AD5424YCP-REEL [ADI]

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface; 8位/ 10位/ 12位,高带宽,乘法DAC ,并行接口
AD5424YCP-REEL
型号: AD5424YCP-REEL
厂家: ADI    ADI
描述:

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
8位/ 10位/ 12位,高带宽,乘法DAC ,并行接口

文件: 总32页 (文件大小:680K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8-/10-/12-Bit, High Bandwidth  
Multiplying DACs with Parallel Interface  
AD5424/AD5433/AD5445  
GENERAL DESCRIPTION  
FEATURES  
2.5 V to 5.5 V supply operation  
Fast parallel interface (17 ns write cycle)  
Update rate of 20.4 MSPS  
INL of 1 LSB for 12-bit DAC  
10 MHz multiplying bandwidth  
10 V reference input  
The AD5424/AD5433/AD54451 are CMOS 8-, 10-, and 12-bit  
current output digital-to-analog converters (DACs), respect-  
ively. These devices operate from a 2.5 V to 5.5 V power supply,  
making them suitable for battery-powered applications and  
many other applications. These DACs utilize data readback,  
allowing the user to read the contents of the DAC register via  
the DB pins. On power-up, the internal register and latches are  
Extended temperature range: –40°C to +125°C  
20-lead TSSOP and chip scale (4 mm × 4 mm) packages  
8-, 10-, and 12-bit current output DACs  
Upgrades to AD7524/AD7533/AD7545  
Pin-compatible 8-, 10-, and 12-bit DACs in chip scale  
Guaranteed monotonic  
4-quadrant multiplication  
Power-on reset with brownout detection  
Readback function  
filled with 0s and the DAC outputs are at zero scale.  
As a result of manufacturing with a CMOS submicron process,  
they offer excellent 4-quadrant multiplication characteristics,  
with large signal multiplying bandwidths of up to 10 MHz.  
The applied external reference input voltage (VREF) determines  
the full-scale output current. An integrated feedback resistor  
(RFB) provides temperature tracking and full-scale voltage output  
when combined with an external I-to-V precision amplifier.  
0.4 μA typical power consumption  
While these devices are upgrades of the AD7524/AD7533/  
AD7545 in multiplying bandwidth performance, they have a  
latched interface and cannot be used in transparent mode.  
APPLICATIONS  
Portable battery-powered applications  
Waveform generators  
The AD5424 is available in small, 20-lead LFCSP and 16-lead  
TSSOP packages, while the AD5433/AD5445 DACs are  
available in small, 20-lead LFCSP and TSSOP packages.  
Analog processing  
Instrumentation applications  
Programmable amplifiers and attenuators  
Digitally controlled calibration  
Programmable filters and oscillators  
Composite video  
1 U.S Patent No. 5,689,257.  
Ultrasound  
Gain, offset, and voltage trimming  
FUNCTIONAL BLOCK DIAGRAM  
V
V
DD  
REF  
R
FB  
AD5424/  
AD5433/  
AD5445  
R
I
I
1
2
OUT  
OUT  
8-/10-/12-BIT  
R-2R DAC  
POWER-ON  
RESET  
DAC REGISTER  
INPUT LATCH  
CS  
R/W  
GND  
DB0  
DB7/DB9/DB11  
DATA  
INPUTS  
Figure 1.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2005–2009 Analog Devices, Inc. All rights reserved.  
 
 
 
AD5424/AD5433/AD5445  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Bipolar Operation....................................................................... 18  
Single-Supply Applications ....................................................... 19  
Positive Output Voltage............................................................. 19  
Adding Gain................................................................................ 20  
DACs Used as a Divider or Programmable Gain Element ... 20  
Reference Selection .................................................................... 21  
Amplifier Selection .................................................................... 21  
Parallel Interface......................................................................... 22  
Microprocessor Interfacing....................................................... 22  
PCB Layout and Power Supply Decoupling................................ 23  
Evaluation Board for the AD5424/AD5433/AD5445 ........... 23  
Power Supplies for Evaluation Board ...................................... 23  
Outline Dimensions....................................................................... 28  
Ordering Guide .......................................................................... 29  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics..................................................................... 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 9  
Terminology................................................................................ 16  
Theory of Operation ...................................................................... 17  
Circuit Operation ....................................................................... 17  
REVISION HISTORY  
8/09—Rev. A to Rev. B  
Updated Outline Dimensions....................................................... 28  
Changes to Ordering Guide .......................................................... 29  
3/05—Rev. 0 to Rev. A  
Updated Format................................................................ Universal  
Changes to Specifications...............................................................4  
Changes to Figure 49.....................................................................17  
Changes to Figure 50.....................................................................18  
Changes to Figure 51, Figure 52, and Figure 54 ........................19  
Added Microprocessor Interfacing Section ...............................22  
Added Figure 59.............................................................................24  
Added Figure 60.............................................................................25  
10/03—Initial Version: Revision 0  
Rev. B | Page 2 of 32  
 
AD5424/AD5433/AD5445  
SPECIFICATIONS  
VDD = 2.5 V to 5.5 V, VREF = 10 V, IOUT2 = 0 V. Temperature range for Y version: −40°C to +125°C. All specifications TMIN to TMAX, unless  
otherwise noted. DC performance measured with OP177and ac performance measured with AD8038, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ Max  
Unit  
Conditions  
STATIC PERFORMANCE  
AD5424  
Resolution  
8
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5433  
±±.25  
±±.5  
Guaranteed monotonic  
Guaranteed monotonic  
Resolution  
1±  
±±.5  
±1  
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5445  
Resolution  
12  
±1  
–1/+2  
±1±  
Bits  
LSB  
LSB  
mV  
Relative Accuracy  
Differential Nonlinearity  
Gain Error  
Guaranteed monotonic  
Gain Error Temperature Coefficient1  
Output Leakage Current1  
±5  
ppm FSR/°C  
nA  
nA  
±1±  
±2±  
Data = ±×±±±±, TA = 25°C, IOUT1  
Data = ±×±±±±, T = −4±°C to +125°C, IOUT1  
REFERENCE INPUT1  
Reference Input Range  
VREF Input Resistance  
RFB Resistance  
±1±  
1±  
1±  
V
kΩ  
kΩ  
8
8
12  
12  
Input resistance TC = –5± ppm/°C  
Input resistance TC = –5± ppm/°C  
Input Capacitance  
Code Zero Scale  
Code Full Scale  
3
5
6
8
pF  
pF  
DIGITAL INPUTS/OUTPUT1  
Input High Voltage, VIH  
Input Low Voltage, VIL  
Output High Voltage, VOH  
1.7  
V
V
V
V
V
V
μA  
pF  
±.6  
VDD − 1  
VDD − ±.5  
VDD = 4.5 V to 5 V, ISOURCE = 2±± μA  
VDD = 2.5 V to 3.6 V, ISOURCE = 2±± μA  
VDD = 4.5 V to 5 V, ISINK = 2±± μA  
VDD = 2.5 V to 3.6 V, ISINK = 2±± μA  
Output Low Voltage, VOL  
±.4  
±.4  
1
Input Leakage Current, IIL  
Input Capacitance  
4
1±  
DYNAMIC PERFORMANCE1  
Reference Multiplying Bandwidth  
Output Voltage Settling Time  
1±  
MHz  
VREF = ±3.5 V; DAC loaded all 1s  
VREF = ±3.5 V, RLOAD = 1±± Ω, DAC latch  
alternately loaded with ±s and 1s  
Measured to ±16 mV of full scale  
Measured to ±4 mV of full scale  
Measured to ±1 mV of full scale  
Digital Delay  
1±% to 9±% Settling Time  
Digital-to-Analog Glitch Impulse  
Multiplying Feedthrough Error  
3±  
35  
8±  
2±  
15  
2
6±  
7±  
12±  
4±  
ns  
ns  
ns  
ns  
ns  
nV-s  
Interface delay time  
3±  
Rise and fall time, VREF = 1± V, RLOAD = 1±± Ω  
1 LSB change around major carry, VREF = ± V  
DAC latch loaded with all ±s, VREF = ±3.5 V  
Reference = 1 MHz  
7±  
48  
dB  
dB  
Reference = 1± MHz  
Rev. B | Page 3 of 32  
 
AD5424/AD5433/AD5445  
Parameter  
Min  
Typ Max  
Unit  
Conditions  
Output Capacitance  
IOUT  
1
12  
25  
22  
10  
1
17  
30  
25  
12  
pF  
pF  
pF  
pF  
All 0s loaded  
All 1s loaded  
All 0s loaded  
All 1s loaded  
Feedthrough to DAC output with CS high and  
alternate loading of all 0s and all 1s  
VREF = 3.5 V p-p, all 1s loaded, f = 100 kHz  
Clock = 10 MHz, VREF = 3.5 V  
IOUT  
2
Digital Feedthrough  
nV-s  
Analog THD  
Digital THD  
81  
dB  
50 kHz fOUT  
65  
25  
dB  
nV√Hz  
Output Noise Spectral Density  
SFDR Performance (Wide Band)  
Clock = 10 MHz  
500 kHz fOUT  
@ 1 kHz  
AD5445, VREF = 3.5 V  
55  
63  
65  
dB  
dB  
dB  
100 kHz fOUT  
50 kHz fOUT  
Clock = 25 MHz  
500 kHz fOUT  
100 kHz fOUT  
50  
60  
62  
dB  
dB  
dB  
50 kHz fOUT  
SFDR Performance (Narrow Band)  
Clock = 10 MHz  
500 kHz fOUT  
100 kHz fOUT  
50 kHz fOUT  
AD5445, VREF = 3.5 V  
73  
80  
82  
dB  
dB  
dB  
Clock = 25 MHz  
500 kHz fOUT  
100 kHz fOUT  
70  
75  
80  
dB  
dB  
dB  
50 kHz fOUT  
Intermodulation Distortion  
Clock = 10 MHz  
f1 = 400 kHz, f2 = 500 kHz  
f1 = 40 kHz, f2 = 50 kHz  
Clock = 25 MHz  
f1 = 400 kHz, f2 = 500 kHz  
f1 = 40 kHz, f2 = 50 kHz  
POWER REQUIREMENTS  
Power Supply Range  
IDD  
AD5445, VREF = 3.5 V  
65  
72  
dB  
dB  
51  
65  
dB  
dB  
2.5  
5.5  
0.6  
5
V
μA  
μA  
%/%  
TA = 25°C, logic inputs = 0 V or VDD  
Logic inputs = 0 V or VDD, T= −40°C to +125°C  
ΔVDD = 5%  
0.4  
Power Supply Sensitivity  
0.001  
1 Guaranteed by design, not subject to production test.  
Rev. B | Page 4 of 32  
AD5424/AD5433/AD5445  
TIMING CHARACTERISTICS  
All input signals are specified with tr = tf = 1 ns (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2. VDD = 2.5 V to 5.5 V,  
REF = 10 V, IOUT2 = 0 V; temperature range for Y version: −40°C to +125°C ; all specifications TMIN to TMAX, unless otherwise noted.  
V
Table 2.  
Parameter1  
VDD = 2.5 V to 5.5 V  
VDD = 4.5 V to 5.5 V  
Unit  
Conditions/Comments  
R/W to CS setup time  
R/W to CS hold time  
CS low time (write cycle)  
Data setup time  
Data hold time  
R/W high to CS low  
CS min high time  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
0
0
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns typ  
ns max  
ns typ  
ns max  
0
0
10  
6
0
10  
6
0
5
5
9
7
20  
40  
5
10  
20  
5
Data access time  
t9  
Bus relinquish time  
10  
10  
1 Guaranteed by design, not subject to production test.  
t2  
t2  
t6  
t1  
R/W  
t7  
t3  
t4  
CS  
t9  
t8  
t5  
DATA  
DATA VALID  
DATA VALID  
Figure 2. Timing Diagram  
Rev. B | Page 5 of 32  
 
 
AD5424/AD5433/AD5445  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 3.  
Parameter  
VDD to GND  
VREF, RFB to GND  
Rating  
–0.3 V to +7 V  
–12 V to +12 V  
–0.3 V to +7 V  
IOUT1, IOUT2 to GND  
Logic Inputs and Output1  
Operating Temperature Range  
Extended Industrial (Y Version)  
Storage Temperature Range  
Junction Temperature  
–0.3 V to VDD + 0.3 V  
–40°C to +125°C  
–65°C to +150°C  
150°C  
1
CS  
W
Overvoltages at DBx, , and R/ , are clamped by internal diodes.  
16-Lead TSSOP θJA Thermal Impedance  
20-Lead TSSOP θJA Thermal Impedance  
20-Lead LFCSP θJA Thermal Impedance  
Lead Temperature, Soldering (10 sec)  
IR Reflow, Peak Temperature (<20 sec)  
150°C/W  
143°C/W  
135°C/W  
300°C  
235°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. B | Page 6 of 32  
 
 
 
AD5424/AD5433/AD5445  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
I
1
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
R
OUT  
FB  
I
2
V
2019181716  
OUT  
REF  
DD  
GND  
DB7  
DB6  
V
GND 1  
15 R/W  
PIN 1  
R/W  
CS  
AD5424  
INDICATOR  
DB7  
DB6  
CS  
NC  
2
3
14  
13  
(Not to Scale)  
AD5424  
TOP VIEW  
DB5 4  
DB4  
12 NC  
11 NC  
5
DB5  
DB4  
DB3  
DB0 (LSB)  
DB1  
6
7 8 9 10  
DB2  
Figure 3. AD5424 Pin Configuration (TSSOP)  
NC = NO CONNECT  
Figure 4. AD5424 Pin Configuration (LFCSP)  
Table 4. AD5424 Pin Function Descriptions  
Pin No.  
TSSOP LFCSP Mnemonic Description  
1
2
3
19  
20  
1
IOUT  
IOUT  
GND  
1
2
DAC Current Output.  
DAC Analog Ground. This pin should normally be tied to the analog ground of the system.  
Ground.  
4–11  
2–9  
DB7–DB0  
Parallel Data Bits 7 to 0.  
10–13 NC  
No Internal Connection.  
12  
13  
14  
15  
CS  
Chip Select Input. Active low. Used in conjunction with R/W to load parallel data to the input latch or to  
read data from the DAC register. Rising edge of CS loads data.  
R/W  
Read/Write. When low, use in conjunction with CS to load parallel data. When high, use with CS to read  
back contents of DAC register.  
14  
15  
16  
16  
17  
18  
VDD  
VREF  
RFB  
Positive Power Supply Input. These parts can be operated from a supply of 2.5 V to 5.5 V.  
DAC Reference Voltage Input Terminal.  
DAC Feedback Resistor Pin. Establish voltage output for the DAC by connecting to external amplifier  
output.  
Rev. B | Page 7 of 32  
 
AD5424/AD5433/AD5445  
I
I
1
2
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
14  
R
V
OUT  
OUT  
FB  
REF  
DD  
GND  
DB9  
DB8  
V
2019181716  
R/W  
CS  
AD5433  
GND 1  
15 R/W  
PIN 1  
INDICATOR  
(Not to Scale)  
DB9  
DB8  
CS  
NC  
2
3
14  
13  
DB7  
DB6  
DB5  
DB4  
NC  
NC  
AD5433  
TOP VIEW  
DB7 4  
DB6  
12 NC  
5
11  
DB0  
13 DB0 (LSB)  
12 DB1  
6
7 8 9 10  
DB3  
10  
11 DB2  
NC = NO CONNECT  
NC = NO CONNECT  
Figure 6 AD5433 Pin Configuration (LFCSP).  
Figure 5. AD5433 Pin Configuration (TSSOP)  
Table 5. AD5433 Pin Function Descriptions  
Pin No.  
TSSOP LFCSP Mnemonic  
Description  
1
2
19  
20  
IOUT  
IOUT  
1
2
DAC Current Output.  
DAC Analog Ground. This pin should normally be tied to the analog ground of the system.  
3
1
GND  
DB9–DB0  
NC  
Ground.  
Parallel Data Bits 9 to 0.  
Not Internally Connected.  
4–13  
14, 15  
16  
2–11  
12, 13  
14  
CS  
Chip Select Input. Active low. Use in conjunction with R/W to load parallel data to the input latch or to read data  
from the DAC register. Rising edge of CS loads data.  
17  
15  
R/W  
Read/Write. When low, used in conjunction with CS to load parallel data. When high, use with CS to read back  
contents of DAC register.  
18  
19  
20  
16  
17  
18  
VDD  
VREF  
RFB  
Positive Power Supply Input. These parts can be operated from a supply of 2.5 V to 5.5 V.  
DAC Reference Voltage Input Terminal.  
DAC Feedback Resistor Pin. Establish voltage output for the DAC by connecting to external amplifier output.  
I
I
1
2
1
2
3
4
5
20  
19  
18  
17  
16  
15  
14  
R
OUT  
OUT  
FB  
V
REF  
DD  
2019181716  
GND  
V
GND 1  
15 R/W  
DB11  
DB10  
R/W  
PIN 1  
INDICATOR  
DB11  
DB10  
CS  
DB0  
2
3
14  
13  
CS  
AD5445  
AD5445  
TOP VIEW  
DB9 4  
DB8  
12 DB1  
(Not to Scale)  
6
7
8
9
DB9  
DB8  
DB7  
DB6  
DB0 (LSB)  
DB1  
5
11  
DB2  
6
7 8 9 10  
13 DB2  
12 DB3  
11 DB4  
Figure 8. AD5445 Pin Configuration (LFCSP)  
DB5  
10  
Figure 7. AD5445 Pin Configuration (TSSOP)  
Table 6. AD5445 Pin Function Descriptions  
Pin No.  
TSSOP  
LFCSP  
19  
Mnemonic  
Description  
1
IOUT1  
2
DAC Current Output.  
2
20  
IOUT  
DAC Analog Ground. This pin should normally be tied to the analog ground of the system.  
3
1
GND  
Ground Pin.  
4–15  
16  
2–13  
14  
DB11–DB0  
CS  
Parallel Data Bits 11 to 0.  
W
Chip Select Input. Active low. Used in conjunction with R/ to load parallel data to the input latch or to read data from  
CS  
the DAC register. Rising edge of  
loads data.  
17  
15  
W
R/  
CS  
CS  
to load parallel data. When high, use with to read back contents  
Read/Write. When low, use in conjunction with  
of DAC register.  
18  
19  
20  
16  
17  
18  
VDD  
VREF  
RFB  
Positive Power Supply Input. These parts can be operated from a supply of 2.5 V to 5.5 V.  
DAC Reference Voltage Input Terminal.  
DAC Feedback Resistor Pin. Establish voltage output for the DAC by connecting to external amplifier output.  
Rev. B | Page 8 of 32  
AD5424/AD5433/AD5445  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.20  
0.20  
0.15  
0.10  
0.05  
0
T
= 25°C  
T
= 25°C  
A
A
V
V
= 10V  
V
V
= 10V  
REF  
= 5V  
REF  
= 5V  
0.15  
0.10  
0.05  
0
DD  
DD  
–0.05  
–0.10  
–0.15  
–0.20  
–0.05  
–0.10  
–0.15  
–0.20  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
CODE  
CODE  
Figure 9. INL vs. Code (8-Bit DAC)  
Figure 12. DNL vs. Code (8-Bit DAC)  
0.5  
0.4  
0.5  
0.4  
T
V
V
= 25°C  
T
V
V
= 25°C  
A
A
= 10V  
= 10V  
REF  
= 5V  
REF  
= 5V  
DD  
DD  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
CODE  
CODE  
Figure 13. DNL vs. Code (10-Bit DAC)  
Figure 10. INL vs. Code (10-Bit DAC)  
1.0  
0.8  
1.0  
0.8  
T
V
V
= 25°C  
T
V
V
= 25°C  
A
A
= 10V  
= 10V  
REF  
= 5V  
REF  
= 5V  
DD  
DD  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
500  
1000  
1500 2000 2500 3000 3500 4000  
CODE  
0
500  
1000  
1500 2000 2500 3000 3500 4000  
CODE  
Figure 14. DNL vs. Code (12-Bit DAC)  
Figure 11. INL vs. Code (12-Bit DAC)  
Rev. B | Page 9 of 32  
 
AD5424/AD5433/AD5445  
0.6  
0.5  
0.4  
2.0  
1.5  
T
V
V
= 25°C  
A
MAX INL  
= 0V  
1.0  
REF  
= 3V  
DD  
MAX INL  
0.3  
0.5  
0.2  
0.1  
MAX DNL  
T
V
= 25°C  
A
0
= 5V  
DD  
–0.5  
–1.0  
–1.5  
–2.0  
0
MIN INL  
MIN DNL  
–0.1  
–0.2  
–0.3  
MIN INL  
2
3
4
5
6
7
8
9
10  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
V
(V)  
REFERENCE VOLTAGE  
BIAS  
Figure 15. INL vs. Reference Voltage, AD5445  
Figure 18. Linearity vs. VBIAS Voltage Applied to IOUT2, AD5445  
–0.40  
4
3
T
V
= 25°C  
= 5V  
T
= 25°C  
A
A
V
V
= 2.5V  
= 3V  
DD  
REF  
–0.45  
–0.50  
–0.55  
–0.60  
–0.65  
–0.70  
MAX DNL  
DD  
2
MAX INL  
1
0
–1  
–2  
–3  
–4  
–5  
MIN DNL  
MIN INL  
MIN DNL  
2
3
4
5
6
7
8
9
10  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
REFERENCE VOLTAGE  
V
(V)  
BIAS  
Figure 16. DNL vs. Reference Voltage, AD5445  
Figure 19. Linearity vs. VBIAS Voltage Applied to IOUT2, AD5445  
5
4
0.5  
0.4  
T
V
V
= 25°C  
A
= 0V  
REF  
= 3V AND 5V  
3
DD  
0.3  
V
= 5V  
DD  
GAIN ERROR  
2
0.2  
1
0.1  
0
0
V
= 2.5V  
DD  
–1  
–2  
–3  
–4  
–5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
OFFSET ERROR  
V
= 10V  
REF  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
TEMPERATURE (°C)  
V
(V)  
BIAS  
Figure 17. Gain Error vs. Temperature  
Figure 20. Gain and Offset Errors vs. VBIAS Voltage Applied to IOUT  
2
Rev. B | Page 10 of 32  
 
AD5424/AD5433/AD5445  
0.5  
0.4  
8
7
6
5
4
3
2
1
0
0.3  
0.2  
GAIN ERROR  
0.1  
V
= 5V  
DD  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
OFFSET ERROR  
T
V
V
= 25°C  
A
V
= 3V  
DD  
= 2.5V  
REF  
= 3V AND 5V  
V
= 2.5V  
2.5  
DD  
DD  
0
0.5  
1.0  
1.5  
2.0  
3.0  
3.5  
4.0  
4.5  
5.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
VOLTAGE (V)  
V
(V)  
BIAS  
Figure 21. Gain and Offset Errors vs. VBIAS Voltage Applied to IOUT  
2
Figure 24. Supply Current vs. Logic Input Voltage (Driving DB0 to DB11,  
All Other Digital Inputs @ Supplies)  
3
1.6  
1.4  
1.2  
T
V
V
= 25°C  
A
MAX INL  
= 0V  
REF  
= 5V  
DD  
2
1
I
V
5V  
OUT1 DD  
1.0  
0.8  
0.6  
0.4  
0.2  
0
MAX DNL  
I
V
3V  
OUT1 DD  
0
–1  
–2  
–3  
MIN INL  
MIN DNL  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
0.5  
1.0  
1.5  
2.0  
2.5  
TEMPERATURE (°C)  
V
(V)  
BIAS  
Figure 25. IOUT1 Leakage Current vs. Temperature  
Figure 22. Linearity vs. VBIAS Voltage Applied to IOUT2, AD5445  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
4
3
T
V
V
= 25°C  
A
= 2.5V  
REF  
= 5V  
DD  
V
= 5V  
DD  
MAX DNL  
2
ALL 0s  
ALL 1s  
1
0
MAX INL  
–1  
–2  
–3  
–4  
–5  
V
= 2.5V  
DD  
MIN DNL  
ALL 1s  
ALL 0s  
MIN INL  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
0.5  
1.0  
1.5  
2.0  
TEMPERATURE (°C)  
V
(V)  
BIAS  
Figure 26. Supply Current vs. Temperature  
Figure 23. Linearity vs. VBIAS Voltage Applied to IOUT2, AD5445  
Rev. B | Page 11 of 32  
 
AD5424/AD5433/AD5445  
14  
3
0
T
= 25°C  
A
T = 25°C  
A
LOADING ZS TO FS  
V
= 5V  
DD  
AD5445  
12  
10  
8
V
= 5V  
DD  
–3  
–6  
–9  
6
V
= 3V  
DD  
4
V
V
V
V
V
= ±2V, AD8038 C 1.47pF  
C
REF  
REF  
REF  
REF  
REF  
V
= 2.5V  
DD  
= ±2V, AD8038 C 1pF  
C
2
= ±0.15V, AD8038 C 1pF  
C
= ±0.15V, AD8038 C 1.47pF  
C
= ±3.51V, AD8038 C 1.8pF  
C
0
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 27. Supply Current vs. Update Rate  
Figure 30. Reference Multiplying Bandwidth vs. Frequency and  
Compensation Capacitor  
0.045  
6
0
–6  
ALL ON  
0x7FF TO 0x800  
V
T
V
= 25°C  
= 0V  
T
= 25°C  
A
A
DB11  
DB10  
DB9  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
0.040  
0.035  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0
LOADING  
ZS TO FS  
REF  
= 5V  
AD8038 AMPLIFIER  
DD  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–66  
–72  
–78  
–84  
–90  
–96  
–102  
C
= 1.8pF  
COMP  
V
= 3V  
DD  
0x800 TO 0x7FF  
= 3V  
T
V
= 25°C  
A
V
DD  
= 5V  
DD  
V
= ±3.5V  
INPUT  
= 1.8pF  
REF  
C
COMP  
AD8038 AMPLIFIER  
ALL OFF  
–0.005  
–0.010  
AD5445 DAC  
V
= 5V  
DD  
1
10  
100  
1k  
10k  
100k  
1M  
10M 100M  
0
20  
40  
60  
80  
100 120 140 160 180 200  
TIME (ns)  
FREQUENCY (Hz)  
Figure 28. Reference Multiplying Bandwidth vs. Frequency and Code  
Figure 31. Midscale Transition, VREF = 0 V  
0.2  
0
–1.68  
–1.69  
–1.70  
–1.71  
–1.72  
–1.73  
–1.74  
–1.75  
–1.76  
–1.77  
T
V
= 25°C  
= 3.5V  
A
0x7FF TO 0x800  
= 5V  
REF  
AD8038 AMPLIFIER  
= 1.8pF  
V
DD  
C
COMP  
–0.2  
–0.4  
V
= 3V  
DD  
V
= 5V  
V
DD  
T
V
V
= 25°C  
A
= 3V  
DD  
= 5V  
DD  
–0.6  
–0.8  
= ±3.5V  
REF  
C
= 1.8pF  
COMP  
AD8038 AMPLIFIER  
AD5445 DAC  
0x800 TO 0x7FF  
20 40 60  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
0
80  
100 120 140 160 180 200  
TIME (ns)  
FREQUENCY (Hz)  
Figure 29. Reference Multiplying Bandwidth—All 1s Loaded  
Figure 32. Midscale Transition, VREF = 3.5 V  
Rev. B | Page 12 of 32  
AD5424/AD5433/AD5445  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
100  
80  
60  
40  
20  
0
T
= 25°C  
A
MCLK = 1MHz  
V
IH  
MCLK = 200kHz  
V
IL  
MCLK = 0.5MHz  
T
V
= 25°C  
A
= 3.5V  
REF  
AD8038 AMPLIFIER  
AD5445  
2.5  
3.0  
3.5  
4.0  
VOLTAGE (V)  
4.5  
5.0  
5.5  
0
20  
40  
60  
80  
100 120 140 160 180 200  
fOUT (kHz)  
Figure 33. Threshold Voltages vs. Supply Voltage  
Figure 36. Wideband SFDR vs. fOUT Frequency  
20  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
V
= 25°C  
A
= 3V  
DD  
AMP = AD8038  
MCLK = 5MHz  
MCLK = 10MHz  
–20  
–40  
–60  
–80  
–100  
–120  
MCLK = 25MHz  
FULL SCALE  
ZERO SCALE  
T
V
= 25°C  
A
= 3.5V  
REF  
AD8038 AMPLIFIER  
AD5445  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
0
100 200 300 400 500 600 700 800 900 1000  
fOUT (kHz)  
FREQUENCY (Hz)  
Figure 34. Power Supply Rejection vs. Frequency  
Figure 37. Wideband SFDR vs. fOUT Frequency  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
T
V
V
= 25°C  
= 3V  
A
T
V
= 25°C  
= 5V  
A
DD  
= 3.5V p-p  
DD  
REF  
AMP = AD8038  
AD5445  
65k CODES  
1
10  
100  
1k  
10k  
100k  
1M  
0
2
4
6
8
10  
12  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
Figure 35. THD and Noise vs. Frequency  
Figure 38. Wideband SFDR, fOUT = 100 kHz, Clock = 25 MHz  
Rev. B | Page 13 of 32  
AD5424/AD5433/AD5445  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
20  
0
T
V
= 25°C  
= 3V  
T
V
= 25°C  
= 5V  
A
A
DD  
DD  
AMP = AD8038  
AD5445  
65k CODES  
AMP = AD8038  
AD5445  
65k CODES  
–20  
–40  
–60  
–80  
–100  
–120  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
50  
60  
70  
80  
90  
100 110 120 130 140 150  
FREQUENCY (MHz)  
FREQUENCY (kHz)  
Figure 39. Wideband SFDR, fOUT = 500 kHz, Clock = 10 MHz  
Figure 42. Narrow-Band SFDR, fOUT = 100 kHz, MCLK = 25 MHz  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
T
V
= 25°C  
= 5V  
T
V
= 25°C  
= 3V  
A
A
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
DD  
DD  
AMP = AD8038  
AD5445  
65k CODES  
AMP = AD8038  
AD5445  
65k CODES  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
200 250 300 350 400 450 500 550 600 650 700  
FREQUENCY (MHz)  
FREQUENCY (kHz)  
Figure 40. Wideband SFDR, fOUT = 50 kHz, Clock = 10 MHz  
Figure 43. Narrow-Band IMD, fOUT = 400 kHz, 500 kHz, Clock = 10 MHz  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
T
V
= 25°C  
T = 25°C  
A
A
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
= 3V  
V
= 3V  
DD  
DD  
AMP = AD8038  
AD5445  
65k CODES  
AMP = AD8038  
AD5445  
65k CODES  
250 300 350 400 450 500 550 600 650 700 750  
70  
75  
80  
85  
90  
95  
100 105 110 115 120  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 41. Narrow-Band Spectral Response, fOUT = 500 kHz, Clock = 25 MHz  
Figure 44. Narrow-Band IMD, fOUT = 90 kHz, 100 kHz, Clock = 10 MHz  
Rev. B | Page 14 of 32  
AD5424/AD5433/AD5445  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
V
= 25°C  
T = 25°C  
A
A
= 5V  
V
= 5V  
DD  
DD  
AMP = AD8038  
AD5445  
65k CODES  
AMP = AD8038  
AD5445  
65k CODES  
MCLK 10MHz  
5V  
V
DD  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
0
20  
40  
60  
80  
100 120 140 160 180 200  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 45. Narrow-Band IMD, fOUT = 40 kHz, 50 kHz, Clock = 10 MHz  
Figure 47. Wideband IMD, fOUT = 60 kHz, 50 kHz, Clock = 10 MHz  
0
T
V
= 25°C  
A
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
= 5V  
DD  
AMP = AD8038  
AD5445  
65k CODES  
0
50  
100  
150  
200  
250  
300  
350  
400  
FREQUENCY (kHz)  
Figure 46. Wideband IMD, fOUT = 90 kHz, 100 kHz, Clock = 25 MHz  
Rev. B | Page 15 of 32  
AD5424/AD5433/AD5445  
TERMINOLOGY  
Digital Feedthrough  
Relative Accuracy  
When the device is not selected, high frequency logic activity  
on the device digital inputs may be capacitively coupled  
through the device to show up as noise on the IOUT pins and  
subsequently in the following circuitry. This noise is called  
digital feedthrough.  
Relative accuracy or endpoint nonlinearity is a measure of the  
maximum deviation from a straight line passing through the  
endpoints of the DAC transfer function. It is measured after  
adjusting zero scale and full scale and is normally expressed in  
LSBs or as a percentage of full-scale reading.  
Multiplying Feedthrough Error  
Differential Nonlinearity  
This is the error due to capacitive feedthrough from the DAC  
reference input to the DAC IOUT1 terminal when all 0s are  
loaded to the DAC.  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of –1 LSB maximum  
over the operating temperature range ensures monotonicity.  
Total Harmonic Distortion (THD)  
The DAC is driven by an ac reference. The ratio of the rms sum  
of the harmonics of the DAC output to the fundamental value is  
the THD. Usually only the lower order harmonics are included,  
such as second to fifth.  
Gain Error  
Gain error or full-scale error is a measure of the output error  
between an ideal DAC and the actual device output. For these  
DACs, ideal maximum output is VREF – 1 LSB. Gain error of the  
DACs is adjustable to 0 with external resistance.  
2
2
2
2
(
V2 +V3 +V4 +V5  
)
THD = 20 log  
Output Leakage Current  
V1  
Output leakage current is current that flows in the DAC ladder  
switches when these are turned off. For the IOUT1 terminal, it  
can be measured by loading all 0s to the DAC and measuring  
the IOUT1 current. Minimum current flows in the IOUT2 line  
when the DAC is loaded with all 1s.  
Digital Intermodulation Distortion  
Second-order intermodulation distortion (IMD) measurements  
are the relative magnitude of the fa and fb tones generated  
digitally by the DAC and the second-order products at 2fa − fb  
and 2fb − fa.  
Output Capacitance  
Capacitance from IOUT1, or IOUT2, to AGND.  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the usable dynamic range of a DAC before spurious  
noise interferes or distorts the fundamental signal. It is mea-  
sured by the difference in amplitude between the fundamental  
and the largest harmonically or nonharmonically related spur  
from dc to full Nyquist bandwidth (half the DAC sampling rate,  
or fS/2). Narrow-band SFDR is a measure of SFDR over an  
arbitrary window size, in this case, 50% of the fundamental.  
Digital SFDR is a measure of the usable dynamic range of the  
DAC when the signal is a digitally generated sine wave.  
Output Current Settling Time  
This is the amount of time it takes for the output to settle to a  
specified level for a full-scale input change. For these devices, it  
is specified with a 100 Ω resistor to ground.  
The settling time specification includes the digital delay from  
the  
rising edge to the full-scale output change.  
CS  
Digital to Analog Glitch lmpulse  
The amount of charge injected from the digital inputs to the  
analog output when the inputs change state. This is normally  
specified as the area of the glitch in either pA seconds or nV  
seconds, depending upon whether the glitch is measured as a  
current or voltage signal.  
Rev. B | Page 16 of 32  
 
AD5424/AD5433/AD5445  
THEORY OF OPERATION  
The AD5424, AD5433, and AD5445 are 8-, 10-, and 12-bit  
current output DACs consisting of a standard inverting R-2R  
ladder configuration. A simplified diagram for the 8-bit  
AD5424 is shown in Figure 48. The matching feedback resistor  
RFB has a value of R. The value of R is typically 10 kΩ (mini-  
mum 8 kΩ and maximum 12 kΩ). If IOUT1 and IOUT2 are kept at  
the same potential, a constant current flows in each ladder leg,  
regardless of digital input code. Therefore, the input resistance  
presented at VREF is always constant and nominally of resistance  
value R. The DAC output (IOUT) is code-dependent, producing  
various resistances and capacitances. External amplifier choice  
should take into account the variation in impedance generated  
by the DAC on the amplifiers inverting input node.  
where D is the fractional representation of the digital word  
loaded to the DAC and n is the resolution of the DAC.  
D = 0 to 255 (8-bit AD5424)  
= 0 to 1023 (10-bit AD5433)  
= 0 to 4095 (12-bit AD5445)  
Note that the output voltage polarity is opposite to the VREF  
polarity for dc reference voltages.  
These DACs are designed to operate with either negative or  
positive reference voltages. The VDD power pin is only used by  
the internal digital logic to drive the DAC switches’ on and  
off states.  
These DACs are also designed to accommodate ac reference  
input signals in the range of –10 V to +10 V.  
R
R
R
V
REF  
2R  
S1  
2R  
S2  
2R  
S3  
2R  
S8  
2R  
With a fixed 10 V reference, the circuit shown in Figure 49 gives  
a unipolar 0 V to –10 V output voltage swing. When VIN is an ac  
signal, the circuit performs 2-quadrant multiplication.  
R
R
I
A
1
FB  
OUT  
OUT  
I
2
Table 7 shows the relationship between digital code and  
expected output voltage for unipolar operation (AD5424,  
8-bit device).  
DAC DATA LATCHES  
AND DRIVERS  
Figure 48. Simplified Ladder  
Access is provided to the VREF, RFB, IOUT1, and IOUT2 terminals of  
the DAC, making the device extremely versatile and allowing it  
to be configured in several different operating modes, for  
example, to provide a unipolar output, 4-quadrant multipli-  
cation in bipolar mode or in single-supply modes of operation.  
Note that a matching switch is used in series with the internal  
RFB feedback resistor. If users attempt to measure RFB, power  
must be applied to VDD to achieve continuity.  
Table 7. Unipolar Code Table  
Digital Input  
1111 1111  
1000 0000  
0000 0001  
0000 0000  
Analog Output (V)  
–VREF (255/256)  
–VREF (128/256) = –VREF/2  
VREF (1/256)  
V
REF (0/256) = 0  
V
V
DD  
R2  
CIRCUIT OPERATION  
Unipolar Mode  
C1  
R
DD  
FB  
AD5424/  
AD5433/  
AD5445  
I
1
Using a single op amp, these devices can easily be configured to  
provide 2-quadrant multiplying operation or a unipolar output  
voltage swing, as shown in Figure 49.  
OUT  
V
V
REF  
A1  
REF  
I
2
R1  
OUT  
V
=
OUT  
0 TO –V  
REF  
GND  
R/W CS  
When an output amplifier is connected in unipolar mode, the  
output voltage is given by  
AGND  
DATA  
INPUTS  
D
VOUT = −VREF  
×
NOTES:  
2n  
1. R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.  
2. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
Figure 49. Unipolar Operation  
Rev. B | Page 17 of 32  
 
 
 
 
 
AD5424/AD5433/AD5445  
R3  
20kΩ  
R2  
C1  
V
DD  
R5  
20kΩ  
V
R
FB  
DD  
R4  
R1  
AD5424/  
AD5433/  
AD5445  
I
I
1
10kΩ  
OUT  
OUT  
V
±10V  
REF  
A1  
V
REF  
2
A2  
V
= –V  
TO +V  
REF REF  
OUT  
GND  
R/W CS  
AGND  
DATA  
INPUTS  
NOTES:  
1.  
R1 AND R2 ARE USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.  
ADJUST R1 FOR V = 0V WITH CODE 10000000 LOADED TO DAC.  
OUT  
2.  
3.  
MATCHING AND TRACKING IS ESSENTIAL FOR RESISTOR PAIRS R3 AND R4.  
C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED IF A1/A2 IS  
A HIGH SPEED AMPLIFIER.  
Figure 50. Bipolar Operation (4-Quadrant Multiplication)  
Stability  
BIPOLAR OPERATION  
In the I-to-V configuration, the IOUT of the DAC and the  
inverting node of the op amp must be connected as closely as  
possible and proper PCB layout techniques must be employed.  
Since every code change corresponds to a step function, gain  
peaking may occur if the op amp has limited GBP and there is  
excessive parasitic capacitance at the inverting node. This  
parasitic capacitance introduces a pole into the open-loop  
response, which can cause ringing or instability in closed-  
loop applications.  
In some applications, it may be necessary to generate full  
4-quadrant multiplying operation or a bipolar output swing.  
This can be easily accomplished by using another external  
amplifier and some external resistors, as shown in Figure 50. In  
this circuit, the second amplifier, A2, provides a gain of 2.  
Biasing the external amplifier with an offset from the reference  
voltage, results in full 4-quadrant multiplying operation. The  
transfer function of this circuit shows that both negative and  
positive output voltages are created as the input data (D) is  
incremented from code zero (VOUT = –VREF) to midscale (VOUT  
0 V) to full scale (VOUT = +VREF).  
=
An optional compensation capacitor, C1, can be added in  
parallel with RFB for stability, as shown in Figure 49 and  
Figure 50. Too small a value of C1 can produce ringing at the  
output, while too large a value can adversely affect the settling  
time. C1 should be found empirically, but 1 pF to 2 pF is  
generally adequate for compensation.  
VOUT  
=
(
VREF ×D / 2n1  
VREF  
)
where D is the fractional representation of the digital word  
loaded to the DAC and n is the resolution of the DAC.  
D = 0 to 255 (8-bit AD5424)  
= 0 to 1023 (10-bit AD5433)  
= 0 to 4095 (12-bit AD5445)  
When VIN is an ac signal, the circuit performs 4-quadrant  
multiplication.  
Table 8 shows the relationship between digital code and the  
expected output voltage for bipolar operation (AD5424,  
8-bit device).  
Table 8. Bipolar Code Table  
Digital Input  
1111 1111  
1000 0000  
0000 0001  
0000 0000  
Analog Output (V)  
+VREF (127/128)  
0
–VREF (127/128)  
–VREF (128/128)  
Rev. B | Page 18 of 32  
 
 
 
AD5424/AD5433/AD5445  
V
V
DD  
SINGLE-SUPPLY APPLICATIONS  
Current Mode Operation  
R1  
R2  
R
FB  
DD  
The current mode circuit in Figure 51 shows a typical circuit for  
operation with a single 2.5 V to 5 V supply. IOUT2 and therefore  
V
A1  
I
I
1
2
V
IN  
OUT  
OUT  
V
DAC  
GND  
REF  
OUT  
I
OUT1 is biased positive by the amount applied to VBIAS. In this  
configuration, the output voltage is given by  
NOTES:  
V
OUT = [D × (RFB/RDAC) × (VBIAS VIN)] + VBIAS  
1.  
2.  
ADDITIONAL PINS OMITTED FOR CLARITY  
C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
As D varies from 0 to 255 (AD5424), 0 to 1023 (AD5433),  
or 0 to 4095 (AD5445), the output voltage varies from  
Figure 52. Single-Supply Voltage-Switching Mode Operation  
V
OUT = VBIAS to VOUT = 2VBIAS VIN.  
It is important to note that VIN is limited to low voltages because  
the switches in the DAC ladder no longer have the same source-  
drain drive voltage. As a result, their on resistance differs, which  
degrades the linearity of the DAC. See Figure 18 to Figure 23.  
Also, VIN must not go negative by more than 0.3 V,;otherwise,  
an internal diode turns on, exceeding the maximum ratings of  
the device. In this type of application, the full range of  
multiplying capability of the DAC is lost.  
VBIAS should be a low impedance source capable of sinking and  
sourcing all possible variations in current at the IOUT2 terminal.  
V
DD  
C1  
V
R
DD  
FB  
I
1
2
OUT  
V
V
DAC  
A1  
REF  
IN  
I
V
OUT  
OUT  
GND  
POSITIVE OUTPUT VOLTAGE  
Note that the output voltage polarity is opposite to the VREF  
polarity for dc reference voltages. To achieve a positive voltage  
output, an applied negative reference to the input of the DAC is  
preferred over the output inversion through an inverting ampli-  
fier because of the resistor tolerance errors. To generate a  
negative reference, the reference can be level-shifted by an op  
amp such that the VOUT and GND pins of the reference become  
the virtual ground and –2.5 V respectively, as shown  
in Figure 53.  
V
BIAS  
NOTES:  
1.  
2.  
ADDITIONAL PINS OMITTED FOR CLARITY  
C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
Figure 51. Single-Supply Current Mode Operation  
It is important to note that VIN is limited to low voltages because  
the switches in the DAC ladder no longer have the same source-  
drain drive voltage. As a result, their on resistance differs and  
the linearity of the DAC degrades.  
V
= 5V  
DD  
ADR03  
V
V
IN  
OUT  
GND  
+5V  
–5V  
C1  
V
DD  
R
FB  
Voltage Switching Mode of Operation  
I
I
1
2
OUT  
–2.5V  
V
REF  
Figure 52 shows these DACs operating in the voltage-switching  
mode. The reference voltage, VIN, is applied to the IOUT1 pin,  
OUT2 is connected to AGND, and the output voltage is available  
OUT  
V
= 0V TO +2.5V  
OUT  
GND  
I
at the VREF terminal. In this configuration, a positive reference  
voltage results in a positive output voltage, making single-  
supply operation possible. The output from the DAC is voltage  
at a constant impedance (the DAC ladder resistance), thus an  
op amp is necessary to buffer the output voltage. The reference  
input no longer sees a constant input impedance, but one that  
varies with code. So, the voltage input should be driven from a  
low impedance source.  
NOTES:  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
2
C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED,  
IF A1 IS A HIGH SPEED AMPLIFIER.  
Figure 53. Positive Voltage Output with Minimum of Components  
Rev. B | Page 19 of 32  
 
 
 
 
 
AD5424/AD5433/AD5445  
As D is reduced, the output voltage increases. For small values  
of D, it is important to ensure that the amplifier does not  
saturate and that the required accuracy is met.  
ADDING GAIN  
In applications where the output voltage is required to be  
greater than VIN, gain can be added with an additional external  
amplifier or it can be achieved in a single stage. It is important  
to consider the effect of the temperature coefficients of the thin  
film resistors of the DAC. Simply placing a resistor in series  
with the RFB resistor causes mismatches in the temperature  
coefficients and results in larger gain temperature coefficient  
errors. Instead, the circuit shown in Figure 54 is a  
recommended method of increasing the gain of the circuit. R1,  
R2, and R3 should have similar temperature coefficients, but  
they need not match the temperature coefficients of the DAC.  
This approach is recommended in circuits where gains greater  
than 1 are required.  
For example, in the circuit shown in Figure 55, an 8-bit DAC  
driven with the binary code 0x10 (00010000), that is,  
16 decimal, should cause the output voltage to be 16 × VIN.  
However, if the DAC has a linearity specification of 0.5 LSB,  
then D can in fact have a weight anywhere in the range 15.5/256  
to 16.5/256 so that the possible output voltage falls in the range  
15.5 VIN to 16.5 VIN—an error of 3% even though the DAC itself  
has a maximum error of 0.2%.  
V
DD  
V
IN  
R
V
FB  
DD  
V
I
I
1
2
DD  
OUT  
V
REF  
OUT  
GND  
C1  
R
V
FB  
DD  
R1  
I
I
1
2
OUT  
8-/10-/12-BIT  
DAC  
V
V
IN  
OUT  
V
OUT  
V
REF  
OUT  
R3  
R2  
GND  
R2 + R3  
R2  
NOTE:  
ADDITIONAL PINS OMITTED FOR CLARITY  
GAIN =  
R1 =  
NOTES:  
1.  
R2R3  
R2 + R3  
ADDITIONAL PINS OMITTED FOR CLARITY  
2. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE  
REQUIRED IF A1 IS A HIGH SPEED AMPLIFIER.  
Figure 55. Current-Steering DAC Used as a Divider or  
Programmable Gain Element  
DAC leakage current is also a potential error source in divider  
circuits. The leakage current must be counterbalanced by an  
opposite current supplied from the op amp through the DAC.  
Since only a fraction, D, of the current into the VREF terminal is  
routed to the IOUT1 terminal, the output voltage has to change  
as follows:  
Figure 54. Increasing the Gain of the Current Output DAC  
DACS USED AS A DIVIDER OR PROGRAMMABLE  
GAIN ELEMENT  
Current steering DACs are very flexible and lend themselves to  
many different applications. If this type of DAC is connected as  
the feedback element of an op amp and RFB is used as the input  
resistor, as shown in Figure 55, then the output voltage is  
inversely proportional to the digital input fraction, D.  
Output Error Voltage due to DAC Leakage = (Leakage × R)/D  
where R is the DAC resistance at the VREF terminal.  
For a DAC leakage current of 10 nA, R = 10 kΩ, and a gain  
(that is, 1/D) of 16, the error voltage is 1.6 mV.  
For D = 1 – 2–n the output voltage is  
V
OUT = –VIN/D = –VIN/(1 – 2n)  
Rev. B | Page 20 of 32  
 
 
 
 
AD5424/AD5433/AD5445  
Table 9. Suitable ADI Precision References  
Part No. Output Voltage (V) Initial Tolerance (%)  
Temp Drift (ppm/°C)  
ISS (mA)  
Output Noise (μV p-p) Package  
ADR01  
ADR01  
ADR02  
ADR02  
ADR03  
ADR03  
ADR06  
ADR06  
ADR431  
ADR435  
ADR391  
ADR395  
10  
10  
5
0.05  
0.05  
0.06  
0.06  
0.10  
0.10  
0.10  
0.10  
0.04  
0.04  
0.16  
0.10  
3
9
3
9
3
9
3
9
3
3
9
9
1
1
1
1
1
1
1
1
0.8  
0.8  
0.12  
0.12  
20  
20  
10  
10  
6
SOIC-8  
TSOT-23, SC70  
SOIC-8  
TSOT-23, SC70  
SOIC-8  
TSOT-23, SC70  
SOIC-8  
TSOT-23, SC70  
SOIC-8  
SOIC-8  
TSOT-23  
TSOT-23  
5
2.5  
2.5  
3
3
2.5  
5
6
10  
10  
3.5  
8
5
8
2.5  
5
Table 10. Suitable ADI Precision Op Amps  
0.1 Hz to 10 Hz  
Noise (μV p-p)  
Part No.  
OP97  
OP1177  
AD8551  
AD8603  
AD8628  
Supply Voltage (V)  
2 to 20  
2.5 to 15  
2.7 to 5  
1.8 to 6  
2.7 to 6  
VOS (Max) (μV)  
IB (Max) (nA)  
Supply Current (μA)  
Package  
25  
60  
5
50  
5
0.1  
2
0.05  
0.001  
0.1  
0.5  
0.4  
1
2.3  
0.5  
600  
500  
975  
50  
SOIC-8  
MSOP, SOIC-8  
MSOP, SOIC-8  
TSOT  
850  
TSOT, SOIC-8  
Table 11. Suitable ADI High Speed Op Amps  
Part No.  
AD8065  
AD8021  
AD8038  
AD9631  
Supply Voltage (V)  
BW @ ACL (MHz)  
Slew Rate (V/μs)  
VOS (Max) (μV) IB (Max) (nA)  
Package  
5 to 24  
2.5 to 12  
3 to 12  
145  
490  
350  
320  
180  
120  
425  
1300  
1500  
1000  
3000  
10000  
6000  
10500  
750  
SOIC-8, SOT-23,MSOP  
SOIC-8, MSOP  
SOIC-8, SC70-5  
SOIC-8  
3 to 6  
7000  
REFERENCE SELECTION  
of the DAC) of the circuit. A change in the noise gain between  
two adjacent digital fractions produces a step change in the  
output voltage due to the amplifiers input offset voltage. This  
output voltage change is superimposed on the desired change in  
output between the two codes and gives rise to a differential  
linearity error, which, if large enough, could cause the DAC to  
be nonmonotonic. In general, the input offset voltage should  
be <1/4 LSB to ensure monotonic behavior when stepping  
through codes.  
When selecting a reference for use with the AD5424/AD5433/  
AD5445 family of current output DACs, pay attention to the  
reference’s output voltage temperature coefficient specification.  
This parameter not only affects the full-scale error, but can also  
affect the linearity (INL and DNL) performance. The reference  
temperature coefficient should be consistent with the system  
accuracy specifications. For example, an 8-bit system required  
to hold its overall specification to within 1 LSB over the temp-  
erature range 0°C to 50°C dictates that the maximum system  
drift with temperature should be less than 78 ppm/°C.  
The input bias current of an op amp also generates an offset  
at the voltage output as a result of the bias current flowing  
into the feedback resistor, RFB. Most op amps have input bias  
currents low enough to prevent significant errors in  
12-bit applications.  
A 12-bit system with the same temperature range to overall  
specification within 2 LSBs requires a maximum drift of  
10 ppm/°C. By choosing a precision reference with low output  
temperature coefficient this error source can be minimized.  
Table 9 suggests some references available from Analog Devices  
that are suitable for use with this range of current output DACs.  
Common-mode rejection of the op amp is important in  
voltage-switching circuits, since it produces a code dependent  
error at the voltage output of the circuit. Most op amps have  
adequate common mode rejection for use at 8-, 10-, and 12-bit  
resolution.  
AMPLIFIER SELECTION  
The primary requirement for the current-steering mode is an  
amplifier with low input bias currents and low input offset  
voltage. The input offset voltage of an op amp is multiplied by  
the variable gain (due to the code dependent output resistance  
Rev. B | Page 21 of 32  
 
 
 
AD5424/AD5433/AD5445  
Provided the DAC switches are driven from true wideband low  
impedance sources (VIN and AGND), they settle quickly. Conse-  
quently, the slew rate and settling time of a voltage switching  
DAC circuit is determined largely by the output op amp. To  
obtain minimum settling time in this configuration, it is impor-  
tant to minimize capacitance at the VREF node (voltage output  
node in this application) of the DAC. This is done by using low  
inputs capacitance buffer amplifiers and careful board design.  
8xC51-to-AD5424/AD5433/AD5445 Interface  
Figure 57 shows the interface between the AD5424/AD5433/  
AD5445 and the 8xC51 family of DSPs. To facilitate external  
data memory access, the address latch enable (ALE) mode is  
enabled. The low byte of the address is latched with this output  
pulse during access to external memory. AD0 to AD7 are the  
multiplexed low order addresses and data bus and require  
strong internal pull-ups when emitting 1s. During access to  
external memory, A8 to A15 are the high order address bytes.  
Since these ports are open drained, they also require strong  
internal pull-ups when emitting 1s.  
Most single-supply circuits include ground as part of the analog  
signal range, which in turns requires an amplifier that can  
handle rail-to-rail signals. There is a large range of single-supply  
amplifiers available from Analog Devices.  
A8 TO A15  
ADDRESS BUS  
PARALLEL INTERFACE  
Data is loaded to the AD5424/AD5433/AD5445 in the format  
AD5424/  
AD5433/  
AD5445*  
8051*  
of an 8-, 10-, or 12-bit parallel word. Control lines  
and R/  
CS  
allow data to be written to or read from the DAC register. A  
write event takes place when and R/ are brought low, data  
W
ADDRESS  
DECODER  
CS  
CS  
available on the data lines fills the shift register, and the rising  
edge of latches the data and transfers the latched data-word  
W
WR  
R/W  
CS  
to the DAC register. The DAC latches are not transparent, thus  
a write sequence must consist of a falling and rising edge on  
DB0 TO DB11  
8-BIT  
LATCH  
ALE  
CS  
AD0 TO AD7  
DATA BUS  
to ensure that data is loaded to the DAC register and its analog  
equivalent is reflected on the DAC output.  
*ADDITIONAL PINS OMITTED FOR CLARITY  
A read event takes place when R/ is held high and  
is  
CS  
W
Figure 57. 8xC51-to-AD5424/AD5433/AD5445 Interface  
brought low. New data is loaded from the DAC register back to  
the input register and out onto the data line where it can be read  
back to the controller for verification or diagnostic purposes.  
ADSP-BF5xx-to-AD5424/AD5433/AD5445 Interface  
Figure 58 shows a typical interface between the AD5424/  
AD5433/AD5445 and the ADSP-BF5xx family of DSPs. The  
asynchronous memory write cycle of the processor drives the  
MICROPROCESSOR INTERFACING  
ADSP-21xx-to-AD5424/AD5433/AD5445 Interface  
digital inputs of the DAC. The  
x line is actually four  
AMS  
memory select lines. Internal ADDR lines are decoded into  
3-0 , these lines are then inserted as chip selects. The rest of  
Figure 56 shows the AD5424/AD5433/AD5445 interfaced to  
the ADSP-21xx series of DSPs as a memory-mapped device. A  
single wait state may be necessary to interface the AD5424/  
AD5433/AD5445 to the ADSP-21xx, depending on the clock  
speed of the DSP. The wait state can be programmed via the  
data memory wait state control register of the ADSP-21xx (see  
the ADSP-21xx family users manual for details).  
AMS  
the interface is a standard handshaking operation.  
ADDR TO  
1
ADDRESS BUS  
ADRR  
19  
AD5424/  
AD5433/  
AD5445*  
ADSP-BF5xx  
AMSx  
ADDR TO  
0
ADDRESS BUS  
ADDRESS  
DECODER  
ADRR  
13  
CS  
AD5424/  
AD5433/  
AD5445*  
AWE  
R/W  
ADSP-21xx*  
DB0 TO DB11  
ADDRESS  
DECODER  
DMS  
CS  
WR  
R/W  
DATA 0 TO  
DATA 23  
DATA BUS  
DB0 TO DB11  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 58. ADSP-BF5xx-to-AD5424/AD5433/AD5445 Interface  
DATA 0 TO  
DATA 23  
DATA BUS  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 56. ADSP21xx-to-AD5424/AD5433/AD5445 Interface  
Rev. B | Page 22 of 32  
 
 
 
 
 
AD5424/AD5433/AD5445  
PCB LAYOUT AND POWER SUPPLY DECOUPLING  
In any circuit where accuracy is important, careful consider-  
ation of the power supply and ground return layout helps to  
ensure the rated performance. The printed circuit board on  
which the AD5424/AD5433/AD5445 is mounted should be  
designed so that the analog and digital sections are separated  
and confined to certain areas of the board. If the DAC is in a  
system where multiple devices require an AGND-to-DGND  
connection, the connection should be made at one point only.  
The star ground point should be established as close as possible  
to the device.  
It is good practice to employ compact, minimum lead length  
PCB layout design. Leads to the input should be as short as  
possible to minimize IR drops and stray inductance.  
The PCB metal traces between VREF and RFB should also be  
matched to minimize gain error. To maximize high frequency  
performance, the I-to-V amplifier should be located as close to  
the device as possible.  
EVALUATION BOARD FOR THE  
AD5424/AD5433/AD5445  
These DACs should have ample supply bypassing of 10 μF in  
parallel with 0.1 μF on the supply, located as close to the  
package as possible and ideally right up against the device. The  
0.1 μF capacitor should have low effective series resistance  
(ESR) and effective series inductance (ESI), like the common  
ceramic types that provide a low impedance path to ground at  
high frequencies, to handle transient currents due to internal  
logic switching. Low ESR 1 μF to 10 μF tantalum or electrolytic  
capacitors should also be applied at the supplies to minimize  
transient disturbance and filter out low frequency ripple.  
The board consists of a 12-bit AD5445 and a current-to-voltage  
amplifier, the AD8065. Included on the evaluation board is a  
10 V reference, the ADR01. An external reference may also be  
applied via an SMB input.  
The evaluation kit consists of a CD-ROM with self-installing  
PC software to control the DAC. The software allows the user to  
simply write a code to the device.  
POWER SUPPLIES FOR EVALUATION BOARD  
The board requires 12 V and 5 V supplies. The 12 V VDD  
and VSS are used to power the output amplifier, while the  
+5 V VDD and VSS are used to power the DAC (VDD1) and  
transceivers (VCC).  
Fast switching signals such as clocks should be shielded with  
digital ground to avoid radiating noise to other parts of the  
board and should never be run near the reference inputs.  
Avoid crossover of digital and analog signals. Traces on  
opposite sides of the board should run at right angles to each  
other. This reduces the effects of feedthrough through the  
board. A micro-strip technique is by far the best, but not always  
possible with a double-sided board. In this technique, the  
Both supplies are decoupled to their respective ground plane  
with 10 μF tantalum and 0.1 μF ceramic capacitors.  
Link1 (LK1) is provided to allow selection between the on-  
board reference (ADR01) and an external reference applied  
through J2.  
component side of the board is dedicated to the ground plane,  
while signal traces are placed on the solder side.  
Rev. B | Page 23 of 32  
 
 
 
AD5424/AD5433/AD5445  
Figure 59. Evaluation Board Schematic  
Rev. B | Page 24 of 32  
AD5424/AD5433/AD5445  
P1  
C1  
R2  
R4  
C12  
DB11  
DB9  
DB7  
DB5  
DB3  
DB1  
U3  
DB10  
DB8  
DB6  
DB4  
DB2  
DB0  
U1  
J1  
OUTPUT  
U5  
C2  
TP1  
C7  
R5  
R1  
C6  
C5  
C4  
C3  
C8  
U2  
LK1  
CS  
RW  
EXT  
VREF  
U4  
J4  
J2  
C18 C14  
J3  
R3  
C16  
CS  
R/W  
C19  
C17  
C13  
C15  
P2  
C20  
EVAL-AD5424/  
AD5433/AD5445EB  
Figure 60. Silkscreen—Component-Side View  
Figure 61. Component-Side Artwork  
Rev. B | Page 25 of 32  
AD5424/AD5433/AD5445  
Figure 62. Solder-Side Artwork  
Table 12. Bill of Materials for AD5424/AD5433/AD5445 Evaluation Board  
Name  
Part Description  
Value  
Tolerance  
PCB Decal  
Stock Code  
C1, C2, C4, C6, C8  
C10, C12, C13  
X7R Ceramic Capacitor  
0.1 μF  
10%  
0603  
FEC 499–675  
C15  
X7R Ceramic Capacitor  
0.1 μF  
10 μF 20 V  
0.1 μF  
10 μF 10 V  
4.7 pF  
10%  
10%  
10%  
10%  
10%  
0603  
CAP\TAJ_B  
0603  
CAP\TAJ_A  
0603  
TESTPOINT  
TESTPOINT  
SMB  
FEC 499–675  
FEC 197–427  
FEC 499–675  
FEC 197–130  
C3, C5, C9, C11, C14 Tantalum Capacitor, Taj Series  
C17, C19  
C16, C18, C20  
C7  
X7R Ceramic Capacitor  
Tantalum Capacitor, Taj Series  
X7R Ceramic Capacitor  
Test Point  
Red Test Point  
SMB Socket  
CS  
FEC 240–345 (Pack)  
FEC 240–345 (Pack)  
FEC 310–682  
DB0–DB11  
J1–J4  
LK1  
P1  
P2  
R1  
R2, R3, R4, R5  
RW, TP1, TP2  
U1  
U2  
3-Pin Header (3 × 1)  
36-Pin Centronics Connector  
6-Pin Terminal Block  
0.063 W Resistor  
0.063 W Resistor  
Red Test Point  
AD5445  
ADR425/ADR01/ADR02/ADR03  
AD8065  
LINK–3P–  
36WAY  
CON\POWER6  
0603  
FEC 511–717 and 150–411  
FEC 147–753  
FEC 151–792  
Not Inserted  
FEC 911–355  
FEC 240–345 (Pack)  
AD5445YRU  
ADR01AR  
10 kΩ  
1%  
0603  
TESTPOINT  
TSSOP20  
SO8NB  
U3  
SO8NB  
AD8065AR  
U4  
U5  
74ABT543  
74ABT543  
Rubber Stick-On Feet  
TSSOP24  
TSSOP24  
Fairchild 74ABT543CMTC  
Fairchild 74ABT543CMTC  
FEC 148–922  
Each Corner  
Rev. B | Page 26 of 32  
AD5424/AD5433/AD5445  
Table 13. Overview of AD54xx and AD55xx Devices  
Part No.  
AD5424  
AD5426  
AD5428  
AD5429  
AD5450  
AD5432  
AD5433  
AD5439  
AD5440  
AD5451  
AD5443  
AD5444  
AD5415  
AD5405  
AD5445  
AD5447  
AD5449  
AD5452  
AD5446  
AD5453  
AD5553  
AD5556  
AD5555  
AD5557  
AD5543  
AD5546  
AD5545  
AD5547  
Resolution  
No. DACs  
INL(LSB)  
Interface  
Parallel  
Serial  
Parallel  
Serial  
Serial  
Serial  
Parallel  
Serial  
Parallel  
Serial  
Serial  
Serial  
Serial  
Parallel  
Parallel  
Parallel  
Serial  
Serial  
Serial  
Serial  
Serial  
Parallel  
Serial  
Parallel  
Serial  
Parallel  
Serial  
Parallel  
Package  
RU-16, CP-20  
RM-10  
RU-20  
Features  
8
1
1
2
2
1
1
1
2
2
1
1
1
2
2
2
2
2
1
1
1
1
1
2
2
1
1
2
2
0.25  
0.25  
0.25  
0.25  
0.25  
0.5  
0.5  
0.5  
0.5  
0.25  
1
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 50 MHz serial  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 50 MHz serial  
10 MHz BW, 50 MHz serial  
10 MHz BW, 50 MHz serial  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 50 MHz serial  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 50 MHz serial  
10 MHz BW, 50 MHz serial  
50 MHz serial interface  
8
8
8
8
RU-10  
RJ-8  
RM-10  
RU-20, CP-20  
RU-16  
10  
10  
10  
10  
10  
12  
12  
12  
12  
12  
12  
12  
12  
14  
14  
14  
14  
14  
14  
16  
16  
16  
16  
RU-24  
RJ-8  
RM-10  
RM-8  
RU-24  
CP-40  
0.5  
1
1
10 MHz BW, 50 MHz serial  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 50 MHz serial  
10 MHz BW, 50 MHz serial  
10 MHz BW, 50 MHz serial  
1
RU-20, CP-20  
RU-24  
1
1
0.5  
1
2
1
RU-16  
RJ-8, RM-8  
RM-8  
UJ-8, RM-8  
RM-8  
RU-28  
10 MHz BW, 50 MHz serial  
4 MHz BW, 50 MHz serial clock  
4 MHz BW, 20 ns WR pulse width  
4 MHz BW, 50 MHz serial clock  
4 MHz BW, 20 ns WR pulse width  
4 MHz BW, 50 MHz serial clock  
4 MHz BW, 20 ns WR pulse width  
4 MHz BW, 50 MHz serial clock  
4 MHz BW, 20 ns WR pulse width  
1
1
1
RM-8  
RU-38  
2
2
RM-8  
RU-28  
2
2
RU-16  
RU-38  
Rev. B | Page 27 of 32  
AD5424/AD5433/AD5445  
OUTLINE DIMENSIONS  
6.60  
6.50  
6.40  
5.10  
5.00  
4.90  
20  
11  
10  
16  
9
4.50  
4.40  
4.30  
4.50  
4.40  
4.30  
6.40  
BSC  
6.40 BSC  
1
1
8
PIN 1  
0.65  
BSC  
PIN 1  
1.20  
MAX  
1.20 MAX  
0.15  
0.05  
0.20  
0.09  
0.15  
0.05  
0.75  
0.60  
0.45  
0.20  
0.09  
8°  
0°  
0.75  
0.60  
0.45  
0.30  
0.19  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-153-AC  
COPLANARITY  
0.10  
Figure 64. 20-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-20)  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 63. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
Dimensions shown in millimeters  
0.60 MAX  
4.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
15  
16  
20  
1
5
0.50  
BSC  
PIN 1  
INDICATOR  
2.25  
2.10 SQ  
1.95  
3.75  
BCS SQ  
EXPOSED  
PAD  
(BOTTOM VIEW)  
10  
6
11  
0.75  
0.60  
0.50  
0.25 MIN  
TOP VIEW  
0.80 MAX  
12° MAX  
1.00  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.65 TYP  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
0.20 REF  
SECTION OF THIS DATA SHEET.  
0.30  
0.23  
0.18  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-1  
Figure 65. 20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-20-1)  
Dimensions shown in millimeters  
Rev. B | Page 28 of 32  
 
AD5424/AD5433/AD5445  
ORDERING GUIDE  
Model  
AD5424YRU  
AD5424YRU-REEL  
AD5424YRU-REEL7  
AD5424YRUZ1  
AD5424YRUZ-REEL1  
AD5424YRUZ-REEL71  
AD5424YCP  
AD5424YCP-REEL  
AD5424YCP-REEL7  
AD5424YCPZ-REEL1  
AD5424YCPZ-REEL71  
AD5433YRU  
AD5433YRU-REEL  
AD5433YRU-REEL7  
AD5433YRUZ1  
AD5433YRUZ-REEL1  
AD5433YRUZ-REEL71  
AD5433YCP  
AD5433YCP-REEL  
AD5433YCP-REEL7  
AD5433YCPZ1  
Resolution (Bits)  
INL (LSB)  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1
Temperature Range  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
Package Description  
Package Option  
RU-16  
RU-16  
RU-16  
RU-16  
8
8
8
8
8
8
8
8
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
20-Lead LFCSP_VQ  
20-Lead LFCSP_VQ  
20-Lead LFCSP_VQ  
20-Lead LFCSP_VQ  
20-Lead LFCSP_VQ  
20-Lead TSSOP  
20-Lead TSSOP  
20-Lead TSSOP  
20-Lead TSSOP  
20-Lead TSSOP  
20-Lead TSSOP  
20-Lead LFCSP_VQ  
20-Lead LFCSP_VQ  
20-Lead LFCSP_VQ  
20-Lead LFCSP_VQ  
20-Lead TSSOP  
20-Lead TSSOP  
20-Lead TSSOP  
20-Lead TSSOP  
20-Lead TSSOP  
20-Lead TSSOP  
20-Lead LFCSP_VQ  
20-Lead LFCSP_VQ  
20-Lead LFCSP_VQ  
20-Lead LFCSP_VQ  
Evaluation Kit  
RU-16  
RU-16  
CP-20-1  
CP-20-1  
CP-20-1  
CP-20-1  
CP-20-1  
RU-20  
RU-20  
RU-20  
RU-20  
RU-20  
8
8
8
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
RU-20  
CP-20-1  
CP-20-1  
CP-20-1  
CP-20-1  
RU-20  
RU-20  
RU-20  
RU-20  
RU-20  
AD5445YRU  
AD5445YRU-REEL  
AD5445YRU-REEL7  
AD5445YRUZ1  
AD5445YRUZ-REEL1  
AD5445YRUZ-REEL71  
AD5445YCP  
AD5445YCP-REEL  
AD5445YCP-REEL7  
AD5445YCPZ1  
EVAL-AD5424EBZ1  
EVAL-AD5433EBZ1  
EVAL-AD5445EBZ1  
1
1
1
1
1
1
1
1
RU-20  
CP-20-1  
CP-20-1  
CP-20-1  
CP-20-1  
1
Evaluation Kit  
Evaluation Kit  
1 Z = RoHS Compliant Part.  
Rev. B | Page 29 of 32  
 
 
AD5424/AD5433/AD5445  
NOTES  
Rev. B | Page 30 of 32  
AD5424/AD5433/AD5445  
NOTES  
Rev. B | Page 31 of 32  
AD5424/AD5433/AD5445  
NOTES  
©2005–2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D03160-0-8/09(B)  
Rev. B | Page 32 of 32  

相关型号:

AD5424YCP-REEL7

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5424YCPZ

High Bandwidth 8-Bit Parallel Interface Multiplying D/A Converter
ADI

AD5424YCPZ-REEL

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5424YCPZ-REEL7

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5424YRU

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5424YRU-REEL

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5424YRU-REEL7

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5424YRUZ

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5424YRUZ-REEL

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5424YRUZ-REEL7

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5424_1

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5425

8-Bit, High Bandwidth Multiplying DAC with Serial Interface
ADI