AD538ADZ [ADI]

Real-Time Analog Computational Unit (ACU); 实时模拟计算单元(ACU )
AD538ADZ
型号: AD538ADZ
厂家: ADI    ADI
描述:

Real-Time Analog Computational Unit (ACU)
实时模拟计算单元(ACU )

CD
文件: 总17页 (文件大小:511K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Real-Time Analog  
Computational Unit (ACU)  
AD538  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
VO = VY(VZ/VX)m transfer function  
I
D
X
X
25k  
Wide dynamic range (denominator) −1000:1  
Simultaneous multiplication and division  
Resistor-programmable powers and roots  
No external trims required  
Low input offsets <100 μV  
Low error 0.2ꢀ5 of reading (100:1 range)  
Monolithic construction  
100Ω  
V
LOG  
B
A
RATIO  
25kΩ  
V
I
Z
Z
100Ω  
INTERNAL  
VOLTAGE  
REFERENCE  
+10V  
+2V  
Real-time analog multiplication, division and  
exponentiation  
V
I
Y
Y
High accuracy analog division with a wide input dynamic range  
On board +2 V or +10 V scaling reference  
Voltage and current (summing) input modes  
Monolithic construction with lower cost and higher  
reliability than hybrid and modular circuits  
25kΩ  
AD538  
LOG  
C
I
ANTILOG  
OUTPUT  
V
O
APPLICATIONS  
One- or two-quadrant multiply/divide  
Log ratio computation  
Figure 1.  
Squaring/square rooting  
Trigonometric function approximations  
Linearization via curve fitting  
Precision AGC  
Power functions  
GENERAL DESCRIPTION  
The AD538 is a monolithic real-time computational circuit  
that provides precision analog multiplication, division, and  
exponentiation. The combination of low input and output offset  
voltages and excellent linearity results in accurate computation  
over an unusually wide input dynamic range. Laser wafer  
trimming makes multiplication and division with errors as low  
as 0.25% of reading possible, while typical output offsets of  
100 μV or less add to the overall off-the-shelf performance level.  
Real-time analog signal processing is further enhanced by the  
400 kHz bandwidth of the device.  
multiplication and division can be set using the on-chip +2 V or  
+10 V references, or controlled externally to provide simultaneous  
multiplication and division. Exponentiation with an m value  
from 0.2 to 5 can be implemented with the addition of one or  
two external resistors.  
Direct log ratio computation is possible by using only the log  
ratio and output sections of the chip. Access to the multiple  
summing junctions adds further to the flexibility of the AD538.  
Finally, a wide power supply range of 4.5 V to 18 V allows  
operation from standard 5 V, 12 V and 15 V supplies.  
The overall transfer function of the AD538 is VO = VY(VZ/VX)m.  
Programming a particular function is via pin strapping. No  
external components are required for one-quadrant (positive  
input) multiplication and division. Two-quadrant (bipolar  
numerator) division is possible with the use of external level  
shifting and scaling resistors. The desired scale factor for both  
The AD538 is available in two accuracy grades (A and B) over  
the industrial (−25°C to +85°C) temperature range and one  
grade (S) over the military (−55°C to +125°C) temperature  
range. The device is packaged in an 18-lead TO-118 hermetic  
side-brazed ceramic DIP. A-grade chips are also available.  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
IMPORTANT LINKS for the AD538*  
Last content update 09/07/2013 05:28 pm  
PARAMETRIC SELECTION TABLES  
DESIGN SUPPORT  
Submit your support request here:  
Linear and Data Converters  
Embedded Processing and DSP  
Find Similar Products By Operating Parameters  
Telephone our Customer Interaction Centers toll free:  
DOCUMENTATION  
Americas:  
Europe:  
China:  
1-800-262-5643  
00800-266-822-82  
4006-100-006  
AN-213: Low Cost, Two-Chip, Voltage -Controlled Amplifier and Video  
Switch  
India:  
1800-419-0108  
8-800-555-45-90  
AN-304: One Chip “Slide-Rulerdquo; Works With Logs, Antilogs for  
Real Time Processing  
Russia:  
Ask The Applications Engineer-1  
Space Qualified Parts List  
Quality and Reliability  
Lead(Pb)-Free Data  
EVALUATION KITS & SYMBOLS & FOOTPRINTS  
SAMPLE & BUY  
AD538  
Symbols and Footprints  
View Price & Packaging  
Request Evaluation Board  
Request Samples  
Check Inventory & Purchase  
DESIGN COLLABORATION COMMUNITY  
Find Local Distributors  
Collaborate Online with the ADI support team and other designers  
about select ADI products.  
Follow us on Twitter: www.twitter.com/ADI_News  
Like us on Facebook: www.facebook.com/AnalogDevicesInc  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet.  
Note: Dynamic changes to the content on this page (labeled 'Important Links') does not  
constitute a change to the revision number of the product data sheet.  
This content may be frequently modified.  
AD538  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Stability Precautions................................................................... 10  
Using The Voltage References .................................................. 10  
One-Quadrant Multiplication/Division.................................. 11  
Two-Quadrant Division ............................................................ 12  
Log Ratio Operation .................................................................. 12  
Analog Computation Of Powers And Roots .......................... 13  
Square Root Operation.............................................................. 13  
Applications Information .............................................................. 15  
Transducer Linearization .......................................................... 15  
ARC-Tangent Approximation .................................................. 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ........................................................................ 9  
Re-Examination of Multiplier/Divider Accuracy .................... 9  
Functional Description.............................................................. 10  
REVISION HISTORY  
6/11—Rev. D to Rev. E  
Updated Format..................................................................Universal  
Added Table 3.................................................................................... 6  
Changes to Ordering Guide .......................................................... 11  
5/10—Rev. C to Rev. D  
Updated Outline Dimensions....................................................... 11  
Changes to Ordering Guide .......................................................... 11  
Rev. E | Page 2 of 16  
 
AD538  
SPECIFICATIONS  
VS = 15 V, TA = 25°C, unless otherwise noted.  
Table 1.  
AD538AD  
Typ  
AD538BD  
Typ  
AD538SD  
Typ  
Test Conditions/  
Comments  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
MULTIPLIER DIVIDER  
PERFORMANCE  
Nominal Transfer  
Function  
VO = VY(VZ/VX)m  
VO = 25 kΩ × IY(IZ/IX)m  
VO = VY(VZ/VX)m  
VO = 25 kΩ × IY(IZ/IX)m  
VO = VY(VZ/VX)m  
VO = 25 kΩ × IY(IZ/IX)m  
10 V ≥ VX, VY, VZ ≥ 0  
400 µA ≥ IX, IY, IZ ≥ 0  
100 mV ≤ VX ≤ 10 V  
100 mV ≤ VY ≤ 10 V  
Total Error Terms  
100:1 Input  
Range1  
0.5  
1
0.25  
100  
0.5  
250  
0.5  
1
% of Reading +  
µV  
200  
500  
200  
500  
100 mV ≤ VZ ≤ 10 V  
VZ ≤ 10 VX, m = 1.0  
TA = TMIN to TMAX  
1
450  
1
2
750  
2
0.5  
350  
0.5  
1
500  
1
1.25  
750  
1
2.5  
1000  
2
% of Reading +  
µV  
Wide Dynamic  
Range2  
100 mV ≤ VX ≤ 10 V  
% of Reading +  
100 mV ≤ VY ≤ 10 V  
100 mV ≤ VZ ≤ 10 V  
VZ ≤ 10 VX, m = 1.0  
TA = TMIN to TMAX  
200  
100  
500  
250  
100  
750  
250  
150  
200  
200  
500  
250  
µV  
µV × (VY + VZ)/VX  
1
450  
450  
3
750  
750  
1
350  
350  
2
500  
500  
2
750  
750  
4
1000  
1000  
% of Reading +  
µV +  
µV × (VY +  
VZ)/VX  
Exponent (m)  
Range  
TA = TMIN to TMAX  
0.2  
5
0.2  
5
0.2  
5
OUTPUT  
CHARACTERISTICS  
Offset Voltage  
VY = 0, VC =  
−600 mV  
200  
450  
500  
750  
100  
350  
250  
500  
200  
750  
500  
µV  
TA = TMIN to TMAX  
RL = 2 kΩ  
1000  
+11  
µV  
V
Output Voltage  
Swing  
−11  
5
+11  
−11  
5
+11  
−11  
5
Output Current  
10  
10  
10  
mA  
FREQUENCY  
RESPONSE  
Slew Rate  
Small Signal  
Bandwidth  
1.4  
400  
1.4  
400  
1.4  
400  
V/µs  
kHz  
100 mV ≤ 10 VY, VZ,  
VX ≤ 10 V  
VOLTAGE REFERENCE  
Accuracy  
Additional Error  
Output Current  
VREF = 10 V or 2 V  
TA = TMIN or TMAX  
VREF = 10 V to 2 V  
25  
20  
2.5  
50  
30  
15  
20  
2.5  
25  
30  
25  
30  
2.5  
50  
50  
mV  
mV  
mA  
1
1
1
Power Supply  
Rejection  
+2 V = VREF  
+10 V = VREF  
POWER SUPPLY  
Rated  
4.5 V ≤ VS ≤ 18 V  
13 V ≤ VS ≤ 18 V  
300  
200  
600  
500  
300  
200  
600  
500  
300  
200  
600  
500  
µV/V  
µV/V  
RL = 2 kΩ  
15  
15  
15  
V
Operating Range3  
PSRR  
4.5  
18  
0.1  
4.5  
18  
0.1  
4.5  
18  
0.1  
V
%/V  
4.5 V<, VS < 18 V  
VX = VY = VZ = 1 V  
VO = 1 V  
0.5  
0.5  
0.5  
Quiescent Current  
4.5  
7
4.5  
7
4.5  
7
mA  
Rev. E | Page 3 of 16  
 
AD538  
AD538AD  
Typ  
AD538BD  
Typ  
AD538SD  
Typ  
Test Conditions/  
Comments  
Parameter  
TEMPERATURE RANGE  
Rated  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
−25  
−65  
+85  
+150  
−25  
−65  
+85  
+150  
−55  
−65  
+125  
+150  
°C  
°C  
Storage  
1 Over the 100 mV to 10 V operating range total error is the sum of a percent of reading term and an output offset. With this input dynamic range the input offset  
contribution to total error is negligible compared to the percent of reading error. Thus, it is specified indirectly as a part of the percent of reading error.  
2 The most accurate representation of total error with low level inputs is the summation of a percent of reading term, an output offset and an input offset multiplied by  
the incremental gain (VY + VZ) VX.  
3 When using supplies below 13 V, the 10 V reference pin must be connected to the 2 V pin in order for the AD538 to operate correctly.  
Rev. E | Page 4 of 16  
 
 
 
AD538  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltage  
18 V  
Internal Power Dissipation  
Output Short Circuit-to-Ground  
Input Voltages VX, VY, VZ  
Input Currents IX, IY, IZ, IO  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature, Storage  
Thermal Resistance  
θJC  
250 mW  
Indefinite  
(+VS − 1 V), −1 V  
1 mA  
−25°C to +85°C  
−65°C to +150°C  
60 sec, +300°C  
ESD CAUTION  
35°C/W  
θJA  
120°C/W  
Rev. E | Page 5 of 16  
 
 
AD538  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
I
1
2
3
4
5
6
7
8
9
18  
17  
16  
15  
A
D
Z
V
Z
B
+10V  
+2V  
I
X
AD538  
TOP VIEW  
(Not to Scale)  
V
X
14 SIGNAL GND  
13 PWR GND  
+V  
S
–V  
S
12  
11  
10  
C
V
O
I
Y
I
V
Y
Figure 2. Pin Configuration  
Table 3.  
Pin No. Mnemonic  
Description  
1
2
3
IZ  
VZ  
B
Current Input for the Z Multiplicand.  
Voltage Input for the Z Multiplicand.  
Output of the Log Ratio Differential Amplifier. This amplifier subtracts the log of the Z input from the log of the X  
input, or performs the equivalent logarithmic equivalent of long division.  
4
5
6
+10V  
+2V  
+VS  
+10 V Reference Voltage Output.  
+2 V Reference Voltage Output.  
Positive Supply Rail.  
7
–VS  
Negative Rail.  
8
VO  
Output Voltage.  
9
I
VY  
IY  
C
Current Input to the Output Amplifier.  
Voltage Input to the Y Multiplicand.  
Current Input to the Y Multiplicand.  
Current Input to the Base of the Antilog Log-to-Linear Converter.  
High level Power Return of the Chip.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
PWR GND  
SIGNAL GND Low Level Ground Return of the Device.  
VX  
IX  
D
A
Voltage Input of the X Multiplicand.  
Current Input of the X Input Multiplicand.  
Use for Log Ratio Function.  
Use for Log Ratio Function.  
Rev. E | Page 6 of 16  
 
AD538  
TYPICAL PERFORMANCE CHARACTERISTICS  
5
1000  
800  
600  
400  
1M  
V
V
= 10V dc  
Y
Z
= V +0.05 V SIN ωt  
X
X
4
3
2
1
400k  
100k  
40k  
OFFSET  
200  
0
% OF READING  
60 80 100  
TEMPERATURE (°C)  
0
10k  
0.01  
–55 –40  
–20  
0
20  
40  
125  
0.1  
1
10  
DENOMINATOR VOLTAGE, V – V dc  
X
Figure 3. Multiplier Error vs. Temperature (100 mV < VX, VY, VZ ≤ 10 V)  
Figure 6. Small Signal Bandwidth vs. Denominator Voltage (One-Quadrant  
Mult/Div)  
5
1000  
800  
600  
400  
1200  
1000  
800  
6
5
4
3
2
1
4
3
2
600  
400  
% OF READING  
OFFSET  
200  
0
1
0
200  
0
OFFSET  
80 100  
% OF READING  
80 100  
0
–55 –40  
–20  
0
20  
40  
60  
125  
–55 –40  
–20  
0
20  
40  
60  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 4. Divider Error vs. Temperature (100 mV < VX, VY, VZ ≤ 10 V)  
Figure 7. Multiplier Error vs. Temperature (10 mV < VX, VY, VZ ≤ 100 mV)  
1000  
5
1000  
800  
600  
400  
V
V
V
= 10V  
= 0V  
X
Y
Z
= 5V +5V SIN ωt VOLTS  
4
3
2
1
100  
% OF READING  
10  
200  
0
OFFSET  
100  
1
100  
0
1k  
10k  
INPUT FREQUENCY (Hz)  
100k  
1M  
–55 –40  
–20  
0
20  
40  
60  
80  
125  
TEMPERATURE (°C)  
Figure 5. VZ Feedthrough vs. Frequency  
Figure 8. Divider Error vs. Temperature (10 mV < VX, VY, VZ ≤ 100 mV)  
Rev. E | Page 7 of 16  
 
AD538  
150  
5
FOR THE FREQUENCY RANGE OF 10Hz  
TO 100kHz THE TOTAL rms OUTPUT  
V
V
V
= 10V  
X
Y
Z
= 5V +5V SIN ωt VOLTS  
= 0V  
NOISE, e , FOR A GIVEN BANDWIDTH  
o
Bw, IS CALCULATED e = e Bw.  
100  
o
n
4
3
2
V
= 0.01V  
X
10  
1
V
= 10V  
X
1
0.1  
100  
0
0.01  
1k  
10k  
INPUT FREQUENCY (Hz)  
100k  
1M  
0.1  
1
10  
DC OUTPUT VOLTAGE (V)  
Figure 9. VY Feedthrough vs. Frequency  
Figure 10. 1 kHz Output Noise Spectral Density vs. DC Output Voltage  
Rev. E | Page 8 of 16  
AD538  
THEORY OF OPERATION  
RE-EXAMINATION OF MULTIPLIER/DIVIDER ACCURACY  
total error calculations for both grades over the 100:1 input  
Traditionally, the accuracy (actually the errors) of analog  
multipliers and dividers has been specified in terms of percent  
of full scale. Thus specified, a 1% multiplier error with a 10 V  
full-scale output would mean a worst-case error of +100 mV at  
any level within its designated output range. While this type of  
error specification is easy to test evaluate, and interpret, it can  
leave the user guessing as to how useful the multiplier actually  
is at low output levels, those approaching the specified error  
limit (in this case) 100 mV.  
range are illustrated in Table 4. This error specification format  
is a familiar one to designers and users of digital voltmeters  
where error is specified as a percent of reading ± a certain  
number of digits on the meter readout.  
For operation as a multiplier or divider over a wider dynamic  
range (>100:1), the AD538 has a more detailed error specification  
that is the sum of three components: a percent of reading term,  
an output offset term, and an input offset term for the VY/VX log  
ratio section. A sample application of this specification, taken  
from Table 4, for the AD538AD with VY = 1 V, VZ = 100 mV  
and VX = 10 mV would yield a maximum error of ±±.0% of  
reading ±500 ꢀV ± (1 V + 100 mV)/10 mV × ±50 ꢀV or ±±.0%  
of reading ±500 ꢀV ± ±2.5 mV. This example illustrates that  
with very low level inputs the AD538s incremental gain (VY +  
VZ)/VX has increased to make the input offset contribution to  
error substantial.  
The error sources of the AD538 do not follow the percent of  
full-scale approach to specification, thus it more optimally  
fits the needs of the very wide dynamic range applications  
for which it is best suited. Rather than as a percent of full  
scale, the AD538s error as a multiplier or divider for a 100:1  
(100 mV to 10 V) input range is specified as the sum of two  
error components: a percent of reading (ideal output) term  
plus a fixed output offset. Following this format, the AD538AD,  
operating as a multiplier or divider with inputs down to 100 mV,  
has a maximum error of ±1% of reading ±500 ꢀV. Some sample  
Table 4. Sample Error Calculation Chart (Worst Case)  
Total Error  
VY  
Input  
(V)  
VZ  
Input  
(V)  
VX  
Input  
(V)  
Ideal  
Output  
(V)  
% of Reading  
Total Offset Error Error Term  
Total Error  
Summation  
(mV)  
Summation as a  
% of the Ideal  
Output  
Term (mV)  
(mV)  
100  
50  
100:1 INPUT  
RANGE  
10  
10  
10  
10  
0.5  
(AD)  
(BD)  
(AD)  
(BD)  
100.5  
50.25  
(AD)  
(BD)  
1.0  
0.5  
(AD)  
(BD)  
0.25  
Total Error =  
±± rdg  
±utput VꢀS  
10  
0.1  
0.1  
10  
0.5  
0.25  
(AD)  
(BD)  
100  
50  
(AD)  
(BD)  
100.5  
50.25  
(AD)  
(BD)  
1.0  
0.5  
(AD)  
(BD)  
1
1
1
1
0.5  
0.25  
0.5  
0.25  
28  
16.75  
(AD)  
(BD)  
(AD)  
(BD)  
(AD)  
(BD)  
10 )  
5
1
0.5  
200  
100  
(AD  
10.5  
5.25  
1.5  
0.75  
228  
(AD)  
(BD)  
(AD)  
(BD)  
(AD)  
(BD)  
1.05  
0.5  
1.5  
0.75  
2.28  
1.17  
(AD)  
(BD)  
(AD)  
(BD)  
(AD)  
(BD)  
(BD)  
(AD)  
(BD)  
(AD)  
(BD)  
0.1  
1
0.1  
0.10  
0.1  
0.01  
0.1  
10  
WIDE  
DYNAMIC  
RANGE  
116.75  
Total Error =  
±± rdg ±  
10  
0.05  
2
0.25  
1.76  
1
(AD)  
(BD)  
5
2.5  
(AD)  
(BD)  
6.76  
3.5  
(AD)  
(BD)  
2.7  
1.4  
(AD)  
(BD)  
ꢀutput VꢀS  
Input VꢀS  
(VY + VZ)/VX  
±
×
5
0.01  
0.01  
0.01  
0.1  
5
1
125.75  
75.4  
25.53  
15.27  
(AD)  
(BD)  
(AD)  
(BD)  
100  
50  
20  
(AD)  
(BD)  
(AD)  
(BD)  
225.75  
125.4  
45.53  
25.27  
(AD)  
(BD)  
(AD)  
(BD)  
4.52  
2.51  
4.55  
2.53  
(AD)  
(BD)  
(AD)  
(BD)  
10  
10  
Rev. E | Page 9 of 16  
 
 
 
AD538  
FUNCTIONAL DESCRIPTION  
STABILITY PRECAUTIONS  
As shown in Figure 1 and Figure 11, the VZ and VX inputs  
connect directly to the input log ratio amplifiers of the AD538.  
This subsection provides an output voltage proportional to the  
natural log of input voltage, VZ, minus the natural log of input  
voltage, VX. The output of the log ratio subsection at B can be  
expressed by the transfer function  
At higher frequencies, the multistaged signal path of the AD538  
can result in large phase shifts (as illustrated in Figure 11). If a  
condition of high incremental gain exists along that path (for  
example, VO = VY × VZ/VX = 10 V × 10 mV/10 mV = 10 V so  
that ΔVO/ΔVX = 1000), then small amounts of capacitive feedback  
from VO to the current inputs IZ or IX can result in instability.  
Appropriate care should be exercised in board layout to prevent  
capacitive feedback mechanisms under these conditions.  
Ln Z – Ln X  
VZ  
VX  
kT  
q
VB =  
ln  
I
X
Ln X  
M(Ln Z – Ln X)  
M(Ln Z – Ln X) +Ln Y  
LOG  
e
where:  
V
X
k is 1.3806 × 10−23 J/K.  
q is 1.60219 × 10−19 C.  
T is in Kelvins.  
ANTILOG  
0.2≤M≤5  
BUFFER  
Σ
Σ
e
+
+
+
M
The log ratio configuration may be used alone, if correctly  
temperature compensated and scaled to the desired output  
level (see the Applications Information section).  
V
V
Z
X
I
I
Z
Z
Y
V
= V  
Y
O
LOG  
LOG  
e
e
Ln Z  
Ln Y  
V
V
Y
Figure 11. Model Circuit  
Under normal operation, the log-ratio output will be directly  
connected to a second functional block at Input C, the antilog  
subsection. This section performs the antilog according to the  
transfer function:  
USING THE VOLTAGE REFERENCES  
A stable band gap voltage reference for scaling is included in the  
AD538. It is laser-trimmed to provide a selectable voltage output of  
+10 V buffered (Pin 4), +2 V unbuffered (Pin 5) or any voltages  
between +2 V and +10.2 V buffered as shown in Figure 12. The  
output impedance at Pin 5 is approximately 5 kΩ. Note that any  
loading of this pin produces an error in the +10 V reference  
voltage. External loads on the +2 V output should be greater  
than 500 kΩ to maintain errors less than 1%.  
q
kT  
V =V e V  
C
O
Y
As with the log-ratio circuit included in the AD538, the user  
may use the antilog subsection by itself. When both subsections  
are combined, the output at B is tied to C, the transfer function  
of the AD538 computational unit is:  
I
V
V
kT   
q
kT  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
12  
11  
A
D
Z
Z
Z
X
ln  
Q
  
e
;VB =VC  
LOG  
RATIO  
25kΩ  
VO = VY  
V
+2V TO +10.2V  
BUFFERED  
which reduces to:  
B
I
X
VZ  
VX  
REF OUT  
V
X
VO = VY  
25kΩ  
100Ω  
100Ω  
+2V  
SIGNAL  
GND  
50kΩ  
Finally, by increasing the gain, or attenuating the output of the  
log ratio subsection via resistor programming, it is possible to  
raise the quantity VZ/VX to the mth power. Without external  
programming, m is unity. Thus, the overall AD538 transfer  
function equals:  
INTERNAL  
VOLTAGE  
REFERENCE  
11.5kΩ  
PWR  
GND  
+V  
S
AD538  
–V  
S
7
8
9
C
OUTPUT  
25kΩ  
V
O
I
Y
ANTILOG  
m  
VZ  
VX  
10  
V
Y
I
LOG  
VO = VY  
25kΩ  
Figure 12. +2 V to +10.2 V Adjustable Reference  
where 0.2 < m < 5.  
In situations not requiring both reference levels, the +2 V output  
can be converted to a buffered output by tying Pin 4 and Pin 5  
together. If both references are required simultaneously, the  
+10 V output should be used directly and the +2 V output  
should be externally buffered.  
When the AD538 is used as an analog divider, the VY input can  
be used to multiply the ratio VZ/VX by a convenient scale factor.  
The actual multiplication by the VY input signal is accomplished  
by adding the log of the VY input signal to the signal at C, which  
is already in the log domain.  
Rev. E | Page 10 of 16  
 
 
 
 
 
AD538  
When the input VX is tied to the +10 V reference terminal, the  
multiplier transfer function becomes:  
ONE-QUADRANT MULTIPLICATION/DIVISION  
Figure 13 shows how the AD538 may be easily configured  
as a precision one-quadrant multiplier/divider. The transfer  
function VO = VY (VZ/VX) allows three independent input  
variables, a calculation not available with a conventional  
multiplier. In addition, the 1000:1 (that is, 10 mV to 10 V)  
input dynamic range of the AD538 greatly exceeds that of  
analog multipliers computing one-quadrant multiplication  
and division.  
VZ  
10 V  
VO = VY  
As a multiplier, this circuit provides a typical bandwidth of 400 kHz  
with values of VX, VY, or VZ varying over a 100:1 range (that is,  
100 mV to 10 V). The maximum error with a 100 mV to 10 V  
range for the two input variables will typically be +0.5% of  
reading. Using the optional Z offset trim scheme, as shown in  
Figure 14, this error can be reduced to +0.25% of reading.  
V
V
Z
X
V
= V  
Y
O
By using the 10 V reference as the VY input, the circuit of  
Figure 13 is configured as a one-quadrant divider with a fixed  
scale factor. As with the one-quadrant multiplier, the inputs  
accept only single (positive) polarity signals. The output of the  
one-quadrant divider with a +10 V scale factor is:  
I
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
12  
11  
A
D
Z
Z
LOG  
V
25kΩ  
V
Z
RATIO  
INPUT  
B
I
X
V
X
V
X
VZ  
VX  
+10V  
+2V  
INPUT  
25kΩ  
VO = 10 V  
100Ω  
100Ω  
SIGNAL  
GND  
PWR  
GND  
INTERNAL  
The typical bandwidth of this circuit is 370 kHz with 1 V to  
10 V denominator input levels. At lower amplitudes, the band-  
width gradually decreases to approximately 200 kHz at the  
2 mV input level.  
VOLTAGE  
+15V  
REFERENCE  
AD538  
C
7
8
9
–15V  
OUTPUT  
IN4148  
25kΩ  
I
V
Y
O
ANTILOG  
OUTPUT  
V
V
Y
Y
10  
I
LOG  
INPUT  
25kΩ  
Figure 13. One-Quadrant Combination Multiplier/Divider  
By simply connecting the input, VX (Pin 15) to the 10 V  
reference (Pin 4), and tying the log-ratio output at B to the  
antilog input at C, the AD538 can be configured as a one-  
quadrant analog multiplier with 10 V scaling. If 2 V scaling  
is desired, VX can be tied to the 2 V reference.  
Rev. E | Page 11 of 16  
 
 
AD538  
TWO-QUADRANT DIVISION  
LOG RATIO OPERATION  
The two-quadrant linear divider circuit illustrated in Figure 14  
uses the same basic connections as the one-quadrant version.  
However, in this circuit the numerator has been offset in the  
positive direction by adding the denominator input voltage  
to it. The offsetting scheme changes the dividers transfer  
function from  
Figure 15 shows the AD538 configured for computing the log  
of the ratio of two input voltages (or currents). The output  
signal from B is connected to the summing junction of the  
output amplifier via two series resistors. The 90.9 Ω metal film  
resistor effectively degrades the temperature coefficient of the  
3500 ppm/°C resistor to produce a 1.09 kΩ +3300 ppm/°C  
equivalent value. In this configuration, the VY input must  
be tied to some voltage less than zero (−1.2 V in this case)  
removing this input from the transfer function.  
VZ  
VX  
VO =10 V  
to  
The 5 kΩ potentiometer controls the circuits scale factor  
adjustment providing a +1 V per decade adjustment. The  
output offset potentiometer should be set to provide a zero  
output with VX = VZ = 1 V. The input V Z adjustment should  
be set for an output of 3 V with VZ = l mV and VX = 1 V.  
(
VZ + AVX  
)
VZ  
VX  
VO =10V  
=10V 1A+  
VX  
VZ  
VX  
=10A +10V  
–V  
S
68kΩ  
5%  
V
V
Z
where:  
V
= 1V LOG  
10  
O
X
AD589  
–1.2V  
35kΩ  
25kΩ  
A=  
10MΩ  
I
Z
A
D
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
12  
11  
1MΩ  
48.7Ω  
OPTIONAL  
INPUT V  
V
LOG  
25kΩ  
Z
RATIO  
OS  
As long as the magnitude of the denominator input is equal  
to or greater than the magnitude of the numerator input, the  
circuit accepts bipolar numerator voltages. However, under  
the conditions of a 0 V numerator input, the output would  
incorrectly equal +14 V. The offset can be removed by connecting  
the 10 V reference through Resistors R1 and R2 to the output  
section’s summing Node I at Pin 9 thus providing a gain of 1.4  
at the center of the trimming potentiometer. The potentiometer,  
R2, adjusts out or corrects this offset, leaving the desired  
transfer function of 10 V (VZ/VX).  
ADJUSTMENT  
B
I
X
90.9Ω  
V
+10V  
+2V  
X
V
X
INPUT  
1%  
25kΩ  
100Ω  
100Ω  
SIGNAL  
GND  
1k  
+3500  
ppm/°C  
PWR  
GND  
INTERNAL  
VOLTAGE  
+15V  
–15V  
REFERENCE  
AD538  
OUTPUT  
C
7
8
9
OUTPUT  
5k2kΩ  
25kΩ  
1%  
V
O
I
Y
ANTILOG  
SCALE  
FACTOR  
ADJUST  
IN4148  
V
I
Y
10  
LOG  
NUMERATOR  
DENOMINATOR  
25kΩ  
V
V
OPTIONAL  
Z
X
+V  
–V  
Z OFFSET TRIM  
S
OPTIONAL  
10MΩ  
–V  
S
10kΩ  
OUTPUT V  
OS  
ADJUSTMENT  
V
V
Z
S
V
= 10  
FOR V ≥ V  
X Z  
O
68kΩ  
35kΩ  
X
AD589  
Figure 15. Log Ratio Circuit  
–1.2V  
10MΩ  
I
Z
Z
1MΩ  
ADJ  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
12  
11  
A
D
The log ratio circuit shown achieves 0.5% accuracy in the log  
domain for input voltages within three decades of input range:  
10 mV to 10 V. This error is not defined as a percent of full-  
scale output, but as a percent of input. For example, using a  
1 V/decade scale factor, a 1% error in the positive direction  
at the input of the log ratio amplifier translates into a 4.3 mV  
deviation from the ideal OUTPUT (that is, 1 V × log10 (1.01) =  
4.3214 mV). An input error 1% in the negative direction is  
slightly different, giving an output deviation of 4.3648 mV.  
V
OS  
35kΩ  
25kΩ  
LOG  
3.9MΩ  
V
RATIO  
I
X
B
+10V  
V
X
25kΩ  
100Ω  
100Ω  
SIGNAL  
GND  
+2V  
PWR  
GND  
INTERNAL  
VOLTAGE  
+15V  
REFERENCE  
AD538  
IN4148  
C
7
8
9
–15V  
OUTPUT  
25kΩ  
I
V
Y
O
OUTPUT  
ANTILOG  
R2  
R1  
10k12.4kΩ  
V
I
Y
10  
LOG  
25kΩ  
ZERO  
ADJUST  
Figure 14. Two-Quadrant Division with 10 V Scaling  
Rev. E | Page 12 of 16  
 
 
 
 
AD538  
ANALOG COMPUTATION OF POWERS AND ROOTS  
SQUARE ROOT OPERATION  
It is often necessary to raise the quotient of two input signals to  
a power or take a root. This could be squaring, cubing, square  
rooting or exponentiation to some noninteger power. Examples  
include power series generation. With the AD538, only one or  
two external resistors are required to set any desired power, over  
the range of 0.2 to 5. Raising the basic quantity VZ/VX to a  
power greater than one requires that the gain of the AD538s log  
ratio subtractor be increased, via an external resistor between  
the A and D pins. Similarly, a voltage divider that attenuates the  
log ratio output between Point B and Point C will program the  
power to a value less than one.  
The explicit square root circuit of Figure 17 illustrates a precise  
method for performing a real-time square root computation.  
For added flexibility and accuracy, this circuit has a scale factor  
adjustment.  
The actual square rooting operation is performed in this circuit  
by raising the quantity VZ/VX to the one-half power via the  
resistor divider network consisting of resistors RB and RC. For  
maximum linearity, the two resistors should be 1% (or better)  
ratio-matched metal film types.  
1 V scaling is achieved by dividing-down the 2 V reference  
and applying approximately 1 V to both the VY and VX inputs.  
In this circuit, the VX input is intentionally set low, to about  
0.95 V, so that the VY input can be adjusted high, permitting  
a 5% scale factor trim. Using this trim scheme, the output  
voltage will be within 3 mV 0.2% of the ideal value over a  
10 V to 1 mV input range (80 dB). For a decreased input dynamic  
range of 10 mV to 10 V (60 dB) the error is even less; here the  
output will be within 2 mV 0.2% of the ideal value. The  
bandwidth of the AD538 square root circuit is approximately  
280 kHz with a 1 V p-p sine wave with a +2 V dc offset.  
R
A
B
C
A
D
POWERS  
3
12  
18  
17  
V
V
2
Z
m
R
A
V
Z
m
V
(
)
V
8
Y
O
2
3
4
5
196Ω  
97.6Ω  
64.9Ω  
48.7Ω  
V
REF  
10  
Y
15  
V
V
X
REF  
196Ω  
M – 1  
R
=
A
R
= R ≤ 200Ω  
B
C
R
R
C
B
B
2
C
This basic circuit may also be used to compute the cube, fourth  
or fifth roots of an input waveform. All that is required for a  
given root is that the correct ratio of resistors, R  
C and RB, be  
ROOTS  
3
12  
V
V
Z
m
R
R
C
B
V
Z
m
V
8
V
(
)
O
1/2  
100Ω  
100Ω  
150Ω  
162Ω  
100Ω  
49.9Ω  
49.9Ω  
40.2Ω  
Y
V
REF  
1/3  
1/4  
1/5  
10  
Y
selected such that their sum is between 150 Ω and 200 Ω.  
15  
V
V
X
REF  
The optional absolute value circuit shown preceding the AD538  
allows the use of bipolar input voltages. Only one op amp is  
required for the absolute value function because the IZ input of  
the AD538 functions as a summing junction. If it is necessary to  
preserve the sign of the input voltage, the polarity of the op amp  
output may be sensed and used after the computation to switch  
the sign bit of a DVM chip.  
R
1
B
=
–1  
R
M
C
Figure 16. Basic Configurations and Transfer Functions for the AD538  
Rev. E | Page 13 of 16  
 
 
AD538  
V
IN  
1V  
V
= 1V  
O
OPTIONAL  
ABSOLUTE VALUE SECTION  
5kΩ  
I
10kΩ  
Z
Z
1
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
A
D
20kΩ  
LOG  
V
25kΩ  
IN4148 IN4148  
RATIO  
R
100Ω  
B
+V  
7
S
*
B
+10V  
+2V  
I
X
V
20kΩ  
OS  
V
X
1
20kΩ  
2
V
8
6
25kΩ  
IN  
100Ω  
100Ω  
SIGNAL  
GND  
3
+2V  
4
S
AD OP-07  
OR AD811  
PWR  
GND  
INTERNAL  
VOLTAGE  
(V TAP  
OS  
TO –V  
–V  
+15V  
–15V  
)
REFERENCE  
AD538  
S
C
OUTPUT  
25kΩ  
I
V
O
Y
V
O
ANTILOG  
D1  
IN4148  
V
I
Y
LOG  
1kΩ  
25kΩ  
100Ω  
SCALE FACTOR  
TRIM  
R
100Ω  
C
1kΩ  
*
*
RATIO MATCH 1% METAL FILM  
RESISTORS FOR BEST ACCURACY  
Figure 17. Square Root Circuit  
Rev. E | Page 14 of 16  
 
AD538  
APPLICATIONS INFORMATION  
The (VθREF − Vθ) function is implemented in this circuit by  
TRANSDUCER LINEARIZATION  
adding together the output, Vθ, and an externally applied  
reference voltage, VθREF, via an external AD547 op amp. The  
1 μF capacitor connected around the AD547s 100 kΩ feedback  
resistor frequency compensates the loop (formed by the amplifier  
between Vθ and VY).  
Many electronic transducers used in scientific, commercial or  
industrial equipment monitor the physical properties of a device  
and/or its environment. Sensing (and perhaps compensating for)  
changes in pressure, temperature, moisture or other physical  
phenomenon can be an expensive undertaking, particularly  
where high accuracy and very low nonlinearity are important.  
In conventional analog systems accuracy may be easily increased  
by offset and scale factor trims; however, nonlinearity is usually  
the absolute limitation of the sensing device.  
1.21  
V
V
Z
X
Z
X
–1  
θ = TAN  
V
= [V  
θREF  
–V ] ×  
θ
θ
A
D
I
1
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
Z
Z
R
A
V
931Ω, 1%  
LOG  
RATIO  
25kΩ  
V
Z
With the ability to easily program a complex analog function,  
the AD538 can effectively compensate for the nonlinearities  
of an inexpensive transducer. The AD538 can be connected  
between the transducer preamplifier output and the next stage  
of monitoring or transmitting circuitry. The recommended  
procedure for linearizing a particular transducer is first to find  
the closest function which best approximates the nonlinearity  
of the device and then, to select the appropriate exponent  
resistor value(s).  
B
I
X
V
+10V  
X
V
X
25kΩ  
100Ω  
100Ω  
SIGNAL  
GND  
+2V  
INTERNAL  
VOLTAGE  
REFERENCE  
PWR  
GND  
+V  
–V  
V
S
S
+15V  
–15V  
AD538  
1µF  
1µF  
C
OUTPUT  
IN4148  
25kΩ  
I
Y
O
I
V
θ
ANTILOG  
V
Y
LOG  
ARC-TANGENT APPROXIMATION  
25kΩ  
The circuit of Figure 18 is typical of those AD538 applications  
where the quantity VZ/VX is raised to powers greater than one.  
In an approximate arc-tangent function, the AD538 will accurately  
compute the angle that is defined by X and Y displacements  
represented by input voltages VX and VZ. With accuracy to  
within one degree (for input voltages between 100 μV and  
10 V), the AD538 arc-tangent circuit is more precise than  
conventional analog circuits and is faster than most digital  
techniques. The circuit shown is set up for the transfer  
function:  
0.1µF  
+15V  
R2*  
R1*  
100kΩ  
100kΩ  
7
2
3
10kΩ  
FULL-SCALE  
ADJUST  
6
AD547JH  
118kΩ  
*
RATIO MATCH 1% METAL  
FILM RESISTORS FOR BEST  
ACCURACY  
4
1µF  
100kΩ  
–15V  
Figure 18. The Arc-Tangent Function  
The VB/VA quantity is calculated in the same manner as in the  
one-quadrant divider circuit, except that the resulting quotient  
is raised to the 1.21 power. Resistor RA (nominally 931 Ω) sets  
the power or m factor.  
1.21  
(
VZ  
)
)
Vθ =  
(
VθREF Vθ  
)
(VX  
For the highest arc-tangent accuracy the R1 and R2 external  
resistors should be ratio matched; however, the offset trim scheme  
shown in other circuits is not required since nonlinearity effects  
are the predominant source of error. Also note that instability  
will occur as the output approaches 90° because, by definition,  
the arc-tangent function is infinite and therefore, the gain of the  
AD538 will be extremely high.  
where:  
θ=Tan1  
Z
X
Rev. E | Page 15 of 16  
 
 
 
 
AD538  
OUTLINE DIMENSIONS  
0.005 (0.13) MIN  
18  
0.098 (2.49) MAX  
10  
0.310 (7.87)  
PIN 1  
1
0.220 (5.59)  
9
0.320 (8.13)  
0.290 (7.37)  
0.960 (24.38) MAX  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
0.100 0.070 (1.78)  
(2.54)  
0.030 (0.76)  
0.023 (0.58)  
0.014 (0.36)  
BSC  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 19. 18-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]  
(D-18)  
Dimensions shown in inches and (millimeters)  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
AD538ACHIPS  
AD538AD  
AD538ADZ  
AD538BD  
AD538BDZ  
AD538SD  
AD538SD/883B  
−25°C to +85°C  
−25°C to +85°C  
−25°C to +85°C  
−25°C to +85°C  
−25°C to +85°C  
−55°C to +125°C  
−55°C to +125°C  
Chips  
18-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]  
18-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]  
18-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]  
18-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]  
18-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]  
18-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]  
D-18  
D-18  
D-18  
D-18  
D-18  
D-18  
1 Z = RoHS Compliant Part.  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00959-0-6/11(E)  
Rev. E | Page 16 of 16  
 
 
 

相关型号:

AD538BD

Real-Time Analog Computational Unit ACU
ADI

AD538BD/+

Analog Multiplier/Divider
ETC

AD538BDZ

Real-Time Analog Computational Unit (ACU)
ADI

AD538BDZ

ANALOG MULTIPLE FUNCTIONS, 0.4 MHz BAND WIDTH, CDIP18, ROHS COMPLIANT, SIDE BRAZED, CERAMIC, DIP-18
ROCHESTER

AD538SD

Real-Time Analog Computational Unit ACU
ADI

AD538SD

ANALOG MULTIPLE FUNCTIONS, 0.4 MHz BAND WIDTH, CDIP18, SIDE BRAZED, CERAMIC, DIP-18
ROCHESTER

AD538SD/883B

Real-Time Analog Computational Unit (ACU)
ADI

AD538SD883B

Real-Time Analog Computational Unit (ACU)
ADI

AD539

Wideband Dual-Channel Linear Multiplier/Divider
ADI

AD5390

8-/16-Channel, 3 V/5 V, Serial Input, Single- Supply, 12-/14-Bit Voltage Output DACs
ADI

AD5390BCP

IC SERIAL INPUT LOADING, 8 us SETTLING TIME, 14-BIT DAC, QCC64, 9 X 9 MM, LFCSP-64, Digital to Analog Converter
ADI

AD5390BCP-3

8-/16-Channel, 3 V/5 V, Serial Input, Single- Supply, 12-/14-Bit Voltage Output DACs
ADI