AD5290YRMZ100-R7 [ADI]

Compact 30 V / 15,-15 V 256-Position Digital Potentiometer; 紧凑型30 V / 15 , -15 V 256位数字电位计
AD5290YRMZ100-R7
型号: AD5290YRMZ100-R7
厂家: ADI    ADI
描述:

Compact 30 V / 15,-15 V 256-Position Digital Potentiometer
紧凑型30 V / 15 , -15 V 256位数字电位计

转换器 数字电位计 电阻器 光电二极管
文件: 总20页 (文件大小:500K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Compact +30 V / ± ±1 V ꢀ156-oꢁstsoꢂ  
Dsgstal -oteꢂtsometer  
Data Sheet  
AD1ꢀ90  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
256 position  
10 kΩ, 50 kΩ, 100 kΩ  
V
AD5290  
DD  
SDO  
SDI  
Q
+20 V to +30 V single-supply operation  
10 V to 15 V dual-supply operation  
3-wire SPI®-compatible serial interface  
Low temperature coefficient 35 ppm/°C typical  
THD 0.006% typical  
A
8-BIT  
8
8
8-BIT  
SERIAL  
LATCH  
REGISTER  
W
B
D
CK  
Midscale preset  
RS  
Compact MSOP-10 package  
Automotive temperature range: −40°C to +125°C  
iCMOS™1 process technology  
CLK  
CS  
POR  
V
SS  
DGND  
APPLICATIONS  
High voltage DAC  
Figure 1.  
Programmable power supply  
Programmable gain and offset adjustment  
Programmable filters and delays  
Actuator control  
Audio volume control  
Mechanical potentiometer replacement  
GENERAL DESCRIPTION  
The AD5290 is one of the few high voltage, high performance,  
and compact digital potentiometers2, 3 in the market at present.  
This device can be used as a programmable resistor or resistor  
divider. The AD5290 performs the same electronic adjustment  
function as mechanical potentiometers, variable resistors, and  
trimmers, with enhanced resolution, solid-state reliability, and  
superior temperature stability.  
With digital rather than manual control, the AD5290 provides  
layout flexibility and allows closed-loop dynamic controllability.  
The AD5290 is available in MSOP-10 package and has 10 kΩ,  
50 kΩ, and 100 kΩ options. All parts are guaranteed to operate  
over the −40°C to +125°C extended automotive temperature range.  
1 iCMOS™ Process Technology. For analog systems designers who need high performance ICs at higher voltage levels, iCMOS is a technology platform that enables the  
development of analog ICs capable of 30 V and operating at 15 V supplies while allowing dramatic reductions in power consumption and package size, and  
increased ac and dc performance.  
2 The terms digital potentiometer and RDAC are used interchangeably.  
3 The RDAC segmentation is protected by U.S. Patent Number 5,495,245.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
Tel: 781.329.4700  
www.analog.com  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
Fax: 781.461.3113 ©2005-2011 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
AD5290  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Programming the Variable Resistor......................................... 15  
Programming the Potentiometer Divider............................... 16  
3-Wire Serial Bus Digital Interface.......................................... 16  
Daisy Chain Operation.............................................................. 16  
ESD Protection ........................................................................... 17  
Terminal Voltage Operating Range ......................................... 17  
Power-Up and Power-Down Sequences.................................. 17  
Layout and Power Supply Biasing............................................ 17  
Applications..................................................................................... 18  
High Voltage DAC...................................................................... 18  
Programmable Power Supply ................................................... 18  
Audio Volume Control .............................................................. 18  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—10 kΩ Version................................ 3  
Electrical Characteristics—50 kΩ, 100 kΩ Versions ............... 5  
Interface Timing Characteristics................................................ 7  
3-Wire Digital Interface................................................................... 8  
Absolute Maximum Ratings............................................................ 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Descriptions............................................ 10  
Typical Performance Characteristics ........................................... 11  
Theory of Operation ...................................................................... 15  
REVISION HISTORY  
11/11—Rev. B to Rev. C  
7/09—Rev. 0 to Rev. A  
Change to Figure 33 ....................................................................... 18  
4/10—Rev. A to Rev. B  
Changes to Figure 29...................................................................... 16  
Updated Outline Dimensions ....................................................... 20  
Changes to Features Section ............................................................1  
Changes to Ordering Guide.......................................................... 20  
12/05—Revision 0: Initial Version  
Rev. C | Page 2 of 20  
 
Data Sheet  
AD5290  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—10 kΩ VERSION  
VDD/VSS = 15 V 10%, VA = VDD, VB = VSS or 0 V, 40°C < TA < +125°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS RHEOSTAT MODE  
Resistor Differential NL2  
Resistor Nonlinearity2  
Nominal Resistor Tolerance  
Resistance Temperature Coefficient3  
Wiper Resistance  
R-DNL  
R-INL  
∆RAB  
RWB, VA = NC  
RWB, VA = NC  
TA = +25°C  
−1  
−1.5  
−30  
0.3  
0.7  
+1  
+1.5  
+30  
LSB  
LSB  
%
ppm/°C  
(∆RAB/RAB)/∆T×106 VAB = VDD, wiper = no connect  
35  
50  
RW  
100  
DC CHARACTERISTICS POTENTIOMETER  
DIVIDER MODE  
Integral Nonlinearity4  
Differential Nonlinearity4  
Voltage Divider Temperature Coefficient  
Full-Scale Error  
INL  
DNL  
−1  
−1  
0.3  
0.3  
5
−4  
+3  
+1  
+1  
LSB  
LSB  
ppm/°C  
LSB  
LSB  
(∆VW/VW)/∆T×106 Code = 0x80  
VWFSE  
VWZSE  
Code = 0xFF  
Code = 0x00  
−6  
0
0
+5  
Zero-Scale Error  
RESISTOR TERMINALS  
Voltage Range5  
VA, B, W  
CA, B  
VSS  
VDD  
V
pF  
Capacitance6 A, B  
f = 1 MHz, measured to GND,  
code = 0x80  
f = 1 MHz, measured to GND,  
code = 0x80  
45  
60  
1
Capacitance6  
CW  
ICM  
pF  
Common-Mode Leakage  
VA = VB = VW  
nA  
DIGITAL INPUTS AND OUTPUTS  
CS  
Input Logic High ( , CLK, SDI)  
VIH  
VIL  
VOH  
VOL  
IIL  
2.4  
4.9  
V
CS  
0.8  
V
Input Logic Low ( , CLK, SDI)  
Output Logic High (SDO)  
Output Logic Low (SDO)  
Input Current  
RPull-up = 2.2 kΩ to 5 V  
IOL = 1.6 mA  
VIN = 0 V or 5 V  
V
V
µA  
pF  
0.4  
1
Input Capacitance6  
CIL  
5
POWER SUPPLIES  
Positive Supply Current  
IDD  
VIH = +5 V or VIL = 0 V,  
VDD/VSS = 15 V  
VIH = +5 V or VIL = 0 V,  
VDD/VSS = 15 V  
VIH = +5 V or VIL = 0 V,  
VDD/VSS = 15 V  
ΔVDD/ΔVSS = 15 V 10%  
15  
50  
μA  
μA  
μW  
Negative Supply Current  
Power Dissipation7  
ISS  
−0.01 −1  
765  
PDISS  
PSRR  
Power Supply Rejection Ratio  
−0.15  
0.08 +0.15 %/%  
Rev. C | Page 3 of 20  
 
 
AD5290  
Data Sheet  
Parameter  
DYNAMIC CHARACTERISTICS6, 8, 9  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
Bandwidth −3 dB  
Total Harmonic Distortion  
VW Settling Time  
BW  
THDW  
tS  
Code = 0x80  
VA = 1 V rms, VB = 0 V, f = 1 kHz  
VA = 10 V, VB = 0 V, 1 LSB error  
band  
470  
0.006  
4
kHz  
%
µs  
Resistor Noise Voltage  
eN_WB  
RWB = 5 kΩ, f = 1 kHz  
9
nV/√Hz  
1 Typical represents average reading at +25°C, VDD = +15 V, and VSS = −15 V.  
2 Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from an ideal value measured between successive tap positions. Parts are guaranteed monotonic.  
3 All parts have a 35 ppm/°C temperature coefficient.  
4 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = 0 V. DNL specification limits  
of 1 LSB maximum are guaranteed monotonic operating conditions.  
5 Resistor Terminal A, Terminal B, and Terminal W have no limitations on polarity with respect to each other.  
6 Guaranteed by design and not subject to production test.  
7 PDISS is calculated from (IDD × VDD) + abs (ISS × VSS). CMOS logic-level inputs result in minimum power dissipation.  
8 Bandwidth, noise, and settling times are dependent on the terminal resistance value chosen. The lowest R value results in the fastest settling time and highest  
bandwidth. The highest R value results in the minimum overall power consumption.  
9 All dynamic characteristics use VDD = +15 V and VSS = −15 V.  
Rev. C | Page 4 of 20  
 
 
 
 
Data Sheet  
AD5290  
ELECTRICAL CHARACTERISTICS—50 KΩ, 100 KΩ VERSIONS  
VDD/VSS = 15 V 10%, VA = +VDD, VB = VSS or 0 V, 40°C < TA < +125°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS RHEOSTAT MODE  
Resistor Differential NL2  
Resistor Nonlinearity2  
Nominal Resistor Tolerance  
Resistance Temperature Coefficient3  
Wiper Resistance  
R-DNL  
R-INL  
∆RAB  
RWB, VA = NC  
RWB, VA = NC  
TA = +25°C  
−0.5  
−1  
−30  
0.1  
0.5  
+0.5  
+1  
+30  
LSB  
LSB  
%
ppm/°C  
(∆RAB/RAB)/∆T×106 VAB = VDD, wiper = no connect  
35  
50  
RW  
100  
DC CHARACTERISTICS POTENTIOMETER  
DIVIDER MODE  
Integral Nonlinearity4  
INL  
DNL  
−1  
−1  
0.5  
0.5  
5
+1  
+1  
LSB  
LSB  
ppm/°C  
Differential Nonlinearity4  
Voltage Divider Temperature  
Coefficient  
(∆VW/VW)/∆T×106 Code = 0x80  
Full-Scale Error  
Zero-Scale Error  
VWFSE  
VWZSE  
Code = 0xFF  
Code = 0x00  
−2.5  
0
−1.6  
+0.6  
0
+1.5  
LSB  
LSB  
RESISTOR TERMINALS  
Voltage Range5  
VA, B, W  
CA, B  
VSS  
VDD  
V
pF  
Capacitance6 A, B  
f = 1 MHz, measured to GND,  
code = 0x80  
f = 1 MHz, measured to GND,  
code = 0x80  
45  
60  
1
Capacitance6  
CW  
ICM  
pF  
Common-Mode Leakage  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High (CS, CLK, SDI)  
Input Logic Low (CS, CLK, SDI)  
Output Logic High (SDO)  
Output Logic Low (SDO)  
Input Current  
VA = VB = VW  
nA  
VIH  
VIL  
VOH  
VOL  
IIL  
2.4  
4.9  
V
0.8  
V
RPull-up = 2.2 kΩ to 5 V  
IOL = 1.6 mA  
VIN = 0 V or 5 V  
V
V
µA  
pF  
0.4  
1
Input Capacitance6  
CIL  
5
POWER SUPPLIES  
Positive Supply Current  
IDD  
VIH = +5 V or VIL = 0 V,  
VDD/VSS = 15 V  
15  
50  
μA  
Negative Supply Current  
Power Dissipation7  
ISS  
VIH = +5 V or VIL = 0 V,  
VDD/VSS = 15 V  
VIH = +5 V or VIL = 0 V,  
VDD/VSS = 15 V  
−0.01 −1  
765  
0.01 +0.05  
μA  
PDISS  
PSRR  
μW  
%/%  
Power Supply Rejection Ratio  
ΔVDD/ΔVSS = 15 V 10%  
−0.05  
Rev. C | Page 5 of 20  
 
AD5290  
Data Sheet  
Parameter  
DYNAMIC CHARACTERISTICS6, 8, 9  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
Bandwidth −3 dB  
BW  
RAB = 50 kΩ, code = 0x80  
RAB = 100 kΩ, code = 0x80  
VA = 1 V rms, VB = 0 V, f = 1 kHz  
VA = 10 V, VB = 0 V,  
1 LSB error band  
90  
50  
0.002  
4
kHz  
kHz  
%
Total Harmonic Distortion  
VW Settling Time  
THDW  
tS  
µs  
Resistor Noise Voltage  
eN_WB  
RWB = 25 kΩ, f = 1 kHz  
20  
nV√Hz  
1 Typical represents average reading at +25°C, VDD = +15 V, and VSS = −15 V.  
2 Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from an ideal value measured between successive tap positions. Parts are guaranteed monotonic.  
3 All parts have a 35 ppm/°C temperature coefficient.  
4 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = 0 V. DNL specification  
limits of 1 LSB maximum are guaranteed monotonic operating conditions.  
5 Resistor Terminal A, Terminal B, and Terminal W have no limitations on polarity with respect to each other.  
6 Guaranteed by design and not subject to production test.  
7 PDISS is calculated from (IDD × VDD) + abs (ISS × VSS). CMOS logic level inputs result in minimum power dissipation.  
8 Bandwidth, noise, and settling times are dependent on the terminal resistance value chosen. The lowest R value results in the fastest settling time and highest  
bandwidth. The highest R value results in the minimum overall power consumption.  
9 All dynamic characteristics use VDD = +15 V and VSS = −15 V.  
Rev. C | Page 6 of 20  
 
 
Data Sheet  
AD5290  
INTERFACE TIMING CHARACTERISTICS  
Table 3.  
Parameter  
1, 2  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
MHz  
ns  
Clock Frequency  
Input Clock Pulse Width  
Data Setup Time  
fCLK  
tCH, tCL  
tDS  
4
Clock level high or low  
120  
30  
ns  
Data Hold Time  
CLK to SDO Propagation Delay3  
tDH  
tPD  
20  
10  
ns  
ns  
RPull-up = 2.2 kΩ, CL < 20 pF  
100  
CS Setup Time  
tCSS  
120  
150  
10  
ns  
CS High Pulse Width  
CLK Fall to CS Fall Hold Time  
CLK Rise to CS Rise Hold Time  
CS Rise to Clock Rise Setup  
tCSW  
tCSH0  
tCSH  
tCS1  
ns  
ns  
120  
120  
ns  
ns  
1 See Figure 3 for the location of the measured values. All input control voltages are specified with tR = tF = 1 ns (10% to 90% of VDD) and timed from a voltage level of  
1.6 V. Switching characteristics are measured using VDD = +15 V and VSS = −15 V.  
2 Guaranteed by design and not subject to production test.  
3 Propagation delay depends on the value of VDD, RPull-up, and CL.  
Rev. C | Page 7 of 20  
 
 
 
AD5290  
Data Sheet  
3-WIRE DIGITAL INTERFACE  
Data is loaded MSB first.  
1
0
SDI  
(DATA IN)  
D
D
X
X
Table 4. AD5290 Serial Data-Word Format  
tDS  
tDH  
B7  
D7  
MSB  
27  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
D0  
LSB  
20  
1
0
SDO  
D'  
D'  
X
X
D6  
D5  
D4  
D3  
D2  
D1  
(DATA OUT)  
tPD_MAX  
tCH  
1
0
tCS1  
CLK  
tCSH0  
tCL  
1
0
1
0
1
0
1
0
SDI  
CLK  
CS  
D7 D6 D5 D4 D3 D2 D1  
D0  
tCSH  
tCSS  
1
tCSW  
tS  
CS  
0
V
RDAC REGISTER LOAD  
DD  
V
OUT  
±1 LSB ERROR BAND  
0V  
V
OUT  
±1 LSB  
Figure 2. AD5290 3-Wire Digital Interface Timing Diagram  
(VA = VDD, VB = 0 V, VW = VOUT  
Figure 3. Detail Timing Diagram  
)
Rev. C | Page 8 of 20  
 
 
 
Data Sheet  
AD5290  
ABSOLUTE MAXIMUM RATINGS  
TA = +25°C, unless otherwise noted.  
Table 5.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VDD to GND  
VSS to GND  
VDD to VSS  
VA, VB, VW to GND  
−0.3 V, +35 V  
+0.3 V, −16.5 V  
−0.3 V, +35 V  
VSS, VDD  
Maximum Current  
IWB, IWA Pulsed  
ESD CAUTION  
20 mA  
5 mA  
IWB Continuous (RWB ≤ 6 kΩ, A Open,  
VDD/VSS = 30 V/0 V)1  
IWA Continuous (RWA ≤ 6 kΩ, B Open,  
VDD/VSS = 30 V/0 V)1  
Digital Input and Output Voltages to GND  
5 mA  
0 V, +7 V  
Operating Temperature Range  
Maximum Junction Temperature (TJMAX  
Storage Temperature  
−40°C to +125°C  
+150°C  
−65°C to +150°C  
245°C  
2
)
Lead Temperature  
(Soldering, 10 sec to 30 sec)  
Thermal Resistance2 θJA: MSOP-10  
230°C/W  
1 The maximum terminal current is bound by the maximum current handling  
of the switches, maximum power dissipation of the package, and the  
maximum applied voltage across any two of the following at a given  
resistance: A terminal, B terminal, and W terminal.  
2 Package power dissipation = (TJMAX – TA)/θJA  
.
Rev. C | Page 9 of 20  
 
 
 
 
AD5290  
Data Sheet  
PIN CONFIGURATION AND DESCRIPTIONS  
A
B
1
2
3
4
5
10  
9
W
V
DD  
AD5290  
TOP VIEW  
(Not to Scale)  
V
8
SDO  
SDI  
SS  
GND  
CS  
7
6
CLK  
Figure 4. AD5290 Pin Configuration  
Table 6. AD5290 Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
7
8
A
B
VSS  
GND  
CS  
A Terminal. VSS ≤ VA ≤ VDD.  
B Terminal. VSS ≤ VB ≤ VDD.  
Negative Supply. Connect to 0 V for single-supply applications.  
Digital Ground.  
CS  
Chip Select Input; Active Low. When returns high, data is loaded into the wiper register.  
Serial Clock Input. Positive edge triggered.  
Serial Data Input Pin. Shifts in one bit at a time on positive clock CLK edges. MSB loaded first.  
Serial Data Output Pin. Internal N-Ch FET with open-drain output that requires external pull-up resistor.  
It shifts out the previous eight SDI bits that allow daisy-chain operation of multiple packages.  
CLK  
SDI  
SDO  
9
10  
VDD  
W
Positive Power Supply.  
W Terminal. VSS ≤ VW ≤ VDD.  
Rev. C | Page 10 of 20  
 
Data Sheet  
AD5290  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
1.0  
0.8  
V
= 16.5V  
V
= 16.5V  
DD  
DD  
0.8  
0.6  
–40°C  
+25°C  
+125°C  
–40°C  
+25°C  
+125°C  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
CODE (Decimal)  
Figure 5. Resistance Step Position Nonlinearity Error vs. Code  
Figure 8. Potentiometer Divider Differential Nonlinearity Error vs. Code  
20  
1.0  
V
= 16.5V  
DD  
0.8  
0.6  
I
@ V /V = 30V/0V  
DD DD SS  
–40°C  
+25°C  
+125°C  
16  
12  
8
I
@ V /V = ±15V  
DD SS  
DD  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
4
I
@ V /V = 30V/0V  
DD SS  
SS  
0
I
@ V /V = ±15V  
DD SS  
SS  
–4  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
0
32  
64  
96  
128  
160  
192  
224  
256  
TEMPERATURE (°C)  
CODE (Decimal)  
Figure 6. Resistance Step Change Differential Nonlinearity Error vs. Code  
Figure 9. Supply Current IDD vs. Temperature  
1.0  
V
= 16.5V  
120  
100  
80  
60  
40  
20  
0
V
/V = ±15V  
DD SS  
DD  
0.8  
0.6  
100kΩ  
–40°C  
+25°C  
+125°C  
0.4  
0.2  
0
50kΩ  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
10kΩ  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
0
32  
64  
96  
128  
160  
192  
224  
256  
TEMPERATURE (°C)  
CODE (Decimal)  
Figure 7. Potentiometer Divider Nonlinearity Error vs. Code  
Figure 10. Total Resistance vs. Temperature  
Rev. C | Page 11 of 20  
 
AD5290  
Data Sheet  
0
–6  
100  
80  
0x80  
0x40  
0x20  
0x10  
0x08  
0x04  
10k  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
50k  
60  
100k  
40  
20  
0
–20  
–40  
–60  
–80  
–100  
0x02  
0x01  
1k  
10k  
100k  
1M  
0
32  
64  
96  
128  
160  
192  
224  
256  
(Hz)  
CODE (Decimal)  
Figure 14. 50 kΩ Gain vs. Frequency vs. Code  
Figure 11. (ΔRWB/RWB)/ΔT Rheostat Mode Tempco  
0
–6  
100  
80  
0x80  
0x40  
0x20  
0x10  
0x08  
10k  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
60  
50k  
100k  
40  
20  
0
0x04  
0x02  
0x01  
–20  
–40  
–60  
–80  
–100  
1k  
10k  
100k  
1M  
0
32  
64  
96  
128  
160  
192  
224  
256  
(Hz)  
CODE (Decimal)  
Figure 15. 100 kΩ Gain vs. Frequency vs. Code  
Figure 12. (ΔVWB/VWB)/ΔT Potentiometer Mode Tempco  
0
0x80  
–6  
0x40  
0x20  
0x10  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
0x08  
0x04  
0x02  
0x01  
1k  
10k  
100k  
1M  
(Hz)  
Figure 16. Midscale Transition Glitch  
Figure 13. 10 kΩ Gain vs. Frequency vs. Code  
Rev. C | Page 12 of 20  
Data Sheet  
AD5290  
6
5
4
3
2
1
0
–60  
CODE = 80 , V /V = ±15V, V /V = ±10V  
DD SS  
V
V
V
/V = 30V/0V  
= V  
DD  
= 0V  
H
A
B
DD SS  
A
B
R
= 10kΩ  
–40  
AB  
+PSRR @ V /V = ±15V DC ± 10% p-p AC  
DD SS  
R
= 50kΩ  
AB  
–20  
–PSRR @ V /V = ±15V DC ± 10% p-p AC  
DD SS  
R
= 100kΩ  
AB  
0
100  
0
64  
128  
CODE (Decimal)  
192  
256  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 17. Power Supply Rejection vs. Frequency  
Figure 20. Theoretical Maximum Current vs. Code  
1
140  
120  
100  
80  
V
/V = ±15V  
DD SS  
V
V
V
= +15V  
= –15V  
DD  
SS  
CODE = MIDSCALE  
= 1V  
V
IN  
RMS  
= +5V  
DIG  
10kΩ  
0.01  
CODE = AA  
100kΩ  
60  
50kΩ  
0.001  
0.0001  
40  
CODE = FF  
20  
0
10k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
100k  
FREQUENCY (Hz)  
1M  
10M  
Figure 18. Total Harmonic Distortion Plus Noise vs. Frequency  
Figure 21. Supply Current IDD vs. Frequency  
10  
1
V
V
V
= +15V  
= –15V  
= +5V  
V
/V = ±15V  
DD SS  
DD  
CODE = MIDSCALE  
= 1kHz  
SS  
DIG  
f
IN  
8
6
4
2
0
0.1  
0.01  
CODE = AA  
50kΩ  
10kΩ  
CODE = FF  
100kΩ  
0.001  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
0.001  
0.01  
0.1  
1
10  
AMPLITUDE (V)  
Figure 19. Total Harmonic Distortion Plus Noise vs. Amplitude  
Figure 22. Supply Current ISS vs. Frequency  
Rev. C | Page 13 of 20  
AD5290  
Data Sheet  
1000  
100  
V
/V = ±16.5V  
DD SS  
10  
0
1
2
3
4
5
DIGITAL INPUT VOLTAGE V (V)  
IH  
Figure 23. Supply Current vs. Digital Input Voltage  
Figure 25. Large Signal Settling Time, Code = 0x00 to 0xFF  
Figure 24. Digital Feedthrough  
Rev. C | Page 14 of 20  
Data Sheet  
AD5290  
THEORY OF OPERATION  
PROGRAMMING THE VARIABLE RESISTOR  
where:  
D is the decimal equivalent of the binary code loaded in  
the 8-bit RDAC register from 0 to 255.  
Rheostat Operation  
The part operates in the rheostat mode when only two termi-  
nals are used as a variable resistor. The unused terminal can  
be floating or tied to the W terminal as shown in Figure 26.  
R
AB is the end-to-end resistance.  
RW is one of the wiper resistances contributed by the on  
resistance of an internal switch.  
A
A
A
The AD5290 wiper switch is designed with the transmission  
gate CMOS topology and with the gate voltage derived from  
VDD. The wiper resistance, RW, is a function of VDD and  
temperature. Contrary to the temperature coefficient of the RAB,  
which is only 35 ppm/°C, the temperature coefficient of the wiper  
resistance is significantly higher because the wiper resistance  
doubles from 25°C to 125°C. As a result, the user must take into  
consideration the contribution of RW on the desirable  
W
W
W
B
B
B
Figure 26. Rheostat Mode Configuration  
The nominal resistance between Terminal A and Terminal B,  
RAB, is available in 10 kΩ, 50 kΩ, and 100 kΩ with 30% toler-  
ance and has 256 tap points accessed by the wiper terminal. The  
8-bit data in the RDAC latch is decoded to select one of the 256  
possible settings. Figure 27 shows a simplified RDAC structure.  
resistance. On the other hand, the wiper resistance is insensitive  
to the tap point potential. As a result, RW remains relatively flat  
at a given VDD and temperature at various codes.  
A
Assuming that an ideal 10 kΩ part is used, the wipers first  
connection starts at the B terminal for the programming code  
of 0x00 where SWB is closed. The minimum resistance between  
Terminal W and Terminal B is, therefore, generally 150 Ω. The  
second connection is the first tap point, which corresponds to  
189 Ω (RWB = 1/256 × RAB + 3RW = 39 Ω + 150 Ω) for code 0x01,  
and so on. Each LSB data value increase moves the wiper up the  
resistor ladder until the last tap point is reached at 10,110 Ω.  
4R  
4R  
S
S
2R  
2R  
4R  
S
S
S
R
W
R
R
S
In the zero-scale condition, a finite total wiper resistance of  
150 Ω is present. Regardless of which setting the part is oper-  
ating in, care should be taken to limit the current between  
the A terminal to B terminal, W terminal to A terminal, and  
W terminal to B terminal, to the maximum dc current of 5 mA  
or pulse current of 20 mA. Otherwise, degradation, or possible  
destruction of the internal switch contact, can occur.  
W
R
W
S
8-BIT ADDRESS  
DECODER  
2R  
2R  
S
S
R
W
4R  
4R  
S
S
Similar to the mechanical potentiometer, the resistance of  
the RDAC between the W terminal and the A terminal also  
produces a digitally controlled complementary resistance, RWA.  
RWA starts at the maximum resistance value and decreases as  
the data loaded into the latch increases. The general equation  
for this operation is  
B
Figure 27. AD5290 Simplified RDAC Circuit.  
(RS = Step Resistor, RW = Wiper Resistor)  
256 D  
256  
RWA (D) =  
×RAB + 3×RW  
(2)  
In order to achieve optimum cost performance, Analog Devices  
has patented the RDAC segmentation architecture for all the  
digital potentiometers. In particular, the AD5290 employs a  
3-stage segmentation approach as shown in Figure 27. As  
a result, the general equation determining the digitally  
programmed output resistance between the W terminal  
and B terminal is  
D
256  
RWB (D) =  
× RAB + 3× RW  
(1)  
Rev. C | Page 15 of 20  
 
 
 
 
AD5290  
Data Sheet  
PROGRAMMING THE POTENTIOMETER DIVIDER  
3-WIRE SERIAL BUS DIGITAL INTERFACE  
Voltage Output Operation  
CS  
The AD5290 contains a 3-wire digital interface ( , CLK,  
and SDI). The 8-bit serial word must be loaded MSB first.  
The format of the word is shown in Table 4. The positive edge  
sensitive CLK input requires clean transitions to avoid clocking  
incorrect data into the serial input register. Standard logic fami-  
The digital potentiometer easily generates a voltage divider  
at wiper to B and wiper to A proportional to the input voltage  
at A to B. Unlike the polarity of VDD to GND, which must be  
positive, voltage across A to B, W to A, and W to B can be at  
either polarity.  
CS  
lies work well. When  
is low, the clock loads data into the  
serial register on each positive clock edge.  
V
I
A
The data setup and data hold times in the Specifications section  
determine the valid timing requirements. The AD5290 uses an  
8-bit serial input data register word that is transferred to the  
W
V
O
B
CS  
internal RDAC register when the  
Extra MSB bits are ignored.  
line returns to logic high.  
Figure 28. Potentiometer Mode Configuration  
DAISY CHAIN OPERATION  
If ignoring the effect of the wiper resistance for simplicity, con-  
necting the A terminal to 30 V and the B terminal to ground  
produces an output voltage at the Wiper W to Terminal B  
ranging from 0 V to 1 LSB less than 30 V. Each LSB of voltage  
is equal to the voltage applied across Terminal A and Terminal B,  
divided by the 256 positions of the potentiometer divider. The  
general equation defining the output voltage at VW with respect  
to ground for any valid input voltage applied to Terminal A and  
Terminal B is  
SDO shifts out the SDI content in the previous frame; thus it  
can be used for daisy-chaining multiple devices. The SDO pin  
contains an open drain N-Ch MOSFET and requires a pull-  
up resistor if the SDO function is used. Users need to tie the  
SDO pin of one package to the SDI pin of the next package.  
Users may need to increase the clock period because the pull-up  
resistor and the capacitive loading at the SDO to SDI interface  
can induce time delay to the subsequent devices.  
D
256  
256 D  
256  
For example, in Figure 29, if two AD5290s are daisy-chained, a  
total of 16 bits of data are required for each operation. The first  
set of eight bits goes to U2, and the second set of eight bits goes  
VW (D) =  
×VA +  
×VB  
(3)  
Operation of the digital potentiometer in the divider mode  
results in a more accurate operation over temperature. Unlike  
the rheostat mode, the output voltage is dependent mainly on  
the ratio of the internal resistors RWA and RWB and not the  
absolute values. Therefore, the temperature drift reduces to  
5 ppm/°C.  
CS  
to U1. The  
should be kept low until all 16 bits are clocked  
into their respective serial registers. The  
is then pulled high  
CS  
to complete the operation.  
+5V  
AD5290  
AD5290  
U2  
R
PU  
2.2kΩ  
U1  
µC  
MOSI  
SDO  
SDI  
SDO  
CLK  
SDI  
SCLK SS  
CS  
CS  
CLK  
Figure 29. Daisy Chain Configuration  
Rev. C | Page 16 of 20  
 
 
 
 
Data Sheet  
AD5290  
ESD PROTECTION  
POWER-UP AND POWER-DOWN SEQUENCES  
All digital inputs are protected with a series input resistor and  
a Zener ESD structure, as shown in Figure 30. These structures  
Because of the ESD protection diodes that limit the voltage  
compliance at Terminal A, Terminal B, and Terminal W  
(Figure 31), it is important to power VDD/VSS before applying  
any voltage to Terminal A, Terminal B, and Terminal W.  
Otherwise, the diodes are forward-biased such that VDD/VSS  
are powered unintentionally and affect the system. Similarly,  
VDD/VSS should be powered down last. The ideal power-up  
sequence is as follows: GND, VDD, VSS, digital inputs, and  
VA/VB/VW. The order of powering VA, VB, VW, and the digital  
inputs is not important, as long as they are powered after  
VDD/VSS.  
CS  
apply to digital input pins, Pin , Pin CLK, Pin SDI, and  
Pin SDO.  
340  
LOGIC  
GND  
Figure 30. Equivalent ESD Protection Circuit  
All analog terminals are also protected by Zener ESD protection  
diodes, as shown in Figure 31.  
LAYOUT AND POWER SUPPLY BIASING  
V
DD  
It is good practice to use a compact, minimum lead-length  
layout design. The leads to the input should be as direct as  
possible, with a minimum conductor length. Ground paths  
should have low resistance and low inductance.  
A
W
B
Similarly, it is also good practice to bypass the power supplies  
with quality capacitors. Low equivalent series resistance (ESR),  
1 µF to 10 µF tantalum or electrolytic capacitors, should be  
applied at the supplies to minimize any transient disturbance  
and to filter low frequency ripple. Figure 32 illustrates the basic  
supply-bypassing configuration for the AD5290.  
V
SS  
Figure 31. Equivalent ESD Protection Analog Pins  
TERMINAL VOLTAGE OPERATING RANGE  
The ground pin of the AD5290 is a digital ground reference.  
To minimize the digital ground bounce, the AD5290 digital  
ground terminal should be joined remotely to the analog  
ground (Figure 32).  
The AD5290 VDD and VSS power supplies define the boundary  
conditions for proper 3-terminal digital potentiometer opera-  
tion. The AD5290 can operate in single supply from +4.5 V to  
+33 V or dual supply from 4.5 V to 16.5 V. T h e AD5290 is  
functional at low supply voltages such as 4.5 V, but the  
performance parameters are not guaranteed.  
V
DD  
V
DD  
+
C1  
C3  
C4  
10µF  
0.1µF  
0.1µF  
AD5290  
The voltages present on Terminal A, Terminal B, and Terminal W  
that are more positive than VDD or more negative than VSS are  
clamped by the internal forward-biased diodes (Figure 31).  
+
C2  
10µF  
V
SS  
V
SS  
GND  
Figure 32. Power Supply Bypassing  
Rev. C | Page 17 of 20  
 
 
 
 
 
 
 
AD5290  
Data Sheet  
APPLICATIONS  
HIGH VOLTAGE DAC  
AUDIO VOLUME CONTROL  
AD5290 can be configured as a high voltage DAC, with out-  
put voltage as high as 30 V. The circuit is shown in Figure 33.  
The output is  
Because of its good THD performance and high voltage  
capability, AD5290 can be used as a digital volume control.  
If AD5290 is used directly as an audio attenuator or gain  
amplifier, a large step change in the volume level at any arbi-  
trary time can lead to an abrupt discontinuity of the audio  
signal causing an audible zipper noise. To prevent this, a zero-  
D
R
[1.2 V (1 2 )]  
(4)  
VO(D)   
256  
R1  
CS  
where D is the decimal code from 0 to 255.  
crossing window detector can be inserted to the  
line to  
delay the device update until the audio signal crosses the  
window. Since the input signal can operate on top of any  
dc level rather than absolute zero volt level, zero-crossing in  
this case means the signal is ac-coupled, and the dc offset  
level is the signal zero reference point.  
V
DD  
V
DD  
R
BIAS  
U2  
U1A  
V+  
OP284  
V–  
AD5290  
D1  
U1B  
100k  
ADR512  
The configuration to reduce zipper noise (Figure 35) and the  
results of using this configuration are shown in Figure 36. The  
input is ac-coupled by C1 and attenuated down before feeding  
into the window comparator formed by U2, U3, and U4B  
(Figure 35). U6 is used to establish the signal zero reference.  
The upper limit of the comparator is set above its offset and,  
therefore, the output pulses high whenever the input falls  
between 2.502 V and 2.497 V (or 0.005 V window) in this  
example. This output is ANDed with the chip select signal  
such that the AD5290 updates whenever the signal crosses  
the window. To avoid a constant update of the device, the  
chip select signal should be programmed as two pulses, rather  
than as one shown in Figure 36.  
V
OUT  
B
OP284  
R2  
R1  
Figure 33. High Voltage DAC  
PROGRAMMABLE POWER SUPPLY  
With a boost regulator, such as ADP1611, AD5290 can be used  
as the variable resistor at the regulators FB pin to provide the  
programmable power supply (Figure 34). The output is  
D
(
256) RAB  
R2  
(5)  
VO 1.23 V [1   
]
In Figure 35, the lower trace shows that the volume level changes  
from a quarter-scale to full-scale when a signal change occurs  
near the zero-crossing window.  
AD5290s VDD is derived from the output. Initially, L1 acts as  
a short, and VDD is one diode voltage drop below +5 V. The  
output slowly establishes the final value.  
U1  
5V  
AD5290  
V
C
10F  
IN  
ADP1611  
DD  
IN  
U2  
A
C1  
0.1F  
L1  
4.7H  
W
R1  
100k  
V
OUT  
SW  
RT  
B
D1  
1.23V  
C
C
OUT  
10F  
FB  
SS  
COMP  
R2  
8.5k  
R
C
SS  
GND  
220k  
22nF  
C
C
150pF  
Figure 34. Programmable Power Supply  
Rev. C | Page 18 of 20  
 
 
 
 
 
 
Data Sheet  
AD5290  
V
C1  
IN  
5V  
1µF  
U1  
V
+15V  
R1  
+5V  
100kΩ  
DD  
C3  
0.1µF  
A
AD5290  
U2  
V+  
C2  
0.1µF  
R2  
200Ω  
ADCM371  
V–  
+15V  
R4  
V
SS  
W
90kΩ  
–15V  
U4A  
U5  
V+  
U4B  
V
4
5
100kΩ  
OUT  
6
1
2
+5V  
7408  
CS  
7408  
R5  
10kΩ  
V–  
U3  
V+  
ADCM371  
V–  
5V  
CLK  
SDI  
CLK  
SDI  
B
–15V  
U6  
V+  
CS  
GND  
R3  
100kΩ  
AD8541  
V–  
Figure 35. Audio Volume Control with Zipper Noise Reduction  
1
2
CHANNEL 1  
FREQ = 20.25kHz  
1.03V p-p  
Figure 36. Input (Trace 1) and Output (Trace 2) of the Circuit in Figure 35  
(The Command of Volume Change May Occur at Any Time, but the Level Change Occurs Only Near the Zero-Crossing Window)  
Rev. C | Page 19 of 20  
 
 
 
AD5290  
Data Sheet  
OUTLINE DIMENSIONS  
3.10  
3.00  
2.90  
10  
1
6
5
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
PIN 1  
IDENTIFIER  
0.50 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 37. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
RAB (kΩ)  
Temperature Range  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
Package Description  
Package Option  
RM-10  
RM-10  
RM-10  
RM-10  
Branding  
D4U  
D4U  
D4T  
D4T  
AD5290YRMZ10  
AD5290YRMZ10-R7  
AD5290YRMZ50  
AD5290YRMZ50-R7  
AD5290YRMZ100  
AD5290YRMZ100-R7  
EVAL-AD5290EBZ  
10  
10  
50  
50  
100  
100  
10  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
Evaluation Board  
RM-10  
RM-10  
D4V  
D4V  
1 Z = RoHS Compliant Part.  
©2005-2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04716-0-11/11(C)  
Rev. C | Page 20 of 20  
 
 
 

相关型号:

AD5290YRMZ100-RL7

Compact +30V/【15V 256-Position Digital Potentiometer
ADI

AD5290YRMZ50

Compact +30V/【15V 256-Position Digital Potentiometer
ADI

AD5290YRMZ50-R7

Compact 30 V / 15,-15 V 256-Position Digital Potentiometer
ADI

AD5290YRMZ50-RL7

Compact +30V/【15V 256-Position Digital Potentiometer
ADI

AD5291

256-/1024-Position, DigiPOT+ Potentiometers with Maximum ±1% R-Tolerance Error and 20-TP Memory
ADI

AD5291ABRUZ100

IC 100K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO14, MO-153AB-1, TSSOP-14, Digital Potentiometer
ADI

AD5291ABRUZ20

IC 20K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO14, MO-153AB-1, TSSOP-14, Digital Potentiometer
ADI

AD5291ABRUZ50

IC 50K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO14, MO-153AB-1, TSSOP-14, Digital Potentiometer
ADI

AD5291BRUZ-100

256-/1024-Position, Digital Potentiometers
ADI

AD5291BRUZ-100-RL7

256-/1024-Position, Digital Potentiometers
ADI

AD5291BRUZ-20

256-/1024-Position, Digital Potentiometers
ADI

AD5291BRUZ-20-RL7

256-/1024-Position, DigiPOT+ Potentiometers with Maximum ±1% R-Tolerance Error and 20-TP Memory
ADI