AD5291BRUZ-100-RL7 [ADI]

256-/1024-Position, Digital Potentiometers; 256 / 1024的位置,数字电位器
AD5291BRUZ-100-RL7
型号: AD5291BRUZ-100-RL7
厂家: ADI    ADI
描述:

256-/1024-Position, Digital Potentiometers
256 / 1024的位置,数字电位器

转换器 电位器 数字电位计 电阻器 光电二极管
文件: 总32页 (文件大小:1051K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
256-/1024-Position, Digital Potentiometers with  
Maximum 1ꢀ ꢁ-ꢂoleranꢃe ꢄrror anꢅ 20-ꢂP Memorꢆ  
AD5291/AD5292  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
RESET  
DD  
Single-channel, 256-/1024-position resolution  
20 kΩ, 50 kΩ, and 100 kΩ nominal resistance  
Maximum 1ꢀ nominal resistor tolerance error (resistor  
performance mode)  
20-times programmable wiper memory  
Rheostat mode temperature coefficient: 35 ppm/°C  
Voltage divider temperature coefficient: 5 ppm/°C  
+9 V to +33 V single-supply operation  
9 V to 16.5 V dual-supply operation  
SPI-compatible serial interface  
POWER-ON  
RESET  
AD5291/  
AD5292  
V
LOGIC  
RDAC  
REGISTER  
SCLK  
SYNC  
A
DATA  
SERIAL  
INTERFACE  
W
OTP  
MEMORY  
BLOCK  
DIN  
B
Wiper setting readback  
SDO  
Power-on refreshed from 20-TP memory  
RDY  
APPLICATIONS  
V
EXT_CAP  
GND  
SS  
Mechanical potentiometer replacement  
Instrumentation: gain and offset adjustment  
Programmable voltage-to-current conversion  
Programmable filters, delays, and time constants  
Programmable power supply  
Figure 1.  
Low resolution DAC replacement  
Sensor calibration  
GENERAL DESCRIPTION  
The AD5291 and AD5292 are single-channel, 256-/1024-  
position digital potentiometers1 that combine industry leading  
variable resistor performance with nonvolatile memory (NVM)  
in a compact package. These devices are capable of operating  
across a wide voltage range, supporting both dual supply  
operation at 10.5 V to 16.5 V and single supply operation at  
+21 V to +33 V, while ensuring less than 1% end-to-end resistor  
tolerance error and offering 20-time programmable (20-TP)  
memory.  
The AD5291 and AD5292 device wiper settings are controllable  
through the SPI digital interface. Unlimited adjustments are  
allowed before programming the resistance value into the  
20-TP memory. The AD5291 and AD5292 do not require any  
external voltage supply to facilitate fuse blow, and there are 20  
opportunities for permanent programming. During 20-TP  
activation, a permanent blow fuse command freezes the wiper  
position (analogous to placing epoxy on a mechanical trimmer).  
The AD5291 and AD5292 are available in a compact 14-lead  
TSSOP package. The part is guaranteed to operate over the  
extended industrial temperature range of −40°C to +105°C.  
The guaranteed industry leading low resistor tolerance error  
feature simplifies open-loop applications as well as precision  
calibration and tolerance matching applications.  
1 The terms digital potentiometer and RDAC are used interchangeably.  
Rev. D  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2009–2010 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD5291/AD5292  
ꢂABLꢄ OF CONꢂꢄNꢂS  
Features .............................................................................................. 1  
20-TP Memory ........................................................................... 23  
Write Protection ......................................................................... 23  
Basic Operation .......................................................................... 24  
20-TP Readback and Spare Memory Status ........................... 24  
Shutdown Mode ......................................................................... 24  
Resistor Performance Mode...................................................... 25  
Reset............................................................................................. 25  
SDO Pin and Daisy-Chain Operation..................................... 25  
RDAC Architecture.................................................................... 25  
Programming the Variable Resistor......................................... 26  
Programming the Potentiometer Divider............................... 26  
EXT_CAP Capacitor.................................................................. 27  
Terminal Voltage Operating Range ......................................... 27  
Applications Information.............................................................. 28  
High Voltage DAC...................................................................... 28  
Programmable Voltage Source with Boosted Output ........... 28  
High Accuracy DAC .................................................................. 28  
Variable Gain Instrumentation Amplifier .............................. 28  
Audio Volume Control .............................................................. 29  
Outline Dimensions....................................................................... 30  
Ordering Guide .......................................................................... 30  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—AD5291 .......................................... 3  
Resistor Performance Mode Code Range ................................. 4  
Electrical Characteristics—AD5292 .......................................... 6  
Resistor Performance Mode Code Range ................................. 7  
Interface Timing Specifications.................................................. 8  
Absolute Maximum Ratings.......................................................... 10  
Thermal Resistance .................................................................... 10  
ESD Caution................................................................................ 10  
Pin Configuration and Function Descriptions........................... 11  
Typical Performance Characteristics ........................................... 12  
Test Circuits..................................................................................... 21  
Theory of Operation ...................................................................... 22  
Serial Data Interface................................................................... 22  
Shift Register ............................................................................... 22  
RDAC Register............................................................................ 22  
REVISION HISTORY  
Changes to Table 1.............................................................................3  
Changes to Table 2.............................................................................4  
Added Table 3 ....................................................................................5  
Changes to Table 4.............................................................................6  
Changes to Table 5.............................................................................7  
Added Table 6 ....................................................................................8  
Change to Table 7 ..............................................................................8  
Changes to Absolute Maximum Rating Section ........................ 10  
Changes Table 9 .............................................................................. 11  
Changes to Typical Performance Characteristics Section ........ 12  
Changes to Ordering Guide.......................................................... 30  
9/10—Rev. C to Rev. D  
Changes to SDO Pin and Daisy-Chain Operation Section....... 25  
3/10—Rev. B to Rev. C  
Changes to Revision History........................................................... 2  
Changes to Figure 3 and Figure 4 Captions .................................. 9  
3/10—Rev. A to Rev. B  
Changes to Data Sheet Title ............................................................ 1  
Changes to General Description Section ...................................... 1  
Changes to Theory of Operation Section.................................... 22  
4/09—Revision 0: Initial Version  
12/09—Rev. 0 to Rev. A  
Added 50 kΩ and 100 kΩ specifications .........................Universal  
Changes to Features Section............................................................ 1  
Rev. D | Page 2 of 32  
AD5291/AD5292  
SPꢄCIFICAꢂIONS  
ELECTRICAL CHARACTERISTICS—AD5291  
VDD = 21 V to 33 V, VSS = 0 V; VDD = 10.5 V to 16.5 V, VSS = −10.5 V to −16.5 V; VLOGIC = 2.7 V to 5.5 V, VA = VDD, VB = VSS,  
−40°C < TA < +105°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resolution  
N
8
Bits  
LSB  
LSB  
%
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
Nominal Resistor Tolerance (R-Perf Mode)3  
Nominal Resistor Tolerance (Normal Mode)  
Resistance Temperature Coefficient4  
Wiper Resistance  
R-DNL  
RWB, VA = NC  
−1  
−1  
−1  
+1  
+1  
+1  
R-INL  
∆RAB/RAB  
∆RAB/RAB  
(∆RAB/RAB)/∆T × 1±6  
RW  
±±.5  
±ꢀ  
See Table 2, Table 3  
%
35  
ppm/°C  
Ω
Code = full-scale; See Figure 38  
Code= zero scale  
6±  
1±±  
DC CHARACTERISTICS—POTENTIOMETER  
DIVIDER MODE  
Resolution  
N
8
Bits  
Differential Nonlinearity5  
Integral Nonlinearity5  
Voltage Divider Temperature Coefficient4  
Full-Scale Error  
DNL  
−±.5  
−±.5  
+±.5  
+±.5  
LSB  
INL  
LSB  
(∆VW/VW)/∆T × 1±6  
1.5  
ppm/°C  
LSB  
Code = half-scale; See Figure 41  
Code = full scale  
VWFSE  
VWZSE  
−2  
±
+±.25  
2
Zero-Scale Error  
Code = zero scale  
LSB  
RESISTOR TERMINALS  
Terminal Voltage Range6  
Capacitance A, Capacitance B4  
VA, VB, VW  
CA, CB  
VSS  
VDD  
V
f = 1 MHz, measured to GND,  
code = half-scale  
85  
65  
±1  
pF  
Capacitance W4  
CW  
ICM  
f = 1 MHz, measured to GND,  
code = half-scale  
pF  
Common-Mode Leakage Current4  
DIGITAL INPUTS  
VA = VB = VW  
nA  
JEDEC compliant  
Input Logic High4  
Input Logic Low4  
VIH  
VIL  
IIL  
VLOGIC = 2.ꢀ V to 5.5 V  
VLOGIC = 2.ꢀ V to 5.5 V  
VIN = ± V or VLOGIC  
2.±  
V
±.8  
±1  
V
Input Current  
Input Capacitance4  
μA  
pF  
CIL  
5
5
DIGITAL OUTPUTS (SDO and RDY)  
Output High Voltage4  
Output Low Voltage4  
Three-State Leakage Current  
Output Capacitance4  
POWER SUPPLIES  
VOH  
VOL  
RPULL_UP = 2.2 kΩ to VLOGIC  
RPULL_UP = 2.2 kΩ to VLOGIC  
VLOGIC − ±.4  
−1  
V
GND + ±.4 V  
+1  
V
μA  
pF  
COL  
Single-Supply Power Range  
Dual-Supply Power Range  
Positive Supply Current  
Negative Supply Current  
Logic Supply Range  
VDD  
VSS = ± V  
9
33  
V
VDD/VSS  
IDD  
±9  
±16.5  
2
V
VDD/VSS = ±16.5 V  
VDD/VSS = ±16.5 V  
±.1  
μA  
μA  
V
ISS  
−2  
−±.1  
VLOGIC  
ILOGIC  
2.ꢀ  
5.5  
1±  
Logic Supply Current  
OTP Store Current4, ꢀ  
OTP Read Current4, 8  
VLOGIC = 5 V; VIH = 5 V or VIL = GND  
VIH = 5 V or VIL = GND  
VIH = 5 V or VIL = GND  
VIH = 5 V or VIL = GND  
∆VDD/∆VSS = ±15 V ± 1±%  
RAB = 2± kΩ  
1
μA  
mA  
mA  
μW  
%/%  
ILOGIC_PROG  
ILOGIC_FUSE_READ  
PDISS  
25  
25  
8
Power Dissipation9  
11±  
Power Supply Rejection Ratio  
PSRR  
±.1±3  
±.±39  
±.±21  
RAB = 5± kΩ  
RAB = 1±± kΩ  
Rev. D | Page 3 of 32  
 
 
 
AD5291/AD5292  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DYNAMIC CHARACTERISTICS5, 1±  
Bandwidth  
BW  
−3 dB, code = half-scale  
RAB = 2± kΩ  
kHz  
52±  
21±  
1±5  
RAB = 5± kΩ  
RAB = 1±± kΩ  
Total Harmonic Distortion  
VW Settling Time  
THDW  
VA = 1 V rms, VB = ± V, f = 1 kHz  
RAB = 2± kΩ  
dB  
−93  
RAB = 5± kΩ  
−1±1  
−1±6  
RAB = 1±± kΩ  
tS  
VA = 3± V, VB = ± V, ±±.5 LSB error  
band, initial code = zero scale,  
board capacitance = 1ꢀ± pF  
Code = full-scale, normal mode  
Code = full-scale, R-Perf mode  
Code = half-scale, normal mode  
RAB = 2± kΩ  
ꢀ5±  
2.5  
ns  
μs  
μs  
2.5  
RAB = 5± kΩ  
RAB = 1±± kΩ  
14  
Code = half-scale, R-Perf mode  
RAB = 2± kΩ  
μs  
5
RAB = 5± kΩ  
9
RAB = 1±± kΩ  
16  
Resistor Noise Density  
eN_WB  
Code = half-scale, TA = 25°C, ± kHz  
to 2±± kHz  
nV/√Hz  
RAB = 2± kΩ  
RAB = 5± kΩ  
RAB = 1±± kΩ  
1±  
18  
2ꢀ  
1 Typical values represent average readings at 25°C, VDD = 15 V, VSS = −15 V, and VLOGIC = 5 V.  
2 Resistor position nonlinearity error. R-INL is the deviation from an ideal value measured between the RWB at code ±x±2 to code ±xFF or between RWA at code ±xFD to  
code ±x±±. R-DNL measures the relative step change from ideal between successive tap positions. The specification is guaranteed in resistor performance mode, with  
a wiper current of 1 mA for VA < 12 V and 1.2 mA for VA ≥ 12 V.  
3 Resistor performance mode (see the Resistor Performance Mode section). The terms resistor performance mode and R-Perf mode are used interchangeably.  
4 Guaranteed by design and characterization, not subject to production test.  
5 INL and DNL are measured at VWB with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = ± V. DNL specification limits  
of ±1 LSB maximum are guaranteed monotonic operating conditions.  
6 Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other. Dual-supply operation enables ground-  
referenced bipolar signal adjustment.  
Different from operating current; supply current for fuse program lasts approximately 55± μs.  
8 Different from operating current; supply current for fuse read lasts approximately 55± μs.  
9 PDISS is calculated from (IDD × VDD) + (ISS × VSS) + (ILOGIC × VLOGIC).  
All dynamic characteristics use VDD = 15 V, VSS = −15 V, and VLOGIC = 5 V.  
RESISTOR PERFORMANCE MODE CODE RANGE  
Table 2.  
RAB = 20 kΩ  
|VDD − VSS| = 26 V to 30 V |VDD − VSS| = 22 V to 26 V  
Resistor  
Tolerance per  
Code  
|VDD − VSS| = 30 V to 33 V  
|VDD − VSS| = 21 V to 22 V  
RWB  
RWA  
RWB  
RWA  
RWB  
RWA  
RWB  
RWA  
1% R-Tolerance  
2% R-Tolerance  
3% R-Tolerance  
From ±x5A  
to ±xFF  
From ±x23  
to ±xFF  
From ±x1E  
to ±xFF  
From ±x±±  
to ±xA5  
From ±x±±  
to ±xDC  
From ±x±±  
to ±xE1  
From ±xꢀD  
to ±xFF  
From ±x2D  
to ±xFF  
From ±x19  
to ±xFF  
From ±x±±  
to ±x82  
From ±x±±  
to ±xD2  
From ±x±±  
to ±xE6  
From ±xꢀD  
to ±xFF  
From ±x23  
to ±xFF  
From ±x1ꢀ  
to ±xFF  
From ±x±±  
to ±x82  
From ±x±±  
to ±xDC  
From ±x±±  
to ±xE8  
N/A  
N/A  
From ±x23  
to ±xFF  
From ±x1ꢀ  
to ±xFF  
From ±x±±  
to ±xDC  
From ±x±±  
to ±xE8  
Rev. D | Page 4 of 32  
 
 
 
AD5291/AD5292  
Table 3.  
RAB = 50 kΩ  
|VDD − VSS| = 26 V to 33 V |VDD − VSS| = 21 V to 26 V  
RAB = 100 kΩ  
|VDD − VSS| = 26 V to 33 V |VDD − VSS| = 21 V to 26 V  
Resistor Tolerance  
per Code  
RWB  
RWA  
RWB  
RWA  
RWB  
RWA  
RWB  
RWA  
1% R-Tolerance  
2% R-Tolerance  
3% R-Tolerance  
From ±x2A  
to ±xFF  
From ±x11  
to ±xFF  
From ±x±A  
to ±xFF  
From ±x±±  
to ±xD5  
From ±x±±  
to ±xEE  
From ±x±±  
to ±xF5  
From ±x3ꢀ  
to ±xFF  
From ±x16  
to ±xFF  
From ±x±D  
to ±xFF  
From ±x±±  
to ±xC8  
From ±x±±  
to ±xE9  
From ±x±±  
to ±xF2  
From ±x1E  
to ±xFF  
From ±x±A  
to ±xFF  
From ±x±ꢀ  
to ±xFF  
From ±x±±  
to ±xE1  
From ±x±±  
to ±xF5  
From ±x±±  
to ±xF8  
From ±x14  
to ±xFF  
From ±x±A  
to ±xFF  
From ±x±ꢀ  
to ±xFF  
From ±x±±  
to ±xEB  
From ±x±±  
to ±xF5  
From ±x±±  
to ±xF8  
Rev. D | Page 5 of 32  
 
AD5291/AD5292  
ELECTRICAL CHARACTERISTICS—AD5292  
VDD = 21 V to 33 V, VSS = 0 V; VDD = 10.5 V to 16.5 V, VSS = −10.5 V to −16.5 V; VLOGIC = 2.7 V to 5.5 V, VA = VDD, VB = VSS,  
−40°C < TA < +105°C, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resolution  
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
N
1±  
−1  
−2  
−2  
−3  
−1  
Bits  
LSB  
LSB  
LSB  
LSB  
%
R-DNL  
R-INL  
R-INL  
R-INL  
∆RAB/RAB  
∆RAB/RAB  
RWB, VA = NC  
+1  
+2  
+2  
+3  
+1  
R
AB =5± kΩ, 1±± kΩ  
RAB =2± kΩ , |VDD − VSS| = 26 V to 33 V  
RAB =2± kΩ , |VDD − VSS| = 21 V to 26 V  
See Table 5 and Table 6  
Nominal Resistor Tolerance (R-Perf Mode)3  
±±.5  
±ꢀ  
Nominal Resistor Tolerance (Normal  
Mode)4  
%
Resistance Temperature Coefficient  
Wiper Resistance  
(∆RAB/RAB)/∆T × 1±6  
RW  
35  
6±  
ppm/°C  
Ω
Code = full scale; See Figure 38  
Code= zero scale  
1±±  
DC CHARACTERISTICS—POTENTIOMETER  
DIVIDER MODE  
Resolution  
N
1±  
Bits  
Differential Nonlinearity5  
Integral Nonlinearity5  
Voltage Divider Temperature Coefficient4  
Full-Scale Error  
DNL  
−1  
+1  
LSB  
INL  
−1.5  
+1.5  
LSB  
(∆VW/VW)/∆T × 1±6  
5
ppm/°C  
LSB  
Code = half scale; See Figure 41  
Code = full scale  
VWFSE  
VWZSE  
−8  
±
+1  
8
Zero-Scale Error  
Code = zero scale  
LSB  
RESISTOR TERMINALS  
Terminal Voltage Range4  
Capacitance A, Capacitance B6  
VA, VB, VW  
CA, CB  
VSS  
VDD  
V
f = 1 MHz, measured to GND,  
code = half scale  
85  
65  
±1  
pF  
Capacitance W5  
CW  
ICM  
f = 1 MHz, measured to GND,  
code = half scale  
pF  
Common-Mode Leakage Current4  
DIGITAL INPUTS  
VA = VB = VW  
nA  
JEDEC compliant  
Input Logic High4  
Input Logic Low4  
VIH  
VIL  
IIL  
VLOGIC = 2.ꢀ V to 5.5 V  
VLOGIC = 2.ꢀ V to 5.5 V  
VIN = ± V or VLOGIC  
2.±  
V
±.8  
±1  
V
Input Current  
Input Capacitance4  
μA  
pF  
CIL  
5
5
DIGITAL OUTPUTS (SDO and RDY)  
Output High Voltage4  
Output Low Voltage4  
Three-State Leakage Current  
Output Capacitance4  
POWER SUPPLIES  
VOH  
VOL  
RPULL_UP = 2.2 kΩ to VLOGIC  
RPULL_UP = 2.2 kΩ to VLOGIC  
VLOGIC − ±.4  
−1  
V
GND + ±.4  
+1  
V
μA  
pF  
COL  
Single-Supply Power Range  
Dual-Supply Power Range  
Positive Supply Current  
Negative Supply Current  
Logic Supply Range  
VDD  
VSS = ± V  
9
33  
V
VDD/VSS  
IDD  
±9  
±16.5  
2
V
VDD/VSS = ±16.5 V  
VDD/VSS = ±16.5 V  
±.1  
μA  
μA  
V
ISS  
−2  
−±.1  
VLOGIC  
ILOGIC  
2.ꢀ  
5.5  
1±  
Logic Supply Current  
OTP Store Current6, ꢀ  
OTP Read Current6, 8  
Power Dissipation9  
Power Supply Rejection Ratio6  
VLOGIC = 5 V; VIH = 5 V or VIL = GND  
VIH = 5 V or VIL = GND  
VIH = 5 V or VIL = GND  
VIH = 5 V or VIL = GND  
∆VDD/∆VSS = ±15 V ± 1±%  
RAB = 2± kΩ  
1
μA  
mA  
mA  
μW  
%/%  
ILOGIC_PROG  
ILOGIC_FUSE_READ  
PDISS  
25  
25  
8
11±  
PSSR  
±.1±3  
±.±39  
±.±21  
RAB = 5± kΩ  
RAB = 1±± kΩ  
Rev. D | Page 6 of 32  
 
AD5291/AD5292  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DYNAMIC CHARACTERISTICS5, 1±  
Bandwidth  
BW  
−3 dB  
kHz  
RAB = 2± kΩ  
RAB = 5± kΩ  
RAB = 1±± kΩ  
52±  
21±  
1±5  
Total Harmonic Distortion  
VW Settling Time  
THDW  
VA = 1 V rms, VB = ± V, f = 1 kHz  
RAB = 2± kΩ  
dB  
−93  
RAB = 5± kΩ  
−1±1  
−1±6  
RAB = 1±± kΩ  
tS  
VA = 3± V, VB = ± V, ±±.5 LSB error  
band, initial code = zero scale, board  
capacitance = 1ꢀ± pF  
Code = full-scale, normal mode  
Code = full-scale, R-Perf mode  
Code = half-scale, normal mode  
RAB = 2± kΩ  
ꢀ5±  
2.5  
ns  
μs  
μs  
2.5  
RAB = 5± kΩ  
RAB = 1±± kΩ  
14  
Code = half-scale, R-Perf mode  
RAB = 2± kΩ  
μs  
5
RAB = 5± kΩ  
9
RAB = 1±± kΩ  
16  
Resistor Noise Density  
eN_WB  
Code = half-scale, TA = 25°C, ± kHz to  
2±± kHz  
nV/√Hz  
RAB = 2± kΩ  
RAB = 5± kΩ  
RAB = 1±± kΩ  
1±  
18  
2ꢀ  
1 Typical values represent average readings at 25°C, VDD = 15 V, VSS = −15 V, and VLOGIC = 5 V.  
2 Resistor position nonlinearity error. R-INL is the deviation from an ideal value measured between the RWB at code ±x±±B to code ±x3FF or between RWA at code ±x3F3 to  
code ±x±±±. R-DNL measures the relative step change from ideal between successive tap positions. The specification is guaranteed in resistor performance mode, with  
a wiper current of 1 mA for VA < 12 V and 1.2 mA for VA ≥ 12 V.  
3 Resistor performance mode (see the Resistor Performance Mode section). The terms resistor performance mode and R-Perf mode are used interchangeably.  
4 Guaranteed by design and characterization, not subject to production test.  
5 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = ± V. DNL specification limits  
of ±1 LSB maximum are guaranteed monotonic operating conditions.  
6 Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other. Dual-supply operation enables ground-  
referenced bipolar signal adjustment.  
Different from operating current; supply current for fuse program lasts approximately 55± μs.  
8 Different from operating current; supply current for fuse read lasts approximately 55± μs.  
9 PDISS is calculated from (IDD × VDD) + (ISS × VSS) + (ILOGIC × VLOGIC).  
All dynamic characteristics use VDD = 15 V, VSS = −15 V, and VLOGIC = 5 V.  
RESISTOR PERFORMANCE MODE CODE RANGE  
Table 5.  
RAB = 20 kΩ  
|VDD − VSS| = 26 V to 30 V |VDD − VSS| = 22 V to 26 V  
RWB RWA RWB RWA  
From ±x1F4 From ±x±±± From ±x1F4 From ±x±±± N/A  
Resistor  
Tolerance per  
Code  
|VDD − VSS| = 30 V to 33 V  
|VDD − VSS| = 21 V to 22 V  
RWB  
RWA  
RWB  
RWA  
1% R-Tolerance  
2% R-Tolerance  
3% R-Tolerance  
From ±x15E From ±x±±±  
N/A  
to ±x3FF  
to ±x2A1  
to ±x3FF  
From ±xB4  
to ±x3FF  
From ±x64  
to ±x3FF  
to ±x2±B  
From ±x±±± From ±xFA  
to ±x34B to ±x3FF  
From ±x±±± From ±xꢀ8  
to ±x39B to ±x3FF  
to ±x3FF  
to ±x2±B  
From ±x±±± From ±xFA  
to ±x3±5  
From ±x±±± From ±xꢀ8  
to ±x38ꢀ to ±x3FF  
From ±x8C  
to ±x3FF  
From ±x±±±  
to ±x3ꢀ3  
From ±x±±±  
to ±x3±5  
From ±x±±±  
to ±x38ꢀ  
to ±x3FF  
From ±x5A  
to ±x3FF  
From ±x±±±  
to ±x3A5  
Rev. D | Page ꢀ of 32  
 
 
 
AD5291/AD5292  
Table 6.  
RAB = 50 kΩ  
|VDD − VSS| = 26 V to 33 V |VDD − VSS| = 21 V to 26 V  
RWB RWA RWB RWA  
From ±x±8C From ±x±±± From ±x±B4 From ±x±±±  
to ±x3FF to ±x35F to ±x3FF to ±x31E  
From ±X±3C From ±x±±± From ±x±5± From ±x±±±  
to ±x3FF to ±x3C3 to ±x3FF to ±x3AF  
From ±X±28 From ±x±±± From ±x±32 From ±x±±±  
to ±x3FF to ±x3Dꢀ to ±x3FF to ±x3CD  
RAB = 100 kΩ  
|VDD − VSS| = 26 V to 33 V |VDD − VSS| = 21 V to 26 V  
RWB RWA RWB RWA  
From ±x±4B From ±x±±± From ±x±64 From ±x±±±  
to ±x3FF to ±x3B4 to ±x3FF to ±x39B  
From ±x±28 From ±x±±± From ±x±28 From ±x±±±  
to ±x3FF to ±x3Dꢀ to ±x3FF to ±x3Dꢀ  
From ±x±19 From ±x±±± From ±x±19 From ±x±±±  
to ±x3FF to ±x3E6 to ±x3FF to ±x3E6  
Resistor  
Tolerance per  
Code  
1% R-Tolerance  
2% R-Tolerance  
3% R-Tolerance  
INTERFACE TIMING SPECIFICATIONS  
VDD/VSS  
= 15 V, VLOGIC = 2.7 V to 5.5 V, 40°C < TA < +105°C. All specifications TMIN to TMAX, unless otherwise noted.  
Table 7.  
Parameter  
Limit1  
2±  
1±  
1±  
1±  
5
5
1
4±±3  
14  
1
Unit  
Description  
2
t1  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
SCLK cycle time  
SCLK high time  
SCLK low time  
SYNC to SCLK falling edge setup time  
Data setup time  
t2  
t3  
t4  
t5  
t6  
tꢀ  
t8  
t9  
Data hold time  
SCLK falling edge to SYNC rising edge  
Minimum SYNC high time  
SYNC rising edge to next SCLK fall ignore  
RDY rising edge to SYNC falling edge  
SYNC rising edge to RDY fall time  
4
t1±  
4
t11  
4±  
4
t12  
2.4  
41±  
8
μs max  
ns max  
ms max  
ms min  
ns max  
ms max  
ns max  
ns min  
ms max  
RDY low time, RDAC register write command execute time (R-Perf mode)  
RDY low time, RDAC register write command execute time (normal mode)  
RDY low time, memory program execute time  
Software/hardware reset  
4
t12  
4
t12  
4
t12  
1.5  
45±  
1.3  
45±  
2±  
4
t13  
RDY low time, RDAC register readback execute time  
RDY low time, memory readback execute time  
SCLK rising edge to SDO valid  
4
t13  
4
t14  
tRESET  
Minimum RESET pulse width (asynchronous)  
Power-on OTP restore time  
5
tPOWER-UP  
2
1 All input signals are specified with tR = tF = 1 ns/V (1±% to 9±% of VDD) and timed from a voltage level of (VIL + VIH)/2.  
2 Maximum SCLK frequency is 5± MHz.  
3 Refer to t12 and t13 for RDAC register and memory commands operations.  
4 RPULL_UP = 2.2 kΩ to VLOGIC, with a capacitance load of 168 pF.  
5 Maximum time after VLOGIC is equal to 2.5 V.  
DB9 (MSB)  
DB0 (LSB)  
C3  
C1  
C0  
D9  
D7  
D6  
D5  
D4  
D3  
D0  
0
0
C2  
D8  
D2  
D1  
DATA BITS  
CONTROL BITS  
Figure 2. Shift Register Content  
Rev. D | Page 8 of 32  
 
 
 
 
AD5291/AD5292  
Timing Diagrams  
t4  
t7  
t2  
t1  
SCLK  
t9  
t3  
t8  
SYNC  
t5  
t6  
D7  
DIN  
D6  
D2  
X
X
C3  
C2  
D1  
D0  
SDO  
t11  
t10  
t12  
RDY  
tRESET  
RESET  
Figure 3. Write Timing Diagram, CPOL = 0, CPHA = 1  
SCLK  
SYNC  
t9  
DIN  
X
X
X
C3  
D0  
X
D0  
C3  
D1  
D0  
t14  
C3  
SDO  
RDY  
X
X
D1  
D0  
t11  
t13  
Figure 4. Read Timing Diagram, CPOL = 0, CPHA = 1  
Rev. D | Page 9 of 32  
 
AD5291/AD5292  
ABSOLUꢂꢄ MAXIMUM ꢁAꢂINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 8.  
Parameter  
Rating  
VDD to GND  
VSS to GND  
VLOGIC to GND  
VDD to VSS  
−±.3 V to +35 V  
+±.3 V to − 25 V  
−±.3 V to + ꢀ V  
35 V  
VSS − ±.3 V, VDD+ ±.3 V  
−±.3 V to VLOGIC + ±.3 V  
−±.3 V to +ꢀ V  
VA, VB, VW to GND  
THERMAL RESISTANCE  
Digital Input and Output Voltage to GND  
EXT_CAP Voltage to GND  
IA, IB, IW  
θJA is defined by JEDEC specification JESD-51 and the value is  
dependent on the test board and test environment.  
Continuous  
Table 9. Thermal Resistance  
Package Type  
RAB = 2± kΩ  
RAB = 5± kΩ, 1±± kΩ  
Pulsed1  
Frequency > 1± kHz  
Frequency ≤ 1± kHz  
Operating Temperature Range4  
Maximum Junction Temperature (TJ max)  
Storage Temperature Range  
Reflow Soldering  
±3 mA  
±2mA  
θJA  
931  
θJC  
Unit  
14-Lead TSSOP  
2±  
°C/W  
MCC2/d3  
MCC2/√d3  
−4±°C to +1±5°C  
15±°C  
−65°C to +15±°C  
1 JEDEC 2S2P test board, still air (± m/sec to 1 m/sec air flow).  
ESD CAUTION  
Peak Temperature  
Time at Peak Temperature  
Package Power Dissipation  
26±°C  
2± sec to 4± sec  
(TJ max − TA)/θJA  
1 Maximum terminal current is bounded by the maximum current handling of  
the switches, maximum power dissipation of the package, and maximum  
applied voltage across any two of the A, B, and W terminals at a given  
resistance.  
2 Maximum continuous current  
3 Pulse duty factor.  
4 Includes programming of OTP memory.  
Rev. D | Page 1± of 32  
 
 
 
 
 
 
AD5291/AD5292  
PIN CONFIGUꢁAꢂION AND FUNCꢂION DꢄSCꢁIPꢂIONS  
RESET  
1
2
3
4
5
6
7
14 RDY  
V
13  
SDO  
SS  
AD5291/  
AD5292  
A
W
B
12  
SYNC  
11 SCLK  
10 DIN  
TOP VIEW  
Not to Scale  
V
9
8
GND  
DD  
EXT_CAP  
V
LOGIC  
Figure 5. Pin Configuration  
Table 10. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
RESET  
Hardware Reset Pin. Refreshes the RDAC register with the contents of the 2±-TP memory register. Factory  
default loads midscale until the first 2±-TP wiper memory location is programmed. RESET is activated at the  
logic high transition. Tie RESET to VLOGIC if not used.  
2
VSS  
Negative Supply. Connect to ± V for single-supply applications. This pin should be decoupled with ±.1 μF  
ceramic capacitors and 1± μF capacitors.  
3
4
5
6
8
A
W
B
VDD  
EXT_CAP  
VLOGIC  
Terminal A of RDAC. VSS ≤ VA ≤ VDD.  
Wiper Terminal of RDAC. VSS ≤ VW ≤ VDD.  
Terminal B of RDAC. VSS ≤ VB ≤ VDD.  
Positive Power Supply. This pin should be decoupled with ±.1 μF ceramic capacitors and 1± μF capacitors.  
External Capacitor. Connect a 1 μF capacitor to EXT_CAP. This capacitor must have a voltage rating of ≥ꢀ V.  
Logic Power Supply; 2.ꢀ V to 5.5 V. This pin should be decoupled with ±.1 μF ceramic capacitors and 1± μF  
capacitors.  
9
1±  
GND  
DIN  
Ground Pin, Logic Ground Reference.  
Serial Data Input. The AD5291 and AD5292 have a 16-bit shift register. Data is clocked into the register on the  
falling edge of the serial clock input.  
11  
12  
SCLK  
SYNC  
Serial Clock Input. Data is clocked into the shift register on the falling edge of the serial clock input. Data can be  
transferred at rates up to 5± MHz.  
Falling Edge Synchronization Signal. This is the frame synchronization signal for the input data. When SYNC  
goes low, it enables the shift register and data is transferred in on the falling edges of the following clocks. The  
selected register is updated on the rising edge of SYNC following the 16th clock cycle. If SYNC is taken high  
before the 16th clock cycle, the rising edge of SYNC acts as an interrupt, and the write sequence is ignored by  
the DAC.  
13  
14  
SDO  
RDY  
Serial Data Output. This open-drain output requires an external pull-up resistor. SDO can be used to clock data  
from the shift register in daisy-chain mode or in readback mode.  
Ready Pin. This active-high open-drain output identifies the completion of a write or read operation to or from  
the RDAC register or memory.  
Rev. D | Page 11 of 32  
 
AD5291/AD5292  
ꢂYPICAL PꢄꢁFOꢁMANCꢄ CHAꢁACꢂꢄꢁISꢂICS  
1.0  
1.0  
0.8  
–40°C  
20k  
50kꢀ  
100kꢀ  
TEMPERATURE = 25°C  
+25°C  
0.8  
+105°C  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
R
= 20k  
AB  
0
128  
256  
384  
512  
640  
768  
896  
1023  
0
128  
256  
384  
512  
640  
768  
896  
1023  
CODE (Decimal)  
CODE (Decimal)  
Figure 6. R-INL in R-Perf Mode vs. Code vs. Temperature (AD5292)  
Figure 9. R-INL in R-Perf Mode vs. Code vs. Nominal Resistance (AD5292)  
0.6  
0.6  
TEMPERATURE = 25°C  
R
= 20k  
AB  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
–0.1  
–0.1  
–0.2  
–0.3  
20kꢀ  
–0.2  
50kꢀ  
100kꢀ  
+105°C  
768  
+25°C  
512  
CODE (Decimal)  
–40°C  
–0.3  
0
128  
256  
384  
512  
640  
768  
896  
1023  
0
128  
256 384  
640  
896  
1023  
CODE (Decimal)  
Figure 10. R-DNL in R-Perf Mode vs. Code vs. Nominal Resistance (AD5292)  
Figure 7. R-DNL in R-Perf Mode vs. Code vs. Temperature (AD5292)  
1.0  
1.0  
20kꢀ  
50kꢀ  
100kꢀ  
TEMPERATURE = 25°C  
R
= 20kΩ  
AB  
0.8  
0.6  
0.8  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.2  
–0.4  
–0.6  
+105°C  
768  
+25°C  
512  
CODE (Decimal)  
–40°C  
0
128  
256 384  
640  
896  
1023  
0
128  
256  
384  
512  
640  
768  
896  
1023  
CODE (Decimal)  
Figure 8. R-INL in Normal Mode vs. Code vs. Temperature (AD5292)  
Figure 11. R-INL in Normal Mode vs. Code vs. Nominal Resistance (AD5292)  
Rev. D | Page 12 of 32  
 
AD5291/AD5292  
0.15  
0.10  
0.05  
0
0.15  
0.10  
0.05  
0
20k  
50kꢀ  
100kꢀ  
TEMPERATURE = 25°C  
R
= 20kꢀ  
AB  
–0.05  
–0.10  
–0.15  
–0.20  
–0.05  
–0.10  
–0.15  
–0.20  
+105°C  
768  
+25°C  
512  
CODE (Decimal)  
–40°C  
0
128  
256 384  
640  
896  
1023  
0
128  
256  
384  
512  
640  
768  
896  
1023  
CODE (Decimal)  
Figure 12. R-DNL in Normal Mode vs. Code vs. Temperature (AD5292)  
Figure 15. R-DNL in Normal Mode vs. Code vs. Nominal Resistance (AD5292)  
1.5  
0.8  
TEMPERATURE = 25°C  
R
= 20kꢀ  
AB  
1.0  
0.5  
0.6  
0.2  
0
0
–0.5  
–1.0  
–1.5  
–0.2  
–0.6  
20kꢀ  
50kꢀ  
100kꢀ  
+105°C  
768  
+25°C  
512  
CODE (Decimal)  
–40°C  
–0.8  
0
128  
256 384  
640  
896  
1023  
0
128  
256  
384  
512  
640  
768  
896  
1023  
CODE (Decimal)  
Figure 13. INL in R-Perf Mode vs. Code vs. Temperature (AD5292)  
Figure 16. INL in R-Perf Mode vs. Code vs. Nominal Resistance (AD5292)  
0.6  
0.6  
R
= 20kꢀ  
AB  
TEMPERATURE = 25°C  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
–0.1  
–0.1  
–0.2  
20k  
–0.2  
50kꢀ  
100kꢀ  
+105°C  
768  
+25°C  
512  
CODE (Decimal)  
–40°C  
–0.3  
0
128  
256 384  
640  
896  
1023  
0
128  
256  
384  
512  
640  
768  
896  
1023  
CODE (Decimal)  
Figure 14. DNL in R-Perf Mode vs. Code vs. Temperature (AD5292)  
Figure 17. DNL in R-Perf Mode vs. Code vs. Nominal Resistance (AD5292)  
Rev. D | Page 13 of 32  
AD5291/AD5292  
0.8  
0.8  
0.6  
–40°C  
+25°C  
+105°C  
20kꢀ  
50kꢀ  
100kꢀ  
TEMPERATURE = 25°C  
R
= 20kꢀ  
AB  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–0.2  
–0.4  
–0.6  
–0.8  
0
128  
256  
384  
512  
640  
768  
896  
1023  
0
128  
256  
384  
512  
640  
768  
896  
1023  
CODE (Decimal)  
CODE (Decimal)  
Figure 21. INL in Normal Mode vs. Code vs. Nominal Resistance (AD5292)  
Figure 18. INL in Normal Mode vs. Code vs. Temperature (AD5292)  
0.08  
0.10  
20kꢀ  
50kꢀ  
100kꢀ  
–40°C  
+25°C  
+105°C  
0.04  
0
0.05  
0
–0.04  
–0.08  
–0.12  
–0.05  
–0.10  
–0.15  
–0.20  
TEMPERATURE = 25°C  
–0.16  
R
= 20kꢀ  
AB  
0
128  
256  
384  
512  
640  
768  
896  
1023  
0
128  
256  
384  
512  
640  
768  
896  
1023  
CODE (Decimal)  
CODE (Decimal)  
Figure 22. DNL in Normal Mode vs. Code vs. Nominal Resistance (AD5292)  
Figure 19. DNL in Normal Mode vs. Code vs. Temperature (AD5292)  
0.30  
0.30  
+105°C  
TEMPERATURE = 25°C  
+25°C  
20k  
–40°C  
50kꢀ  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.25  
100kꢀ  
0.20  
0.15  
0.10  
0.05  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.05  
–0.10  
–0.15  
–0.20  
R
= 20kꢀ  
AB  
0
32  
64  
96  
128  
160  
192  
224  
255  
0
32  
64  
96  
128  
160  
192  
224  
255  
CODE (Decimal)  
CODE (Decimal)  
Figure 23. R-INL in R-Perf Mode vs. Code vs. Nominal Resistance (AD5291)  
Figure 20. R-INL in R-Perf Mode vs. Code vs. Temperature (AD5291)  
Rev. D | Page 14 of 32  
AD5291/AD5292  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
TEMPERATURE = 25°C  
R
= 20kꢀ  
AB  
–0.02  
–0.04  
–0.06  
–0.02  
–0.04  
–0.06  
20k  
50kꢀ  
100kꢀ  
+105°C  
192  
+25°C  
128  
CODE (Decimal)  
–40°C  
64  
0
32  
64  
96  
128  
160  
192  
224  
255  
0
32  
96  
160  
224  
255  
CODE (Decimal)  
Figure 27. R-DNL in R-Perf Mode vs. Code vs. Nominal Resistance (AD5291)  
Figure 24. R-DNL in R-Perf Mode vs. Code vs. Temperature (AD5291)  
0.25  
0.25  
20kꢀ  
+105°C  
+25°C  
TEMPERATURE = 25°C  
–40°C  
50kꢀ  
100kꢀ  
0.20  
0.15  
0.10  
0.05  
0
0.20  
0.15  
0.10  
0.05  
0
–0.05  
–0.10  
–0.05  
–0.10  
R
= 20kꢀ  
AB  
0
32  
64  
96  
128  
160  
192  
224  
255  
0
32  
64  
96  
128  
160  
192  
224  
255  
CODE (Decimal)  
CODE (Decimal)  
Figure 25. R-INL in Normal Mode vs. Code vs. Temperature (AD5291)  
Figure 28. R-INL in Normal Mode vs. Code vs. Nominal Resistance (AD5291)  
0.03  
0.03  
+105°C  
+25°C  
20kꢀ  
50kꢀ  
100kꢀ  
–40°C  
TEMPERATURE = 25°C  
0.02  
0.01  
0.02  
0.01  
0
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
R
= 20kꢀ  
AB  
0
32  
64  
96  
128  
160  
192  
224  
255  
0
32  
64  
96  
128  
160  
192  
224  
255  
CODE (Decimal)  
CODE (Decimal)  
Figure 29. R-DNL in Normal Mode vs. Code vs. Nominal Resistance (AD5291)  
Figure 26. R-DNL in Normal Mode vs. Code vs. Temperature (AD5291)  
Rev. D | Page 15 of 32  
AD5291/AD5292  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.25  
TEMPERATURE = 25°C  
+105°C  
+25°C  
–40°C  
0.20  
0.15  
0.10  
0.05  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.05  
–0.10  
–0.15  
–0.20  
20kꢀ  
50kꢀ  
100kꢀ  
R
= 20kꢀ  
AB  
–0.25  
0
32  
64  
96  
128  
160  
192  
224  
255  
0
32  
64  
96  
128  
160  
192  
224  
255  
CODE (Decimal)  
CODE (Decimal)  
Figure 30. INL in R-Perf Mode vs. Code vs. Temperature (AD5291)  
Figure 33. INL in R-Perf Mode vs. Code vs. Nominal Resistance (AD5291)  
0.14  
0.14  
TEMPERATURE = 25°C  
+105°C  
+25°C  
–40°C  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
–0.02  
–0.02  
–0.04  
–0.06  
20kꢀ  
–0.04  
50kꢀ  
R
= 20kꢀ  
100kꢀ  
AB  
–0.06  
0
32  
64  
96  
128  
160  
192  
224  
255  
0
32  
64  
96  
128  
160  
192  
224  
255  
CODE (Decimal)  
CODE (Decimal)  
Figure 31. DNL in R-Perf Mode vs. Code vs. Temperature (AD5291)  
Figure 34. DNL in R-Perf Mode vs. Code vs. Nominal Resistance (AD5291)  
0.20  
0.20  
20kꢀ  
50kꢀ  
100kꢀ  
+105°C  
TEMPERATURE = 25°C  
+25°C  
–40°C  
0.15  
0.10  
0.05  
0
0.15  
0.10  
0.05  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.05  
–0.10  
–0.15  
–0.20  
0
32  
64  
96  
128  
160  
192  
224  
255  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
CODE (Decimal)  
Figure 32. INL in Normal Mode vs. Code vs. Temperature (AD5291)  
Figure 35. INL in Normal Mode vs. Code vs. Nominal Resistance (AD5291)  
Rev. D | Page 16 of 32  
AD5291/AD5292  
0.03  
0.02  
0.03  
0.02  
+105°C  
+25°C  
–40°C  
TEMPERATURE = 25°C  
0.01  
0.01  
0
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
20k  
50kꢀ  
100kꢀ  
R
AB  
= 20kꢀ  
0
32  
64  
96  
128  
160  
192  
224  
255  
0
32  
64  
96  
128  
160  
192  
224  
255  
CODE (Decimal)  
CODE (Decimal)  
Figure 36. DNL in Normal Mode vs. Code vs. Temperature (AD5291)  
Figure 39. DNL in Normal Mode vs. Code vs. Temperature (AD5291)  
450  
0.20  
V
V
/V = ±15V  
DD SS  
V
= ±15V  
DD  
= +5V  
LOGIC  
400  
350  
300  
250  
200  
150  
100  
50  
0.18  
0.16  
0.14  
0.12  
0.1  
I
LOGIC  
0.08  
0.06  
0.04  
0.02  
0
I
DD  
0
I
SS  
–50  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100  
TEMPERATURE (°C)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
DIGITAL INPUT VOLTAGE (V)  
Figure 37. Supply Current (IDD, ISS, ILOGIC) vs. Temperature  
Figure 40. Supply Current ILOGIC vs. Digital Input Voltage  
700  
600  
500  
400  
300  
200  
100  
0
700  
V
V
= 30V,  
V
V
= 30V  
DD  
= 0V  
DD  
= 0V  
SS  
SS  
600  
500  
400  
300  
200  
100  
0
20k  
20k  
50kꢀ  
100kꢀ  
50kꢀ  
100kꢀ  
0
0
256  
64  
512  
128  
768  
192  
1023 AD5292  
255 AD5291  
0
0
256  
64  
512  
128  
768  
192  
1023 AD5292  
255 AD5291  
CODE (Decimal)  
CODE (Decimal)  
Figure 41. Potentiometer Mode Tempco ΔRWB/ΔT vs. Code  
Figure 38. Rheostat Mode Tempco ΔRWB/ΔT vs. Code  
Rev. D | Page 1ꢀ of 32  
 
AD5291/AD5292  
0
–5  
0
AD5292 (AD5291)  
AD5292 (AD5291)  
0x200 (0x80)  
0x100 (0x40)  
0x200 (0x80)  
–5  
–10  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
0x100 (0x40)  
–15  
–20  
0x080 (0x20)  
0x040 (0x10)  
0x020 ( 0x08)  
0x080 (0x20)  
0x040 (0x10)  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
0x010 (0x04)  
0x008 (0x02)  
0x020 ( 0x08)  
0x010 (0x04)  
0x008 (0x02)  
0x004 (0x01)  
0x002  
0x001  
0x004 (0x01)  
–60  
0x002  
0x001  
–65  
–67.5  
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 45. 100 kΩ Gain vs. Frequency vs. Code  
Figure 42. 20 kΩ Gain vs. Frequency vs. Code  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
100kꢀ  
20kꢀ  
50kꢀ  
AD5292 (AD5291)  
0x200 (0x80)  
–10  
–20  
–30  
–40  
–50  
–60  
0x100 (0x40)  
0x080 (0x20)  
0x040 (0x10)  
0x020 ( 0x08)  
0x010 (0x04)  
0x008 (0x02)  
0x004 (0x01)  
0x002  
0x001  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 46. Power Supply Rejection Ratio vs. Frequency  
Figure 43. 50 kΩ Gain vs. Frequency vs. Code  
0
–20  
0
–15  
V
/V = ±15V,  
DD SS  
V
/V = ±15V  
DD SS  
CODE = HALF SCALE  
fIN = 1kHz  
NOISE BW = 22kHz  
20kꢀ  
CODE = HALF SCALE  
= 1V rms  
V
IN  
Noise BW = 22kHz  
20k  
50kꢀ  
100kꢀ  
–40  
50kꢀ  
100kꢀ  
–30  
–45  
–60  
–60  
–80  
–75  
–100  
–120  
–140  
–90  
–105  
–120  
0.001  
0.01  
0.1  
AMPLITUDE (V rms)  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 44. THD + Noise vs. Frequency  
Figure 47. THD + Noise vs. Amplitude  
Rev. D | Page 18 of 32  
AD5291/AD5292  
1,000,000  
900,000  
800,000  
700,000  
600,000  
500,000  
400,000  
300,000  
200,000  
100,000  
0
8
7
6
5
4
3
2
1
0
20k – 0pF  
50k – 150pF  
50k – 250pF  
100k – 0pF  
100k – 75pF  
100k – 150pF  
100k – 250pF  
V
V
V
/V = 30V/0V  
DD SS  
20k – 75pF  
20k – 150pF  
20k – 250pF  
50k – 0pF  
= V  
= V  
A
B
DD  
SS  
50k – 75pF  
20k  
50kꢀ  
100kꢀ  
0
0
8
16  
32  
16  
CODE (Decimal)  
64  
128  
256  
64  
512 AD5292  
128 AD5291  
0
0
256  
64  
512  
128  
768  
192  
1023 AD5292  
255 AD5291  
8
32  
CODE (Decimal)  
Figure 48. Bandwidth vs Code vs Net Capacitance  
Figure 51. Theoretical Maximum Current vs. Code  
35  
1.2  
1.0  
V
V
V
V
/V = ±15V  
DD SS  
30  
25  
20  
15  
10  
5
= +5V  
LOGIC  
= V  
= V  
A
B
DD  
SS  
0.8  
20k  
0.6  
50kꢀ  
100kꢀ  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
0
–5  
–0.4  
–0.2  
0
0.2  
0.4  
TIME (ms)  
0.6  
0.8  
1.0  
1.2  
–2  
0
2
4
6
8
10  
12  
14  
16  
TIME (µs)  
Figure 49. IDD Waveform While Blowing/Reading Fuse  
Figure 52. Maximum Transition Glitch  
35  
40  
32  
24  
16  
8
V
, CODE: FULL SCALE,  
NORMAL MODE  
WB  
V
V
V
/V = ±15V  
DD SS  
= V  
A
DD  
30  
25  
20  
15  
10  
5
= V  
B
SS  
V
V
V
V
/V = 30V/0V  
DD SS  
CODE = HALF CODE  
= 5V  
LOGIC  
= V  
= V  
A
B
DD  
SS  
V
, CODE: FULL SCALE,  
WB  
R-PERF MODE  
0
–8  
SYNC  
–16  
20k  
50kꢀ  
100kꢀ  
20kꢀ  
50kꢀ  
100kꢀ  
V
, CODE: HALF-SCALE,  
NORMAL MODE  
WB  
–24  
–32  
0
V
, CODE: HALF-SCALE,  
WB  
R-PERF MODE  
–5  
40  
–0.5  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
TIME (µs)  
TIME (µs)  
Figure 50. 20kΩ Large-Signal Settling Time from Code Zero Scale  
Figure 53. Digital Feedthrough  
Rev. D | Page 19 of 32  
 
AD5291/AD5292  
6
75.0  
62.5  
50.0  
37.5  
25.0  
12.5  
0
300  
250  
200  
150  
100  
50  
V
V
/V = ±15V  
DD SS  
V
/V = ±15V  
DD SS  
= +5V  
LOGIC  
20kꢀ  
50kꢀ  
100kꢀ  
5
4
3
2
1
0
–1  
0
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100  
TEMPERATURE (°C)  
TIME (ms)  
Figure 54. VEXT_CAP Waveform While Reading Fuse Or Calibration  
Figure 56. Code Range > 1% R-Tolerance Error vs. Temperature  
8
20.0  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
/V = ±15V  
DD SS  
V
V
= V  
= V  
20kꢀ  
50kꢀ  
100kꢀ  
A
B
DD  
= +5V  
LOGIC  
SS  
17.5  
15.0  
12.5  
10.0  
7.5  
TEMPERATURE = 25°C  
6
3
2
5.0  
0
2.5  
–2  
0
21  
26  
30  
33  
VOLTAGE V /V  
DD SS  
TIME (ms)  
Figure 57. Code Range > 1% R-Tolerance Error vs. Voltage  
Figure 55. VEXT_CAP Waveform While Writing Fuse  
Rev. D | Page 2± of 32  
AD5291/AD5292  
ꢂꢄSꢂ CIꢁCUIꢂS  
Figure 58 to Figure 63 define the test conditions used in the Specifications section.  
NC  
DUT  
A
I
V
W
A
V+ = V ± 10%  
DD  
W
V  
V  
MS  
DD  
V
A
B
DD  
PSRR (dB) = 20 log  
B
W
V+  
~
V
MS  
V  
V  
%
%
MS  
DD  
PSS (%/%) =  
V
MS  
NC = NO CONNECT  
Figure 61. Power Supply Sensitivity (PSS, PSRR)  
Figure 58. Resistor Position Nonlinearity Error  
(Rheostat Operation; R-INL, R-DNL)  
+15V  
A
W
DUT  
A
V+ = V  
DD  
V
IN  
N
DUT  
1LSB = V+/2  
OP42  
–15V  
V
OUT  
B
W
OFFSET  
GND  
V+  
B
2.5V  
V
MS  
Figure 62. Gain vs. Frequency  
Figure 59. Potentiometer Divider Nonlinearity Error  
(INL, DNL)  
+15V  
NC  
–15V  
GND  
GND  
0.1V  
A
V
DUT  
R
=
=
I
DD  
WB  
CM  
I
DUT  
B
WB  
+15V  
–15V  
W
R
CODE = 0x00  
WB  
2
R
W
W
V
GND  
SS  
B
+
GND  
0.1V  
I
WB  
NC  
+15V  
GND  
V
TO V  
DD  
SS  
NC = NO CONNECT  
A = NC  
–15V  
Figure 63. Common-Mode Leakage Current  
Figure 60. Wiper Resistance  
Rev. D | Page 21 of 32  
 
 
 
AD5291/AD5292  
ꢂHꢄOꢁY OF OPꢄꢁAꢂION  
The AD5291 and AD5292 digital potentiometers are designed to  
operate as true variable resistors for analog signals that remain  
within the terminal voltage range of VSS < VTERM < VDD. The  
patented 1% resistor tolerance feature helps to minimize the total  
RDAC resistance error, which reduces the overall system error  
by offering better absolute matching and improved open-loop  
performance. The digital potentiometer wiper position is  
determined by the RDAC register contents. The RDAC register  
acts as a scratchpad register, allowing as many value changes as  
necessary to place the potentiometer wiper in the correct  
position. The RDAC register can be programmed with any  
position setting using the standard SPI interface by loading the  
16-bit data-word. Once a desirable position is found, this value  
can be stored in a 20-TP memory register. Thereafter, the wiper  
position is always restored to that position for subsequent power-  
up. The storing of 20-TP data takes approximately 6 ms; during  
this time, the shift register is locked, preventing any changes from  
taking place. The RDY pin identifies the completion of this 20-  
TP storage.  
For the AD5291, the lower two RDAC data bits are don’t cares if  
the RDAC register is read from or written to. Data is loaded MSB  
first (Bit DB15). The four control bits determine the function of  
the software command (see Table 11). Figure 3 shows a timing  
diagram of a typical AD5291 and AD5292 write sequence.  
SYNC  
The write sequence begins by bringing the  
line low. The  
SYNC  
pin must be held low until the complete data-word is  
SYNC  
loaded from the DIN pin. When  
returns high, the serial  
data-word is decoded according to the commands in Table 11.  
The command bits (Cx) control the operation of the digital  
potentiometer. The data bits (Dx) are the values that are loaded  
into the decoded register. The AD5291 and AD5292 have an  
internal counter that counts a multiple of 16 bits (a frame) for  
proper operation. For example, AD5291 and AD5292 work with  
a 32-bit word but does not work properly with a 31-bit or 33-bit  
word. The AD5291 and AD5292 do not require a continuous  
SYNC  
SCLK, when  
is high, and all serial interface pins should  
be operated at close to the VLOGIC supply rails to minimize  
power consumption in the digital input buffers.  
SERIAL DATA INTERFACE  
RDAC REGISTER  
The AD5291 and AD5292 contain a serial interface (  
SCLK, DIN and SDO) that is compatible with SPI interface  
standards, as well as most DSPs. The part allows writing of data  
via the serial interface to every register.  
,
SYNC  
The RDAC register directly controls the position of the digital  
potentiometer wiper. For example, when the RDAC register is  
loaded with all zeros, the wiper is connected to Terminal B of  
the variable resistor. The RDAC register is a standard logic register;  
there is no restriction on the number of changes allowed.  
SHIFT REGISTER  
The AD5291 and AD5292 shift register is 16 bits wide (see  
Figure 2). The 16-bit input word consists of two unused bits  
(set to 0), followed by four control bits, and 10 RDAC data bits.  
Table 11. Command Operation Truth Table  
Command Bits [DB13:DB10]  
Data Bits [DB9:DB0]1  
Command  
C3  
±
C2  
±
C1  
±
C0  
±
D9  
X
D8  
X
D7  
X
D6  
X
D5  
X
D4  
X
D3  
X
D2  
X
D1  
X
D0  
X
Operation  
±
1
2
NOP command: do nothing.  
Write contents of serial data to RDAC.  
±
±
±
1
D9  
X
D8  
X
Dꢀ  
X
D6  
X
D5  
X
D4  
X
D3  
X
D2  
X
D12  
2  
±
±
1
±
X
X
Read RDAC wiper setting from the SDO  
output in the next frame.  
3
4
5
±
±
±
±
1
1
1
±
±
1
±
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Store wiper setting: store RDAC setting  
to 2±-TP memory.  
X
X
X
X
X
Reset: refresh RDAC with 2±-TP stored  
value.  
D4  
D3  
D2  
D1  
D±  
Read contents of 2±-TP memory, or  
status of 2±-TP memory, from the SDO  
output in the next frame.  
6
8
±
±
1
1
1
±
1
1
±
±
1
±
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
D3  
X
D2  
X
D1  
X
D±  
X
Write contents of serial data to control  
register.  
Read control register from the SDO  
output in the next frame.  
X
X
X
D±  
Software shutdown.  
D± = ± (normal mode).  
D± = 1 (device placed in shutdown mode).  
1 X = don’t care.  
2 In the AD5291, this bit is a don’t care.  
Rev. D | Page 22 of 32  
 
 
 
 
 
AD5291/AD5292  
20-TP MEMORY  
WRITE PROTECTION  
Once a desirable wiper position is found, the contents of the  
RDAC register can be saved into a 20-TP memory register  
(see Table 12). Thereafter, the wiper position is always set at that  
position for any future on-off-on power supply sequence. The  
AD5291 and AD5292 have an array of 20 one-time programmable  
(OTP) memory registers. When the desired word is programmed  
to 20-TP memory, the device automatically verifies that the  
program command was successful. The verification process  
includes margin testing. Bit C3 of the control register can be  
polled to verify that the fuse program command was successful.  
Programming data to 20-TP memory consumes approximately  
25 mA for 550 μs and takes approximately 8 ms to complete.  
During this time, the shift register is locked, preventing any  
changes from taking place. The RDY pin can be used to monitor  
the completion of the 20-TP memory program and verification.  
No change in supply voltage is required to program the 20-TP  
memory. However, a 1 μF capacitor on the EXT_CAP pin is  
required (see Figure 68). Prior to 20-TP activation, the AD5291  
and AD5292 preset to midscale on power-up.  
On power-up, the shift register write commands for both the  
RDAC register and the 20-TP memory register are disabled.  
The RDAC write protect bit, C1 of the control register (see  
Table 13 and Table 14), is set to 0 by default. This disables any  
change of the RDAC register content regardless of the software  
commands, except that the RDAC register can be refreshed  
from the 20-TP memory using the software reset command  
RESET  
(Command 4) or through hardware by the  
pin. To enable  
programming of the variable resistor wiper position (program-  
ming the RDAC register), the write protect bit, C1 of the control  
register, must first be programmed. This is accomplished by  
loading the shift register with Command 6 (see Table 11). To  
enable programming of the 20-TP memory block bit, C0 of the  
control register (set to 0 by default) must first be set to 1.  
Table 12. Write and Read to RDAC and 20-TP Memory  
DIN  
SDO  
Action  
±x18±3  
±x±5±±  
±x±8±±  
±x±C±±  
±xXXXX  
±x18±3  
±x±5±±  
±x±1±±  
Enable update of wiper position and 2±-TP memory contents through digital interface.  
Write ±x1±± to the RDAC register; wiper moves to ¼ full-scale position.  
Prepare data read from the RDAC register.  
Stores RDAC register content into 2±-TP memory. The 16-bit word appears out of SDO, where the last 1± bits  
contain the contents of the RDAC register (±x1±±).  
±x1C±±  
±x±±±±  
±x±C±±  
±x±±±X  
Prepare data read from the control register.  
NOP Instruction ± sends 16-bit word out of SDO, where the last four bits contain the contents of the control  
register. If Bit C3 = 1, the fuse program command is successful.  
Table 13. Control Register Bit Map1  
DB9  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
X
X
X
X
X
X
C3  
C2  
C1  
C±  
1 X = don’t care.  
Table 14. Control Register Function  
Bit Name  
Description  
C±  
2±-TP program enable  
± = 2±-TP program disabled (default)  
1 = enable device for 2±-TP program  
RDAC register write protect  
± = wiper position frozen to value in memory (default)1  
1 = allow update of wiper position through digital Interface  
Calibration enable  
C1  
C2  
C3  
± = resistor performance mode enabled (default)  
1 = normal mode enabled  
2±-TP memory program success  
± = fuse program command unsuccessful (default)  
1 = fuse program command successful  
1 Wiper position frozen to value last programmed in 2±-TP memory. Wiper is frozen to midscale if 2±-TP memory has not been previously programmed.  
Rev. D | Page 23 of 32  
 
 
 
 
 
 
 
 
AD5291/AD5292  
read-only Memory Address 0x14 and Memory Address 0x15  
using Command 5. The data bytes read back from Memory  
Address 0x014 and Memory Address 0x015 are thermometer  
encoded versions of the address of the last programmed  
memory location.  
BASIC OPERATION  
The basic mode of setting the variable resistor wiper position  
(programming the RDAC register) is accomplished by loading  
the shift register with Command 1 (see Table 11) and the desired  
wiper position data. When the desired wiper position is deter-  
mined, the user can load the shift register with Command 3  
(see Table 11), which stores the wiper position data in the 20-TP  
memory register. After 6 ms, the wiper position is permanently  
stored in the 20-TP memory. The RDY pin can be used to moni-  
tor the completion of this 20-TP program. Table 12 provides a  
programming example, listing the sequence of serial data input  
(DIN) words with the serial data output appearing at the SDO  
pin in hexadecimal format.  
For the example outlined in Table 15, the address of the last  
programmed location is calculated as  
(Number of Bits = 1 in Memory Address 0x14) + (Number  
of Bits = 1 in Memory Address 0x15) − 1 = 10 + 8 − 1 = 17  
(0x10)  
If no memory location has been programmed, then the address  
generated is −1.  
SHUTDOWN MODE  
20-TP READBACK AND SPARE MEMORY STATUS  
The AD5291 and AD5292 can be placed in shutdown mode by  
executing the software shutdown command, Command 8 (see  
Table 11), and setting the LSB, D0, to 1. This feature places the  
RDAC in a special state in which Terminal A is open-circuited,  
and Wiper W is connected to Terminal B. The contents of the  
RDAC register are unchanged by entering shutdown mode.  
However, all commands listed in Table 11 are supported while  
in shutdown mode. Execute Command 8 (see Table 11), and set  
the LSB, D0, to 0 to exit shutdown mode.  
It is possible to read back the contents of any of the 20-TP  
memory registers through SDO by using Command 5 (see  
Table 11). The lower five LSB bits (D0 to D4) of the data byte  
select which memory location is to be read back (see Table 16).  
Data from the selected memory location are clocked out of the  
SDO pin during the next SPI operation, where the last 10 bits  
contain the contents of the specified memory location.  
It is also possible to calculate the address of the most recently  
programmed memory location by reading back the contents of  
Table 15. Example 20-TP Memory Readback  
DIN  
SDO  
Action  
±x1414 ±xXXXX Prepares data read from Memory Address ±x14.  
±x1415 ±x±3FF  
Prepares data read from Memory Address ±x15. Sends 16-bit word out of SDO, where the last 1± bits contain the  
contents of Memory Address ±x14.  
±x±±±± ±x±±FF  
±x141± ±x±±±±  
NOP Command ± sends 16-bit word out of SDO, where last 1±-bits contain the contents of Memory Address ±x15.  
Prepares data read from memory location ±x1±.  
±x±±±± ±xXXXX NOP Instruction ± sends 16-bit word out of SDO, where the last 1± bits contain the contents of Memory Address ±x1± (1ꢀ).  
Table 16. Memory Map of Command 5  
Data Bits [DB9:DB0]1  
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Register Contents  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
±
±
±
±
±
±
±
1
1
1
±
±
±
±
±
1
1
±
±
±
±
±
±
±
1
±
1
±
1
1
±
±
1
1
±
±
1
1
±
±
±
1
±
1
±
1
±
1
±
1
1st programmed wiper location (±x±±)  
2nd programmed wiper location (±x±1)  
3rd programmed wiper location (±x±2)  
4th programmed wiper location (±x±3)  
5th programmed wiper location (±x±4)  
th programmed wiper location (±x±9)  
15th programmed wiper location (±x±E)  
th programmed wiper location (±x13)  
Programmed memory status (thermometer encoded)2 (±x14)  
Programmed memory status (thermometer encoded)2 (±x15)  
1 X = don’t care.  
2 Allows the user to calculate the remaining spare memory locations.  
Rev. D | Page 24 of 32  
 
 
 
 
 
AD5291/AD5292  
SYNC  
Keep the  
pin low until all 32 bits are clocked into their  
RESISTOR PERFORMANCE MODE  
SYNC  
respective serial registers. The  
complete the operation.  
pin is then pulled high to  
This mode activates a new, patented 1% end-to-end resistor  
tolerance that ensures a 1% resistor tolerance on each code,  
that is, code = half scale, RWB = 10 kΩ 100 Ω. See Table 2  
(AD5291) or Table 5 (AD5292) to check which codes achieve  
1% resistor tolerance. The resistor performance mode is  
activated by programming Bit C2 of the control register (see  
Table 13 and Table 14). The typical settling time is shown in  
Figure 50.  
V
LOGIC  
R
AD5291/  
AD5292  
AD5291/  
AD5292  
P
2.2k  
MOSI  
DIN  
SDO  
DIN  
U1 SDO  
U2  
MICRO-  
CONTROLLER  
SCLK  
SS  
SYNC  
SCLK  
SYNC  
SCLK  
RESET  
Figure 64. Daisy-Chain Configuration Using SDO  
RESET  
A low-to-high transition of the hardware  
pin loads the  
RDAC register with the contents of the most recently programmed  
20-TP memory location. The AD5291 and AD5292 can also be  
reset through software by executing Command 4 (see Table 11).  
If no 20-TP memory location is programmed, then the RDAC  
register loads with midscale upon reset. The control register is  
restored with default bits; see Table 14.  
RDAC ARCHITECTURE  
To achieve optimum performance, Analog Devices has patented  
the RDAC segmentation architecture for all the digital  
potentiometers. In particular, the AD5291 and AD5292 employ  
a three-stage segmentation approach, as shown in Figure 65.  
The AD5291 and AD5292 wiper switches are designed with the  
transmission gate CMOS topology and with the gate voltages  
derived from VDD and VSS.  
SDO PIN AND DAISY-CHAIN OPERATION  
The serial data output pin (SDO) serves two purposes: it can be  
used to read the contents of the wiper setting, 50-TP values and  
control register using Command 2, Command 5 and Command 7,  
respectively (see Table 11) or the SDO pin can be used in daisy-  
chain mode. Data is clocked out of SDO on the rising edge of  
SCLK. The SDO pin contains an open-drain N-channel FET  
that requires a pull-up resistor if this pin is used. To place the  
pin in high impedance and minimize the power dissipation  
when the pin is used, the 0x8001 data word followed by  
Command 0 should be sent to the part. Table 17 provides a  
sample listing for the sequence of the serial data input (DIN).  
Daisy chaining minimizes the number of port pins required  
from the controlling IC. As shown in Figure 64, users need to  
tie the SDO pin of one package to the DIN pin of the next  
package. Users may need to increase the clock period, because  
the pull-up resistor and the capacitive loading at the SDO-to-  
DIN interface may require additional time delay between  
subsequent devices.  
A
R
L
L
R
R
M
S
W
R
M
R
R
W
W
W
8-/10-BIT  
ADDRESS  
DECODER  
R
M
R
L
R
M
R
L
B
When two AD5291 and AD5292 devices are daisy-chained, 32  
bits of data are required. The first 16 bits go to U2, and the  
SYNC  
second 16 bits go to U1. Hold the  
pin low until all 32 bits  
SYNC  
are clocked into their respective shift registers. The  
then pulled high to complete the operation.  
pin is  
Figure 65. Simplified RDAC Circuit  
Table 17. Minimize Power Dissipation at SDO Pin  
DIN  
SDO1  
Action  
±xXXXX  
±x8±±1  
±x±±±±  
±xXXXX  
±xXXXX  
High impedance  
Last user command sent to the digipot  
Prepares the SDO pin to be placed in high impedance mode  
The SDO pin is placed in high impedance  
1 X is don’t care.  
Rev. D | Page 25 of 32  
 
 
 
 
 
 
 
 
 
AD5291/AD5292  
where:  
PROGRAMMING THE VARIABLE RESISTOR  
Rheostat Operation—1% Resistor Tolerance  
D is the decimal equivalent of the binary code loaded in the  
8-/10-bit RDAC register.  
The AD5291 and AD5292 operate in rheostat mode when only  
two terminals are used as a variable resistor. The unused  
terminal can be left floating or tied to the W terminal, as shown in  
Figure 66.  
R
AB is the end-to-end resistance.  
In the zero-scale condition, a finite total wiper resistance of 120 Ω  
is present. Regardless of which setting the part is operating in,  
take care to limit the current between Terminal A and Terminal B,  
between Terminal W and Terminal A, and between Terminal W  
and Terminal B, to the maximum continuous current of 3 mA or  
to the pulse current specified in Table 8. Otherwise, degradation  
or possible destruction of the internal resistors may occur.  
A
A
A
W
W
W
B
B
B
Figure 66. Rheostat Mode Configuration  
The nominal resistance between Terminal A and Terminal B,  
RAB, is available in 20 kΩ, 50 kΩ, and 100 kΩ, and 256 or 1024  
tap points accessed by the wiper terminal. The 8-/10-bit data in  
the RDAC latch is decoded to select one of the 256/1024  
possible wiper settings. The AD5291 and AD5292 contain an  
internal 1% resistor performance mode that can be disabled or  
enabled (this is enabled by default), by programming Bit C2 of  
the control register (see Table 13 and Table 14). The digitally  
programmed output resistance between the W terminal and the  
A terminal, RWA, and between the W terminal and B terminal,  
RWB, is internally calibrated to give a maximum of 1% absolute  
resistance error across a wide code range. As a result, the  
general equations for determining the digitally programmed  
output resistance between the W terminal and B terminal are  
PROGRAMMING THE POTENTIOMETER DIVIDER  
Voltage Output Operation  
The digital potentiometer easily generates a voltage divider at  
the wiper to B and at the wiper to A that is proportional to the  
input voltage at A to B, as shown in Figure 67. Unlike the polarity  
of VDD to GND, which must be positive, voltage across A to B,  
W to A, and W to B can be at either polarity.  
V
IN  
A
W
V
OUT  
B
Figure 67. Potentiometer Mode Configuration  
If ignoring the effect of the wiper resistance for simplicity, con-  
necting the A terminal to 30 V and the B terminal to ground  
produces an output voltage at the Wiper W to Terminal B  
ranging from 0 V to 1 LSB less than 30 V. Each LSB of voltage is  
equal to the voltage applied across Terminal A and Terminal B,  
divided by the 256/1024 positions of the potentiometer divider.  
The general equations defining the output voltage at VW with  
respect to ground for any valid input voltage applied to Terminal A  
and Terminal B are  
AD5291:  
D
256  
RWB (D) =  
×RAB  
(1)  
(2)  
AD5292:  
D
1024  
RWB (D) =  
× RAB  
where:  
D is the decimal equivalent of the binary code loaded in the  
8-/10-bit RDAC register.  
AD5291:  
D
256  
256 D  
256  
R
AB is the end-to-end resistance.  
VW (D) =  
×VA +  
×VB  
(5)  
(6)  
Similar to the mechanical potentiometer, the resistance of the  
AD5292:  
VW (D) =  
RDAC between the W terminal and the A terminal also produces a  
digitally controlled complementary resistance, RWA. RWA is also  
calibrated to give a maximum of 1% absolute resistance error.  
RWA starts at the maximum resistance value and decreases as the  
data loaded into the latch increases. The general equations for  
this operation are  
1024D  
D
1024  
×VA +  
×VB  
1024  
If using the AD5291 and AD5292 in voltage divider mode as  
shown in Figure 67, then the 1% resistor tolerance calibration  
feature reduces the error when matching with discrete resistors.  
However, it is recommended to disable the internal 1% resistor  
tolerance calibration feature by programming Bit C2 of the  
control register (see Table 13 and Table 14) to optimize wiper  
position update rate. In this configuration, the RDAC is ratiome-  
tric and resistor tolerance error does not affect performance.  
AD5291:  
256 D  
256  
R
WA (D) =  
AD5292:  
WA (D) =  
× RAB  
(3)  
(4)  
1024 D  
1024  
R
×RAB  
Rev. D | Page 26 of 32  
 
 
 
 
AD5291/AD5292  
Operation of the digital potentiometer in the voltage divider  
mode results in a more accurate operation over temperature.  
Unlike the rheostat mode, the output voltage is dependent  
mainly on the ratio of the internal resistors, RWA and RWB, and  
not the absolute values. Therefore, the temperature drift reduces  
to 5 ppm/°C.  
The ground pins of the AD5291 and AD5292 devices are  
primarily used as a digital ground reference. To minimize the  
digital ground bounce, the AD5291 and AD5292 ground  
terminals should be joined remotely to the common ground.  
The digital input control signals to the AD5291 and AD5292  
must be referenced to the device ground pin (GND), and satisfy  
the logic level defined in the Specifications section.  
EXT_CAP CAPACITOR  
Power-Up Sequence  
A 1 μF capacitor to GND must be connected to the EXT_CAP  
pin (see Figure 68) on power-up and throughout the operation  
of the AD5291 and AD5292.  
To ensure that the AD5291 and AD5292 power up correctly, a  
1 μF capacitor must be connected to the EXT_CAP pin. Because  
there are diodes to limit the voltage compliance at Terminal A,  
Terminal B, and Terminal W (see Figure 69), it is important to  
power VDD and VSS first before applying any voltage to Terminal A,  
Terminal B, and Terminal W. Otherwise, the diode is forward-  
biased such that VDD and VSS are powered up unintentionally.  
The ideal power-up sequence is GND, VSS, VLOGIC and VDD, the  
digital inputs, and then VA, VB, and VW. The order of powering  
up VA, VB, VW, and the digital inputs is not important as long as  
AD5291/  
AD5292  
EXT_CAP  
OTP  
MEMORY  
BLOCK  
C1  
1µF  
GND  
Figure 68. Hardware Setup for EXT_CAP Pin  
they are powered after VDD, VSS, and VLOGIC  
.
TERMINAL VOLTAGE OPERATING RANGE  
Regardless of the power-up sequence and the ramp rates of the  
power supplies, after VLOGIC is powered, the power-on preset  
activates, restoring the 20-TP memory value to the RDAC register.  
The positive VDD and negative VSS power supplies of the  
AD5291 and AD5292 define the boundary conditions for  
proper 3-terminal digital potentiometer operation. Supply  
signals present on Terminal A, Terminal B, and Terminal W  
that exceed VDD or VSS are clamped by the internal forward-  
biased diodes (see Figure 69).  
V
DD  
A
W
B
V
SS  
Figure 69. Maximum Terminal Voltages Set by VDD and V SS  
Rev. D | Page 2ꢀ of 32  
 
 
 
 
AD5291/AD5292  
APPLICAꢂIONS INFOꢁMAꢂION  
HIGH VOLTAGE DAC  
HIGH ACCURACY DAC  
The AD5292 can be configured as a high voltage DAC, with  
output voltage as high as 33 V. The circuit is shown in Figure 70.  
The output is  
It is possible to configure the AD5292 as a high accuracy DAC  
by optimizing the resolution of the device over a specific  
reduced voltage range. This is achieved by placing external  
resistors on either side of the RDAC, as shown in Figure 72.  
The improved 1% R-Tolerance specification greatly reduces  
error associated with matching to discrete resistors.  
D
R2  
R1  
(7)  
× 1.2 V × 1+  
VOUT (D) =  
1024  
R3 + (D1024 × RAB ) ×V DD  
R1 + ((1024D)1024) × RAB + R3  
where D is the decimal code from 0 to 1023.  
VOUT (D) =  
(8)  
V
DD  
V
DD  
V
DD  
R
BIAS  
U2  
U1A  
R
1
U1  
V+  
AD5292  
D1  
AD8512  
V–  
AD5292  
V
DD  
U1B  
20k  
ADR512  
U2  
V+  
OP1177  
V–  
R
20kꢀ  
2
V
OUT  
B
V
AD8512  
±1%  
OUT  
B
R
2
R
3
R
1
Figure 72. Optimizing Resolution  
Figure 70. High Voltage DAC  
VARIABLE GAIN INSTRUMENTATION AMPLIFIER  
PROGRAMMABLE VOLTAGE SOURCE WITH  
BOOSTED OUTPUT  
The AD8221 in conjunction with the AD5291 and AD5292 and  
the ADG1207, as shown in Figure 73, make an excellent  
instrumentation amplifier for use in data acquisition systems.  
The data acquisition system’s low distortion and low noise  
enable it to condition signals in front of a variety of ADCs.  
For applications that require high current adjustments such as a  
laser diode or tunable laser, a boosted voltage source can be  
considered; see Figure 71.  
U3 2N7002  
V
V
OUT  
IN  
ADG1207  
V
DD  
U1  
AD5292  
R
+V  
BIAS  
C
IN1  
C
A
U2  
OP184  
I
W
L
V
+V  
–V  
OUT  
AD5292  
IN4  
IN1  
SIGNAL  
LD  
AD8221  
B
–V  
IN4  
V
SS  
Figure 71. Programmable Boosted Voltage Source  
Figure 73. Data Acquisition System  
In this circuit, the inverting input of the op amp forces VOUT to  
be equal to the wiper voltage set by the digital potentiometer.  
The load current is then delivered by the supply via the N-channel  
FET (U3). The N-Channel FET power handling must be adequate  
to dissipate (VIN − VOUT) × IL power. This circuit can source a  
maximum of 100 mA with a 33 V supply.  
The gain can be calculated by using Equation 9.  
49.4 kꢀ  
(9)  
G(D) =1+  
(
D 1024 × RAB  
)
Rev. D | Page 28 of 32  
 
 
 
 
 
 
 
 
AD5291/AD5292  
The configuration to reduce zipper noise is shown in Figure 74,  
and the results of using this configuration is shown in Figure 75.  
The input is ac-coupled by C1 and attenuated down before feeding  
into the window comparator formed by U2, U3, and U4B. U6 is  
used to establish the signal zero reference. The upper limit of  
the comparator is set above its offset and, therefore, the output  
pulses high whenever the input falls between 2.502 V and 2.497 V  
(or 0.005 V window) in this example. This output is ANDed  
AUDIO VOLUME CONTROL  
The excellent THD performance and high voltage capability  
make the AD5291 and AD5292 ideal for a digital volume  
control as an audio attenuator or gain amplifier. A typical  
problem in these systems is that a large step change in the  
volume level at any arbitrary time can lead to an abrupt  
discontinuity of the audio signal causing an audible zipper  
noise. To prevent this, a zero-crossing window detector can be  
SYNC  
with the  
updates whenever the signal crosses the window. To avoid a  
SYNC  
signal such that the AD5291 and AD5292  
SYNC  
inserted to the  
line to delay the device update until the  
audio signal crosses the window. Because the input signal can  
operate on top of any dc level rather than absolute zero volt  
level, zero-crossing in this case means the signal is ac-coupled,  
and the dc offset level is the signal zero reference point.  
constant update of the device, the  
signal should be  
programmed as two pulses, rather than as one.  
In Figure 75, the lower trace shows that the volume level changes  
from a quarter-scale to full-scale when a signal change occurs  
near the zero-crossing window.  
C1  
1µF  
V
IN  
5V  
AD5292  
U1  
+15V  
R
1
+5V  
V
DD  
100kꢀ  
C3  
0.1µF  
A
U2  
CC  
ADCMP371  
GND  
V
C2  
0.1µF  
R
2
+15V  
U5  
200ꢀ  
R
90kꢀ  
V
4
SS  
W
–15V  
U4B  
V+  
V
OUT  
4
5
U4A  
20kꢀ  
6
1
2
+5V  
U3  
7408  
SYNC  
7408  
R
5
V–  
10kꢀ  
V
CC  
5V  
SCLK  
SDIN  
SCLK  
SDIN  
ADCMP371  
GND  
B
–15V  
U6  
V+  
AD8541  
V–  
SYNC  
GND  
R
3
100kꢀ  
Figure 74. Audio Volume Control with Zipper Noise Reduction  
1
2
CHANNEL 1  
FREQ = 20.25kHz  
1.03V p-p  
Figure 75. Zipper Noise Detector  
Rev. D | Page 29 of 32  
 
 
 
AD5291/AD5292  
OUꢂLINꢄ DIMꢄNSIONS  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65 BSC  
1.05  
1.00  
0.80  
1.20  
MAX  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.30  
0.19  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 76. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
AD5291BRUZ-2±  
AD5291BRUZ-2±-RLꢀ  
AD5291BRUZ-5±  
AD5291BRUZ-5±-RLꢀ  
AD5291BRUZ-1±±  
AD5291BRUZ-1±±-RLꢀ  
AD5292BRUZ-2±  
AD5292BRUZ-2±-RLꢀ  
AD5292BRUZ-5±  
AD5292BRUZ-5±-RLꢀ  
AD5292BRUZ-1±±  
AD5292BRUZ-1±±-RLꢀ  
EVAL-AD5292EBZ  
RAB (kΩ)  
2±  
2±  
5±  
5±  
1±±  
1±±  
2±  
2±  
5±  
Resolution  
256  
256  
256  
256  
Memory  
2±-TP  
2±-TP  
2±-TP  
2±-TP  
2±-TP  
2±-TP  
2±-TP  
2±-TP  
2±-TP  
2±-TP  
2±-TP  
2±-TP  
Temperature Range  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
Package Description  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
Evaluation Board  
Package Option  
RU-14  
RU-14  
RU-14  
RU-14  
RU-14  
RU-14  
RU-14  
RU-14  
RU-14  
RU-14  
RU-14  
RU-14  
256  
256  
1,±24  
1,±24  
1,±24  
1,±24  
1,±24  
1,±24  
5±  
1±±  
1±±  
1 Z = RoHS Compliant Part.  
Rev. D | Page 3± of 32  
 
 
AD5291/AD5292  
NOꢂꢄS  
Rev. D | Page 31 of 32  
AD5291/AD5292  
NOꢂꢄS  
©2009–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07674-0-9/10(D)  
Rev. D | Page 32 of 32  

相关型号:

AD5291BRUZ-20

256-/1024-Position, Digital Potentiometers
ADI

AD5291BRUZ-20-RL7

256-/1024-Position, DigiPOT+ Potentiometers with Maximum ±1% R-Tolerance Error and 20-TP Memory
ADI

AD5291BRUZ-21

256-/1024-Position, DigiPOT+ Potentiometers with Maximum ±1% R-Tolerance Error and 20-TP Memory
ADI

AD5291BRUZ-50

256-/1024-Position, Digital Potentiometers
ADI

AD5291BRUZ-50-RL7

256-/1024-Position, Digital Potentiometers
ADI

AD5292

256-/1024-Position, DigiPOT+ Potentiometers with Maximum ±1% R-Tolerance Error and 20-TP Memory
ADI

AD5292/AD5291

数字电位器
ETC

AD5292ABRUZ100

IC 100K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 1024 POSITIONS, PDSO14, MO-153AB-1, TSSOP-14, Digital Potentiometer
ADI

AD5292ABRUZ20

IC 20K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 1024 POSITIONS, PDSO14, MO-153AB-1, TSSOP-14, Digital Potentiometer
ADI

AD5292ABRUZ50

IC 50K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 1024 POSITIONS, PDSO14, MO-153AB-1, TSSOP-14, Digital Potentiometer
ADI

AD5292BRUZ-100

256-/1024-Position, Digital Potentiometers
ADI

AD5292BRUZ-100-RL7

256-/1024-Position, Digital Potentiometers
ADI