AD538SD [ADI]

Real-Time Analog Computational Unit ACU; 实时模拟计算单元ACU
AD538SD
型号: AD538SD
厂家: ADI    ADI
描述:

Real-Time Analog Computational Unit ACU
实时模拟计算单元ACU

模拟计算功能 信号电路 CD
文件: 总11页 (文件大小:170K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Real-Time Analog  
a
Computational Unit (ACU)  
AD538  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
m
VZ  
VOUT = VY  
Transfer Function  
VX  
1
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
I
A
D
Z
Wide Dynamic Range (Denominator) –1000:1  
Simultaneous Multiplication and Division  
Resistor-Programmable Powers and Roots  
No External Trims Required  
LOG  
25k  
RATIO  
V
Z
B
+10V  
+2V  
I
X
Low Input Offsets <100 V  
V
X
Low Error ؎0.25% of Reading (100:1 Range)  
+2 V and +10 V On-Chip References  
Monolithic Construction  
25k⍀  
100⍀  
100⍀  
SIGNAL  
GND  
INTERNAL  
VOLTAGE  
PWR  
GND  
+V  
S
S
REFERENCE  
AD538  
APPLICATIONS  
One- or Two-Quadrant Mult/Div  
Log Ratio Computation  
Squaring/Square Rooting  
Trigonometric Function Approximations  
Linearization Via Curve Fitting  
Precision AGC  
–V  
C
OUTPUT  
25k⍀  
V
I
Y
O
ANTILOG  
I
V
LOG  
Y
25k⍀  
Power Functions  
PRODUCT DESCRIPTION  
Direct log ratio computation is possible by using only the log  
ratio and output sections of the chip. Access to the multiple  
summing junctions adds further to the AD538’s flexibility.  
Finally, a wide power supply range of ±4.5 V to ±18 V allows  
operation from standard ±5 V, ±12 V and ±15 V supplies.  
The AD538 is a monolithic real-time computational circuit that  
provides precision analog multiplication, division and exponen-  
tiation. The combination of low input and output offset voltages  
and excellent linearity results in accurate computation over an  
unusually wide input dynamic range. Laser wafer trimming makes  
multiplication and division with errors as low as 0.25% of read-  
ing possible, while typical output offsets of 100 µV or less add to  
the overall off-the-shelf performance level. Real-time analog  
signal processing is further enhanced by the device’s 400 kHz  
bandwidth.  
The AD538 is available in two accuracy grades (A and B) over  
the industrial (–25°C to +85°C) temperature range and one  
grade (S) over the military (–55°C to +125°C) temperature  
range. The device is packaged in an 18-lead TO-118 hermetic  
side-brazed ceramic DIP. A-grade chips are also available.  
The AD538’s overall transfer function is VO = VY (VZ/VX)m.  
Programming a particular function is via pin strapping. No  
external components are required for one-quadrant (positive  
input) multiplication and division. Two-quadrant (bipolar  
numerator) division is possible with the use of external level  
shifting and scaling resistors. The desired scale factor for both  
multiplication and division can be set using the on-chip +2 V or  
+10 V references, or controlled externally to provide simulta-  
neous multiplication and division. Exponentiation with an m  
value from 0.2 to 5 can be implemented with the addition of  
one or two external resistors.  
PRODUCT HIGHLIGHTS  
1. Real-time analog multiplication, division and exponentiation.  
2. High accuracy analog division with a wide input dynamic  
range.  
3. On-chip +2 V or +10 V scaling reference voltages.  
4. Both voltage and current (summing) input modes.  
5. Monolithic construction with lower cost and higher reliability  
than hybrid and modular circuits.  
REV. C  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1999  
(VS = ؎15 V, TA = +25؇C unless otherwise noted)  
AD538–SPECIFICATIONS  
AD538AD  
AD538BD  
Typ  
AD538SD  
Typ  
Parameters  
Conditions  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Units  
MULTIPLIER DIVIDER  
PERFORMANCE  
Nominal Transfer  
Function  
m
m
m
VZ  
VX  
VZ  
VX  
VZ  
VX  
10 V VX, VY, VZ 0 VO = VY  
VO = Vy  
VO = VY  
m
m
m
IZ  
IX  
IZ  
IX  
IZ  
IX  
400 µA IX, IY,  
I
Z 0 VO = 25 kΩ × IY  
VO = 25 kΩ × IY  
VO = 25 kΩ × IY  
Total Error Terms  
100:1 Input Range1  
100 mV VX 10 V  
100 mV VY 10 V  
100 mV VZ 10 V  
±0.5  
±200  
؎1  
؎500  
± 0.25  
± 100  
؎0.5  
؎250  
± 0.5  
± 200  
؎1  
؎500  
% of Reading +  
µV  
V
Z 10 VX, m = 1.0  
TA = TMIN to TMAX  
±1  
±450  
؎2  
؎750  
± 0.5  
± 350  
؎1  
؎500  
± 1.25  
± 750  
؎2.5  
؎1000  
% of Reading +  
µV  
Wide Dynamic Range2  
10 mV VX 10 V  
1 mV VY 10 V  
0 mV VZ 10 V  
±1  
±200  
±100  
؎2  
؎500  
؎250  
± 0.5  
± 100  
± 750  
؎1  
؎250  
؎150  
± 1  
± 200  
± 200  
؎2  
؎500  
؎250  
% of Reading +  
µV +  
µV × (VY + VZ)/VX  
V
Z 10 VX, m = 1.0  
TA = TMIN to TMAX  
±1  
±450  
±450  
؎3  
؎750  
؎750  
± 1  
± 350  
± 350  
؎2  
؎500  
؎500  
± 2  
± 750  
± 750  
؎4  
؎1000  
؎1000  
% of Reading +  
µV +  
µV × (VY + VZ)/VX  
Exponent (m) Range  
TA = TMIN to TMAX  
0.2  
5
0.2  
5
0.2  
5
OUTPUT  
CHARACTERISTICS  
Offset Voltage  
V
Y = 0, VC = –600 mV  
±200  
±450  
؎500  
؎750  
+11  
± 100  
± 350  
؎250  
؎500  
+11  
± 200  
± 750  
؎500  
؎1000  
+11  
µV  
µV  
V
TA = TMIN to TMAX  
RL = 2 kΩ  
Output Voltage Swing  
Output Current  
–11  
5
–11  
5
–11  
5
10  
10  
10  
mA  
FREQUENCY RESPONSE  
Slew Rate  
1.4  
1.4  
1.4  
V/µs  
Small Signal Bandwidth  
100 mV 10 VY, VZ,  
400  
400  
400  
kHz  
V
X 10 V  
VOLTAGE REFERENCE  
Accuracy  
Additional Error  
Output Current  
Power Supply Rejection  
+2 V = VREF  
VREF = 10 V or 2 V  
TA = TMIN or TMAX  
VREF = 10 V to 2 V  
±25  
±20  
2.5  
؎50  
؎30  
± 15  
± 20  
2.5  
؎25  
؎30  
± 25  
± 30  
2.5  
؎50  
؎50  
mV  
mV  
mA  
1
1
1
±4.5 V VS ≤ ± 18 V  
±13 V VS ±18 V  
300  
200  
600  
500  
300  
200  
600  
500  
300  
200  
600  
500  
µV/V  
µV/V  
+10 V = VREF  
POWER SUPPLY  
Rated  
RL = 2 kΩ  
±15  
± 15  
± 15  
V
V
%/V  
Operating Range3  
PSRR  
؎4.5  
؎18  
0.1  
؎4.5  
؎18  
0.1  
؎4.5  
؎18  
0.1  
±4.5 V < VS < ±18 V  
VX = VY = VZ = 1 V  
VOUT = 1 V  
0.5  
0.05  
0.5  
Quiescent Current  
4.5  
7
4.5  
7
4.5  
7
mA  
TEMPERATURE RANGE  
Rated  
Storage  
–25  
–65  
+85  
+150  
–25  
–65  
+85  
+150  
–55  
–65  
+125  
+150  
°C  
°C  
PACKAGE OPTIONS  
Ceramic (D-18)  
AD538AD  
AD538ACHIPS  
AD538BD  
AD538SD  
AD538SD/883B  
Chips  
NOTES  
1Over the 100 mV to 10 V operating range total error is the sum of a percent of reading term and an output offset. With this input dynamic range the input offset  
contribution to total error is negligible compared to the percent of reading error. Thus, it is specified indirectly as a part of the percent of reading error.  
2The most accurate representation of total error with low level inputs is the summation of a percent of reading term, an output offset and an input offset multiplied by  
the incremental gain (VY + VZ) VX.  
3When using supplies below ± 13 V, the 10 V reference pin must be connected to the 2 V pin in order for the AD538 to operate correctly.  
Specifications subject to change without notice.  
Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min  
and max specifications are guaranteed, although only those shown in boldface are tested on all production units.  
REV. C  
–2–  
AD538  
RE-EXAMINATION OF MULTIPLIER/DIVIDER  
ACCURACY  
or divider with inputs down to 100 mV, has a maximum error of  
±1% of reading ±500 µV. Some sample total error calculations  
for both grades over the 100:1 input range are illustrated in the  
chart below. This error specification format is a familiar one to  
designers and users of digital voltmeters where error is specified  
as a percent of reading ± a certain number of digits on the meter  
readout.  
Traditionally, the “accuracy” (actually the errors) of analog  
multipliers and dividers have been specified in terms of percent  
of full scale. Thus specified, a 1% multiplier error with a 10 V  
full-scale output would mean a worst case error of +100 mV at  
“any” level within its designated output range. While this type  
of error specification is easy to test evaluate, and interpret, it can  
leave the user guessing as to how useful the multiplier actually is  
at low output levels, those approaching the specified error limit  
(in this case) 100 mV.  
For operation as a multiplier or divider over a wider dynamic  
range (>100:1), the AD538 has a more detailed error specifica-  
tion that is the sum of three components: a percent of reading  
term, an output offset term and an input offset term for the  
VY/VX log ratio section. A sample application of this specifica-  
tion, taken from Table I, for the AD538AD with VY = 1 V, VZ =  
100 mV and VX = 10 mV would yield a maximum error of  
±2.0% of reading ±500 µV ±(1 V + 100 mV)/10 mV × 250 µV  
or ±2.0% of reading ±500 µV ± 27.5 mV. This example illus-  
trates that with very low level inputs the AD538’s incremental  
gain (VY + VZ)/VX has increased to make the input offset contri-  
bution to error substantial.  
The AD538’s error sources do not follow the percent of full-  
scale approach to specification, thus it more optimally fits the  
needs of the very wide dynamic range applications for which it is  
best suited. Rather than as a percent of full scale, the AD538’s  
error as a multiplier or divider for a 100:1 (100 mV to 10 V)  
input range is specified as the sum of two error components: a  
percent of reading (ideal output) term plus a fixed output offset.  
Following this format the AD538AD, operating as a multiplier  
Table I. Sample Error Calculation Chart (Worst Case)  
VY  
Input  
VZ  
Input  
VX  
Ideal  
Total Offset % of Reading Total Error Total Error Summation  
Error Term Error Term Summation as a % of the Ideal  
(in mV) (in mV) (in mV) Output  
Input Output  
(in V) (in V) (in V) (in V)  
100:1 10  
INPUT  
RANGE  
Total Error = 10  
±% rdg  
±Output VOS  
1
10  
0.1  
1
10  
0.1  
1
10  
10  
1
0.5 (AD) 100 (AD)  
0.25 (BD) 50 (BD)  
100.5 (AD) 1.0 (AD)  
50.25 (BD) 0.5 (BD)  
0.5  
(AD) 100 (AD)  
100.5 (AD) 1.0 (AD)  
50.25 (BD) 0.5 (BD)  
0.25 (BD) 50 (BD)  
0.5  
(AD) 10 (AD)  
10.5 (AD) 1.05 (AD)  
5.25 (BD) 0.5 (BD)  
0.25 (BD)  
5
(BD)  
0.1  
0.1  
0.1  
0.1  
10  
0.5  
(AD)  
1
(AD)  
1.5  
(AD) 1.5 (AD)  
0.25 (BD) 0.5 (BD)  
28 (AD) 200 (AD)  
16.75 (BD) 100 (BD)  
0.75 (BD) 0.75 (BD)  
WIDE  
DYNAMIC  
RANGE  
Total Error = 10  
±% rdg  
1
0.10  
0.01  
228 (AD) 2.28 (AD)  
116.75 (BD) 1.17 (BD)  
0.05  
0.01  
0.01  
2
0.25  
1.76 (AD)  
5
(AD)  
6.76 (AD) 2.7 (AD)  
1
(BD) 2.5 (BD)  
3.5  
(BD) 1.4 (BD)  
±Output VOS  
±Input VOS  
×
5
0.01  
0.1  
5
1
125.75 (AD) 100 (AD)  
75.4 (BD) 50 (BD)  
225.75 (AD) 4.52 (AD)  
125.4 (BD) 2.51 (BD)  
(VY + VZ)/VX  
10  
25.53 (AD) 20 (AD)  
15.27 (BD) 10 (BD)  
45.53 (AD) 4.55 (AD)  
25.27 (BD) 2.53 (BD)  
REV. C  
–3–  
AD538  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Internal Power Dissipation . . . . . . . . . . . . . . . . . . . . 250 mW  
Output Short Circuit-to-Ground . . . . . . . . . . . . . . . Indefinite  
Input Voltages VX, VY, VZ . . . . . . . . . . . . . (+VS – 1 V), –1 V  
Input Currents IX, IY, IZ, IO . . . . . . . . . . . . . . . . . . . . . . 1 mA  
Operating Temperature Range . . . . . . . . . . . –25°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature, Storage . . . . . . . . . . . . . . 60 sec, +300°C  
Thermal Resistance  
1
2
3
4
5
6
7
8
9
I
18  
17  
16  
15  
14  
A
D
Z
V
Z
B
+10V  
+2V  
I
X
V
X
AD538  
TOP VIEW  
(Not to Scale)  
SIGNAL GND  
+V  
–V  
13 PWR GND  
S
12  
11  
10  
C
S
θJC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35°C/W  
θJA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120°C/W  
V
I
Y
O
I
V
Y
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
AD538AD  
AD538BD  
AD538ACHIPS  
AD538SD  
AD538SD/883B –55°C to +125°C  
–25°C to +85°C  
–25°C to +85°C  
–25°C to +85°C  
–55°C to +125°C  
Side-Brazed Ceramic DIP  
Side-Brazed Ceramic DIP  
Chips  
Side-Brazed Ceramic DIP  
Side-Brazed Ceramic DIP  
D-18  
D-18  
D-18  
D-18  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD538 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. C  
–4–  
Typical Performance Characteristics–AD538  
5.0  
4.0  
1000  
800  
1M  
400k  
V
V
= 10V dc  
Y
Z
3.0  
2.0  
1.0  
0
600  
400  
200  
0
= V +0.05 V SIN t  
X
X
100k  
40k  
OFFSET  
% OF READING  
80 100  
10k  
0.01  
–55 –40 –20  
0
20  
40  
60  
125  
0.1  
1
10  
DENOMINATOR VOLTAGE, V – V dc  
TEMPERATURE – ؇C  
X
Figure 1. Multiplier Error vs. Temperature  
(100 mV < VX, VY, VZ 10 V)  
Figure 4. Small Signal Bandwidth vs. Denominator  
Voltage (One-Quadrant Mult/Div)  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
1200  
1000  
800  
5.0  
1000  
4.0  
3.0  
2.0  
1.0  
0
800  
600  
400  
200  
0
600  
% OF READING  
400  
200  
OFFSET  
OFFSET  
100  
% OF READING  
80 100 125  
0
125  
–55 –40  
–20  
0
20  
40  
60  
80  
–55 –40 –20  
0
20  
40  
60  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
Figure 2. Divider Error vs. Temperature  
Figure 5. Multiplier Error vs. Temperature  
(100 mV < VX, VY, VZ 10 V)  
(10 mV < VX, VY, VZ 100 mV)  
5.0  
4.0  
3.0  
2.0  
1000  
100  
10  
1000  
800  
600  
400  
V
V
V
= 10V  
= 0V  
X
Y
Z
= 5V +5V SIN t VOLTS  
% OF READING  
1.0  
0
200  
0
OFFSET  
80  
1
100  
1k  
10k  
100k  
1M  
–55 –40 –20  
0
20  
40  
60  
100  
125  
INPUT FREQUENCY – Hz  
TEMPERATURE – ؇C  
Figure 3. VZ Feedthrough vs. Frequency  
Figure 6. Divider Error vs. Temperature  
(10 mV < VX, VY, VZ 100 mV)  
REV. C  
–5–  
AD538  
150  
100  
10  
FOR THE FREQUENCY RANGE OF 10Hz  
TO 100kHz THE TOTAL RMS OUTPUT  
100  
NOISE, e , FOR A GIVEN BANDWIDTH  
o
Bw, IS CALCULATED e = e Bw  
o
n
V
V
V
= 10V  
X
Y
Z
V
= 0.01V  
10  
X
= 5V +5V SIN t VOLTS  
= 0V  
1
1.0  
0.1  
V
= 10V  
X
0.10  
0.01  
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
DC OUTPUT VOLTAGE – Volts  
INPUT FREQUENCY – Hz  
Figure 7. VY Feedthrough vs. Frequency  
Figure 8. 1 kHz Output Noise Spectral Density vs. DC Output  
Voltage  
Under normal operation, the log-ratio output will be directly  
connected to a second functional block at input C, the antilog  
subsection. This section performs the antilog according to the  
transfer function:  
1
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
I
A
D
Z
LOG  
25k⍀  
RATIO  
V
Z
B
+10V  
+2V  
I
X
q
VC  
kT  
VO = VY e  
V
X
25k⍀  
100⍀  
100⍀  
As with the log-ratio circuit included in the AD538, the user  
may use the antilog subsection by itself. When both subsections  
are combined, the output at B is tied to C, the transfer function  
of the AD538 computational unit is:  
SIGNAL  
GND  
INTERNAL  
VOLTAGE  
PWR  
GND  
+V  
S
S
REFERENCE  
AD538  
–V  
C
OUTPUT  
kT  
q
q
kT  
VZ  
VX  
ln  
25k⍀  
VO = VY e  
which reduces to:  
;VB = VC  
V
I
Y
O
ANTILOG  
I
V
LOG  
Y
25k⍀  
V
VX  
Z
V
O
= V  
Y
Figure 9. Functional Block Diagram  
Finally, by increasing the gain, or attenuating the output of the  
log ratio subsection via resistor programming, it is possible to  
raise the quantity VZ/VX to the mth power. Without external  
programming, m is unity. Thus the overall AD538 transfer  
function equals:  
FUNCTIONAL DESCRIPTION  
As shown in Figures 9 and 10, the VZ and VX inputs connect  
directly to the AD538’s input log ratio amplifiers. This subsec-  
tion provides an output voltage proportional to the natural log  
of input voltage VZ, minus the natural log of input voltage VX.  
The output of the log ratio subsection at B can be expressed by  
the transfer function:  
m
VZ  
VO = VY  
VX  
kT  
q
VZ  
VX  
VB  
=
ln  
where 0.2 < m < 5.  
When the AD538 is used as an analog divider, the VY input can  
be used to multiply the ratio VZ /VX by a convenient scale factor.  
The actual multiplication by the VY input signal is accomplished  
by adding the log of the VY input signal to the signal at C, which  
is already in the log domain.  
where k = 1.3806 × 10–23 J/K,  
q = 1.60219 × 10–19 C,  
T is in Kelvins.  
The log ratio configuration may be used alone, if correctly tem-  
perature compensated and scaled to the desired output level  
(see Applications section).  
REV. C  
–6–  
AD538  
STABILITY PRECAUTIONS  
ONE-QUADRANT MULTIPLICATION/DIVISION  
At higher frequencies, the multistaged signal path of the AD538,  
as illustrated in Figure 10, can result in large phase shifts. If a  
condition of high incremental gain exists along that path (e.g.,  
VO = VY × VZ /VX = 10 V × 10 mV/10 mV = 10 V so that  
VO /VX = 1000), then small amounts of capacitive feedback  
from VO to the current inputs IZ or IX can result in instability.  
Appropriate care should be exercised in board layout to pre-  
vent capacitive feedback mechanisms under these conditions.  
Figure 12 shows how the AD538 may be easily configured as a  
precision one-quadrant multiplier/divider. The transfer function  
VOUT = VY (VZ/VX) allows “three” independent input variables,  
a calculation not available with a conventional multiplier. In  
addition, the 1000:1 (i.e., 10 mV to 10 V) input dynamic range  
of the AD538 greatly exceeds that of analog multipliers comput-  
ing one-quadrant multiplication and division.  
V
V
Z
V
OUT  
= V  
Y
(
)
X
Ln Z – Ln X  
I
X
X
Ln X  
M(Ln Z – Ln X)  
M(Ln Z – Ln X) +Ln Y  
LOG  
e
V
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
12  
11  
10  
I
A
D
Z
LOG  
RATIO  
V
Z
25k  
V
Z
ANTILOG  
0.2ՅMՅ5  
BUFFER  
INPUT  
e
+
+
+
B
I
X
M
V
V
Z
X
I
I
Z
Y
V
= V  
Y
O
V
X
V
X
LOG  
LOG  
e
e
+10V  
+2V  
Ln Z  
Ln Y  
INPUT  
25k⍀  
V
V
Z
Y
100⍀  
100⍀  
SIGNAL  
GND  
Figure 10. Model Circuit  
USING THE VOLTAGE REFERENCES  
PWR  
GND  
INTERNAL  
VOLTAGE  
+15V  
REFERENCE  
AD538  
C
A stable bandgap voltage reference for scaling is included in the  
AD538. It is laser-trimmed to provide a selectable voltage out-  
put of +10 V buffered (Pin 4), +2 V unbuffered (Pin 5) or any  
voltages between +2 V and +10.2 V buffered as shown in Figure  
11. The output impedance at Pin 5 is approximately 5 k. Note  
that any loading of this pin will produce an error in the +10 V  
reference voltage. External loads on the +2 V output should be  
greater than 500 kto maintain errors less than 1%.  
7
8
9
OUTPUT  
–15V  
IN4148  
25k⍀  
I
Y
V
O
ANTILOG  
OUTPUT  
V
Y
V
Y
I
LOG  
INPUT  
25k⍀  
Figure 12. One-Quadrant Combination Multiplier/Divider  
By simply connecting the input VX (Pin 15) to the +10 V refer-  
ence (Pin 4), and tying the log-ratio output at B to the antilog  
input at C, the AD538 can be configured as a one-quadrant  
analog multiplier with 10-volt scaling. If 2-volt scaling is desired,  
VX can be tied to the +2 V reference.  
1
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
I
A
D
Z
LOG  
25k⍀  
+2V TO +10.2V  
BUFFERED  
RATIO  
V
Z
When the input VX is tied to the +10 V reference terminal, the  
multiplier transfer function becomes:  
B
I
X
REF OUT  
V
X
25k⍀  
VZ  
VO = VY  
100⍀  
100⍀  
+2V  
SIGNAL  
GND  
50k⍀  
10 V  
INTERNAL  
VOLTAGE  
11.5k⍀  
PWR  
GND  
+V  
S
As a multiplier, this circuit provides a typical bandwidth of  
400 kHz with values of VX, VY or VZ varying over a 100:1 range  
(i.e., 100 mV to 10 V). The maximum error with a 100 mV to  
10 V range for the two input variables will typically be +0.5% of  
reading. Using the optional Z offset trim scheme, as shown in  
Figure 13, this error can be reduced to +0.25% of reading.  
REFERENCE  
AD538  
–V  
S
C
OUTPUT  
25k⍀  
V
I
Y
O
ANTILOG  
I
V
LOG  
Y
25k⍀  
By using the +10 V reference as the VY input, the circuit of  
Figure 12 is configured as a one-quadrant divider with a fixed  
scale factor. As with the one-quadrant multiplier, the inputs  
accept only single (positive) polarity signals. The output of the  
one-quadrant divider with a +10 V scale factor is:  
Figure 11. +2 V to +10.2 V Adjustable Reference  
In situations not requiring both reference levels, the +2 V output  
can be converted to a buffered output by tying Pins 4 and 5  
together. If both references are required simultaneously, the  
+10 V output should be used directly and the +2 V output  
should be externally buffered.  
VZ  
VO = 10V  
VX  
The typical bandwidth of this circuit is 370 kHz with 1 V to  
10 V denominator input levels. At lower amplitudes, the band-  
width gradually decreases to approximately 200 kHz at the  
2 mV input level.  
REV. C  
–7–  
AD538  
TWO-QUADRANT DIVISION  
LOG RATIO OPERATION  
The two-quadrant linear divider circuit illustrated in Figure 13  
uses the same basic connections as the one-quadrant version.  
However, in this circuit the numerator has been offset in the  
positive direction by adding the denominator input voltage to it.  
The offsetting scheme changes the divider’s transfer function  
from:  
Figure 14 shows the AD538 configured for computing the log of  
the ratio of two input voltages (or currents). The output signal  
from B is connected to the summing junction of the output ampli-  
fier via two series resistors. The 90.9 metal film resistor effec-  
tively degrades the temperature coefficient of the ±3500 ppm/°C  
resistor to produce a 1.09 k+3300 ppm/°C equivalent value.  
In this configuration, the VY input must be tied to some voltage  
less than zero (–1.2 V in this case) removing this input from the  
transfer function.  
VZ  
VO = 10V  
VX  
The 5 kpotentiometer controls the circuit’s scale factor ad-  
justment providing a +1 V per decade adjustment. The output  
offset potentiometer should be set to provide a zero output with  
VX = VZ = 1 V. The input VZ adjustment should be set for an  
output of 3 V with VZ = l mV and VX = 1 V.  
to:  
VZ + AVX  
(
)
VZ  
VX  
VO = 10V  
= 10 V 1 A +  
VX  
–V  
S
VZ  
VX  
= 10 A +10 V  
V
Z
68k⍀  
V
O
= 1V LOG10 ( )  
V
X
5%  
AD589  
–1.2V  
10M⍀  
I
Z
A
D
35 kΩ  
25 kΩ  
1
2
3
4
5
6
7
8
18  
17  
1M⍀  
A=  
where  
48.7⍀  
LOG  
RATIO  
V
Z
25k⍀  
OPTIONAL  
INPUT V  
OS  
ADJUSTMENT  
B
As long as the magnitude of the denominator input is equal to  
or greater than the magnitude of the numerator input, the cir-  
cuit will accept bipolar numerator voltages. However, under the  
conditions of a 0 V numerator input, the output would incor-  
rectly equal +14 V. The offset can be removed by connecting  
the +10 V reference through resistors R1 and R2 to the output  
section’s summing node I at Pin 9 thus providing a gain of 1.4  
at the center of the trimming potentiometer. The pot R2 adjusts  
out or corrects this offset, leaving the desired transfer function  
of 10 V (VZ/VX).  
I
X
16  
15  
14  
13  
12  
V
X
90.9⍀  
INPUT  
V
X
+10V  
+2V  
1%  
25k⍀  
SIGNAL  
GND  
100  
INTERNAL  
VOLTAGE  
REFERENCE  
100⍀  
1k⍀  
+3500  
ppm/؇C  
PWR  
GND  
AD538  
+15V  
–15V  
OUTPUT  
C
OUTPUT  
25k⍀  
2k⍀  
5k⍀  
1%  
V
O
I
Y
11  
10  
ANTILOG  
LOG  
SCALE  
FACTOR  
ADJUST  
IN4148  
V
Y
I
9
25k⍀  
+V  
S
NUMERATOR  
DENOMINATOR  
OPTIONAL  
Z OFFSET TRIM  
V
V
10M⍀  
OPTIONAL  
OUTPUT V  
Z
X
10k⍀  
OS  
ADJUSTMENT  
–V  
S
–V  
FOR  
X
S
V
Z
V
OUT  
= 10 ( ) V  
V
X
Ն V  
Z
35k⍀  
68k⍀  
5%  
Figure 14. Log Ratio Circuit  
AD589  
–1.2V  
The log ratio circuit shown achieves ±0.5% accuracy in the log  
domain for input voltages within three decades of input range:  
10 mV to 10 V. This error is not defined as a percent of full-  
scale output, but as a percent of input. For example, using a  
1 V/decade scale factor, a 1% error in the positive direction at  
the INPUT of the log ratio amplifier translates into a 4.3 mV  
deviation from the ideal OUTPUT (i.e., 1 V × log10 (1.01) =  
4.3214 mV). An input error 1% in the negative direction is  
slightly different, giving an output deviation of 4.3648 mV.  
10M⍀  
I
Z
1M⍀  
OS  
1
2
3
4
5
6
7
8
18  
17  
16  
15  
14  
13  
12  
A
D
V
ADJ  
35k⍀  
LOG  
RATIO  
V
Z
25k⍀  
3.9M⍀  
I
X
B
+10V  
V
X
25k⍀  
SIGNAL  
GND  
100⍀  
INTERNAL  
VOLTAGE  
REFERENCE  
100⍀  
+2V  
PWR  
GND  
AD538  
+15V  
IN4148  
C
–15V  
OUTPUT  
25k⍀  
OUTPUT  
V
O
I
Y
11  
10  
ANTILOG  
LOG  
R2  
R1  
10k12.4k⍀  
V
Y
I
9
25k⍀  
ZERO  
ADJUST  
Figure 13. Two-Quadrant Division with 10 V Scaling  
REV. C  
–8–  
AD538  
ANALOG COMPUTATION OF POWERS AND ROOTS  
It is often necessary to raise the quotient of two input signals to  
a power or take a root. This could be squaring, cubing, square-  
rooting or exponentiation to some noninteger power. Examples  
include power series generation. With the AD538, only one or  
two external resistors are required to set ANY desired power,  
over the range of 0.2 to 5. Raising the basic quantity VZ/VX to a  
power greater than one requires that the gain of the AD538’s log  
ratio subtractor be increased, via an external resistor between  
pins A and D. Similarly, a voltage divider that attenuates the log  
ratio output between points B and C will program the power to  
a value less than one.  
SQUARE ROOT OPERATION  
The explicit square root circuit of Figure 16 illustrates a precise  
method for performing a real-time square root computation. For  
added flexibility and accuracy, this circuit has a scale factor  
adjustment.  
The actual square rooting operation is performed in this circuit  
by raising the quantity VZ /VX to the one-half power via the  
resistor divider network consisting of resistors RB and RC. For  
maximum linearity, the two resistors should be 1% (or better)  
ratio-matched metal film types.  
One volt scaling is achieved by dividing-down the 2 V reference  
and applying approximately 1 V to both the VY and VX inputs.  
In this circuit, the VX input is intentionally set low, to about  
0.95 V, so that the VY input can be adjusted high, permitting a  
±5% scale factor trim. Using this trim scheme, the output volt-  
age will be within ±3 mV ± 0.2% of the ideal value over a 10 V  
to 1 mV input range (80 dB). For a decreased input dynamic  
range of 10 mV to 10 V (60 dB) the error is even less; here the  
output will be within ±2 mV ± 0.2% of the ideal value. The  
bandwidth of the AD538 square root circuit is approximately  
280 kHz with a 1 V p-p sine wave with a +2 V dc offset.  
R
A
B
C
A
D
POWERS  
3
12  
18  
17  
V
V
2
Z
m
R
A
V
Z
m
V
8
V
(
)
O
2
3
4
5
196⍀  
97.6⍀  
64.9⍀  
48.7⍀  
Y
V
REF  
10  
Y
15  
V
V
REF  
X
196⍀  
=
R
A
M –1  
R
= R Յ 200⍀  
B
C
R
R
This basic circuit may also be used to compute the cube, fourth  
or fifth roots of an input waveform. All that is required for a  
given root is that the correct ratio of resistors, RC and RB, be  
selected such that their sum is between 150 and 200 .  
B
C
B
2
C
ROOTS  
3
12  
V
V
Z
m
R
R
C
B
V
Z
m
V
8
V
(
)
1/2  
1/3  
1/4  
1/5  
100⍀  
100⍀  
150⍀  
162⍀  
100⍀  
49.9⍀  
49.9⍀  
40.2⍀  
O
Y
V
The optional absolute value circuit shown preceding the AD538  
allows the use of bipolar input voltages. Only one op amp is  
required for the absolute value function because the IZ input of  
the AD538 functions as a summing junction. If it is necessary to  
preserve the sign of the input voltage, the polarity of the op amp  
output may be sensed and used after the computation to switch  
the sign bit of a D.V.M. chip.  
REF  
10  
Y
15  
V
V
REF  
X
R
R
B
C
1
M
=
–1  
Figure 15. Basic Configurations and Transfer Functions  
for the AD538  
V
IN  
1V  
V
OUT  
= 1V  
OPTIONAL  
ABSOLUTE VALUE SECTION  
5k⍀  
I
10k⍀  
Z
1
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
A
D
R
100⍀  
B
20k⍀  
*
LOG  
25k⍀  
V
IN4148  
IN4148  
Z
RATIO  
+V  
7
S
B
I
X
20k⍀  
V
OS  
1
V
20k⍀  
X
2
3
+10V  
+2V  
V
IN  
8
6
25k⍀  
SIGNAL  
GND  
100⍀  
100⍀  
AD OP-07  
OR AD611  
+2V  
4
S
(V TAP  
PWR  
GND  
OS  
INTERNAL  
VOLTAGE  
–V  
TO –V )  
S
+15V  
–15V  
REFERENCE  
AD538  
C
OUTPUT  
25k⍀  
I
V
O
Y
V
OUT  
ANTILOG  
D1  
IN4148  
V
Y
I
LOG  
25k⍀  
1k⍀  
100⍀  
SCALE FACTOR  
TRIM  
R
100⍀  
C
*
RATIO MATCH 1% METAL FILM  
RESISTORS FOR BEST ACCURACY  
1k⍀  
*
Figure 16. Square Root Circuit  
–9–  
REV. C  
AD538  
TRANSDUCER LINEARIZATION  
1.21  
–V ] 
؋
 (V )  
V
Z
Z
–1  
V
= [V  
= TAN (X )  
REF  
X
Many electronic transducers used in scientific, commercial or  
industrial equipment monitor the physical properties of a device  
and/or its environment. Sensing (and perhaps compensating for)  
changes in pressure, temperature, moisture or other physical  
phenomenon can be an expensive undertaking, particularly  
where high accuracy and very low nonlinearity are important. In  
conventional analog systems accuracy may be easily increased  
by offset and scale factor trims, however, nonlinearity is usually  
the absolute limitation of the sensing device.  
A
D
I
1
2
3
4
5
6
7
8
18  
Z
R
A
LOG  
RATIO  
V
Z
25k⍀  
931, 1%  
V
17  
Z
B
I
X
16  
15  
14  
13  
12  
V
X
+10V  
V
X
25k⍀  
SIGNAL  
GND  
100⍀  
100⍀  
+2V  
PWR  
GND  
INTERNAL  
+V  
S
VOLTAGE  
AD538  
+15V  
–15V  
With the ability to easily program a complex analog function,  
the AD538 can effectively compensate for the nonlinearities of  
an inexpensive transducer. The AD538 can be connected be-  
tween the transducer preamplifier output and the next stage of  
monitoring or transmitting circuitry. The recommended proce-  
dure for linearizing a particular transducer is first to find the  
closest function which best approximates the nonlinearity of the  
device and then, to select the appropriate exponent resistor  
value(s).  
1F  
1F  
REFERENCE  
–V  
S
C
OUTPUT  
IN4148  
25k⍀  
V
O
I
Y
11  
10  
V
ANTILOG  
LOG  
V
Y
I
9
25k⍀  
0.1F  
+15V  
AD547JH  
–15V  
R2*  
100k⍀  
R1*  
100k⍀  
ARC-TANGENT APPROXIMATION  
10k⍀  
FULL-SCALE  
ADJUST  
The circuit of Figure 17 is typical of those AD538 applications  
where the quantity VZ /VX is raised to powers greater than one.  
In an approximate arc-tangent function, the AD538 will accu-  
rately compute the angle that is defined by X and Y displace-  
ments represented by input voltages VX and VZ. With accuracy  
to within one degree (for input voltages between 100 µV and  
10 volts), the AD538 arc-tangent circuit is more precise than  
conventional analog circuits and is faster than most digital tech-  
niques. For a direct arc-tangent computation that requires fewer  
external components, refer to the AD639 data sheet. The circuit  
shown is set up for the transfer function:  
118k⍀  
1F  
*RATIO MATCH 1% METAL  
FILM RESISTORS FOR BEST  
ACCURACY  
100k⍀  
Figure 17. The Arc-Tangent Function  
The VB/VA quantity is calculated in the same manner as in the  
one-quadrant divider circuit, except that the resulting quotient  
is raised to the 1.21 power. Resistor RA (nominally 931 ) sets  
the power or m factor.  
For the highest arc-tangent accuracy the external resistors R1  
and R2 should be ratio matched; however, the offset trim  
scheme shown in other circuits is not required since nonlinearity  
effects are the predominant source of error. Also note that insta-  
bility will occur as the output approaches 90° because, by defini-  
tion, the arc-tangent function is infinite and therefore, the AD538’s  
gain will be extremely high.  
1.21  
VZ  
(
)
)
V = V  
V  
θ
θ
(
θ REF  
)
VX  
(
where:  
Z
1  
θ = Tan  
X
The (VθREF Vθ) function is implemented in this circuit by  
adding together the output, Vθ, and an externally applied refer-  
ence voltage, VθREF, via an external AD547 op amp. The 1 µF  
capacitor connected around the AD547’s 100 kfeedback  
resistor frequency compensates the loop (formed by the ampli-  
fier between Vθ and VY).  
REV. C  
–10–  
AD538  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
Side-Brazed Ceramic DIP  
(D-18)  
18  
10  
0.30 (7.62)  
0.28 (7.12)  
9
1
PIN 1  
0.306 (7.78)  
0.294 (7.47)  
0.91 (23.12)  
0.89 (22.61)  
0.12 (3.05)  
0.06 (1.53)  
0.175 (4.45)  
0.125 (3.18)  
0.17 (4.32)  
MAX  
0.012 (0.305)  
0.008 (0.203)  
0.02 (0.508) 0.105 (2.67) 0.06 (1.53)  
0.015 (0.381) 0.095 (2.42) 0.04 (1.02)  
SEATING  
PLANE  
REV. C  
–11–  

相关型号:

AD538SD/883B

Real-Time Analog Computational Unit (ACU)
ADI

AD538SD883B

Real-Time Analog Computational Unit (ACU)
ADI

AD539

Wideband Dual-Channel Linear Multiplier/Divider
ADI

AD5390

8-/16-Channel, 3 V/5 V, Serial Input, Single- Supply, 12-/14-Bit Voltage Output DACs
ADI

AD5390BCP

IC SERIAL INPUT LOADING, 8 us SETTLING TIME, 14-BIT DAC, QCC64, 9 X 9 MM, LFCSP-64, Digital to Analog Converter
ADI

AD5390BCP-3

8-/16-Channel, 3 V/5 V, Serial Input, Single- Supply, 12-/14-Bit Voltage Output DACs
ADI

AD5390BCP-3-REEL

8-/16-Channel, 3 V/5 V, Serial Input, Single- Supply, 12-/14-Bit Voltage Output DACs
ADI

AD5390BCP-3-REEL7

8-/16-Channel, 3 V/5 V, Serial Input, Single- Supply, 12-/14-Bit Voltage Output DACs
ADI

AD5390BCP-5

8-/16-Channel, 3 V/5 V, Serial Input, Single- Supply, 12-/14-Bit Voltage Output DACs
ADI

AD5390BCP-5-REEL

8-/16-Channel, 3 V/5 V, Serial Input, Single- Supply, 12-/14-Bit Voltage Output DACs
ADI

AD5390BCP-5-REEL7

8-/16-Channel, 3 V/5 V, Serial Input, Single- Supply, 12-/14-Bit Voltage Output DACs
ADI

AD5390BCPZ-3

8-/16-Channel, 3 V/5 V, Serial Input, Single-Supply, 12-/14-Bit Voltage Output
ADI