  
DAC B  
DAC C  
0
–0.25  
DAC A  
–0.50  
0.75  
0.50  
0.25  
0
–0.25  
–0.50  
–0.75  
0.50  
0.25  
0
–0.25  
DAC B  
–0.50  
0.75  
0.50  
0.25  
0.50  
0.25  
0
0
–0.25  
–0.50  
–0.75  
–0.25  
DAC C  
–0.50  
0.75  
0.50  
0.25  
0
–0.25  
–0.50  
–0.75  
0.50  
0.25  
DAC D  
8192  
0
–0.25  
DAC D  
–0.50  
0
8192 16384 24576 32768 40960 49152 57344 65536  
CODE (Decimal)  
0
2048 4096  
6144  
10240 12288 14336 16384  
CODE (Decimal)  
Figure 6. AD5544 DNL vs. Code, TA = 25°C  
Figure 8. AD5554 DNL vs. Code, TA = 25°C  
1.0  
0.5  
2.0  
1.5  
1.0  
0.5  
DAC A  
V
V
T
= 5V  
DD  
= 10V  
REF  
0
–0.5  
–1.0  
= 25°C  
F000  
A
H
8000  
H
1.0  
0.5  
DAC B  
DAC C  
DAC D  
0
–0.5  
–1.0  
–1.5  
–2.0  
7FFF  
0FFF  
H
H
0
–0.5  
–1.0  
1.0  
0.5  
0
–0.5  
–1.0  
0
–1500  
–1000  
–500  
500  
1000  
1500  
OP AMP OFFSET VOLTAGE (µV)  
1.0  
0.5  
Figure 9. AD5544 Integral Nonlinearity Error vs. Op Amp Offset  
0
–0.5  
–1.0  
0
2048 4096  
6144  
8192  
10240 12288 14336 16384  
CODE (Decimal)  
Figure 7. AD5554 INL vs. Code, TA = 25°C  
Rev. A | Page 10 of 20  
 
AD5544/AD5554  
0.75  
0.50  
0.25  
0
10.0  
7.5  
V
V
= 5V  
DD  
V
V
= 5V  
DD  
= 10V  
REF  
= 10V  
REF  
T
= 25°C  
A
T
= 25°C  
A
3000  
H
5.0  
2.5  
0
2000  
H
1FFF  
0FFF  
H
H
–2.5  
–5.0  
–0.25  
–0.50  
–0.75  
–7.5  
–10.0  
–1500  
0
–2000 –1500 –1000 –500  
500  
1000  
1500 2000  
0
–1000  
–500  
500  
1000  
1500  
OP AMP OFFSET VOLTAGE (µV)  
OP AMP OFFSET VOLTAGE (µV)  
Figure 10. AD5554 Integral Nonlinearity Error vs. Op Amp Offset  
Figure 13. AD5544 Gain Error vs. Op Amp Offset  
4
3
2
1.00  
V
V
= 5V  
DD  
V
V
= 5V  
DD  
= 10V  
REF  
= 10V  
0.75  
REF  
8000  
F000  
H
T
= 25°C  
A
T
= 25°C  
A
0.50  
0.25  
0
1
0
H
0FFF  
H
–1  
–2  
–3  
–4  
–0.25  
–0.50  
–0.75  
–1.00  
–5  
–1500  
0
0
–1000 –750  
–500 –250  
250  
500  
750  
1000  
–1000  
–500  
500  
1000  
1500  
OP AMP OFFSET VOLTAGE (µV)  
OP AMP OFFSET VOLTAGE (µV)  
Figure 11. AD5544 Differential Nonlinearity Error vs. Op Amp Offset  
Figure 14. AD5554 Gain Error vs. Op Amp Offset  
0.3  
30  
SS = 120 UNITS  
V
V
= 5V  
2000  
3000  
DD  
H
V
= 5V  
DD  
= 10V  
REF  
0.2  
0.1  
V
= 10V  
REF  
T
= 25°C  
A
T
= –40°C TO +85°C  
A
20  
10  
0
H
0
0FFF  
H
–0.1  
–0.2  
–0.3  
ACCURACY DEGRADATION  
DUE TO EXTERNAL OP AMP  
INPUT OFFSET VOLTAGE  
SPECIFICATION.  
0
0
0.5  
1.0  
1.5  
–1500  
–1000  
–500  
500  
1000  
1500  
FULL-SCALE TEMPCO (ppm/°C)  
OP AMP OFFSET VOLTAGE (µV)  
Figure 15. AD5544 Full-Scale Tempco (ppm/°C)  
Figure 12. AD5554 Differential Nonlinearity Error vs. Op Amp Offset  
Rev. A | Page 11 of 20  
AD5554/AD5554  
50  
40  
30  
20  
10  
SS = 180 UNITS  
V
V
T
= 5V  
DD  
V
OUT  
(10V/DIV)  
= 10V  
V
V
= 5V  
REF  
DD  
= –40°C TO +85°C  
= 10V  
A
REF  
T
= 25°C  
= –343  
A
A
V
1LSB = 52mV  
V
OUT  
(50mV/DIV)  
1µs/DIV  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
FULL-SCALE ERROR TEMPCO (ppm/°C)  
Figure 19. AD5544 Small Signal Settling Time  
Figure 16. AD5554 Full-Scale Tempco (ppm/°C)  
10000  
1000  
100  
7FFF  
8000  
V
= 5V  
DD  
= 10V  
= 25°C  
H
H
V
V
= 5V  
DD  
5555  
H
V
REF  
= 10V  
REF  
T
A
T
= 25°C  
A
CS  
(5V/DIV)  
FFFF  
H
8000  
H
H
0000  
V
OUT  
(50mV/DIV)  
100ns/DIV  
10  
1k  
10k  
100k  
1M  
10M  
100M  
CLOCK FREQUENCY (Hz)  
Figure 17. AD5544 Midscale Transition  
Figure 20. AD5544 Power Supply Current vs. Clock Frequency  
10000  
1000  
100  
0000  
FFFF  
V
V
= 5V  
DD  
H
H
V
V
= 5V  
DD  
1555  
= 10V  
H
REF  
= 10V  
REF  
CS  
(5V/DIV)  
T
= 25°C  
A
T
= 25°C  
A
3FFF  
H
2000  
0000  
H
H
V
OUT  
(5V/DIV)  
2µs/DIV  
10  
1k  
10k  
100k  
1M  
10M  
100M  
CLOCK FREQUENCY (Hz)  
Figure 18. AD5544 Large Signal Settling Time  
Figure 21. AD5554 Power Supply Current vs. Clock Frequency  
Rev. A | Page 12 of 20  
AD5544/AD5554  
100  
90  
80  
70  
60  
50  
40  
30  
20  
600  
500  
400  
300  
200  
100  
0
V
= 5V ±10%  
V
V
= 5V  
DD  
DD  
= 25°C  
T
= 10V  
A
REF  
T
= 25°C  
A
0
1
2
3
4
5
100  
1k  
10k  
100k  
1M  
CLOCK FREQUENCY (Hz)  
LOGIC INPUT VOLTAGE (V)  
Figure 24. AD5544/AD5554 Power Supply Current vs. Logic Input Voltage  
Figure 22. AD5544/AD5554 Power Supply Rejection vs. Frequency  
55  
V
V
= 5V  
DD  
54  
53  
52  
51  
50  
49  
48  
47  
46  
= 10V  
REF  
LOGIC = V  
DD  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (°C)  
Figure 23. AD5544/AD5554 Power Supply Current vs. Temperature  
Rev. A | Page 13 of 20  
AD5554/AD5554  
CIRCUIT OPERATION  
The AD5544 and AD5554 contain four, 16-bit and 14-bit, cur-  
rent-output, digital-to-analog converters, respectively. Each  
DAC has its own independent multiplying reference input. Both  
the AD5544 and the AD5554 use a 3-wire, SPI compatible, serial  
resistance of 5 kΩ, 30ꢀ. On the other hand, the DAC outputs  
IOUTA, B, C, D are code-dependent and produce various out-  
put resistances and capacitances. The choice of external ampli-  
fier should take into account the variation in impedance  
generated by the AD5544/AD5554 on the amplifiers’ inverting  
input node. The feedback resistance, in parallel with the DAC  
ladder resistance, dominates output voltage noise. For multi-  
plying mode applications, an external feedback compensation  
capacitor (CFB) may be needed to provide a critically damped  
output response for step changes in reference input voltages.  
Figure 26 and Figure 27 show the gain vs. frequency perfor-  
mance at various attenuation settings using a 23 pF external  
feedback capacitor connected across the IOUTX and RFBX ter-  
minals for AD5544 and AD5554, respectively. In order to main-  
tain good analog performance, power supply bypassing of  
0.01 µF, in parallel with 1 µF, is recommended. Under these  
conditions, a clean power supply with low ripple voltage capa-  
bility should be used. Switching power supplies is usually not  
suitable for this application due to the higher ripple voltage and  
PSS frequency-dependent characteristics. It is best to derive the  
AD5544/AD5554s 5 V supply from the system’s analog supply  
voltages. Do not use the digital 5 V supply (see Figure 28).  
RS  
data interface, with a configurable asynchronous  
half-scale (MSB = 1) or zero-scale (MSB = 0) preset. In addition,  
LDAC  
pin for  
an  
strobe enables four channel simultaneous updates for  
hardware synchronized output voltage changes.  
D/A CONVERTER  
Each part contains four current-steering R-2R ladder DACs.  
Figure 25 shows a typical equivalent DAC. Each DAC contains a  
matching feedback resistor for use with an external I-to-V con-  
verter amplifier. The RFBX pin connects to the output of the  
external amplifier. The IOUTX terminal connects to the inverting  
input of the external amplifier. The AGNDX pin should be Kelvin-  
connected to the load point requiring full 16-bit accuracy. These  
DACs are designed to operate with both negative or positive  
reference voltage. The VDD power pin is only used by the logic to  
drive the DAC switches on and off. Note that a matching switch  
is used in series with the internal 5 kΩ feedback resistor. If users  
attempt to measure the value of RFB, power must be applied to  
VDD in order to achieve continuity. An additional VSS bias pin is  
used to guard the substrate during high temperature applica-  
tions, minimizing zero-scale leakage currents that double every  
10°C. The DAC output voltage is determined by VREF and the  
digital data (D) in the following equations:  
FFFF  
H
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
ZS  
D
65536  
VOUT = −VREF  
VOUT = −VREF  
×
×
(
For AD5544  
)
(1)  
(2)  
D
16384  
(
For AD5554  
)
V
V
= 5V  
DD  
= 100mV rms  
REF  
Note that the output polarity is opposite to the VREF polarity for  
dc reference voltages.  
T
= 25°C  
A
100  
1k  
10k  
100k  
1M  
10M  
V
DD  
FREQUENCY (Hz)  
R
R
R
R
X
V
X
FB  
REF  
Figure 26. AD5554 Reference Multiplying Bandwidth vs. Code  
2R  
2R  
2R  
R
5kΩ  
3FFF  
H
B13  
B12  
B11  
B10  
S2  
S1  
I
X
OUT  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
A
F
GND  
A
X
GND  
FROM OTHER DACS A  
GND  
V
DGND  
SS  
DIGITAL INTERFACE CONNECTIONS OMITTED FOR CLARITY.  
SWITCHES S1 AND S2 ARE CLOSED, V MUST BE POWERED.  
DD  
Figure 25. Typical Equivalent DAC Channel  
V
V
= 5V  
DD  
= 100mV rms  
ZS  
REF  
These DACs are also designed to accommodate ac reference  
input signals. Both the AD5544 and the AD5554 accommodate  
input reference voltages in the range of −12 V to +12 V. The  
reference voltage inputs exhibit a constant nominal input  
T
C
= 25°C  
= 23pF  
A
F
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 27. AD5554 Reference Multiplying Bandwidth vs. Code  
Rev. A | Page 1± of 20  
 
 
 
 
AD5544/AD5554  
15V  
ANALOG  
POWER  
SUPPLY  
2R  
R
5V  
+
V
DD  
AD5544  
R
X
RR  
R
FB  
V
X
REF  
2R  
2R  
2R  
R
5k  
15V  
S2  
S1  
V
I
X
CC  
OUT  
V
A
F
OUT  
GND  
A1  
A
X
GND  
+
V
EE  
LOAD  
FROM OTHER DACS A  
GND  
DGND  
V
SS  
DIGITAL INTERFACE CONNECTIONS OMITTED.  
FOR CLARITY SWITCHES S1 AND S2 ARE CLOSED,  
MUST BE POWERED.  
V
DD  
Figure 28. Recommended Kelvin-Sensed Hookup  
Rev. A | Page 15 of 20  
AD5554/AD5554  
SERIAL DATA INTERFACE  
the  
line low between the first, second, and third byte trans-  
CS  
The AD5544/AD5554 uses a 3-wire ( , SDI, CLK) SPI compa-  
CS  
fers will result in a successful serial register update. Similarly,  
two right justified data bytes can be written to the AD5554.  
Keeping the  
tible serial data interface. Serial data of AD5544 and AD5554 is  
clocked into the serial input register in an 18-bit and 16-bit  
data-word format respectively. MSB bits are loaded first. Table 6  
defines the 18 data-word bits for AD5544.  
line low between the first and second byte  
CS  
transfer will result in a successful serial register update.  
Once the data is properly aligned in the shift register, the posi-  
Table 7 defines the 16 data-word bits for AD5554. Data is placed  
on the SDI pin, and clocked into the register on the positive  
clock edge of CLK subject to the data setup and data hold time  
requirements specified in the interface timing specifications.  
CS  
tive edge of the  
initiates the transfer of new data to the target  
DAC register, determined by the decoding of address Bits A1  
and A0. For AD5544, Table 5, Table 7, Table 9, and Figure 4  
define the characteristics of the software serial interface. For  
AD5554, Table 6, Table 8, Table 9, and Figure 5 define the  
characteristics of the software serial interface. Figure 29 and  
Figure 30 show the equivalent logic interface for the key digital  
control pins for the AD5544. AD5554 has a similar configura-  
data can only be clocked in while the  
chip select pin is active  
CS  
low. For AD5544, only the last 18 bits clocked into the serial  
register will be interrogated when the pin returns to the  
CS  
logic high state, extra data bits are ignored. For AD5554, only  
the last 16 bits clocked into the serial register will be inter-  
RS  
tion, except it has 14 data bits. Two additional pins,  
and  
rogated when the  
pin returns to the logic high state. Since  
CS  
MSB, provide hardware control over the preset function and  
DAC register loading.  
most microcontrollers output serial data in 8-bit bytes, three  
right justified data bytes can be written to the AD5544. Keeping  
V
A B C D  
REF  
CS  
EN  
AD5544  
V
DD  
CLK  
R
I
A
FB  
SDI  
16  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
DAC A  
REGISTER  
INPUT  
REGISTER  
A
DAC A  
OUT  
R
R
R
R
R
A
A
GND  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
A0  
R B  
FB  
INPUT  
REGISTER  
DAC B  
REGISTER  
I
B
DAC B  
OUT  
R
R
R
A
B
DAC A  
GND  
SDO  
B
C
D
A1  
2:4  
DECODE  
R
I
C
FB  
INPUT  
REGISTER  
DAC C  
REGISTER  
C
DAC C  
OUT  
A
C
GND  
R
I
D
FB  
INPUT  
REGISTER  
DAC D  
REGISTER  
D
DAC D  
OUT  
A
D
GND  
SET  
MSB  
SET  
MSB  
A
F
POWER-  
ON  
GND  
RESET  
DGND  
MSB  
V
LDAC  
RS  
SS  
Figure 29. System Level Digital Interfacing  
Rev. A | Page 16 of 20  
 
 
AD5544/AD5554  
RS  
electrolytic capacitors should also be applied at VDD to minimize  
any transient disturbance and filter any low frequency ripple  
(see Figure 32). Users should not apply switching regulators for  
VDD due to the power supply rejection ratio degradation over  
frequency.  
If these functions are not needed, the  
pin can be tied to logic  
RS  
high. The asynchronous input  
pin forces all input and DAC  
registers to either the zero-code state (MSB = 0) or the half-  
scale state (MSB = 1).  
TO INPUT REGISTER  
A
AD5544/AD5554  
B
C
D
ADDRESS  
DECODER  
CS  
VDD  
VDD  
+
C3  
C1  
10µF  
0.1µF  
A
X
EN  
GND  
C4  
10µF  
C2  
0.1µF  
SHIFT REGISTER  
TH  
CLK  
SDI  
VSS  
VSS  
DGND  
TH  
19 /17  
CLOCK  
SDO  
Figure 32. Power Supply Bypassing and Grounding Connection  
Figure 30. AD5544/AD5554 Equivalent Logic Interface  
Grounding  
POWER ON RESET  
The DGND and AGNDX pins of the AD5544/AD5554 refer as  
digital and analog ground references. To minimize the digital  
ground bounce, the DGND terminal should be joined remotely  
at a single point to the analog ground plane (see Figure 32).  
When the VDD power supply is turned on, an internal reset  
strobe forces all the input and DAC registers to the zero-code  
state or half-scale state, depending on the MSB pin voltage. The  
VDD power supply should have a smooth positive ramp without  
drooping in order to have consistent results, especially in the  
region of VDD = 1.5 V to 2.3 V. The VSS supply has no effect on  
the power-on reset performance. The DAC register data will  
stay at a zero or half-scale setting until a valid serial register  
data load takes place.  
APPLICATIONS  
The AD5544/AD5554 are inherently 2-quadrant multiplying  
D/A converters. That is, they can be easily set up for unipolar  
output operation. The full-scale output polarity is the inverse of  
the reference-input voltage.  
In some applications it may be necessary to generate the full  
4-quadrant multiplying capability or a bipolar output swing.  
This is easily accomplished using an additional external ampli-  
fier (A2) configured as a summing amplifier (see Figure 33). In  
this circuit the first and second amplifiers (A1 and A2) provide  
a total gain of 2 which increases the output voltage span to 20 V.  
Biasing the external amplifier with a 10 V offset from the refer-  
ence voltage results in a full 4-quadrant multiplying circuit. The  
transfer equation of this circuit shows that both negative and  
positive output voltages are created as the input data (D) is  
incremented from code zero (VOUT = −10 V) to midscale  
(VOUT = 0 V) to full-scale (VOUT = 10 V).  
ESD Protection Circuits  
All logic-input pins contain back-biased ESD protection Zeners  
connected to ground (DGND) and VDD, as shown in Figure 31.  
V
DD  
5k  
DIGITAL  
INPUTS  
DGND  
Figure 31. Equivalent ESD Production Circuits  
Power Supply Sequence  
As standard practice, it is recommended to power VDD, VSS, and  
ground prior to any reference. The ideal power up sequence is  
AGNDX, DGND, VDD, VSS, VREFX, and digital inputs. A noncompli-  
ance power up sequence may elevate the reference current, but  
the devices resume normal operation once VDD and VSS are  
powered-up.  
D
32768  
D
(
)
(3)  
VOUT  
1 × V  
For AD5544  
REF  
(
)
(4)  
VOUT  
1 × − V  
For AD5554  
REF  
8192  
10k  
10kΩ  
10V  
Layout and Power Supply Bypassing  
5kΩ  
V
REF  
A2  
–10V <  
V
OUT  
It is good practice to employ a compact, minimum-lead length  
layout design. The leads to the input should be as direct as  
possible with a minimum conductor length. Ground paths  
should have low resistance and low inductance.  
AD588  
V
< +10V  
OUT  
V
DD  
V
X
R
X
REF  
FB  
I
X
OUT  
ONE CHANNEL  
Similarly, it is good practice to bypass the power supplies with  
quality capacitors for optimum stability. Supply leads to the  
device should be bypassed with 0.01 µF to 0.1 µF disc or chip  
ceramic capacitors. Low-ESR 1 µF to 10 µF tantalum or  
AD5544  
A1  
V
A
F
SS  
GND  
A
X
GND  
DIGITAL INTERFACE CONNECTIONS  
OMITTED FOR CLARITY.  
Figure 33. Four-Quadrant Multiplying Application Circuit  
Rev. A | Page 1ꢀ of 20  
 
 
 
 
AD5544/AD5554  
OUTLINE DIMENSIONS  
10.50  
10.20  
9.90  
28  
15  
14  
8.20  
7.80  
7.40  
5.60  
5.30  
5.00  
1
1.85  
1.75  
1.65  
0.10  
COPLANARITY  
2.00 MAX  
0.25  
0.09  
8°  
4°  
0°  
0.38  
0.22  
0.95  
0.75  
0.55  
0.65  
BSC  
0.05  
MIN  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-150AH  
Figure 34. 28-Lead SSOP  
(RS-28)  
Dimensions Shown in Inches and (Millimeters)  
ORDERING GUIDE  
Model  
RES Bit  
INL LSB  
±±  
±1  
DNL LSB  
Temperature Range  
–±0°C to +85°C  
–±0°C to +85°C  
Package Description  
SSOP-28  
SSOP-28  
Package Option  
RS-28  
RS-28  
AD55±±ARS  
AD555±BRS  
AD55±±EVAL  
16  
1±  
±1.5  
±1  
Evaluation Board  
Rev. A | Page 18 of 20  
 
AD5544/AD5554  
NOTES  
Rev. A | Page 19 of 20  
AD5544/AD5554  
NOTES  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C00943-0-12/04(A)  
Rev. A | Page 20 of 20  

相关型号:

AD5544_12

Quad, Current-Output, Serial-Input 16-/14-Bit DACs
ADI

AD5544_13

Quad, Current-Output, Serial-Input 16-/14-Bit DACs
ADI

AD5545

Dual, Current-Output, Serial-Input, 16-/14-Bit DAC
ADI

AD5545-KGD-WP

Precision DUAL 16-Bit and 14-Bit DACs in Compact TSSOP Packages
ADI

AD5545BRU-REEL7

Dual, Current-Output, Serial-Input, 16-/14-Bit DAC
ADI

AD5545BRUZ

Dual, Current-Output, Serial-Input, 16-/14-Bit DACs
ADI

AD5545BRUZ-REEL7

Dual, Current-Output, Serial-Input, 16-/14-Bit DACs
ADI

AD5545CRUZ

Dual, Current-Output, Serial-Input, 16-/14-Bit DACs
ADI

AD5545CRUZ-REEL7

Dual, Current-Output, Serial-Input, 16-/14-Bit DACs
ADI

AD5546

Current Output, Parallel Input, 16-/14-Bit Multiplying DACs with 4-Quadrant Resistors
ADI

AD5546BRU

Current Output, Parallel Input, 16-/14-Bit Multiplying DACs with 4-Quadrant Resistors
ADI

AD5546BRU-REEL7

Current Output, Parallel Input, 16-/14-Bit Multiplying DACs with 4-Quadrant Resistors
ADI