AD5422BCPZ-REEL7 [ADI]

Single Channel, 12-/16-Bit, Serial Input, Current Source and Voltage Output DACs; 单通道, 12位/ 16位,串行输入,电流源和电压输出DAC
AD5422BCPZ-REEL7
型号: AD5422BCPZ-REEL7
厂家: ADI    ADI
描述:

Single Channel, 12-/16-Bit, Serial Input, Current Source and Voltage Output DACs
单通道, 12位/ 16位,串行输入,电流源和电压输出DAC

文件: 总40页 (文件大小:1159K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single Channel, 12-/16-Bit, Serial Input,  
Current Source and Voltage Output DACs  
AD5412/AD5422  
FEATURES  
GENERAL DESCRIPTION  
12-/16-bit resolution and monotonicity  
The AD5412/AD5422 are low-cost, precision, fully integrated  
Current output ranges: 4 mA to 20 mA, 0 mA to 20 mA,  
0 mA to 24 mA  
12-/16-bit digital-to-analog converters (DAC) offering a pro-  
grammable current source and programmable voltage output  
designed to meet the requirements of industrial process control  
applications.  
0.01 ꢀ FSR typical total unadjusted error (TUE)  
3 ppm/°C output drift  
Voltage output ranges: 0 V to 5 V, 0 V to 10 V, 5 V, 10 V  
10ꢀ overrange  
The output current range is programmable at 4 mA to 20 mA,  
0 mA to 20 mA, or an overrange function of 0 mA to 24 mA.  
0.01 ꢀ FSR typical total unadjusted error (TUE)  
2 ppm/°C output drift  
Flexible serial digital interface  
On-chip output fault detection  
On-chip reference: 10 ppm/°C maximum  
Asynchronous clear function  
Power supply range  
AVDD: 10.8 V to 40 V  
AVSS: −26.4 V to −3 V/0 V  
Voltage output is provided from a separate pin that can be  
configured to provide 0 V to 5 V, 0 V to 10 V, 5 V, or 10 V  
output ranges; an overrange of 10% is available on all ranges.  
Analog outputs are short and open-circuit protected and can  
drive capacitive loads of 1 μF.  
The device operates with an AVDD power supply range from  
10.8 V to 40 V. Output loop compliance is 0 V to AVDD – 2.5 V.  
The flexible serial interface is SPI- and MICROWIRE™-  
compatible and can be operated in 3-wire mode to minimize  
the digital isolation required in isolated applications.  
Output loop compliance: AVDD – 2.5 V  
Temperature range: −40°C to +85°C  
TSSOP and LFCSP packages  
The device also includes a power-on-reset function, ensuring  
that the device powers up in a known state. The part also  
includes an asynchronous clear pin (CLEAR) that sets the  
outputs to zero-scale/midscale voltage output or the low  
end of the selected current range.  
APPLICATIONS  
Process control  
Actuator control  
PLC  
The total output error is typically 0.01% in current mode and  
0.01% in voltage mode.  
Table 1. Pin-Compatible Devices  
Part Number  
Description  
AD5410  
Single channel, 12-bit, serial  
input current source DAC  
AD5420  
Single channel, 16-bit, serial  
input current source DAC  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
AD5412/AD5422  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
AD5412/AD5422 Features ............................................................ 31  
Fault Alert.................................................................................... 31  
Voltage Output Short Circuit Protection ................................ 31  
Voltage Output Overrange........................................................ 31  
Voltage Output Force-Sense ..................................................... 31  
Asynchronous Clear (CLEAR)................................................. 31  
Internal Reference ...................................................................... 31  
External Current Setting Resistor ............................................ 31  
Digital Power Supply.................................................................. 32  
External Boost Function ........................................................... 32  
External Compensation Capacitor........................................... 32  
Digital Slew Rate Control.......................................................... 32  
IOUT Filtering Capacitors (LFCSP Package)............................. 33  
Applications Information.............................................................. 35  
Driving Inductive Loads............................................................ 35  
Transient Voltage Protection .................................................... 35  
Galvanically Isolated Interface ................................................. 35  
Microprocessor Interfacing....................................................... 35  
Layout Guidelines....................................................................... 35  
Thermal and Supply Considerations....................................... 36  
Industrial Analog Output Module........................................... 37  
Outline Dimensions....................................................................... 38  
Ordering Guide .......................................................................... 39  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
AC Performance Characteristics................................................ 7  
Timing Characteristics ................................................................ 8  
Absolute Maximum Ratings.......................................................... 10  
ESD Caution................................................................................ 10  
Pin Configurations and Function Descriptions ......................... 11  
Typical Performance Characteristics ........................................... 13  
General......................................................................................... 13  
Voltage Output............................................................................ 15  
Current Output........................................................................... 20  
Terminology .................................................................................... 24  
Theory of Operation ...................................................................... 26  
Architecture................................................................................. 26  
Serial Interface ............................................................................ 27  
Power-On State ........................................................................... 28  
Data Register............................................................................... 29  
Control Register.......................................................................... 29  
Reset Register.............................................................................. 30  
Status Register............................................................................. 30  
REVISION HISTORY  
8/09—Rev. 0 to Rev. A  
Changes to Architecture Section.................................................. 26  
Changes to AD5412/AD5422 Features Section ......................... 31  
Added IOUT Filtering Capacitors (LFCSP Package)Section,  
Including Figure 69 to Figure 72 and Table 24........................... 33  
Changes to Thermal and Supply Considerations Section......... 36  
Updated Outline Dimensions....................................................... 38  
Changes to Ordering Guide.......................................................... 39  
Changes to Table 2............................................................................ 4  
Changes to Table 3............................................................................ 7  
Changes to Introduction to Table 4................................................ 8  
Changes to Introduction to Table 5 and to Table 5.................... 10  
Changes to Pin Configurations and Function Descriptions  
Section, Added Figure 6, Renumbered Subsequent Figures..... 11  
Changes to Theory of Operation Section.................................... 26  
5/09—Revision 0: Initial Version  
Rev. A | Page 2 of 40  
 
AD5412/AD5422  
FUNCTIONAL BLOCK DIAGRAM  
DV  
CC  
SELECT  
DV  
AV  
AV  
DD  
CC  
SS  
CLEAR  
SELECT  
R2  
R3  
AD5412/AD5422  
BOOST  
CLEAR  
LATCH  
SCLK  
SDIN  
12/16  
INPUT SHIFT  
REGISTER  
AND CONTROL  
LOGIC  
12-/16-BIT  
DAC  
I
OUT  
SDO  
FAULT  
R
SET  
POWER-ON  
RESET  
R
SET  
VREF  
+V  
SENSE  
RANGE  
SCALING  
V
OUT  
–V  
SENSE  
REFOUT  
REFIN  
GND  
C
COMP  
Figure 1.  
Rev. A | Page 3 of 40  
 
AD5412/AD5422  
SPECIFICATIONS  
AVDD = 10.8 V to 26.4 V, AVSS = −26.4 V to −3 V/0 V, AVDD + |AVSS| < 52.8 V, GND = 0 V, REFIN = 5 V external; DVCC = 2.7 V to 5.5 V.  
VOUT: RLOAD = 1 kΩ, CL = 200 pF, IOUT: RLOAD = 350 ꢀ; all specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
Parameter1  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
VOLTAGE OUTPUT  
Output Voltage Ranges  
0
0
−5  
−10  
5
V
V
V
V
10  
+5  
+10  
Accuracy  
Resolution  
Output unloaded  
AD5422  
AD5412  
16  
12  
Bits  
Bits  
Total Unadjusted Error (TUE)  
B Version  
−0.1  
−0.05  
−0.3  
−0.1  
−0.008  
−0.032  
−1  
+0.1  
+0.05  
+0.3  
+0.1  
+0.008  
+0.032  
+1  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
LSB  
0.01  
TA = 25°C  
A Version  
0.05  
TA = 25°C  
AD5422  
AD5412  
Relative Accuracy (INL)2  
Differential Nonlinearity (DNL)  
Bipolar Zero Error  
Guaranteed monotonic  
Bipolar output range  
TA = 25°C, bipolar output range  
Bipolar output range  
−6  
+6  
mV  
−1.5  
0.2  
3
+1.5  
mV  
ppm FSR/°C  
Bipolar Zero Error Temperature  
Coefficient (TC)3  
Zero-Scale Error  
−5  
+5  
mV  
−3.5  
0.3  
2
+3.5  
mV  
ppm FSR/°C  
TA = 25°C  
Zero-Scale Error Temperature  
Coefficient (TC)3  
Offset Error  
−4  
+4  
mV  
Unipolar output range  
−1.5  
0.2  
2
+1.5  
mV  
ppm FSR/°C  
TA = 25°C, unipolar output range  
Unipolar output range  
Offset Error Temperature  
Coefficient (TC)3  
Gain Error  
−0.07  
−0.05  
+0.07  
0.004 +0.05  
1
% FSR  
% FSR  
ppm FSR/°C  
TA = 25°C  
TA = 25°C  
Gain Error Temperature  
Coefficient (TC)3  
Full-Scale Error  
−0.07  
−0.05  
+0.07  
0.001 +0.05  
1
% FSR  
% FSR  
ppm FSR/°C  
Full-Scale Error Temperature  
Coefficient (TC)3  
OUTPUT CHARACTERISTICS3  
Headroom  
0.5  
0.8  
V
Output unloaded  
Output Voltage Drift vs. Time  
Short-Circuit Current  
Load  
90  
20  
ppm FSR  
mA  
kΩ  
Drift after 1000 hours, TA = 125°C  
1
Capacitive Load Stability  
RLOAD = ∞  
TA = 25°C  
20  
5
1
nF  
nF  
μF  
RLOAD = 1 kΩ  
RLOAD = ∞  
External compensation capacitor of 4 nF  
connected  
DC Output Impedance  
Power-On Time  
0.3  
10  
Ω
μs  
Rev. A | Page 4 of 40  
 
AD5412/AD5422  
Parameter1  
Min  
Typ  
90  
3
Max  
130  
12  
Unit  
μV/V  
μV/V  
Test Conditions/Comments  
DC PSRR  
Output unloaded  
CURRENT OUTPUT  
Output Current Ranges  
0
0
4
24  
20  
20  
mA  
mA  
mA  
Accuracy (Internal RSET  
Resolution  
)
16  
12  
Bits  
Bits  
AD5422  
AD5412  
Total Unadjusted Error (TUE)  
B Version  
−0.3  
−0.13  
−0.5  
+0.3  
+0.13  
+0.5  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
LSB  
% FSR  
% FSR  
ppm FSR/°C  
0.08  
TA = 25°C  
A Version  
−0.3  
0.15  
+0.3  
TA = 25°C  
AD5422  
AD5412  
Guaranteed monotonic  
Relative Accuracy (INL)4  
−0.024  
−0.032  
−1  
−0.27  
−0.12  
+0.024  
+0.032  
+1  
+0.27  
+0.12  
Differential Nonlinearity (DNL)  
Offset Error  
0.08  
16  
TA = 25°C  
Offset Error Temperature  
Coefficient (TC)3  
Gain Error  
−0.18  
−0.03  
−0.22  
−0.06  
+0.18  
0.006 +0.03  
+0.22  
0.006 +0.06  
10  
% FSR  
% FSR  
% FSR  
% FSR  
ppm FSR/°C  
% FSR  
% FSR  
AD5422  
AD5422, TA = 25°C  
AD5412  
AD5412, TA = 25°C  
Gain Temperature Coefficient (TC)3  
Full-Scale Error  
−0.2  
−0.1  
+0.2  
+0.1  
0.08  
6
TA = 25°C  
Full-Scale Temperature Coefficient  
(TC)3  
ppm FSR/°C  
Accuracy (External RSET  
Resolution  
)
16  
12  
Bits  
Bits  
AD5422  
AD5412  
Total Unadjusted Error (TUE)  
B Version  
−0.15  
−0.06  
−0.3  
+0.15  
+0.06  
+0.3  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
LSB  
0.01  
0.02  
TA = 25°C  
A Version  
−0.1  
+0.1  
TA = 25°C  
AD5422  
AD5412  
Guaranteed monotonic  
Relative Accuracy (INL)4  
−0.012  
−0.032  
−1  
+0.012  
+0.032  
+1  
Differential Nonlinearity (DNL)  
Offset Error  
−0.1  
+0.1  
% FSR  
−0.03  
0.006 +0.03  
3
TA = 25°C  
Offset Error Temperature  
Coefficient (TC)3  
μA/°C  
Gain Error  
−0.08  
−0.05  
+0.08  
0.003 +0.05  
4
% FSR  
% FSR  
ppm FSR/°C  
% FSR  
% FSR  
TA = 25°C  
TA = 25°C  
Gain Temperature Coefficient (TC)3  
Full-Scale Error  
−0.15  
−0.06  
+0.15  
0.01  
7
+0.06  
Full-Scale Temperature Coefficient  
(TC)3  
ppm FSR/°C  
Rev. A | Page 5 of 40  
 
AD5412/AD5422  
Parameter1  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
OUTPUT CHARACTERISTICS3  
Current Loop Compliance Voltage  
Output Current Drift vs. Time  
0
AVDD − 2.5  
V
Drift after 1000 hours, TA = 125°C  
Internal RSET  
External RSET  
50  
20  
ppm FSR  
ppm FSR  
Ω
mH  
μA/V  
MΩ  
Resistive Load  
Inductive Load  
DC PSRR  
Output Impedance  
Output Current Leakage When  
Output Is Disabled  
1200  
1
50  
TA = 25 °C  
50  
60  
pA  
REFERENCE INPUT/OUTPUT  
Reference Input3  
Reference Input Voltage  
DC Input Impedance  
Reference Output  
4.95  
27  
5
40  
5.05  
V
kΩ  
For specified performance  
TA = 25°C  
Output Voltage  
4.995  
5
1.8  
5.005  
10  
Reference Temperature  
ppm/°C  
Coefficient (TC)3, 5  
Output Noise (0.1 Hz to 10 Hz)3  
Noise Spectral Density3  
Output Voltage Drift vs. Time3  
Capacitive Load3  
10  
100  
50  
600  
5
μV p-p  
nV/√Hz  
ppm  
nF  
mA  
At 10 kHz  
Drift after 1000 hours, TA = 125°C  
Load Current3  
Short-Circuit Current3  
Load Regulation3  
7
95  
mA  
ppm/mA  
DIGITAL INPUTS3  
JEDEC compliant  
Input High Voltage, VIH  
Input Low Voltage, VIL  
Input Current  
2
V
V
μA  
pF  
0.8  
+1  
−1  
Per pin  
Per pin  
Pin Capacitance  
10  
DIGITAL OUTPUTS3  
SDO  
Output Low Voltage, VOL  
Output High Voltage, VOH  
High Impedance Leakage Current  
High Impedance Output  
Capacitance  
0.4  
+1  
V
V
μA  
pF  
Sinking 200 μA  
Sourcing 200 μA  
DVCC − 0.5  
−1  
5
FAULT  
Output Low Voltage, VOL  
Output Low Voltage, VOL  
Output High Voltage, VOH  
POWER REQUIREMENTS  
AVDD  
0.4  
V
V
V
10 kΩ pull-up resistor to DVCC  
At 2.5 mA  
10 kΩ pull-up resistor to DVCC  
0.6  
3.6  
10.8  
−26.4  
10.8  
40  
0
52.8  
V
V
V
AVSS  
|AVSS| + AVDD  
DVCC  
Input Voltage  
2.7  
5.5  
V
Internal supply disabled  
Output Voltage  
Output Load Current3  
Short-Circuit Current3  
4.5  
5
20  
V
mA  
mA  
DVCC, which can be overdriven up to 5.5 V  
Rev. A | Page 6 of 40  
AD5412/AD5422  
Parameter1  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
AIDD  
Outputs unloaded  
2.5  
3.4  
3.9  
3
4
4.4  
mA  
mA  
mA  
Outputs disabled  
Current output enabled  
Voltage output enabled  
Outputs unloaded  
AISS  
0.24  
0.5  
1.1  
0.3  
0.6  
1.4  
1
mA  
mA  
mA  
mA  
mW  
mW  
Outputs disabled  
Current output enabled  
Voltage output enabled  
VIH = DVCC, VIL = GND  
AVDD = 40 V, AVSS = 0 V, outputs unloaded  
AVDD = +24 V, AVSS = −24 V, outputs  
unloaded  
DICC  
Power Dissipation  
128  
120  
1 Temperature range: −40°C to +85°C; typical at +25°C.  
2 When the AD5412/AD5422 is powered with AVSS = 0 V, INL for the 0 V to 5 V and 0 V to 10 V ranges is measured beginning from Code 256 for the AD5422 and Code 16  
for the AD5412.  
3 Guaranteed by design and characterization; not production tested.  
4 For 0 mA to 20 mA and 0 mA to 24 mA ranges, INL is measured beginning from Code 256 for the AD5422 and Code 16 for the AD5412.  
5 The on-chip reference is production trimmed and tested at 25°C and 85°C. It is characterized from −40°C to +85°C.  
AC PERFORMANCE CHARACTERISTICS  
AVDD = 10.8 V to 26.4 V, AVSS = −26.4 V to −3 V/0 V, AVDD + |AVSS| < 52.8 V, GND = 0 V, REFIN = +5 V external; DVCC = 2.7 V to 5.5 V.  
V
OUT: RLOAD = 1 kΩ, CL = 200 pF, IOUT: RLOAD = 350 ꢀ; all specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
Parameter1  
Min Typ  
Max  
Unit  
Test Conditions/Comments  
DYNAMIC PERFORMANCE  
Voltage Output  
Output Voltage Settling Time  
25  
18  
μs  
μs  
μs  
10 V step to 0.03 % FSR  
20 V step to 0.03 % FSR  
5 V step to 0.03 % FSR  
32  
8
μs  
512 LSB step to 0.03 % FSR (16-Bit LSB)  
Slew Rate  
0.8  
10  
10  
20  
1
V/μs  
nV-sec  
nV-sec  
mV  
nV-sec  
LSB p-p  
Power-On Glitch Energy  
Digital-to-Analog Glitch Energy  
Glitch Impulse Peak Amplitude  
Digital Feedthrough  
Output Noise (0.1 Hz to 10 Hz  
Bandwidth)  
0.1  
16-bit LSB  
Output Noise (100 kHz Bandwidth)  
1/f Corner Frequency  
200  
1
μV rms  
kHz  
Output Noise Spectral Density  
AC PSRR  
150  
−75  
nV/√Hz  
dB  
Measured at 10 kHz, midscale output, 10 V range  
200 mV 50 Hz/60 Hz sine wave superimposed on power  
supply voltage  
Current Output  
Output Current Settling Time  
10  
40  
−75  
μs  
μs  
dB  
16 mA step to 0.1% FSR  
16 mA step to 0.1% FSR, L = 1 mH  
200 mV 50 Hz/60 Hz sine wave superimposed on power  
supply voltage  
AC PSRR  
1 Guaranteed by characterization, not production tested.  
Rev. A | Page 7 of 40  
 
 
 
 
 
AD5412/AD5422  
TIMING CHARACTERISTICS  
AVDD = 10.8 V to 26.4 V, AVSS = −26.4 V to −3 V/0 V, AVDD + |AVSS| < 52.8V, GND = 0 V, REFIN = +5 V external; DVCC = 2.7 V to 5.5 V.  
VOUT: RLOAD = 1 kΩ, CL = 200 pF, IOUT: RLOAD = 300 ꢀ; all specifications TMIN to TMAX, unless otherwise noted.  
Table 4.  
Parameter1, 2, 3  
Limit at TMIN, TMAX  
Unit  
Description  
WRITE MODE  
t1  
t2  
t3  
t4  
t5  
t5  
t6  
t7  
33  
13  
13  
13  
40  
5
5
5
40  
20  
5
ns min  
ns min  
ns min  
ns min  
ns min  
μs min  
ns min  
ns min  
ns min  
ns min  
μs max  
SCLK cycle time  
SCLK low time  
SCLK high time  
LATCH delay time  
LATCH high time  
LATCH high time (after a write to the control register)  
Data setup time  
Data hold time  
LATCH low time  
t8  
t9  
t10  
CLEAR pulse width  
CLEAR activation time  
READBACK MODE  
t11  
t12  
t13  
t14  
t15  
t16  
t17  
t18  
90  
40  
40  
13  
40  
5
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
ns max  
SCLK cycle time  
SCLK low time  
SCLK high time  
LATCH delay time  
LATCH high time  
Data setup time  
Data hold time  
LATCH low time  
5
40  
35  
35  
4
t19  
t20  
Serial output delay time (CL SDO = 15 pF)  
LATCH rising edge to SDO tristate (CL SDO4 = 15 pF)  
DAISY-CHAIN MODE  
t21  
t22  
t23  
t24  
t25  
t26  
t27  
t28  
t29  
90  
40  
40  
13  
40  
5
5
40  
35  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
SCLK cycle time  
SCLK low time  
SCLK high time  
LATCH delay time  
LATCH high time  
Data setup time  
Data hold time  
LATCH low time  
Serial output delay time (CL SDO4 = 15 pF)  
1 Guaranteed by characterization; not production tested.  
2 All input signals are specified with tR = tF = 5 ns (10% to 90% of DVCC) and timed from a voltage level of 1.2 V.  
3 See Figure 2, Figure 3, and Figure 4.  
4 CL SDO = capacitive load on SDO output.  
Rev. A | Page 8 of 40  
 
 
 
 
AD5412/AD5422  
t1  
SCLK  
1
2
24  
t2  
t3  
t4  
t5  
LATCH  
SDIN  
t7  
t8  
DB0  
t6  
DB23  
t9  
CLEAR  
t10  
I
/V  
OUT OUT  
Figure 2. Write Mode Timing Diagram  
t11  
SCLK  
1
2
8
9
22  
23  
24  
24  
t14  
1
2
t12  
t13  
t15  
LATCH  
SDIN  
t17  
t18  
DB0  
t16  
DB23  
DB23  
X
DB0  
NOP CONDITION  
INPUT WORD SPECIFIES  
REGISTER TO BE READ  
t20  
t19  
SDO  
X
X
X
DB15  
DB0  
FIRST 8 BITS ARE  
DON’T CARE BITS  
SELECTED REGISTER  
DATA CLOCKED OUT  
UNDEFINED DATA  
Figure 3. Readback Mode Timing Diagram  
t21  
SCLK  
26  
48  
25  
1
2
24  
t22  
t23  
t24  
t25  
LATCH  
t27  
t28  
t26  
SDIN  
SDO  
DB23  
DB0  
DB23  
DB0  
INPUT WORD FOR DAC N  
UNDEFINED  
INPUT WORD FOR DAC N – 1  
t29  
t20  
DB23  
DB0  
DB0  
DB23  
INPUT WORD FOR DAC N  
Figure 4. Daisy-Chain Mode Timing Diagram  
Rev. A | Page 9 of 40  
 
 
 
AD5412/AD5422  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted. Transient currents of up to  
80 mA do not cause SCR latch-up.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 5.  
Parameter  
Rating  
AVDD to GND  
AVSS to GND  
AVDD to AVSS  
DVCC to GND  
Digital Inputs to GND  
−0.3 V to +48 V  
+0.3 V to −48 V  
−0.3 V to +60 V  
−0.3 V to +7 V  
−0.3 V to DVCC + 0.3 V or 7 V  
(whichever is less)  
ESD CAUTION  
Digital Outputs to GND  
−0.3 V to DVCC + 0.3 V or 7 V  
(whichever is less)  
REFIN/REFOUT to GND  
VOUT to GND  
−0.3 V to +7 V  
AVSS to AVDD  
IOUT to GND  
−0.3 V to AVDD  
Operating Temperature Range (TA)  
Industrial1  
−40°C to +85°C  
−65°C to +150°C  
125°C  
Storage Temperature Range  
Junction Temperature (TJ max)  
24-Lead TSSOP Package  
θJA Thermal Impedance  
40-Lead LFCSP Package  
θJA Thermal Impedance  
Power Dissipation  
42°C/W  
28°C/W  
(TJ max – TA)/θJA  
JEDEC industry standard  
J-STD-020  
Lead Temperature  
Soldering  
ESD (Human Body Model)  
2 kV  
1 Power dissipated on chip must be derated to keep the junction temperature  
below 125°C, assuming that the maximum power dissipation condition is  
sourcing 24 mA into GND from IOUT with a 4 mA on-chip current.  
Rev. A | Page 10 of 40  
 
 
AD5412/AD5422  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
AV  
AV  
–V  
+V  
SS  
CC  
DD  
DV  
SENSE  
SENSE  
FAULT  
GND  
PIN 1  
NC  
FAULT  
GND  
1
2
3
4
5
6
7
8
9
30 NC  
V
OUT  
AD5412/  
AD5422  
INDICATOR  
29 CAP2  
28 CAP1  
CLEAR SELECT  
CLEAR  
LATCH  
SCLK  
BOOST  
BOOST  
27  
26  
25  
24  
CLEAR SELECT  
CLEAR  
TOP VIEW  
AD5412/AD5422  
TOP VIEW  
I
OUT  
(Not to Scale)  
I
OUT  
LATCH  
NC  
C
SCLK  
(Not to Scale)  
COMP  
NC  
SDIN  
23 DV  
22 NC  
21 NC  
SELECT  
CC  
SDO  
C
COMP  
NC 10  
9
SDIN  
DV SELECT  
CC  
REFIN  
REFOUT  
10  
11  
12  
SDO  
GND  
GND  
R
SET  
NOTES  
1. NC = NO CONNECT.  
2. THE EXPOSED PADDLE CAN BE CONNECTED TO 0V IF THE OUTPUT  
VOLTAGE RANGE IS UNIPOLAR. THE EXPOSED PADDLE CAN BE LEFT  
ELECTRICALLY UNCONNECTED PROVIDED THAT A SUPPLY CONNECTION  
NOTES  
1. NC = NO CONNECT  
2. THE PADDLE CAN BE CONNECTED TO 0V IF THE OUTPUT VOLTAGE RANGE  
IS UNIPOLAR. THE PADDLE CAN BE LEFT ELECTRICALLY UNCONNECTED  
PROVIDED THAT A SUPPLY CONNECTION IS MADE AT THE AV PIN. IT IS  
IS MADE AT THE AV PIN. IT IS RECOMMENDED THAT THE PADDLE BE  
SS  
SS  
RECOMMENDED THAT THE PADDLE BE THERMALLY CONNECTED TO A  
COPPER PLANE FOR ENHANCED THERMAL PERFORMANCE.  
THERMALLY CONNECTED TO A COPPER PLANE FOR ENHANCED  
THERMAL PERFORMANCE.  
Figure 5. TSSOP Pin Configuration  
Figure 6. LFCSP Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
TSSOP  
LFCSP  
Mnemonic  
Description  
1
14, 37  
AVSS  
Negative Analog Supply Pin. Voltage ranges from –3 V to –24 V. This pin can be  
connected to 0 V if the output voltage range is unipolar.  
2
3
39  
2
DVCC  
FAULT  
Digital Supply Pin. Voltage ranges from 2.7 V to 5.5 V.  
Fault Alert. This pin is asserted low when an open circuit is detected in current mode or  
an overtemperature is detected. Open drain output must be connected to a pull-up resistor.  
4, 12  
18  
3, 15  
GND  
These pins must be connected to 0 V.  
No Connection. Do not connect to these pins.  
1, 10, 11, 19, 20, NC  
21, 22, 25, 30,  
31, 35, 38, 40  
5
6
7
8
4
5
6
7
CLEAR  
SELECT  
CLEAR  
Selects the voltage output clear value, either zero-scale or midscale code (see Table 21).  
Active High Input. Asserting this pin sets the current output to the bottom of the selected  
range or sets the voltage output to the user selected value (zero-scale or midscale).  
Positive Edge Sensitive Latch. A rising LATCH edge parallel loads the input shift register  
data into the DAC register, also updating the output.  
Serial Clock Input. Data is clocked into the shift register on the rising edge of SCLK. This  
operates at clock speeds of up to 30 MHz.  
LATCH  
SCLK  
9
10  
8
9
SDIN  
SDO  
Serial Data Input. Data must be valid on the rising edge of SCLK.  
Serial Data Output. Used to clock data from the serial register in daisy-chain or readback  
mode. Data is valid on the rising edge of SCLK (see Figure 3 and Figure 4).  
11  
13  
12, 13  
16  
GND  
RSET  
Ground Reference Pin.  
An external, precision, low drift 15 kΩ current setting resistor can be connected to this  
pin to improve the IOUT temperature drift performance. See the AD5412/AD5422 Features  
section.  
14  
15  
17  
18  
REFOUT  
REFIN  
Internal Reference Voltage Output. REFOUT = 5 V 2 mV.  
External Reference Voltage Input. Reference input range is 4 V to 5 V. REFIN = 5 V for a  
specified performance.  
Rev. A | Page 11 of 40  
 
AD5412/AD5422  
Pin No.  
TSSOP  
LFCSP  
Mnemonic  
Description  
16  
23  
DVCC  
SELECT  
When connected to GND, this pin disables the internal supply, and an external supply  
must be connected to the DVCC pin. Leave this pin unconnected to enable the internal  
supply. See the AD5412/AD5422 Features section.  
17  
24  
CCOMP  
Optional compensation capacitor connection for the voltage output buffer. Connecting  
a 4 nF capacitor between this pin and the VOUT pin allows the voltage output to drive up  
to 1 μF. It should be noted that the addition of this capacitor reduces the bandwidth of  
the output amplifier, increasing the settling time.  
19  
20  
26  
27  
IOUT  
BOOST  
Current Output Pin.  
Optional External Transistor Connection. Connecting an external transistor reduces the  
power dissipated in the AD5412/AD5422. See theAD5412/AD5422 Features section.  
N/A  
21  
28, 29  
32  
CAP1, CAP2 Connection for Optional Output Filtering Capacitor. See the AD5412/AD5422 Features  
section.  
VOUT  
Buffered Analog Output Voltage. The output amplifier is capable of directly driving a  
1 kΩ, 2000 pF load.  
22  
23  
24  
33  
34  
36  
+VSENSE  
−VSENSE  
AVDD  
Sense connection for the positive voltage output load connection.  
Sense connection for the negative voltage output load connection.  
Positive Analog Supply Pin. Voltage ranges from 10.8 V to 60 V.  
25 (EPAD)  
41 (EPAD)  
Exposed  
paddle  
Negative Analog Supply Pin. Voltage ranges from –3 V to –24 V. This paddle can be  
connected to 0 V if the output voltage range is unipolar. The paddle can be left  
electrically unconnected provided that a supply connection is made at the AVSS pin. It is  
recommended that the paddle be thermally connected to a copper plane for enhanced  
thermal performance.  
Rev. A | Page 12 of 40  
AD5412/AD5422  
TYPICAL PERFORMANCE CHARACTERISTICS  
GENERAL  
900  
9
8
7
6
5
4
3
2
1
0
T
= 25°C  
A
T
= 25°C  
800  
700  
600  
500  
400  
300  
200  
100  
0
A
DV  
= 5V  
CC  
DV  
= 3V  
2.5  
CC  
0
0.5  
1.0  
1.5  
2.0  
3.0  
3.5  
4.0  
4.5  
5.0  
–21 –19 –17 –15 –13 –11 –9  
–7  
–5  
–3  
–1  
1
LOGIC VOLTAGE (V)  
LOAD CURRENT (mA)  
Figure 7. DICC vs. Logic Input Voltage  
Figure 10. DVCC Output Voltage vs. Load Current  
5
4
AI  
DD  
AV  
DD  
3
T
V
= 25°C  
= 0V  
A
2
OUT  
OUTPUT UNLOADED  
3
1
REFERENCE OUTPUT  
0
AI  
SS  
–1  
–2  
1
CH1 2.00V  
CH3 5.00V  
M200µs  
CH3  
2.1V  
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
AV /|AV | (V)  
DD SS  
Figure 8. AIDD/AISS vs. AVDD/|AVSS|  
Figure 11. REFOUT Turn-on Transient  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
OUT  
= 25°C  
A
I
= 0mA  
1
CH1 2µV  
M2.00s  
LINE  
1.8V  
10  
15  
20  
25  
AV (V)  
30  
35  
40  
DD  
Figure 9. AIDD vs. AVDD  
Figure 12. REFOUT Output Noise (0.1 Hz to 10 Hz Bandwidth)  
Rev. A | Page 13 of 40  
 
 
AD5412/AD5422  
45  
40  
35  
30  
25  
20  
15  
10  
5
AV  
= 24V  
DD  
1
0
CH1 20µV  
M2.00s  
LINE  
0V  
0
1
2
3
4
5
6
7
8
9
10  
TEMPERATURE COEFFICIENT (ppm/°C)  
Figure 13. REFOUT Output Noise (100 kHz Bandwidth)  
Figure 15. Reference Temperature Coefficient Histogram  
5.003  
5.0005  
5.0000  
4.9995  
4.9990  
4.9985  
4.9980  
4.9975  
4.9970  
4.9965  
4.9960  
4.9955  
50 DEVICES SHOWN  
AV = 24V  
T
= 25°C  
A
DD  
AV  
= 24V  
DD  
5.002  
5.001  
5.000  
4.999  
4.998  
4.997  
–40  
–20  
0
20  
40  
60  
80  
0
1
2
3
4
5
6
7
8
9
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
Figure 14. Reference Voltage vs. Temperature  
Figure 16. Reference Voltage vs. Load Current  
Rev. A | Page 14 of 40  
 
AD5412/AD5422  
VOLTAGE OUTPUT  
0.0025  
1.0  
0.8  
AV  
= +24V  
DD  
AV = –24V  
AV  
AV = 0V  
= 24V  
DD  
+5V RANGE  
+10V RANGE  
0.0020  
0.0015  
0.0010  
0.0005  
0
SS  
T
= 25°C  
SS  
= 25°C  
A
T
A
0.6  
0.4  
0.2  
0
–0.0005  
–0.0010  
–0.0015  
–0.0020  
–0.0025  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
±10V RANGE  
±5V RANGE  
+5V RANGE  
+10V RANGE  
0
10,000  
20,000  
30,000 40,000  
CODE  
50,000  
60,000  
0
10,000  
20,000  
30,000  
CODE  
40,000  
50,000  
60,000  
Figure 17. Integral Nonlinearity Error vs. DAC Code, Dual Supply  
Figure 20. Differential Nonlinearity Error vs. DAC Code, Single Supply  
0.0025  
0.005  
AV  
= +24V  
DD  
AV = –24V  
AV  
AV = 0V  
= 24V  
DD  
+5V RANGE  
+10V RANGE  
0.0020  
0.0015  
0.0010  
0.0005  
0
SS  
SS  
= 25°C  
0.003  
0.001  
T
= 25°C  
A
T
A
–0.001  
–0.003  
–0.005  
–0.007  
–0.009  
–0.0005  
–0.0010  
–0.0015  
–0.0020  
–0.0025  
±10V RANGE  
±5V RANGE  
+5V RANGE  
+10V RANGE  
0
10,000  
20,000  
30,000  
CODE  
40,000  
50,000  
60,000  
0
10,000  
20,000  
30,000 40,000  
CODE  
50,000  
60,000  
Figure 18. Integral Nonlinearity Error vs. DAC Code, Single Supply  
Figure 21. Total Unadjusted Error vs. DAC Code, Dual Supply  
1.0  
0.030  
AV  
= +24V  
DD  
AV = –24V  
AV  
AV = 0V  
= 24V  
+5V RANGE  
+10V RANGE  
0.8  
0.6  
DD  
SS  
0.025  
0.020  
0.015  
0.010  
0.005  
0
T
= 25°C  
SS  
= 25°C  
A
T
A
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
±10V RANGE  
±5V RANGE  
+10V RANGE  
+5V RANGE  
–0.005  
–0.010  
0
10,000  
20,000  
30,000 40,000  
CODE  
50,000  
60,000  
0
10,000  
20,000  
30,000  
CODE  
40,000  
50,000  
60,000  
Figure 19. Differential Nonlinearity Error vs. DAC Code, Dual Supply  
Figure 22. Total Unadjusted Error vs. DAC Code, Single Supply  
Rev. A | Page 15 of 40  
 
 
 
AD5412/AD5422  
0.0015  
0.012  
0.010  
0.008  
0.006  
0.004  
0.002  
0
AV = +24V  
DD  
AV = +24V  
DD  
AV = –24V  
SS  
AV = –24V  
SS  
0.0010  
0.0005  
0
OUTPUT UNLOADED  
–0.0005  
–0.0010  
–0.0015  
–0.002  
–0.004  
–0.006  
–0.008  
+5V RANGE  
+10V RANGE  
±5V RANGE  
±10V RANGE  
+5V RANGE MAX INL  
+10V RANGE MAX INL  
±10V RANGE MAX INL  
+10V RANGE MIN INL  
±10V RANGE MIN INL  
±5V RANGE MAX INL  
+5V RANGE MIN INL  
±5V RANGE MIN INL  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 23. Integral Nonlinearity Error vs. Temperature  
Figure 26. Full-Scale Error vs. Temperature  
1.5  
1.0  
1.0  
0.8  
AV  
= +24V  
DD  
AV = +24V  
DD  
AV = –24V  
ALL RANGES  
SS  
AV = –24V  
SS  
OUTPUT UNLOADED  
+10V RANGE  
0.6  
0.4  
0.5  
0.2  
0
+5V RANGE  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 27. Offset Error vs. Temperature  
Figure 24. Differential Nonlinearity Error vs. Temperature  
1.5  
1.0  
0.015  
AV = +24V  
DD  
AV = +24V  
DD  
AV = –24V  
SS  
AV = –24V  
SS  
OUTPUT UNLOADED  
+10V RANGE  
0.010  
0.005  
0
OUTPUT UNLOADED  
0.5  
0
+5V RANGE  
–0.5  
–1.0  
–1.5  
–0.005  
–0.010  
–0.015  
+5V RANGE  
+10V RANGE  
±5V RANGE  
±10V RANGE  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 25. Total Unadjusted Error vs. Temperature  
Figure 28. Bipolar Zero Error vs. Temperature  
Rev. A | Page 16 of 40  
 
AD5412/AD5422  
0.014  
0.012  
0.010  
0.008  
0.006  
0.004  
0.002  
0
1.0  
0.8  
AVDD = +24V  
AVSS = –24V  
OUTPUT UNLOADED  
T
= 25°C  
A
±10V RANGE  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.002  
–0.004  
–0.006  
–0.008  
+5V RANGE  
+10V RANGE  
±5V RANGE  
±10V RANGE  
–40  
–20  
0
20  
40  
60  
80  
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
TEMPERATURE (°C)  
AV /|AV | (V)  
DD SS  
Figure 32. Differential Nonlinearity Error vs. AVDD/|AVSS|  
Figure 29. Gain Error vs. Temperature  
0.0050  
0.0045  
0.0040  
0.0035  
0.0030  
0.0025  
0.0020  
0.0015  
0.0010  
0.0005  
0
1.3  
0.8  
AV = +24V  
DD  
AV = –24V  
SS  
OUTPUT UNLOADED  
T
= 25°C  
A
±10V RANGE  
0.3  
–0.2  
–0.7  
–1.2  
+5V RANGE  
+10V RANGE  
±5V RANGE  
±10V RANGE  
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
AV /|AV | (V)  
DD SS  
Figure 33. Total Unadjusted Error vs. AVDD/|AVSS|  
Figure 30. Zero-Scale Error vs. Temperature  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0.0015  
0.0010  
0.0005  
0
T
= 25°C  
A
AV = +15V  
DD  
AV = –15V  
SS  
±10V RANGE  
T
= 25°C  
A
±10V RANGE  
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.0005  
–0.0010  
–0.0015  
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
AV /|AV | (V)  
SOURCE/SINK CURRENT (mA)  
DD SS  
Figure 34. Source and Sink Capability of Output Amplifier,  
Full-Scale Code Loaded  
Figure 31. Integral Nonlinearity Error vs. AVDD/|AVSS|  
Rev. A | Page 17 of 40  
 
 
AD5412/AD5422  
0.05  
12  
8
AV  
= +15V  
DD  
AV = –15V  
0.04  
0.03  
0.02  
0.01  
0
SS  
= 25°C  
T
A
±10V RANGE  
AV  
= +24V  
4
DD  
AV = –24V  
SS  
±10V RANGE  
T
= 25°C  
A
0
OUTPUT UNLOADED  
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–4  
–8  
–12  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
–10  
–5  
0
5
10  
15  
20  
25  
30  
SOURCE/SINK CURRENT (mA)  
TIME (µs)  
Figure 35. Source and Sink Capability of Output Amplifier,  
Zero-Scale Loaded  
Figure 37. Full-Scale Negative Step  
12  
8
4
2
AV  
= +24V  
DD  
SS  
AV = –24V  
±10V RANGE  
0
T
= 25°C  
A
OUTPUT UNLOADED  
–2  
4
0x8000 TO 0x7FFF  
0x7FFF TO 0x8000  
–4  
0
–6  
–8  
–4  
–8  
–12  
–10  
–12  
–14  
–16  
AV  
= +24V  
DD  
AV = –24V  
SS  
= 25°C  
T
A
±10V RANGE  
–1  
1
3
5
7
9
11  
13  
15  
–10  
–5  
0
5
10  
15  
20  
25  
30  
TIME (µs)  
TIME (µs)  
Figure 36. Full-Scale Positive Step  
Figure 38. Digital-to-Analog Glitch  
Rev. A | Page 18 of 40  
 
 
AD5412/AD5422  
35  
30  
25  
20  
15  
10  
5
AV = +15V  
DD  
AV = –15V  
SS  
T
= 25°C  
A
1
AV  
= +24V  
SS  
= 25°C  
DD  
AV = –24V  
T
A
0
CH1 5.0µV  
M 5.00ms  
LINE  
1.8V  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TIME (µs)  
Figure 39. Peak-to-Peak Noise (0.1 Hz to 10 Hz Bandwidth)  
Figure 41. VOUT vs. Time on Power-Up  
1
AV  
= +24V  
DD  
SS  
AV = –24V  
T
= 25°C  
A
CH1 50.0µV  
M 5.00ms  
LINE  
0V  
Figure 40. Peak-to-Peak Noise (100 kHz Bandwidth)  
Rev. A | Page 19 of 40  
 
AD5412/AD5422  
CURRENT OUTPUT  
0.004  
0.002  
0
EXTERNAL R  
SET  
0.004  
0.002  
0
AV  
= 24V  
DD  
INTERNAL R  
SET  
AV = –24V/0V  
SS  
EXTERNAL R  
, BOOST TRANSISTOR  
0mA TO 24mA RANGE  
SET  
INTERNAL R  
, BOOST TRANSISTOR  
SET  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
DD  
AV = –24V/0V  
SS  
T
= 25°C  
A
R
= 250  
LOAD  
0
10,000 20,000  
30,000  
CODE  
40,000  
50,000  
60,000  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 42. Integral Nonlinearity vs. Code  
Figure 45. Integral Nonlinearity vs. Temperature, Internal RSET  
1.0  
0.8  
0.003  
AV  
= 24V  
DD  
AV  
= 24V  
DD  
AV = –24V/0V  
0mA TO 24mA RANGE  
SS  
AV = –24V/0V  
SS  
T
= 25°C  
A
0.002  
0.001  
0
R
= 250  
0.6  
LOAD  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.001  
–0.002  
–0.003  
EXTERNAL R  
INTERNAL R  
EXTERNAL R  
INTERNAL R  
SET  
SET  
SET  
, BOOST TRANSISTOR  
SET  
, BOOST TRANSISTOR  
0
10,000 20,000  
30,000  
CODE  
40,000  
50,000  
60,000  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 43. Differential Nonlinearity vs. Code  
Figure 46. Integral Nonlinearity vs. Temperature, External RSET  
0.05  
0.03  
1.0  
AV  
= 24V  
DD  
AV = –24V/0V  
SS  
0.8  
0.6  
ALL RANGES  
INTERNAL AND EXTERNAL R  
SET  
0.01  
–0.01  
–0.03  
–0.05  
–0.07  
–0.09  
–0.11  
–0.13  
–0.15  
0.4  
0.2  
AV  
= 24V  
0
DD  
AV = –24V/0V  
SS  
= 25°C  
T
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
A
R
= 250  
LOAD  
EXTERNAL R  
SET  
INTERNAL R  
SET  
EXTERNAL R  
, BOOST TRANSISTOR  
SET  
, BOOST TRANSISTOR  
INTERNAL R  
SET  
0
10,000 20,000  
30,000  
CODE  
40,000  
50,000  
60,000  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 44. Total Unadjusted Error vs. Code  
Figure 47. Differential Nonlinearity vs. Temperature  
Rev. A | Page 20 of 40  
 
AD5412/AD5422  
0.10  
0.05  
0.015  
0.010  
0.005  
0
AV  
= 24V  
DD  
T
= 25°C  
A
AV = –24V/0V  
SS  
0mA TO 24mA RANGE  
AV = 0V  
SS  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
4mA TO 20mA INTERNAL R  
0mA TO 20mA INTERNAL R  
0mA TO 24mA INTERNAL R  
4mA TO 20mA EXTERNAL R  
0mA TO 20mA EXTERNAL R  
0mA TO 24mA EXTERNAL R  
SET  
SET  
SET  
–0.005  
–0.010  
–0.015  
SET  
SET  
SET  
–40  
–20  
0
20  
40  
60  
80  
10  
15  
20  
25  
DD  
30  
35  
40  
AV  
(V)  
TEMPERATURE (°C)  
Figure 48. Total Unadjusted Error vs. Temperature  
Figure 51. Integral Nonlinearity Error vs. AVDD, External RSET  
0.10  
0.05  
0.020  
AV  
= 24V  
DD  
0.015  
0.010  
0.005  
0
AV = –24V/0V  
T
= 25°C  
SS  
A
0mA TO 24mA RANGE  
AV = 0V  
SS  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.005  
–0.010  
–0.015  
–0.020  
4mA TO 20mA INTERNAL R  
0mA TO 20mA INTERNAL R  
0mA TO 24mA INTERNAL R  
4mA TO 20mA EXTERNAL R  
0mA TO 20mA EXTERNAL R  
0mA TO 24mA EXTERNAL R  
SET  
SET  
SET  
SET  
SET  
SET  
–40  
–20  
0
20  
40  
60  
80  
10  
15  
20  
25  
DD  
30  
35  
40  
AV  
(V)  
TEMPERATURE (°C)  
Figure 49. Offset Error vs. Temperature  
Figure 52. Integral Nonlinearity Error vs. AVDD, Internal RSET  
0.06  
0.04  
1.0  
0.8  
AV  
= 24V  
DD  
T
= 25°C  
A
AV = –24V/0V  
SS  
0mA TO 24mA RANG  
0.6  
AV = 0V  
SS  
0.02  
0.4  
0
0.2  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
4mA TO 20mA INTERNAL R  
0mA TO 20mA INTERNAL R  
0mA TO 24mA INTERNAL R  
4mA TO 20mA EXTERNAL R  
0mA TO 20mA EXTERNAL R  
0mA TO 24mA EXTERNAL R  
SET  
SET  
SET  
SET  
SET  
SET  
–40  
–20  
0
20  
40  
60  
80  
10  
15  
20  
25  
30  
35  
40  
AV (V)  
DD  
TEMPERATURE (°C)  
Figure 50. Gain Error vs. Temperature  
Figure 53. Differential Nonlinearity Error vs. AVDD, External RSET  
Rev. A | Page 21 of 40  
AD5412/AD5422  
1.0  
0.8  
2.5  
2.0  
1.5  
1.0  
0.5  
0
AV  
AV = 0V  
= 15V  
DD  
SS  
= 24mA  
I
OUT  
T
= 25°C  
A
R
= 500  
LOAD  
0.6  
0.4  
0mA TO 24mA RANGE  
AV = 0V  
SS  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
10  
15  
20  
25  
DD  
30  
35  
40  
–40  
–20  
0
20  
40  
60  
80  
AV  
(V)  
TEMPERATURE (°C)  
Figure 54. Differential Nonlinearity Error vs. AVDD, Internal RSET  
Figure 57. Compliance Voltage Headroom vs. Temperature  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.025  
AV  
AV = 0V  
= 24V  
T
= 25°C  
DD  
A
0.020  
0.015  
0.010  
0.005  
0
0mA TO 24mA RANGE  
AV = 0V  
SS  
= 25°C  
T
A
SS  
R
= 250Ω  
LOAD  
–0.005  
–0.010  
–0.015  
0
100  
200  
300  
400  
500  
600  
10  
15  
20  
25  
DD  
30  
35  
40  
TIME (µs)  
AV  
(V)  
Figure 55. Total Unadjusted Error vs. AVDD, External RSET  
Figure 58. Output Current vs. Time on Power-Up  
20  
10  
0.05  
0.03  
0.01  
AV  
= 24V  
DD  
AV = 0V  
0
–0.01  
–0.03  
–0.05  
–0.07  
–0.09  
–0.11  
–0.13  
–0.15  
SS  
= 25°C  
T
A
R
= 250  
–10  
–20  
–30  
–40  
–50  
LOAD  
T
= 25°C  
A
0mA TO 24mA RANGE  
AV = 0V  
SS  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
10  
15  
20  
25  
AV (V)  
30  
35  
40  
TIME (µs)  
DD  
Figure 56. Total Unadjusted Error vs. AVDD, Internal RSET  
Figure 59. Output Current vs. Time on Output Enable  
Rev. A | Page 22 of 40  
 
AD5412/AD5422  
70  
60  
50  
40  
30  
20  
10  
0
25  
20  
15  
10  
5
T
= 25°C  
= 24V  
A
AV  
DD  
AV = 0V  
SS  
R
= 300  
LOAD  
T
AV  
= 25°C  
A
= 40V  
DD  
AV = 0V  
OUTPUT DISABLED  
SS  
–10  
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
–1  
0
1
2
3
4
5
6
7
8
COMPLIANCE VOLTAGE (V)  
TIME (µs)  
Figure 60. Output Leakage Current vs. Compliance Voltage  
Figure 62. 4 mA to 20 mA Output Current Step  
30  
0x8000 TO 0x7FFF  
0x7FFF TO 0x8000  
AV  
AV = 0V  
= 24V  
DD  
SS  
= 25°C  
20  
10  
T
A
R
= 250Ω  
LOAD  
0
–10  
–20  
–30  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TIME (µs)  
Figure 61. Digital to Analog Glitch  
Rev. A | Page 23 of 40  
 
 
AD5412/AD5422  
TERMINOLOGY  
Slew Rate  
Relative Accuracy or Integral Nonlinearity (INL)  
For the DAC, relative accuracy, or INL, is a measure of the  
maximum deviation, in LSBs, from a straight line passing  
through the endpoints of the DAC transfer function. A typical  
INL vs. code plot can be seen in Figure 17.  
The slew rate of a device is a limitation in the rate of change  
of the output voltage. The output slewing speed of a voltage-  
output DAC is usually limited by the slew rate of the amplifier  
used at its output. Slew rate is measured from 10% to 90% of the  
output signal and is expressed in V/μs.  
Differential Nonlinearity (DNL)  
Gain Error  
DNL is the difference between the measured change and the  
ideal 1 LSB change between any two adjacent codes. A specified  
differential nonlinearity of 1 LSB maximum ensures monoton-  
icity. This DAC is guaranteed monotonic by design. A typical  
DNL vs. code plot can be seen in Figure 19.  
Gain error is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from the  
ideal expressed in % FSR. A plot of gain error vs. temperature  
can be seen in Figure 29.  
Gain Error Temperature Coefficient (TC)  
Gain error TC is a measure of the change in gain error with  
changes in temperature. Gain error TC is expressed in ppm  
FSR/°C.  
Monotonicity  
A DAC is monotonic if the output either increases or remains  
constant for increasing digital input code. The AD5412/AD5422  
are monotonic over their full operating temperature range.  
Total Unadjusted Error (TUE)  
Bipolar Zero Error  
TUE is a measure of the output error taking all the various  
errors into account, namely INL error, offset error, gain error,  
and output drift over supplies, temperature, and time. TUE is  
expressed in % FSR.  
Bipolar zero error is the deviation of the analog output from the  
ideal half-scale output of 0 V when the DAC register is loaded  
with 0x8000 (straight binary coding) or 0x0000 (twos comple-  
ment coding). A plot of bipolar zero error vs. temperature can  
be seen in Figure 28.  
Current Loop Voltage Compliance  
The maximum voltage at the IOUT pin for which the output  
current is equal to the programmed value.  
Bipolar Zero Temperature Coefficient (TC)  
Bipolar zero TC is a measure of the change in the bipolar zero  
error with a change in temperature. It is expressed in ppm FSR/°C.  
Power-On Glitch Energy  
Power-on glitch energy is the impulse injected into the analog  
output when the AD5412/AD5422 is powered on. It is specified  
as the area of the glitch in nV-sec. See Figure 41 and Figure 58.  
Full-Scale Error  
Full-scale error is a measure of the output error when full-scale  
code is loaded to the DAC register. Ideally, the output should be  
full-scale − 1 LSB. Full-scale error is expressed in percent of  
full-scale range (% FSR).  
Digital-to-Analog Glitch Impulse  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state, but the output voltage remains constant. It is normally  
specified as the area of the glitch in nV-sec and is measured  
when the digital input code is changed by 1 LSB at the major  
carry transition (0x7FFF to 0x8000). See Figure 38 and  
Figure 61.  
Negative Full-Scale Error/Zero-Scale Error  
Negative full-scale error is the error in the DAC output voltage  
when 0x0000 (straight binary coding) or 0x8000 (twos comple-  
ment coding) is loaded to the DAC register. Ideally, the output  
voltage should be negative full-scale − 1 LSB. A plot of zero-  
scale error vs. temperature can be seen in Figure 30.  
Glitch Impulse Peak Amplitude  
Zero-Scale Temperature Coefficient (TC)  
Zero-scale TC is a measure of the change in zero-scale error  
with a change in temperature. Zero-scale error TC is expressed  
in ppm FSR/°C.  
Glitch impulse peak amplitude is the peak amplitude of the  
impulse injected into the analog output when the input code in  
the DAC register changes state. It is specified as the amplitude  
of the glitch in millivolt and is measured when the digital input  
code is changed by 1 LSB at the major carry transition (0x7FFF  
to 0x8000). See Figure 38 and Figure 61.  
Output Voltage Settling Time  
Output voltage settling time is the amount of time it takes for the  
output to settle to a specified level for a full-scale input change.  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital inputs of the  
DAC but is measured when the DAC output is not updated.  
It is specified in nV-sec and measured with a full-scale code  
change on the data bus.  
Rev. A | Page 24 of 40  
 
AD5412/AD5422  
Power Supply Rejection Ratio (PSRR)  
PSRR indicates how the output of the DAC is affected by changes  
in the power supply voltage.  
where:  
REFmax is the maximum reference output measured over the  
total temperature range.  
REFmin is the minimum reference output measured over the total  
temperature range.  
REFnom is the nominal reference output voltage, 5 V.  
V
V
Voltage Reference TC  
Voltage reference TC is a measure of the change in the reference  
output voltage with a change in temperature. The reference TC  
is calculated using the box method, which defines the TC as the  
maximum change in the reference output over a given temperature  
range expressed in ppm/°C, as follows:  
V
TempRange is the specified temperature range, −40°C to +85°C.  
Load Regulation  
Load regulation is the change in reference output voltage due to  
a specified change in load current. It is expressed in ppm/mA.  
VREFmax VREFmin  
REFnom ×TempRange  
TC =  
×106  
V
Rev. A | Page 25 of 40  
AD5412/AD5422  
THEORY OF OPERATION  
The AD5412/AD5422 are precision digital-to-current loop and  
voltage output converters designed to meet the requirements of  
industrial process control applications. They provide a high  
precision, fully integrated, low cost single-chip solution for  
generating current loop and unipolar/bipolar voltage outputs.  
Current ranges are 0 mA to 20 mA, 0 mA to 24 mA, and 4 mA  
to 20 mA; the voltage ranges available are 0 V to 5 V, 5 V, 0 V  
to 10 V, and 10 V; a 10% overrange is available on all voltage  
output ranges. The current and voltage outputs are available on  
separate pins, and only one is active at any time. The desired  
output configuration is user selectable via the control register.  
+V  
–V  
AD5412/AD5422  
SENSE  
R1  
V
OUT  
RANGE  
SCALING  
12-/16-BIT  
DAC  
R
LOAD  
SENSE  
REFIN  
V
–1V TO +3V  
CM  
Figure 65. Voltage Output  
Voltage Output Amplifier  
The voltage output amplifier is capable of generating both  
ARCHITECTURE  
unipolar and bipolar output voltages. It is capable of driving  
a load of 1 kΩ in parallel with 1 μF (with an external compen-  
sation capacitor) to GND. The source and sink capabilities of  
the output amplifier can be seen in Figure 35. The slew rate  
is 1 V/μs with a full-scale settling time of 25 μs maximum (10 V  
The DAC core architecture of the AD5412/AD5422 consists  
of two matched DAC sections. A simplified circuit diagram is  
shown in Figure 63. The four MSBs of the 12-/16-bit data-word  
are decoded to drive 15 switches, E1 to E15. Each of these switches  
connects one of 15 matched resistors to either ground or the  
reference buffer output. The remaining 8/12 bits of the data-  
word drive the S0 to S7/S11 switches of an 8-/12-bit voltage  
mode R-2R ladder network.  
step). Figure 65 shows the voltage output driving a load, RLOAD  
on top of a common-mode voltage (VCM) of −1 V to +3 V. In  
output module applications where a cable could possibly  
become disconnected from +VSENSE, resulting in the amplifier  
loop being broken and possibly resulting in large destructive  
voltages on VOUT, include an optional resistor (R1) between  
+VSENSE and VOUT, as shown in Figure 65, of a value between  
2 kꢀ and 5 kꢀ to ensure the amplifier loop is kept closed. If  
remote sensing of the load is not required, connect +VSENSE  
directly to VOUT and connect −VSENSE directly to GND. When  
,
V
OUT  
2R 2R  
S0  
2R  
S1  
2R  
2R  
E1  
2R  
E2  
2R  
S7/S11  
E15  
changing ranges on the voltage output, a glitch may occur. For  
this reason, it is recommended that the output be disabled by  
setting the OUTEN bit of the control register to logic low before  
changing the output voltage range; this prevents a glitch from  
occurring.  
8-12 BIT R-2R LADDER  
FOUR MSBs DECODED INTO  
15 EQUAL SEGMENTS  
Figure 63. DAC Ladder Structure  
The voltage output from the DAC core is either converted to  
a current (see Figure 64) which is then mirrored to the supply  
rail so that the application simply sees a current source output  
with respect to ground or it is buffered and scaled to output a  
software selectable unipolar or bipolar voltage range (see  
Figure 65). The current and voltage are output on separate  
pins and cannot be output simultaneously.  
Driving Large Capacitive Loads  
The voltage output amplifier is capable of driving capacitive  
loads of up to 1 μF with the addition of a nonpolarized 4 nF  
compensation capacitor between the CCOMP and VOUT pins.  
Without the compensation capacitor, up to 20 nF capacitive  
loads can be driven.  
AV  
DD  
R2  
R3  
T2  
A2  
T1  
12-/16-BIT  
DAC  
I
A1  
OUT  
R
SET  
Figure 64. Voltage-to-Current Conversion Circuitry  
Rev. A | Page 26 of 40  
 
 
 
 
AD5412/AD5422  
SERIAL INTERFACE  
CONTROLLER  
AD5412/  
AD54221  
The AD5412/AD5422 are controlled over a versatile 3-wire  
serial interface that operates at clock rates of up to 30 MHz. It is  
compatible with SPI, QSPI™, MICROWIRE, and DSP standards.  
DATA OUT  
SDIN  
SERIAL CLOCK  
CONTROL OUT  
SCLK  
LATCH  
Input Shift Register  
DATA IN  
SDO  
The input shift register is 24 bits wide. Data is loaded into the  
device MSB first as a 24-bit word under the control of a serial  
clock input, SCLK. Data is clocked in on the rising edge of  
SCLK. The input register consists of eight address bits and  
16 data bits, as shown in Table 7. The 24-bit word is uncondi-  
tionally latched on the rising edge of the LATCH pin. Data  
continues to be clocked in irrespective of the state of LATCH.  
On the rising edge of LATCH, the data that is present in the  
input register is latched; in other words, the last 24 bits to be  
clocked in before the rising edge of LATCH is the data that is  
latched. The timing diagram for this operation is shown in  
Figure 2.  
SDIN  
AD5412/  
AD54221  
SCLK  
LATCH  
SDO  
SDIN  
AD5412/  
AD54221  
Table 7. Input Shift Register Format  
MSB  
SCLK  
LATCH  
LSB  
D23 to D16  
Address byte  
D15 to D0  
SDO  
Data-word  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Table 8. Address Byte Functions  
Address Word Function  
Figure 66. Daisy Chaining the AD5412/AD5422  
00000000  
00000001  
00000010  
No operation (NOP)  
Data register  
Readback register value as per read address  
(see Table 9)  
Daisy-Chain Operation  
For systems that contain several devices, the SDO pin can be  
used to daisy-chain the devices together as shown in Figure 66.  
This daisy-chain mode can be useful in system diagnostics and  
in reducing the number of serial interface lines. Daisy-chain  
mode is enabled by setting the DCEN bit of the control register  
to 1. The first rising edge of SCLK that clocks in the MSB of the  
data-word marks the beginning of the write cycle. SCLK is  
continuously applied to the input shift register. If more than 24  
clock pulses are applied, the data ripples out of the shift register  
and appears on the SDO line. This data is valid on the rising  
edge of SCLK, having been clocked out on the previous falling  
SCLK edge. By connecting the SDO of the first device to the  
SDIN input of the next device in the chain, a multidevice  
interface is constructed. Each device in the system requires  
24 clock pulses. Therefore, the total number of clock cycles  
must equal 24 × n, where n is the total number of AD5412/  
AD5422 devices in the chain. When the serial transfer to all  
devices is complete, LATCH is taken high. This latches the  
input data in each device in the daisy chain. The serial clock can  
be a continuous or a gated clock.  
01010101  
01010110  
Control register  
Reset register  
Standalone Operation  
The serial interface works with both a continuous and noncon-  
tinuous serial clock. A continuous SCLK source can be used  
only if LATCH is taken high after the correct number of data  
bits have been clocked in. In gated clock mode, a burst clock  
containing the exact number of clock cycles must be used, and  
LATCH must be taken high after the final clock to latch the  
data. The rising edge of SCLK that clocks in the MSB of the  
data-word marks the beginning of the write cycle. Exactly 24  
rising clock edges must be applied to SCLK before LATCH is  
brought high. If LATCH is brought high before the 24th rising  
SCLK edge, the data written is invalid. If more than 24 rising  
SCLK edges are applied before LATCH is brought high, the  
input data is also invalid.  
A continuous SCLK source can be used only if LATCH is taken  
high after the correct number of clock cycles. In gated clock  
mode, a burst clock containing the exact number of clock cycles  
must be used, and LATCH must be taken high after the final  
clock to latch the data (see Figure 4 for a timing diagram).  
Rev. A | Page 27 of 40  
 
 
 
AD5412/AD5422  
Readback Operation  
calibration registers and ensures specified operation of the  
AD5412/AD5422.  
Readback mode is invoked by setting the address byte and  
read address when writing to the input register (see Table 9 and  
Table 11). The next write to the AD5412/AD5422 should be a  
NOP command, which clocks out the data from the previously  
addressed register as shown in Figure 3.  
Voltage Output  
For a unipolar voltage output range, the output voltage can be  
expressed as  
D
2
VOUT VREFIN Gain  
By default the SDO pin is disabled after having addressed the  
AD5412/AD5422 for a read operation; a rising edge on LATCH  
enables the SDO pin in anticipation of data being clocked out.  
After the data has been clocked out on SDO, a rising edge on  
LATCH disables (tristate) the SDO pin. To read back the data  
register, for example, implement the following sequence:  
N
For a bipolar voltage output range, the output voltage can be  
expressed as  
Gain VREFIN  
D
2
VOUT VREFIN Gain  
N
2
1. Write 0x020001 to the input register. This configures the  
part for read mode with the data register selected.  
2. Follow this with a second write: a NOP condition, which is  
0x000000. During this write, the data from the register is  
clocked out on the SDO line.  
where:  
D is the decimal equivalent of the code loaded to the DAC.  
N is the bit resolution of the DAC.  
VREFIN is the reference voltage applied at the REFIN pin.  
Gain is an internal gain whose value depends on the output  
range selected by the user as shown in Table 10.  
Table 9. Read Address Decoding  
Read Address  
Function  
Table 10. Internal Gain Value  
00  
01  
10  
Read status register  
Read data register  
Read control register  
Output Range  
Gain Value  
+5 V  
+10 V  
5 V  
1
2
2
4
POWER-ON STATE  
10 V  
During power-on of the AD5412/AD5422, the power-on-reset  
circuit ensures that all registers are loaded with zero-code. As  
such, both outputs are disabled; that is, the VOUT and IOUT pins  
are in tristate. The +VSENSE pin is internally connected to ground  
through a 40 kΩ resistor. Therefore, if the VOUT and +VSENSE pins  
are connected together, VOUT is effectively clamped to ground  
through a 40 kΩ resistor. Also upon power-on, internal  
calibration registers are read, and the data is applied to internal  
calibration circuitry. For a reliable read operation, there must be  
sufficient voltage on the AVDD supply when the read event is  
triggered by the DVCC power supply powering up. Powering up  
the DVCC supply after the AVDD supply ensures this. If DVCC and  
AVDD are powered up simultaneously or the internal DVCC is  
enabled, the supplies should be powered up at a rate greater  
than, typically, 500 V/sec or 24 V/50 ms. If this cannot be  
achieved, issue a reset command to the AD5412/AD5422 after  
power-on; this performs a power-on-reset event, reading the  
Current Output  
For the 0 mA to 20 mA, 0 mA to 24 mA, and 4 mA to 20 mA  
current output ranges, the output current is respectively  
expressed as  
20 mA  
2N  
IOUT  
IOUT  
IOUT  
D  
24 mA  
2N  
D  
16 mA  
2N  
D 4 mA  
where:  
D is the decimal equivalent of the code loaded to the DAC.  
N is the bit resolution of the DAC.  
Table 11. Input Shift Register Contents for a Read Operation  
MSB  
LSB  
D0  
Read address  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15 to D2  
D1  
0
0
0
0
0
0
1
0
X1  
1 X = don’t care.  
Rev. A | Page 28 of 40  
 
 
 
 
 
 
AD5412/AD5422  
DATA REGISTER  
The data register is addressed by setting the address word of the input shift register to 0x01. The data to be written to the data register is  
entered in the D15 to D4 positions for the AD5412 and the D15 to D0 positions for the AD5422, as shown in Table 12 and Table 13.  
Table 12. Programming the AD5412 Data Register  
MSB  
LSB  
D0  
X
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D2  
D1  
12-bit data-word  
X
X
X
Table 13. Programming the AD5422 Data Register  
MSB  
LSB  
D0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D3  
D2  
D1  
16-bit data-word  
CONTROL REGISTER  
The control register is addressed by setting the address word of the input shift register to 0x55. The data to be written to the control  
register is entered in the D15 to D0 positions, as shown in Table 14. The control register functions are shown in Table 15.  
Table 14. Programming the Control Register  
MSB  
LSB  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
CLRSEL  
OVRRNG  
REXT  
OUTEN  
SR clock  
SR step  
SREN  
DCEN  
R2  
R1  
R0  
Table 15. Control Register Functions  
Option  
CLRSEL  
OVRRNG  
REXT  
Description  
See Table 21 for a description of the CLRSEL operation.  
Setting this bit increases the voltage output range by 10% (see the AD5412/AD5422 Features section).  
Setting this bit selects the external current setting resistor (see the AD5412/AD5422 Features section).  
OUTEN  
SR clock  
SR step  
SREN  
Output enable. This bit must be set to enable the outputs. The range bits select which output is functional.  
Digital slew rate control (see the AD5412/AD5422 Features section).  
Digital slew rate control (see the AD5412/AD5422 Features section).  
Digital slew rate control enable.  
DCEN  
Daisy chain enable.  
R2, R1, R0  
Output range select (see Table 16).  
Table 16. Output Range Options  
R2  
R1  
R0  
0
1
Output Range Selected  
0 V to 5 V voltage range  
0 V to 10 V voltage range  
5 V voltage range  
0
0
0
0
0
1
0
0
1
1
10 V voltage range  
1
1
1
0
1
1
1
0
1
4 mA to 20 mA current range  
0 mA to 20 mA current range  
0 mA to 24 mA current range  
Rev. A | Page 29 of 40  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AD5412/AD5422  
RESET REGISTER  
The reset register is addressed by setting the address word of the input shift register to 0x56. The data to be written to the reset register is  
entered in the D0 position as shown in Table 17. The reset register options are shown in Table 17 and Table 18.  
Table 17. Programming the Reset Register  
MSB  
LSB  
D0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Reserved  
Reset  
Table 18. Reset Register Functions  
Option  
Description  
Reset  
Setting this bit performs a reset operation, restoring the AD5412/AD5422 to its power-on state.  
STATUS REGISTER  
The status register is a read-only register. The status register functionality is shown in Table 19 and Table 20.  
Table 19. Decoding the Status Register  
MSB  
LSB  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8 D7  
D6 D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
IOUT fault  
Slew active  
Over temp  
Table 20. Status Register Functions  
Option  
Description  
IOUT Fault  
This bit is set if a fault is detected on the IOUT pin.  
Slew Active  
Over Temp  
This bit is set while the output value is slewing (slew rate control enabled).  
This bit is set if the AD5412/AD5422 core temperature exceeds ~150°C.  
Rev. A | Page 30 of 40  
 
 
 
 
 
AD5412/AD5422  
AD5412/AD5422 FEATURES  
FAULT ALERT  
ASYNCHRONOUS CLEAR (CLEAR)  
The CLEAR pin is an active high clear that allows the voltage  
output to be cleared to either zero-scale code or midscale code,  
user selectable via the CLEAR SELECT pin, or the CLRSEL bit  
of the control register, as described in Table 21. (The clear select  
feature is a logical OR function of the CLEAR SELECT pin and  
the CLRSEL bit.) The current output clears to the bottom of its  
programmed range. It is necessary for CLEAR to be high for a  
minimum amount of time to complete the operation (see  
Figure 2). When the CLEAR signal is returned low, the output  
remains at the cleared value. The preclear value can be restored  
by pulsing the LATCH signal low without clocking any data. A  
new value cannot be programmed until the CLEAR pin is  
returned low.  
FAULT  
The AD5412/AD5422 are equipped with a  
is an open-drain output allowing several AD5412/AD5422  
devices to be connected together to one pull-up resistor for  
pin, which  
FAULT  
global fault detection. The  
of the following fault scenarios:  
pin is forced active by one  
The voltage at IOUT attempts to rise above the compliance  
range, due to an open-loop circuit or insufficient power  
supply voltage. The IOUT current is controlled by a PMOS  
transistor and internal amplifier, as shown in Figure 64.  
The internal circuitry that develops the fault output avoids  
using a comparator with window limits because this would  
FAULT  
require an actual output error before the  
output  
becomes active. Instead, the signal is generated when the  
internal amplifier in the output stage has less than ~1 V  
of remaining drive capability (when the gate of the output  
Table 21. CLRSEL Options  
Output Value  
CLRSEL Unipolar Output Range  
Bipolar Output Range  
0 V  
Negative full scale  
FAULT  
PMOS transistor nearly reaches ground). Thus, the  
0
1
0 V  
Midscale  
output activates slightly before the compliance limit is  
reached. Because the comparison is made within the  
feedback loop of the output amplifier, the output accuracy  
is maintained by its open-loop gain, and an output error  
In addition to defining the output value for a clear operation,  
the CLRSEL bit and CLEAR SELECT pin also define the default  
output value. During selection of a new voltage range, the  
output value is as defined in Table 21. To avoid glitches on the  
output, it is recommended that, before changing voltage ranges,  
the user disable the output by setting the OUTEN bit of the  
control register to logic low. When OUTEN is set to logic high,  
the output goes to the default value as defined by CLRSEL and  
CLEAR SELECT.  
FAULT  
does not occur before the  
output becomes active.  
If the core temperature of the AD5412/AD5422 exceeds  
approximately 150°C.  
The IOUT fault and over temp bits of the status register are used  
FAULT  
in conjunction with the  
pin to inform the user which  
FAULT  
one of the fault conditions caused the  
(see Table 19 and Table 20).  
pin to be asserted  
VOLTAGE OUTPUT SHORT CIRCUIT PROTECTION  
INTERNAL REFERENCE  
Under normal operation, the voltage output sinks/sources  
10 mA. The maximum current that the voltage output delivers  
is ~20 mA; this is the short-circuit current.  
The AD5412/AD5422 contain an integrated 5 V voltage  
reference with initial accuracy of 5 mV maximum and a  
temperature drift coefficient of 10 ppm/°C maximum. The  
reference voltage is buffered and externally available for use  
elsewhere within the system. See Figure 16 for a load regulation  
graph of the integrated reference.  
VOLTAGE OUTPUT OVERRANGE  
An overrange facility is provided on the voltage output. When  
enabled via the control register, the selected output range is  
overranged by, typically, 10%.  
EXTERNAL CURRENT SETTING RESISTOR  
VOLTAGE OUTPUT FORCE-SENSE  
RSET is an internal sense resistor as part of the voltage-to-current  
conversion circuitry (see Figure 64). The stability of the output  
current over temperature is dependent on the stability of the  
value of RSET. As a method of improving the stability of the  
output current over temperature, an external precision 15 kꢀ  
low drift resistor can be connected to the RSET pin of the  
AD5412/AD5422 to be used instead of the internal resistor  
(RSET). The external resistor is selected via the control register  
(see Table 14).  
The +VSENSE and −VSENSE pins are provided to facilitate remote  
sensing of the load connected to the voltage output. If the load  
is connected at the end of a long or high impedance cable,  
sensing the voltage at the load allows the output amplifier to  
compensate and ensure that the correct voltage is applied across  
the load. This function is limited only by the available power  
supply headroom.  
Rev. A | Page 31 of 40  
 
 
 
AD5412/AD5422  
SR step bits. SR clock defines the rate at which the digital slew is  
updated; SR step defines by how much the output value changes  
at each update. Both parameters together define the rate of  
change of the output voltage or current. Table 22 and Table 23  
outline the range of values for both the SR clock and SR step  
parameters. Figure 68 shows the output current changing for  
ramp times of 10 ms, 50 ms, and 100 ms.  
DIGITAL POWER SUPPLY  
By default, the DVCC pin accepts a power supply of 2.7 V to  
5.5 V. Alternatively, via the DVCC SELECT pin, an internal 4.5 V  
power supply can be output on the DVCC pin for use as a digital  
power supply for other devices in the system or as a termination  
for pull-up resistors. This facility offers the advantage of not  
having to bring a digital supply across an isolation barrier. The  
internal power supply is enabled by leaving the DVCC SELECT  
pin unconnected. To disable the internal supply, tie DVCC  
SELECT to 0 V. DVCC is capable of supplying up to 5 mA of  
current (for a load regulation graph, see Figure 10).  
Table 22. Slew Rate Step Size Options  
AD5412 Step Size  
(LSB)  
AD5422 Step  
Size (LSB)  
SR Step  
000  
001  
010  
011  
100  
101  
110  
111  
1/16  
1/8  
1/4  
1/2  
1
2
4
8
1
2
4
8
16  
32  
64  
128  
EXTERNAL BOOST FUNCTION  
The addition of an external boost transistor, as shown in  
Figure 67, reduces the power dissipated in the AD5412/AD5422  
by reducing the current flowing in the on-chip output transistor  
(dividing it by the current gain of the external circuit). A  
discrete NPN transistor with a breakdown voltage, BVCEO  
,
greater than 40 V can be used. The external boost capability  
has been developed for users who may wish to use the  
AD5412/AD5422 at the extremes of the supply voltage, load  
current, and temperature range. The boost transistor can also  
be used to reduce the amount of temperature-induced drift in  
the part. This minimizes the temperature-induced drift of the  
on-chip voltage reference, which improves on drift and  
linearity.  
Table 23. Slew Rate Update Clock Options  
SR Clock  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Update Clock Frequency (Hz)  
257,730  
198,410  
152,440  
131,580  
115,740  
69,440  
37,590  
25,770  
20,160  
16,030  
10,290  
8280  
BOOST  
MJD31C  
OR  
AD5412/  
PBSS8110Z  
AD5422  
I
OUT  
1k  
0.022µF  
R
LOAD  
Figure 67. External Boost Configuration  
6900  
5530  
4240  
3300  
EXTERNAL COMPENSATION CAPACITOR  
The voltage output can ordinarily drive capacitive loads of up to  
20 nF; if there is a requirement to drive greater capacitive loads,  
of up to 1 μF, an external compensation capacitor can be con-  
nected between the CCOMP and VOUT pins. The addition of the  
capacitor keeps the output voltage stable but also reduces the  
bandwidth and increases the settling time of the voltage output.  
The time it takes for the output to slew over a given output  
range can be expressed as follows:  
Output Change  
Slew Time =  
(1)  
Step Size ×Update Clock Frequency × LSB Size  
DIGITAL SLEW RATE CONTROL  
The slew rate control feature of the AD5412/AD5422 allows the  
user to control the rate at which the output voltage or current  
changes. With the slew rate control feature disabled, the output  
changes at a rate limited by the output drive circuitry and the  
attached load. See Figure 62 for current output step and  
Figure 36 for voltage output step. To reduce the slew rate, enable  
the slew rate control feature. With the feature enabled via the  
SREN bit of the control register (see Table 14), the output, instead  
of slewing directly between two values, steps digitally at a rate  
defined by two parameters accessible via the control register, as  
shown in Table 14. The parameters are set by the SR clock and  
where:  
Slew Time is expressed in seconds.  
Output Change is expressed in amps for IOUT or volts for VOUT  
.
When the slew rate control feature is enabled, all output  
changes change at the programmed slew rate; if the CLEAR  
pin is asserted, the output slews to the zero-scale value at the  
programmed slew rate. The output can be halted at its current  
value with a write to the control register. To avoid halting the  
output slew, the slew active bit (see Table 19) can be read to  
check that the slew has completed before writing to any of the  
Rev. A | Page 32 of 40  
 
 
 
 
AD5412/AD5422  
AD5410/AD5420 registers. The update clock frequency for any  
given value is the same for all output ranges. The step size,  
however, varies across output ranges for a given value of step  
size because the LSB size is different for each output range.  
Table 24 shows the range of programmable slew times for a full-  
scale change on any of the output ranges. The values in Table 24  
were obtained using Equation 1.  
smoothing out the steps caused by the digital code increments,  
as shown in Figure 72.  
C1  
C2  
AV  
CAP1  
CAP2  
DD  
The digital slew rate control feature results in a staircase  
formation on the current output, as shown in Figure 72. This  
figure also shows how the staircase can be removed by  
connecting capacitors to the CAP1 and CAP2 pins, as described  
in the IOUT Filtering Capacitors (LFCSP Package) section.  
4k  
40Ω  
BOOST  
DAC  
12.5kΩ  
I
OUT  
25  
R1  
T
= 25°C  
A
AV  
= 24V  
DD  
R
= 300Ω  
LOAD  
20  
15  
10  
5
Figure 70. IOUT Filter Circuitry  
25  
20  
15  
10  
5
T
AV  
R
= 25°C  
A
= 24V  
DD  
= 300Ω  
LOAD  
10ms RAMP, SR CLOCK = 0x1, SR STEP = 0x5  
50ms RAMP, SR CLOCK = 0xA, SR STEP = 0x7  
100ms RAMP, SR CLOCK = 0x8, SR STEP = 0x5  
0
–10  
NO CAPACITOR  
10nF ON CAP1  
10nF ON CAP2  
47nF ON CAP1  
47nF ON CAP2  
0
10 20 30 40 50 60 70 80 90 100 110  
TIME (ms)  
Figure 68. Output Current Slewing Under Control of the Digital Slew Rate  
Control Feature  
0
–0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
IOUT FILTERING CAPACITORS (LFCSP PACKAGE)  
TIME (ms)  
Capacitors can be placed between CAP1 and AVDD, and CAP2  
and AVDD, as shown in Figure 69.  
Figure 71. Slew Controlled 4 mA to 20 mA Output Current Step Using  
External Capacitors on the CAP1 and CAP2 Pins  
AV  
DD  
6.8  
T
= 25°C  
C1  
C2  
A
AV  
= 24V  
= 300Ω  
6.7  
6.6  
6.5  
6.4  
6.3  
6.2  
6.1  
AV  
DD  
DD  
R
LOAD  
CAP1  
CAP2  
AD5412/  
AD5422  
I
GND  
OUT  
Figure 69. IOUT Filtering Capacitors  
The CAP1 and CAP2 pins are available only on the LFCSP  
package. The capacitors form a filter on the current output  
circuitry, as shown in Figure 70, reducing the bandwidth and  
the slew rate of the output current. Figure 71 shows the effect  
the capacitors have on the slew rate of the output current. To  
achieve significant reductions in the rate of change, very large  
capacitor values are required, which may not be suitable in  
some applications. In this case, the digital slew rate control  
feature can be used. The capacitors can be used in conjunction  
with the digital slew rate control feature as a means of  
NO EXTERNAL CAPS  
10nF ON CAP1  
10nF ON CAP2  
–1  
0
1
2
3
4
5
6
7
8
TIME (ms)  
Figure 72. Smoothing Out the Steps Caused by the Digital Slew  
Rate Control Feature  
Rev. A | Page 33 of 40  
 
 
 
 
 
 
 
AD5412/AD5422  
Table 24. Programmable Slew Time Values in Seconds for a Full-Scale Change on Any Output Range  
Update Clock  
Step Size (LSB)  
Frequency (Hz)  
1
2
4
8
16  
32  
64  
128  
257,730  
198,410  
152,440  
131,580  
115,740  
69,440  
37,590  
25,770  
20,160  
16,030  
10,290  
8280  
0.25  
0.33  
0.43  
0.50  
0.57  
0.9  
1.7  
2.5  
3.3  
4.1  
6.4  
7.9  
9.5  
12  
0.13  
0.17  
0.21  
0.25  
0.28  
0.47  
0.87  
1.3  
1.6  
2.0  
3.2  
4.0  
0.06  
0.08  
0.11  
0.12  
0.14  
0.24  
0.44  
0.64  
0.81  
1.0  
1.6  
2.0  
2.4  
3.0  
3.9  
5.0  
0.03  
0.04  
0.05  
0.06  
0.07  
0.12  
0.22  
0.32  
0.41  
0.51  
0.80  
1.0  
0.016  
0.021  
0.027  
0.031  
0.035  
0.06  
0.11  
0.16  
0.20  
0.26  
0.40  
0.49  
0.59  
0.74  
0.97  
1.24  
0.008  
0.010  
0.013  
0.016  
0.018  
0.03  
0.05  
0.08  
0.10  
0.13  
0.20  
0.25  
0.30  
0.37  
0.48  
0.62  
0.004  
0.005  
0.007  
0.008  
0.009  
0.015  
0.03  
0.04  
0.05  
0.06  
0.10  
0.12  
0.15  
0.19  
0.24  
0.31  
0.0020  
0.0026  
0.0034  
0.0039  
0.0044  
0.007  
0.014  
0.020  
0.025  
0.03  
0.05  
0.06  
0.07  
0.09  
0.12  
0.16  
6900  
5530  
4240  
3300  
4.8  
5.9  
7.7  
9.9  
1.2  
1.5  
1.9  
2.5  
15  
20  
Rev. A | Page 34 of 40  
 
AD5412/AD5422  
APPLICATIONS INFORMATION  
ADuM14001  
ENCODE  
CONTROLLER  
DRIVING INDUCTIVE LOADS  
V
V
V
V
V
V
V
V
IA  
IB  
IC  
ID  
OA  
OB  
OC  
OD  
TO  
SERIAL  
CLOCK IN  
When driving inductive or poorly defined loads, connect a  
0.01 μF capacitor between IOUT and GND. This ensures stability  
with loads above 50 mH. There is no maximum capacitance  
limit. The capacitive component of the load may cause slower  
settling. The digital slew rate control feature may also prove  
useful in this situation.  
DECODE  
DECODE  
DECODE  
DECODE  
SCLK  
TO  
SDIN  
SERIAL  
DATA OUT  
ENCODE  
ENCODE  
ENCODE  
TO  
LATCH  
SYNC OUT  
TRANSIENT VOLTAGE PROTECTION  
CONTROL  
OUT  
TO  
CLEAR  
The AD5412/AD5422 contain ESD protection diodes that  
prevent damage from normal handling. The industrial control  
environment can, however, subject I/O circuits to much higher  
transients. To protect the AD5412/AD5422 from excessively  
high voltage transients, external power diodes and a surge  
current limiting resistor are required, as shown in Figure 73.  
The constraint on the resistor value is that, during normal  
operation, the output level at IOUT must remain within its voltage  
compliance limit of AVDD – 2.5 V, and the two protection diodes  
and resistor must have appropriate power ratings. Further  
protection can be provided with transient voltage suppressors or  
transorbs; these are available as both unidirectional suppressors  
(protect against positive high voltage transients) and  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 74. Isolated Interface  
MICROPROCESSOR INTERFACING  
Microprocessor interfacing to the AD5412/AD5422 is via a serial  
bus that uses a protocol compatible with microcontrollers and  
DSP processors. The communications channel is a 3-wire  
minimum interface consisting of a clock signal, a data signal,  
and a latch signal. The AD5412/AD5422 require a 24-bit data-  
word with data valid on the rising edge of SCLK.  
bidirectional suppressors (protect against both positive and  
negative high voltage transients) and are available in a wide  
range of standoff and breakdown voltage ratings. It is  
For all interfaces, the DAC output update is initiated on the  
rising edge of LATCH. The contents of the registers can be  
read using the readback function.  
recommended that all field connected nodes be protected.  
LAYOUT GUIDELINES  
AV  
DD  
In any circuit where accuracy is important, careful consider-  
ation of the power supply and ground return layout helps to  
ensure the rated performance. Design the printed circuit board  
(PCB) on which the AD5412/AD5422 is mounted so that the  
analog and digital sections are separated and confined to  
certain areas of the board. If the AD5412/AD5422 is in a system  
where multiple devices require an analog ground-to-digital  
ground connection, make the connection at one point only.  
Establish the star ground point as close as possible to the device.  
AV  
DD  
R
P
AD5412/  
AD5422  
I
OUT  
R
LOAD  
GND  
Figure 73. Output Transient Voltage Protection  
The AD5412/AD5422 should have ample supply bypassing  
of 10 μF in parallel with 0.1 μF on each supply located as close  
to the package as possible, ideally right up against the device.  
The 10 μF capacitors are the tantalum bead type. The 0.1 μF  
capacitor should have low effective series resistance (ESR)  
and low effective series inductance (ESI), such as the common  
ceramic types, which provide a low impedance path to ground  
at high frequencies to handle transient currents due to internal  
logic switching.  
GALVANICALLY ISOLATED INTERFACE  
In many process control applications, it is necessary to provide  
an isolation barrier between the controller and the unit being  
controlled to protect and isolate the controlling circuitry from  
any hazardous common-mode voltages that may occur. The  
iCoupler® products from Analog Devices, Inc., provide voltage  
isolation in excess of 2.5 kV. The serial loading structure of the  
AD5412/AD5422 makes the parts ideal for isolated interfaces  
because the number of interface lines is kept to a minimum.  
Figure 74 shows a 4-channel isolated interface to the AD5412/  
AD5422 using an ADuM1400. For further information, visit  
http://www.analog.com/icouplers.  
Rev. A | Page 35 of 40  
 
 
 
AD5412/AD5422  
The power supply lines of the AD5412/AD5422 should use as  
large a trace as possible to provide low impedance paths and  
reduce the effects of glitches on the power supply line. Fast  
switching signals such as clocks should be shielded with a  
digital ground to avoid radiating noise to other parts of the  
board. Never run these near the reference inputs. A ground line  
routed between the SDIN and SCLK lines helps reduce crosstalk  
between them (this is not required on a multilayer board that  
has a separate ground plane, but separating the lines helps). It  
is essential to minimize noise on the REFIN line because it  
couples through to the DAC output.  
To ensure that the junction temperature does not exceed 125°C  
while driving the maximum current of 24 mA directly into  
ground (also adding an on-chip current of 3 mA), reduce AVDD  
from the maximum rating to ensure that the package is not  
required to dissipate more power than previously stated (see  
Table 25, Figure 75, and Figure 76).  
2.5  
LFCSP  
2.0  
1.5  
Avoid crossover of digital and analog signals. Traces on  
opposite sides of the PCB should run at right angles to each  
other. This reduces the effects of feed through the board. A  
microstrip technique is by far the best but not always possible  
with a double-sided board. In this technique, the component  
side of the board is dedicated to the ground plane, and signal  
traces are placed on the solder side.  
TSSOP  
1.0  
0.5  
0
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
THERMAL AND SUPPLY CONSIDERATIONS  
AMBIENT TEMPERATURE (°C)  
The AD5412/AD5422 are designed to operate at a maximum  
junction temperature of 125°C. It is important that the devices  
not be operated under conditions that cause the junction  
temperature to exceed this value. Excessive junction tempera-  
ture can occur if the AD5412/AD5422 are operated from the  
maximum AVDD while driving the maximum current (24 mA)  
directly to ground. In this case, control the ambient temperature  
or reduce AVDD. The conditions depend on the device package.  
Figure 75. Maximum Power Dissipation vs. Ambient Temperature  
45  
43  
LFCSP  
41  
39  
TSSOP  
37  
35  
33  
31  
29  
27  
25  
At the maximum ambient temperature of 85°C, the 24-lead  
TSSOP package can dissipate 950 mW, and the 40-lead LFCSP  
package can dissipate 1.42 mW.  
25  
35  
45  
55  
65  
75  
85  
AMBIENT TEMPERATURE (°C)  
Figure 76. Maximum Supply Voltage vs. Ambient Temperature  
Table 25. Thermal and Supply Considerations for Each Package  
Considerations  
TSSOP  
LFCSP  
TJ max TA 125 85  
TJ max TA  
Maximum Allowed Power  
Dissipation When Operating  
at an Ambient Temperature  
of 85°C  
125 85  
=
= 950 mW  
=
= 1.42 mW  
θ JA  
28  
θJA  
42  
Maximum Allowed Ambient  
Temperature When  
TJ max PD ×θJA =125(40× 0.028) × 42 = 78°C  
TJ max PD ×θJA =125 (40 × 0.028) × 28 = 94°C  
Operating from a Supply of  
40 V and Driving 24 mA  
Directly to Ground  
Maximum Allowed Supply  
Voltage When Operating at  
an Ambient Temperature of  
85°C and Driving 24 mA  
Directly to Ground  
TJ max TA  
AIDD ×θJA  
125 85  
0.028× 28  
TJ max TA  
AIDD ×θJA  
125 85  
0.028× 42  
=
= 51V  
=
= 34 V  
Rev. A | Page 36 of 40  
 
 
 
 
AD5412/AD5422  
Isolation between the AD5412/AD5422 and the backplane  
circuitry is provided with ADuM1400 and ADuM1200  
iCoupler digital isolators; further information on iCoupler  
products is available at www.analog.com/icouplers. The  
internally generated digital power supply of the AD5412/  
AD5422 powers the field side of the digital isolaters, removing  
the need to generate a digital power supply on the field side of  
the isolation barrier. The AD5412/AD5422 digital supply  
output supplies up to 5 mA, which is more than enough to  
supply the 2.8 mA requirements of the ADuM1400 and  
ADuM1200 operating at a logic signal frequency of up to  
1 MHz. To reduce the number of isolators required, nonessen-  
INDUSTRIAL ANALOG OUTPUT MODULE  
Many industrial control applications have requirements for  
accurately controlled current and voltage output signals. The  
AD5412/AD5422 are ideal for such applications. Figure 77  
shows the AD5412/AD5422 in a circuit design for an output  
module, specifically for use in an industrial control application.  
The design provides for a current or voltage output. The module  
is powered from a field supply of 24 V. This supplies AVDD directly.  
An inverting buck regulator generates the negative supply for  
AVSS. For transient overvoltage protection, transient voltage  
suppressors (TVS) are placed on all field accessible connections.  
A 24 V volt TVS is placed on each IOUT, VOUT, +VSENSE, and  
−VSENSE connection, and a 36 V TVS is placed on the field  
supply input. For added protection, clamping diodes are  
connected from the IOUT, VOUT, +VSENSE, and −VSENSE pins to the  
AVDD and AVSS power supply pins. If remote voltage load sensing  
is not required, the +VSENSE pin can be directly connected to the  
FAULT  
tial signals such as CLEAR can be connected to GND.  
and SDO can be left unconnected, reducing the isolation  
requirements to just three signals.  
VOUT pin and the –VSENSE pin can be connected to GND.  
–15V  
INVERTING  
BUCK  
REGULATOR  
24V FIELD SUPPLY  
FIELD GROUND  
10µF  
36V  
SMAJ36CA  
0.1µF  
BACKPLANE  
SUPPLY  
0.1µF  
ADuM1400  
4nF  
0.1µF  
10kΩ  
V
V
DD1  
DD2  
NC  
V
E2  
AV  
C
COMP  
DV  
CC  
DV  
SELECT  
DD  
CC  
V
V
IA  
OA  
OB  
OC  
OD  
+V  
SENSE  
+V  
SENSE  
V
V
V
V
IB  
CLEAR SELECT  
V
4.7kΩ  
100Ω  
IC  
V
ID  
V
+V  
–V  
I
OUT  
OUT  
CLEAR  
LATCH  
SCLK  
SDIN  
GND  
GND  
GND  
GND  
2
2
1
1
AD5412/  
AD54221  
–V  
SENSE  
SENSE  
V
V
V
V
DD1  
V
V
DD2  
18Ω  
I
FAULT  
OUT  
OA  
OB  
IA  
OUT  
SDO  
GND  
IB  
24V  
SMAJ24CA  
AV  
SS  
REFIN  
REFOUT  
GND GND  
2
1
ADuM1200  
0.1µF  
10µF  
0.1µF  
–15V  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 77. AD5412/AD5422 in an Industrial Analog Output Module Application  
Rev. A | Page 37 of 40  
 
 
AD5412/AD5422  
OUTLINE DIMENSIONS  
5.02  
5.00  
4.95  
7.90  
7.80  
7.70  
24  
13  
12  
4.50  
4.40  
4.30  
3.25  
3.20  
3.15  
EXPOSED  
PAD  
(Pins Up)  
6.40 BSC  
1
BOTTOM VIEW  
TOP VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
1.05  
1.00  
0.80  
1.20 MAX  
8°  
0°  
SECTION OF THIS DATA SHEET.  
0.20  
0.09  
0.15  
0.05  
0.30  
0.19  
0.65  
BSC  
0.75  
0.60  
0.45  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-153-ADT  
Figure 78. 24-Lead Thin Shrink Small Outline Package, Exposed Pad [TSSOP_EP]  
(RE-24)  
Dimensions shown in millimeters  
6.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
31  
40  
1
30  
PIN 1  
INDICATOR  
0.50  
BSC  
TOP  
VIEW  
4.25  
4.10 SQ  
3.95  
5.75  
BSC SQ  
EXPOSED  
PAD  
(BOT TOM VIEW)  
0.50  
0.40  
0.30  
21  
10  
20  
11  
0.25 MIN  
4.50  
REF  
12° MAX  
0.80 MAX  
0.65 TYP  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-2  
Figure 79. 40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
6 mm × 6 mm Body, Very Thin Quad  
(CP-40-1)  
Dimensions shown in millimeters  
Rev. A | Page 38 of 40  
 
AD5412/AD5422  
ORDERING GUIDE  
Model  
Resolution IOUT TUE  
12 Bits  
VOUT TUE  
Temperature Range Package Description Package Option  
AD5412AREZ1  
0.5% FSR max 0.3% FSR max −40°C to +85°C  
0.5% FSR max 0.3% FSR max −40°C to +85°C  
0.5% FSR max 0.3% FSR max −40°C to+85°C  
0.5% FSR max 0.3% FSR max −40°C to+85°C  
0.5% FSR max 0.3% FSR max −40°C to+85°C  
0.5% FSR max 0.3% FSR max −40°C to+85°C  
0.3% FSR max 0.1% FSR max −40°C to+85°C  
0.3% FSR max 0.1% FSR max −40°C to+85°C  
0.5% FSR max 0.3% FSR max −40°C to+85°C  
0.5% FSR max 0.3% FSR max −40°C to+85°C  
0.3% FSR max 0.1% FSR max −40°C to+85°C  
0.3% FSR max 0.1% FSR max −40°C to+85°C  
24 Lead TSSOP_EP  
24 Lead TSSOP_EP  
40 Lead LFCSP_VQ  
40 Lead LFCSP_VQ  
24 Lead TSSOP_EP  
24 Lead TSSOP_EP  
24 Lead TSSOP_EP  
24 Lead TSSOP_EP  
40 Lead LFCSP_VQ  
40 Lead LFCSP_VQ  
40 Lead LFCSP_VQ  
40 Lead LFCSP_VQ  
Evaluation Board  
RE-24  
RE-24  
CP-40-1  
CP-40-1  
RE-24  
RE-24  
RE-24  
RE-24  
CP-40-1  
CP-40-1  
CP-40-1  
CP-40-1  
AD5412AREZ-REEL71 12 Bits  
AD5412ACPZ-REEL1  
AD5412ACPZ-REEL71 12 Bits  
AD5422AREZ1  
AD5422AREZ-REEL1  
AD5422BREZ1  
AD5422BREZ-REEL1  
AD5422ACPZ-REEL1  
AD5422ACPZ-REEL71 16 Bits  
AD5422BCPZ-REEL1  
16 Bits  
AD5422BCPZ-REEL71 16 Bits  
12 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
EVAL-AD5422EBZ  
1 Z = RoHS Compliant Part.  
Rev. A | Page 39 of 40  
 
 
 
 
 
AD5412/AD5422  
NOTES  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06996-0-8/09(A)  
Rev. A | Page 40 of 40  

相关型号:

AD5422BREZ

Single Channel, 16-Bit, Serial Input, Current Source & Voltage Output DAC
ADI

AD5422BREZ-REEL

Single Channel, 12-/16-Bit, Serial Input, Current Source and Voltage Output DACs
ADI

AD5424

Dual 8-,10-,12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5424BCP

IC PARALLEL, 8 BITS INPUT LOADING, 0.03 us SETTLING TIME, 8-BIT DAC, QCC20, 4 X 4 MM, CSP-20, Digital to Analog Converter
ADI

AD5424BRU

IC PARALLEL, 8 BITS INPUT LOADING, 0.03 us SETTLING TIME, 8-BIT DAC, PDSO16, TSSOP-16, Digital to Analog Converter
ADI

AD5424YCP

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5424YCP-REEL

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5424YCP-REEL7

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5424YCPZ

High Bandwidth 8-Bit Parallel Interface Multiplying D/A Converter
ADI

AD5424YCPZ-REEL

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5424YCPZ-REEL7

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5424YRU

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI