AD5291BRUZ-21 [ADI]

256-/1024-Position, DigiPOT+ Potentiometers with Maximum ±1% R-Tolerance Error and 20-TP Memory; 256 / 1024的位置,数字电位器+电位器具有最大± 1 %R -容许误差和20 -TP存储器
AD5291BRUZ-21
型号: AD5291BRUZ-21
厂家: ADI    ADI
描述:

256-/1024-Position, DigiPOT+ Potentiometers with Maximum ±1% R-Tolerance Error and 20-TP Memory
256 / 1024的位置,数字电位器+电位器具有最大± 1 %R -容许误差和20 -TP存储器

电位器 存储
文件: 总28页 (文件大小:636K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
256-/1024-Position, DigiPOT+ Potentiometers with  
Maximum 1ꢀ ꢁ-Toꢂeranꢃe ꢄrror anꢅ 20-TP Memorꢆ  
AD5291/AD5292  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
RESET  
DD  
Single-channel, 256-/1024-position resolution  
20 kΩ nominal resistance  
Calibrated 1% nominal resistor tolerance (resistor  
performance mode)  
20-time programmable (20-TP) set-and-forget resistance  
setting allows multiple time permanent programming  
Rheostat mode temperature coefficient: 35 ppm/°C  
Voltage divider temperature coefficient: 5 ppm/°C  
+9 V to +33 V single-supply operation  
9 V to 16.5 V dual-supply operation  
POWER-ON  
RESET  
AD5291/  
AD5292  
V
LOGIC  
RDAC  
REGISTER  
SCLK  
SYNC  
A
DATA  
SERIAL  
INTERFACE  
W
OTP  
MEMORY  
BLOCK  
DIN  
B
SPI-compatible serial interface  
SDO  
Wiper setting readback  
RDY  
Power-on refreshed from 20-TP memory  
V
EXT_CAP  
GND  
SS  
APPLICATIONS  
Figure 1.  
Mechanical potentiometer replacement  
Instrumentation: gain and offset adjustment  
Programmable voltage-to-current conversion  
Programmable filters, delays, and time constants  
Programmable power supply  
Low resolution DAC replacement  
Sensor calibration  
GENERAL DESCRIPTION  
The AD5291/AD5292, members of the Analog Devices, Inc.,  
DigiPOT+ family of potentiometers, are single-channel, 256-/  
1024-position digital potentiometers1 that combine industry  
leading variable resistor performance with nonvolatile memory  
(NVM) in a compact package. These devices are capable of  
operating across a wide voltage range; supporting both dual  
supply operation at 10.5 V to 16.5 V and single supply  
operation at +21 V to +33 V, while ensuring less than 1% end-  
to-end resistor tolerance (R-tolerance) error and offering  
20-time programmable (20-TP) memory.  
The AD5291/AD5292 device wiper settings are controllable  
through the SPI digital interface. Unlimited adjustments are  
allowed before programming the resistance value into the  
|20-TP memory. The AD5291/AD5292 do not require any  
external voltage supply to facilitate fuse blow and there are  
20 opportunities for permanent programming. During 20-TP  
activation, a permanent blow fuse command freezes the wiper  
position (analogous to placing epoxy on a mechanical trimmer).  
The AD5291/AD5292 are available in a compact 14-lead TSSOP  
package. The part is guaranteed to operate over the extended  
industrial temperature range of −40°C to +105°C.  
The guaranteed industry-leading low resistor tolerance error  
feature simplifies open-loop applications as well as precision  
calibration and tolerance matching applications.  
1 The terms digital potentiometer and RDAC are used interchangeably.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
AD5291/AD5292  
TABLꢄ OF CONTꢄNTS  
Features .............................................................................................. 1  
20-TP Memory ........................................................................... 19  
Write Protection ......................................................................... 19  
Basic Operation .......................................................................... 20  
20-TP Readback and Spare Memory Status ........................... 20  
Shutdown Mode ......................................................................... 21  
Resistor Performance Mode...................................................... 21  
Reset............................................................................................. 21  
Daisy-Chain Operation............................................................. 21  
RDAC Architecture.................................................................... 21  
Programming the Variable Resistor......................................... 21  
Programming the Potentiometer Divider............................... 22  
EXT_CAP Capacitor.................................................................. 22  
Terminal Voltage Operating Range ......................................... 23  
Applications Information.............................................................. 24  
High Voltage DAC...................................................................... 24  
Programmable Voltage Source with Boosted Output ........... 24  
High Accuracy DAC .................................................................. 24  
Variable Gain Instrumentation Amplifier .............................. 24  
Audio Volume Control .............................................................. 25  
Outline Dimensions....................................................................... 26  
Ordering Guide .......................................................................... 26  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—AD5291 .......................................... 3  
Resistor Performance Mode Code Range—AD5291............... 4  
Electrical Characteristics—AD5292 .......................................... 5  
Resistor Performance Mode Code Range—AD5292............... 6  
Interface Timing Specifications.................................................. 7  
Timing Diagrams.......................................................................... 8  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 11  
Test Circuits..................................................................................... 17  
Theory of Operation ...................................................................... 18  
Serial Data Interface................................................................... 18  
Shift Register ............................................................................... 18  
RDAC Register............................................................................ 18  
REVISION HISTORY  
5/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 28  
 
AD5291/AD5292  
SPꢄCIFICATIONS  
ELECTRICAL CHARACTERISTICS—AD5291  
VDD = 21 V to 33 V, VSS = 0 V; VDD = 10.5 V to 16.5 V, VSS = −10.5 V to −16.5 V; VLOGIC = 2.7 V to 5.5 V, VA = VDD, VB = VSS,  
−40°C < TA < +105°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resolution  
N
8
Bits  
LSB  
LSB  
%
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
Nominal Resistor Tolerance (R-Perf Mode3)  
Nominal Resistor Tolerance (Normal Mode)  
Resistance Temperature Coefficient4  
Wiper Resistance  
R-DNL  
RWB, VA = NC  
See Table 2  
−1  
−1  
−1  
+1  
+1  
+1  
R-INL  
RAB/RAB  
∆RAB/RAB  
(∆RAB/RAB)/∆T × 106  
RW  
0.5  
20  
35  
60  
%
ppm/°C  
Ω
100  
DC CHARACTERISTICS—POTENTIOMETER  
DIVIDER MODE  
Resolution  
N
8
Bits  
Differential Nonlinearity5  
Integral Nonlinearity5  
DNL  
−1  
−0.5  
+1  
LSB  
INL  
+0.5  
LSB  
Voltage Divider Temperature  
Coefficient4  
(∆VW/VW)/∆T × 106  
Code = half scale  
1.5  
ppm/°C  
Full-Scale Error  
VWFSE  
VWZSE  
Code = full scale  
Code = zero scale  
−2  
0
0
2
LSB  
LSB  
Zero-Scale Error  
RESISTOR TERMINALS  
Terminal Voltage Range6  
Capacitance A, Capacitance B4  
VA, VB, VW  
CA, CB  
VSS  
VDD  
V
f = 1 MHz, measured to GND,  
code = half scale  
85  
65  
1
pF  
Capacitance W4  
CW  
ICM  
f = 1 MHz, measured to GND,  
code = half scale  
pF  
Common-Mode Leakage Current4  
DIGITAL INPUTS  
Input Logic High4  
Input Logic Low4  
VA = VB = VW  
nA  
JEDEC compliant  
VLOGIC = 2.7 V to 5.5 V  
VLOGIC = 2.7 V to 5.5 V  
VIN = 0 V or VLOGIC  
VIH  
VIL  
IIL  
2.0  
V
0.8  
1
V
Input Current  
Input Capacitance4  
μA  
pF  
CIL  
5
5
DIGITAL OUTPUTS (SDO and RDY)  
Output High Voltage4  
Output Low Voltage4  
Tristate Leakage Current  
Output Capacitance4  
POWER SUPPLIES  
VOH  
VOL  
RPULL_UP = 2.2 kΩ to VLOGIC  
RPULL_UP = 2.2 kΩ to VLOGIC  
VLOGIC − 0.4  
−1  
V
GND + 0.4 V  
+1  
V
μA  
pF  
COL  
Single-Supply Power Range  
Dual-Supply Power Range  
Positive Supply Current  
Negative Supply Current  
Logic Supply Range  
VDD  
VSS = 0 V  
9
9
33  
16.5  
2
V
VDD/VSS  
IDD  
V
VDD/VSS  
VDD/VSS  
=
=
16.5 V  
16.5 V  
0.1  
μA  
μA  
V
ISS  
−2  
−0.1  
VLOGIC  
ILOGIC  
2.7  
5.5  
10  
Logic Supply Current  
OTP Store Current4, 7  
OTP Read Current4, 8  
Power Dissipation9  
Power Supply Rejection Ratio4  
VLOGIC = 5 V; VIH = 5 V or VIL = GND  
VIH = 5 V or VIL = GND  
1
μA  
mA  
mA  
μW  
%/%  
ILOGIC_PROG  
ILOGIC_FUSE_READ  
PDISS  
25  
25  
8
VIH = 5 V or VIL = GND  
VIH = 5 V or VIL = GND  
110  
PSSR  
∆VDD/∆VSS  
=
15 V 10%  
0.025  
0.08  
Rev. 0 | Page 3 of 28  
 
 
AD5291/AD5292  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DYNAMIC CHARACTERISTICS4, 10  
Bandwidth  
BW  
THDW  
tS  
−3 dB  
520  
−93  
kHz  
dB  
Total Harmonic Distortion  
VW Settling Time  
VA = 1 V rms, VB = 0 V, f = 1 kHz  
VA = 30 V, VB = 0 V, 0.5 LSB error  
band, initial code = zero scale  
Code = full scale, normal mode  
Code = full scale, R-Perf mode  
Code = half scale, normal mode  
Code = half scale, R-Perf mode  
750  
2.5  
2.5  
5
ns  
μs  
μs  
μs  
Resistor Noise Density  
eN_WB  
RWB = 10 kΩ, TA = 25°C, 0 kHz to  
200 kHz  
0.11  
nV/√Hz  
1 Typical values represent average readings at 25°C, VDD = 15 V, VSS = −15 V, and VLOGIC = 5 V.  
2 Resistor position nonlinearity error. R-INL is the deviation from an ideal value measured between the RWB at Code 0x02 and the RWB at Code 0xFF or between RWA at  
Code 0xFD and RWA at Code 0x00. R-DNL measures the relative step change from ideal between successive tap positions. The specification is guaranteed in resistor  
performance mode, with a wiper current of 1 mA for VA < 12 V and 1.2 mA for VA ≥ 12 V.  
3 Resistor performance mode (see the Resistor Performance Mode section). The terms resistor performance mode and R-Perf mode are used interchangeably.  
4 Guaranteed by design and characterization, not subject to production test.  
5 INL and DNL are measured at VWB with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = 0 V. DNL specification limits  
of 1 LSB maximum are guaranteed monotonic operating conditions.  
6 Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other. Dual-supply operation enables ground-  
referenced bipolar signal adjustment.  
7 Different from operating current; supply current for fuse program lasts approximately 550 μs.  
8 Different from operating current; supply current for fuse read lasts approximately 550 μs.  
9 PDISS is calculated from (IDD × VDD) + (ISS × VSS) + (ILOGIC × VLOGIC).  
10 All dynamic characteristics use VDD = +15 V, VSS = −15 V, and VLOGIC = 5 V.  
RESISTOR PERFORMANCE MODE CODE RANGE—AD5291  
Table 2.  
Resistor  
|VDD − VSS| = 30 V to 33 V  
|VDD − VSS| = 26 V to 30 V  
|VDD − VSS| = 22 V to 26 V  
|VDD − VSS| = 21 V to 22 V  
Tolerance per  
Code  
RWB  
RWA  
RWB  
RWA  
RWB  
RWA  
RWB  
RWA  
1% R-Tolerance  
2% R-Tolerance  
3% R-Tolerance  
From 0x5A  
to 0xFF  
From 0x23  
to 0xFF  
From 0x1E  
to 0xFF  
From 0x00  
to 0xA5  
From 0x00  
to 0xDC  
From 0x00  
to 0xE1  
From 0x7D  
to 0xFF  
From 0x2D  
to 0xFF  
From 0x19  
to 0xFF  
From 0x00  
to 0x82  
From 0x00  
to 0xD2  
From 0x00  
to 0xE6  
From 0x7D  
to 0xFF  
From 0x23  
to 0xFF  
From 0x17  
to 0xFF  
From 0x00  
to 0x82  
From 0x00  
to 0xDC  
From 0x00  
to 0xE8  
N/A  
N/A  
From 0x23  
to 0xFF  
From 0x17  
to 0xFF  
From 0x00  
to 0xDC  
From 0x00  
to 0xE8  
Rev. 0 | Page 4 of 28  
 
 
 
AD5291/AD5292  
ELECTRICAL CHARACTERISTICS—AD5292  
VDD = 21 V to 33 V, VSS = 0 V; VDD = 10.5 V to 16.5 V, VSS = −10.5 V to −16.5 V; VLOGIC = 2.7 V to 5.5 V, VA = VDD, VB = VSS,  
−40°C < TA < +105°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resolution  
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
N
10  
−1  
−2  
−3  
−1  
Bits  
LSB  
LSB  
LSB  
%
R-DNL  
R-INL  
R-INL  
∆RAB/RAB  
RWB, VA = NC  
+1  
+2  
+3  
+1  
|VDD − VSS| = 26 V to 33 V  
|VDD − VSS| = 21 V to 26 V  
See Table 4  
Nominal Resistor Tolerance (R-Perf Mode3)  
0.5  
20  
35  
60  
Nominal Resistor Tolerance (Normal Mode) ∆RAB/RAB  
Resistance Temperature Coefficient4  
%
(∆RAB/RAB)/∆T × 106  
ppm/°C  
Ω
Wiper Resistance  
RW  
100  
DC CHARACTERISTICS—POTENTIOMETER  
DIVIDER MODE  
Resolution  
N
10  
Bits  
Differential Nonlinearity5  
Integral Nonlinearity5  
DNL  
−1  
+1  
LSB  
INL  
−1.5  
+1.5  
LSB  
Voltage Divider Temperature  
Coefficient4  
(∆VW/VW)/∆T × 106  
Code = half scale  
5
ppm/°C  
Full-Scale Error  
VWFSE  
VWZSE  
Code = full scale  
Code = zero scale  
−8  
0
0
8
LSB  
LSB  
Zero-Scale Error  
RESISTOR TERMINALS  
Terminal Voltage Range6  
Capacitance A, Capacitance B4  
VA, VB, VW  
CA, CB  
VSS  
VDD  
V
f = 1 MHz, measured to GND,  
code = half scale  
85  
65  
1
pF  
Capacitance W4  
CW  
ICM  
f = 1 MHz, measured to GND,  
code = half scale  
pF  
Common-Mode Leakage Current4  
DIGITAL INPUTS  
Input Logic High4  
Input Logic Low4  
VA = VB = VW  
nA  
JEDEC compliant  
VLOGIC = 2.7 V to 5.5 V  
VLOGIC = 2.7 V to 5.5 V  
VIN = 0 V or VLOGIC  
VIH  
VIL  
IIL  
2.0  
V
0.8  
1
V
Input Current  
Input Capacitance4  
μA  
pF  
CIL  
5
5
DIGITAL OUTPUTS (SDO and RDY)  
Output High Voltage4  
Output Low Voltage4  
Tristate Leakage Current  
Output Capacitance4  
POWER SUPPLIES  
VOH  
VOL  
RPULL_UP = 2.2 kΩ to VLOGIC  
RPULL_UP = 2.2 kΩ to VLOGIC  
VLOGIC − 0.4  
−1  
V
GND + 0.4  
1
V
μA  
pF  
COL  
Single-Supply Power Range  
Dual-Supply Power Range  
Positive Supply Current  
Negative Supply Current  
Logic Supply Range  
VDD  
VSS = 0 V  
9
9
33  
16.5  
2
V
VDD/VSS  
IDD  
V
VDD/VSS  
VDD/VSS  
=
=
16.5 V  
16.5 V  
0.1  
μA  
μA  
V
ISS  
−2  
−0.1  
VLOGIC  
ILOGIC  
2.7  
5.5  
10  
Logic Supply Current  
OTP Store Current4, 7  
OTP Read Current4, 8  
Power Dissipation9  
Power Supply Rejection Ratio4  
VLOGIC = 5 V; VIH = 5 V or VIL = GND  
VIH = 5 V or VIL = GND  
1
μA  
mA  
mA  
μW  
%/%  
ILOGIC_PROG  
ILOGIC_FUSE_READ  
PDISS  
25  
25  
8
VIH = 5 V or VIL = GND  
VIH = 5 V or VIL = GND  
110  
PSSR  
∆VDD/∆VSS  
=
15 V 10%  
0.025  
0.08  
Rev. 0 | Page 5 of 28  
 
AD5291/AD5292  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DYNAMIC CHARACTERISTICS4, 10  
Bandwidth  
BW  
THDW  
tS  
−3 dB  
520  
−93  
kHz  
dB  
Total Harmonic Distortion  
VW Settling Time  
VA = 1 V rms, VB = 0 V, f = 1 kHz  
VA = 30 V, VB = 0 V, 0.5 LSB error  
band, initial code = zero scale  
Code = full scale, normal mode  
Code = full scale, R-Perf mode  
Code = half scale, normal mode  
Code = half scale, R-Perf mode  
750  
2.5  
2.5  
5
ns  
μs  
μs  
μs  
Resistor Noise Density  
eN_WB  
RWB = 10 kΩ, TA = 25°C, 0 kHz to  
200 kHz  
0.11  
nV/√Hz  
1 Typical values represent average readings at 25°C, VDD = 15 V, VSS = −15 V, and VLOGIC = 5 V.  
2 Resistor position nonlinearity error. R-INL is the deviation from an ideal value measured between the RWB at Code 0x02 and the RWB at Code 0xFF or between RWA at  
Code 0xFD and RWA at Code 0x00. R-DNL measures the relative step change from ideal between successive tap positions. The specification is guaranteed in resistor  
performance mode, with a wiper current of 1 mA for VA < 12 V and 1.2 mA for VA ≥ 12 V.  
3 Resistor performance mode (see the Resistor Performance Mode section). The terms resistor performance mode and R-Perf mode are used interchangeably.  
4 Guaranteed by design and characterization, not subject to production test.  
5 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = 0 V. DNL specification limits  
of 1 LSB maximum are guaranteed monotonic operating conditions.  
6 Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other. Dual-supply operation enables ground-  
referenced bipolar signal adjustment.  
7 Different from operating current; supply current for fuse program lasts approximately 550 μs.  
8 Different from operating current; supply current for fuse read lasts approximately 550 μs.  
9 PDISS is calculated from (IDD × VDD) + (ISS × VSS) + (ILOGIC × VLOGIC).  
10 All dynamic characteristics use VDD = +15 V, VSS = −15 V, and VLOGIC = 5 V.  
RESISTOR PERFORMANCE MODE CODE RANGE—AD5292  
Table 4.  
Resistor  
|VDD − VSS| = 30 V to 33 V  
|VDD − VSS| = 26 V to 30 V  
|VDD − VSS| = 22 V to 26 V  
|VDD − VSS| = 21 V to 22 V  
Tolerance per  
Code  
RWB  
RWA  
RWB  
RWA  
RWB  
RWA  
RWB  
RWA  
1% R-Tolerance  
2% R-Tolerance  
3% R-Tolerance  
From 0x15E  
to 0x3FF  
From 0x8C  
to 0x3FF  
From 0x5A  
to 0x3FF  
From 0x00  
to 0x2A1  
From 0x00  
to 0x373  
From 0x00  
to 0x3A5  
From 0x1F4  
to 0x3FF  
From 0xB4  
to 0x3FF  
From 0x64  
to 0x3FF  
From 0x00  
to 0x20B  
From 0x00  
to 0x34B  
From 0x00  
to 0x39B  
From 0x1F4  
to 0x3FF  
From 0xFA  
to 0x3FF  
From 0x78  
to 0x3FF  
From 0x00  
to 0x20B  
From 0x00  
to 0x305  
From 0x00  
to 0x387  
N/A  
N/A  
From 0xFA  
to 0x3FF  
From 0x78  
to 0x3FF  
From 0x00  
to 0x305  
From 0x00  
to 0x387  
Rev. 0 | Page 6 of 28  
 
 
AD5291/AD5292  
INTERFACE TIMING SPECIFICATIONS  
VDD/VSS  
= 15 V, VLOGIC = 2.7 V to 5.5 V, 40°C < TA < + 105°C. All specifications TMIN to TMAX, unless otherwise noted.  
Table 5.  
Parameter  
Limit1  
20  
10  
10  
10  
5
5
1
4003  
14  
1
Unit  
Description  
2
t1  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
SCLK cycle time  
SCLK high time  
SCLK low time  
SYNC to SCLK falling edge setup time  
Data setup time  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
Data hold time  
SCLK falling edge to SYNC rising edge  
Minimum SYNC high time  
SYNC rising edge to next SCLK fall ignore  
RDY rising edge to SYNC falling edge  
SYNC rising edge to RDY fall time  
4
t10  
4
t11  
40  
4
t12  
2.4  
410  
8
μs max  
ns max  
ms max  
ms min  
ns max  
ms max  
ns max  
ns min  
ms max  
RDY low time, RDAC register write command execute time (R-Perf mode)  
RDY low time, RDAC register write command execute time (normal mode)  
RDY low time, memory program execute time  
Software\hardware reset  
4
t12  
4
t12  
4
t12  
1.5  
450  
1.3  
450  
20  
4
t13  
RDY low time, RDAC register readback execute time  
RDY low time, memory readback execute time  
SCLK rising edge to SDO valid  
4
t13  
4
t14  
tRESET  
Minimum RESET pulse width (asynchronous)  
Power-on OTP restore time  
5
tPOWER-UP  
2
1 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2.  
2 Maximum SCLK frequency is 50 MHz.  
3 Refer to t12 and t13 for RDAC register and memory commands operations.  
4 RPULL_UP = 2.2 kΩ to VLOGIC, with a capacitance load of 168 pF.  
5 Typical power supply voltage slew rate of 2 ms/V.  
DB9 (MSB)  
DB0 (LSB)  
C3  
C1  
C0  
D9  
D7  
D6  
D5  
D4  
D3  
D0  
0
0
C2  
D8  
D2  
D1  
DATA BITS  
CONTROL BITS  
Figure 2. AD5291/AD5292 Shift Register Content  
Rev. 0 | Page 7 of 28  
 
 
AD5291/AD5292  
TIMING DIAGRAMS  
t4  
t7  
t2  
t1  
SCLK  
t9  
t3  
t8  
SYNC  
t5  
t6  
D7  
DIN  
D6  
D2  
X
X
C3  
C2  
D1  
D0  
SDO  
t11  
t10  
t12  
RDY  
tRESET  
RESET  
Figure 3. Write Timing Diagram  
SCLK  
SYNC  
t9  
DIN  
X
X
X
C3  
D0  
X
D0  
C3  
D1  
D0  
t14  
C3  
SDO  
RDY  
X
X
D1  
D0  
t11  
t13  
Figure 4. Read Timing Diagram  
Rev. 0 | Page 8 of 28  
 
 
AD5291/AD5292  
ABSOLUTꢄ MAXIMUM ꢁATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 6.  
Parameter  
VDD to GND  
VSS to GND  
VLOGIC to GND  
VDD to VSS  
VA, VB, VW to GND  
IA, IB, IW  
Pulsed1  
Rating  
−0.3 V to +35 V  
+0.3 V to − 16.5 V  
−0.3 V to + 7 V  
35 V  
VSS − 0.3 V, VDD+ 0.3 V  
THERMAL RESISTANCE  
θJA is defined by JEDEC specification JESD-51 and the value is  
dependent on the test board and test environment.  
Frequency > 10 kHz  
Frequency ≤ 10 kHz  
Continuous  
3 mA/d2  
3 mA/√d2  
3 mA  
Table 7. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
Digital Input and Output Voltage to GND  
EXT_CAP Voltage to GND  
Operating Temperature Range3  
Maximum Junction Temperature (TJ max)  
Storage Temperature Range  
Reflow Soldering  
−0.3 V to VLOGIC + 0.3 V  
−0.3 V to +7 V  
−40°C to +105°C  
150°C  
14-Lead TSSOP  
931  
20  
°C/W  
1 JEDEC 2S2P test board, still air (0 m/sec to 1 m/sec air flow).  
−65°C to +150°C  
ESD CAUTION  
Peak Temperature  
260°C  
Time at Peak Temperature  
Package Power Dissipation  
20 sec to 40 sec  
(TJ max − TA)/θJA  
1 Maximum terminal current is bounded by the maximum current handling of  
the switches, maximum power dissipation of the package, and maximum  
applied voltage across any two of the A, B, and W terminals at a given  
resistance.  
2 Pulse duty factor.  
3 Includes programming of OTP memory.  
Rev. 0 | Page 9 of 28  
 
 
 
 
 
AD5291/AD5292  
PIN CONFIGUꢁATION AND FUNCTION DꢄSCꢁIPTIONS  
RESET  
1
2
3
4
5
6
7
14 RDY  
V
13  
SDO  
SS  
AD5291/  
AD5292  
A
W
B
12  
SYNC  
11 SCLK  
10 DIN  
TOP VIEW  
Not to Scale  
V
9
8
GND  
DD  
EXT_CAP  
V
LOGIC  
Figure 5. Pin Configuration  
Table 8. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
RESET  
Hardware Reset Pin. Refreshes the RDAC register with the contents of the 20-TP memory register. Factory  
default loads midscale until the first 20-TP wiper memory location is programmed. RESET is activated at the  
logic high transition. Tie RESET to VLOGIC if not used.  
2
VSS  
Negative Supply. Connect to 0 V for single-supply applications. This pin should be decoupled with 0.1 μF  
ceramic capacitors and 10 μF capacitors.  
3
4
5
6
7
8
A
W
B
VDD  
EXT_CAP  
VLOGIC  
Terminal A of RDAC. VSS ≤ VA ≤ VDD.  
Wiper Terminal of RDAC. VSS ≤ VW ≤ VDD.  
Terminal B of RDAC. VSS ≤ VB ≤ VDD.  
Positive Power Supply. This pin should be decoupled with 0.1 μF ceramic capacitors and 10 μF capacitors.  
External Capacitor. Connect a 1 μF capacitor to EXT_CAP. This capacitor must have a voltage rating of ≥7 V.  
Logic Power Supply; 2.7 V to 5.5 V. This pin should be decoupled with 0.1 μF ceramic capacitors and 10 μF  
capacitors.  
9
10  
GND  
DIN  
Ground Pin, Logic Ground Reference.  
Serial Data Input. The AD5291/AD5292 have a 16-bit shift register. Data is clocked into the register on the falling  
edge of the serial clock input.  
11  
12  
SCLK  
SYNC  
Serial Clock Input. Data is clocked into the shift register on the falling edge of the serial clock input. Data can be  
transferred at rates up to 50 MHz.  
Falling Edge Synchronization Signal. This is the frame synchronization signal for the input data. When SYNC  
goes low, it enables the shift register and data is transferred in on the falling edges of the following clocks. The  
selected register is updated on the rising edge of SYNC following the 16th clock cycle. If SYNC is taken high  
before the 16th clock cycle, the rising edge of SYNC acts as an interrupt, and the write sequence is ignored by  
the DAC.  
13  
14  
SDO  
RDY  
Serial Data Output. This open-drain output requires an external pull-up resistor. SDO can be used to clock data  
from the shift register in daisy-chain mode or in readback mode.  
Ready Pin. This active-high open-drain output identifies the completion of a write or read operation to or from  
the RDAC register or memory.  
Rev. 0 | Page 10 of 28  
 
AD5291/AD5292  
TYPICAL PꢄꢁFOꢁMANCꢄ CHAꢁACTꢄꢁISTICS  
1.0  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
–40°C  
+25°C  
0.8  
+105°C  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.02  
–0.04  
–0.06  
+105°C  
+25°C  
128  
CODE (Decimal)  
–40°C  
64  
0
128  
256  
384  
512  
640  
768  
896  
1024  
0
32  
96  
160  
192  
224  
256  
CODE (Decimal)  
Figure 6. R-INL in R-Perf Mode vs. Code vs. Temperature (AD5292)  
Figure 9. R-DNL in R-Perf Mode vs. Code vs. Temperature (AD5291)  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.1  
–0.2  
+105°C  
768  
+105°C  
768  
+25°C  
512  
CODE (Decimal)  
+25°C  
512  
CODE (Decimal)  
–40°C  
–40°C  
–0.3  
–0.6  
0
128  
256 384  
640  
896  
1024  
0
128  
256 384  
640  
896  
1024  
Figure 7. R-DNL in R-Perf Mode vs. Code vs. Temperature (AD5292)  
Figure 10. R-INL in Normal Mode vs. Code vs. Temperature (AD5292)  
0.30  
0.15  
+105°C  
+25°C  
–40°C  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.10  
0.05  
0
–0.05  
–0.10  
–0.15  
–0.05  
–0.10  
–0.15  
–0.20  
+105°C  
768  
+25°C  
512  
CODE (Decimal)  
–40°C  
–0.20  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
128  
256 384  
640  
896  
1024  
CODE (Decimal)  
Figure 8. R-INL in R-Perf Mode vs. Code vs. Temperature (AD5291)  
Figure 11. R-DNL in Normal Mode vs. Code vs. Temperature (AD5292)  
Rev. 0 | Page 11 of 28  
 
AD5291/AD5292  
0.25  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
+105°C  
+25°C  
–40°C  
0.20  
0.15  
0.10  
0.05  
0
–0.05  
–0.10  
–0.1  
–0.2  
+105°C  
768  
+25°C  
512  
CODE (Decimal)  
–40°C  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
128  
256 384  
640  
896  
1024  
CODE (Decimal)  
Figure 12. R-INL in Normal Mode vs. Code vs. Temperature (AD5291)  
Figure 15. DNL in R-Perf Mode vs. Code vs. Temperature (AD5292)  
0.03  
0.25  
+105°C  
+105°C  
+25°C  
+25°C  
–40°C  
–40°C  
0.20  
0.15  
0.10  
0.05  
0
0.02  
0.01  
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
CODE (Decimal)  
Figure 13. R-DNL in Normal Mode vs. Code vs. Temperature (AD5291)  
Figure 16. INL in R-Perf Mode vs. Code vs. Temperature (AD5291)  
1.5  
0.14  
+105°C  
+25°C  
–40°C  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
1.0  
0.5  
0
–0.5  
–1.0  
–0.02  
–0.04  
–0.06  
+105°C  
768  
+25°C  
512  
CODE (Decimal)  
–40°C  
–1.5  
0
128  
256 384  
640  
896  
1024  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
Figure 14. INL in R-Perf Mode vs. Code vs. Temperature (AD5292)  
Figure 17. DNL in R-Perf Mode vs. Code vs. Temperature (AD5291)  
Rev. 0 | Page 12 of 28  
AD5291/AD5292  
0.8  
0.6  
0.03  
0.02  
–40°C  
+25°C  
+105°C  
+105°C  
+25°C  
–40°C  
0.4  
0.01  
0.2  
0
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.2  
–0.4  
–0.6  
–0.8  
0
128  
256  
384  
512  
640  
768  
896  
1024  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
CODE (Decimal)  
Figure 18. INL in Normal Mode vs. Code vs. Temperature (AD5292)  
Figure 21. DNL in Normal Mode vs. Code vs. Temperature (AD5291)  
0.10  
450  
–40°C  
V
V
/V = ±15V  
DD SS  
= +5V  
LOGIC  
+25°C  
400  
350  
300  
250  
200  
150  
100  
50  
+105°C  
0.05  
0
I
LOGIC  
–0.05  
–0.10  
–0.15  
–0.20  
I
DD  
0
I
SS  
–50  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100  
TEMPERATURE (°C)  
0
128  
256  
384  
512  
640  
768  
896  
1024  
CODE (Decimal)  
Figure 22. Supply Current (IDD, ISS, ILOGIC) vs. Temperature  
Figure 19. DNL in Normal Mode vs. Code vs. Temperature (AD5292)  
700  
600  
500  
400  
300  
200  
100  
0
0.20  
V
V
= 30V,  
DD  
= 0V  
+105°C  
+25°C  
–40°C  
SS  
0.15  
0.10  
0.05  
0
–0.05  
–0.10  
–0.15  
–0.20  
0
0
256  
64  
512  
128  
768  
192  
1024 AD5292  
256 AD5291  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
CODE (Decimal)  
Figure 20. INL in Normal Mode vs. Code vs. Temperature (AD5291)  
Figure 23. Rheostat Mode Tempco ΔRWB/ΔT vs. Code (AD5292)  
Rev. 0 | Page 13 of 28  
AD5291/AD5292  
700  
600  
500  
400  
300  
200  
100  
0
–66  
–68  
–70  
–72  
–74  
–76  
–78  
–80  
–82  
V
/V = ±15V  
DD SS  
V
V
= 30V,  
DD  
= 0V  
CODE = HALF SCALE  
= 1V rms  
SS  
V
IN  
0
0
256  
64  
512  
128  
768  
192  
1024 AD5292  
256 AD5291  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
CODE (Decimal)  
Figure 24. Potentiometer Mode Tempco ΔRWB/ΔT vs. Code  
Figure 27. THD + Noise vs. Frequency  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
AD5292 (AD5291)  
–4  
–8  
V
/V = ±15V,  
0x200 (0x80)  
0x100 (0x40)  
DD SS  
CODE = HALF SCALE  
fIN = 1kHz  
–12  
–18  
0x080 (0x20)  
0x040 (0x10)  
–24  
–28  
–32  
–36  
–40  
–44  
0x020 ( 0x08)  
0x010 (0x04)  
0x008 (0x02)  
0x004 (0x01)  
0x002  
0x001  
–50  
–54  
1
10  
100  
1k  
10k  
100k  
1M  
0.001  
0.01  
0.1  
1
10  
FREQUENCY (Hz)  
AMPLITUDE (V)  
Figure 25. 20 kΩ Gain vs. Frequency vs. Code (AD5292)  
Figure 28. THD + Noise vs. Amplitude  
68  
64  
60  
56  
52  
48  
44  
40  
36  
32  
28  
24  
20  
16  
12  
8
8
7
6
5
4
3
2
1
0
V
V
V
/V = 30V/0V  
DD SS  
= V  
= V  
A
B
DD  
SS  
V
/V = ±15V  
DD SS  
CODE = HALF SCALE  
= +5V  
V
LOGIC  
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
0
0
256  
64  
512  
128  
768  
192  
1024 AD5292  
256 AD5291  
FREQUENCY (Hz)  
CODE (Decimal)  
Figure 26. Power Supply Rejection Ratio vs. Frequency  
Figure 29. Theoretical Maximum Current vs. Code  
Rev. 0 | Page 14 of 28  
AD5291/AD5292  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.2  
1.0  
V
V
V
V
/V = ±15V  
DD SS  
V
= ±15V  
DD  
= +5V  
LOGIC  
= V  
= V  
A
B
DD  
SS  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
DIGITAL INPUT VOLTAGE (V)  
TIME (µs)  
Figure 30. Supply Current ILOGIC vs. Digital Input Voltage  
Figure 33. Maximum Transition Glitch  
35  
6
5
V
, CODE: FULL SCALE, NORMAL MODE  
WB  
V
V
/V = ±15V  
DD SS  
= +5V  
LOGIC  
30  
25  
20  
15  
10  
5
V
, CODE: FULL SCALE,  
WB  
R-PERF MODE  
4
V
, CODE: HALF-SCALE,  
WB  
3
NORMAL MODE  
2
V
, CODE: HALF-SCALE,  
WB  
R-PERF MODE  
1
V
V
V
V
/V = 30V/0V  
DD SS  
SYNC  
= 5V  
LOGIC  
0
0
= V  
= V  
A
B
DD  
SS  
–5  
–1  
TIME (µs)  
TIME (ms)  
Figure 34. VEXT_CAP Waveform While Reading Fuse or Calibration  
Figure 31. Large-Signal Settling Time, Code from Zero Scale to Full Scale  
8
35  
V
V
/V = ±15V  
DD SS  
= +5V  
LOGIC  
30  
25  
20  
15  
10  
5
6
3
2
0
0
–2  
–5  
–0.4  
–0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
TIME (ms)  
TIME (ms)  
Figure 32. IDD Waveform While Blowing/Reading Fuse  
Figure 35. VEXT_CAP Waveform While Writing Fuse  
Rev. 0 | Page 15 of 28  
 
AD5291/AD5292  
75.0  
62.5  
50.0  
37.5  
25.0  
12.5  
0
300  
250  
200  
150  
100  
50  
V
/V = ±15V  
DD SS  
0
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100  
TEMPERATURE (°C)  
Figure 36. Code Range > 1% R-Tolerance Error vs. Temperature  
Rev. 0 | Page 16 of 28  
AD5291/AD5292  
TꢄST CIꢁCUITS  
Figure 37 to Figure 42 define the test conditions used in the Specifications section.  
NC  
DUT  
A
I
V
W
A
V+ = V ± 10%  
DD  
W
ΔV  
ΔV  
MS  
DD  
V
A
B
DD  
PSRR (dB) = 20 log  
B
W
V+  
~
V
MS  
ΔV  
ΔV  
%
%
MS  
DD  
PSS (%/%) =  
V
MS  
NC = NO CONNECT  
Figure 40. Power Supply Sensitivity (PSS, PSRR)  
Figure 37. Resistor Position Nonlinearity Error  
(Rheostat Operation; R-INL, R-DNL)  
+15V  
A
W
DUT  
A
V+ = V  
DD  
V
IN  
N
DUT  
1LSB = V+/2  
OP42  
–15V  
V
OUT  
B
W
OFFSET  
GND  
V+  
B
2.5V  
V
MS  
Figure 41. Gain vs. Frequency  
Figure 38. Potentiometer Divider Nonlinearity Error  
(INL, DNL)  
+15V  
NC  
–15V  
GND  
GND  
0.1V  
A
V
DUT  
R
=
=
I
DD  
WB  
CM  
I
DUT  
B
WB  
+15V  
–15V  
W
R
CODE = 0x00  
WB  
2
R
W
W
V
GND  
SS  
B
+
GND  
0.1V  
I
WB  
NC  
+15V  
GND  
V
TO V  
DD  
SS  
NC = NO CONNECT  
A = NC  
–15V  
Figure 42. Common-Mode Leakage Current  
Figure 39. Wiper Resistance  
Rev. 0 | Page 17 of 28  
 
 
 
AD5291/AD5292  
THꢄOꢁY OF OPꢄꢁATION  
The AD5291/AD5292 , members of the Analog Devices, Inc.,  
DigiPOT+ family of potentiometers are designed to operate as  
true variable resistors for analog signals that remain within the  
terminal voltage range of VSS < VTERM < VDD. The patented 1%  
resistor tolerance feature helps to minimize the total RDAC resis-  
tance error, which reduces the overall system error by offering  
better absolute matching and improved open-loop performance.  
The digital potentiometer wiper position is determined by the  
RDAC register contents. The RDAC register acts as a scratchpad  
register, allowing as many value changes as necessary to place  
the potentiometer wiper in the correct position. The RDAC  
register can be programmed with any position setting using the  
standard SPI interface by loading the 16-bit data-word. Once a  
desirable position is found, this value can be stored in a 20-TP  
memory register. Thereafter, the wiper position is always restored  
to that position for subsequent power-up. The storing of 20-TP  
data takes approximately 6 ms; during this time, the shift register  
is locked, preventing any changes from taking place. The RDY pin  
identifies the completion of this 20-TP storage.  
AD5291, the lower two RDAC data bits are don’t cares if the  
RDAC register is read from or written to. Data is loaded MSB first  
(Bit DB15). The four control bits determine the function of the  
software command (see Table 9). Figure 3 shows a timing  
diagram of a typical AD5291/AD5292 write sequence.  
SYNC  
The write sequence begins by bringing the  
line low. The  
SYNC  
pin must be held low until the complete data-word is  
SYNC  
loaded from the DIN pin. When  
returns high, the serial  
data-word is decoded according to the commands in Table 9.  
The command bits (Cx) control the operation of the digital  
potentiometer. The data bits (Dx) are the values that are loaded  
into the decoded register. The AD5291/AD5292 have an internal  
counter that counts a multiple of 16 bits (a frame) for proper  
operation. For example, the AD5291/AD5292 work with a 32-bit  
word, but do not work properly with a 31-bit or 33-bit word.  
The AD5291/AD5292 do not require a continuous SCLK, when  
SYNC  
is high, and all serial interface pins should be operated at  
close to the VLOGIC supply rails to minimize power consumption  
in the digital input buffers.  
SERIAL DATA INTERFACE  
RDAC REGISTER  
The AD5291/AD5292 contain a serial interface (  
, SCLK,  
SYNC  
The RDAC register directly controls the position of the digital  
potentiometer wiper. For example, when the RDAC register is  
loaded with all 0s, the wiper is connected to Terminal B of the  
variable resistor. The RDAC register is a standard logic register;  
there is no restriction on the number of changes allowed.  
DIN and SDO) that is compatible with SPI interface standards, as  
well as most DSPs. The parts allow writing of data via the serial  
interface to every register.  
SHIFT REGISTER  
The AD5291/AD5292 shift register is 16 bits wide (see Figure 2).  
The 16-bit input word consists of two unused bits (set to 0),  
followed by four control bits, and 10 RDAC data bits. For the  
Table 9. Command Operation Truth Table  
Command Bits [DB13:DB10]  
Data Bits [DB9:DB0]1  
Command C3  
C2  
0
C1  
0
C0  
0
D9  
X
D8  
X
D7  
X
D6  
X
D5  
X
D4  
X
D3  
X
D2  
X
D1  
X
D0  
X
Operation  
0
1
2
0
0
0
NOP command: do nothing.  
Write contents of serial data to RDAC.  
0
0
1
D9  
X
D8  
X
D7  
X
D6  
X
D5  
X
D4  
X
D3  
X
D2  
X
D12  
D02  
0
1
0
X
X
Read RDAC wiper setting from the SDO  
output in the next frame.  
3
4
5
0
0
0
0
1
1
1
0
0
1
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Store wiper setting: store RDAC setting  
to 20-TP memory.  
X
X
X
X
X
Reset: refresh RDAC with 20-TP stored  
value.  
D4  
D3  
D2  
D1  
D0  
Read contents of 20-TP memory, or  
status of 20-TP memory, from the SDO  
output in the next frame.  
6
7
8
0
0
1
1
1
0
1
1
0
0
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
D3  
X
D2  
X
D1  
X
D0  
X
Write contents of serial data to control  
register.  
Read control register from the SDO  
output in the next frame.  
X
X
X
D0  
Software shutdown.  
D0 = 0 (normal mode).  
D0 = 1 (device placed in shutdown mode).  
1 X = don’t care.  
2 In the AD5291, this bit is a don’t care.  
Rev. 0 | Page 18 of 28  
 
 
AD5291/AD5292  
20-TP MEMORY  
WRITE PROTECTION  
Once a desirable wiper position is found, the contents of the  
RDAC register can be saved into a 20-TP memory register  
(see Table 10). Thereafter, the wiper position is always set at that  
position for any future on-off-on power supply sequence. The  
AD5291/AD5292 have an array of 20 one-time programmable  
(OTP) memory registers. When the desired word is programmed  
to 20-TP memory, the device automatically verifies that the  
program command was successful. The verification process  
includes margin testing. Bit C3 of the control register can be  
polled to verify that the fuse program command was successful.  
Programming data to 20-TP memory consumes approximately  
25 mA for 550 μs, and takes approximately 8 ms to complete.  
During this time, the shift register is locked, preventing any  
changes from taking place. The RDY pin can be used to monitor  
the completion of the 20-TP memory program and for verifica-  
tion. No change in supply voltage is required to program the  
20-TP memory. However, a 1 μF capacitor on the EXT_CAP pin  
is required (see Figure 47). Prior to 20-TP activation, the AD5291/  
AD5292 preset to midscale on power-up.  
On power-up, the shift register write commands for both the  
RDAC register and the 20-TP memory register are disabled.  
The RDAC write protect bit, C1 of the control register (see  
Table 11 and Table 12), is set to 0 by default. This disables any  
change of the RDAC register content regardless of the software  
commands, except that the RDAC register can be refreshed  
from the 20-TP memory using the software reset command  
RESET  
(Command 4) or through hardware by the  
pin. To enable  
programming of the variable resistor wiper position (program-  
ming the RDAC register), the write protect bit, C1 of the control  
register, must first be programmed. This is accomplished by  
loading the shift register with Command 6 (see Table 9). To  
enable programming of the 20-TP memory block bit, C0 of the  
control register (set to 0 by default) must first be set to 1.  
Table 10. Write and Read to RDAC and 20-TP Memory  
DIN  
SDO  
Action  
0x1803  
0x0500  
0x0800  
0x0C00  
0xXXXX  
0x1803  
0x0500  
0x0100  
Enable update of wiper position and 20-TP memory contents through digital interface.  
Write 0x100 to the RDAC register; wiper moves to ¼ full-scale position.  
Prepare data read from the RDAC register.  
Stores RDAC register content into 20-TP memory. The 16-bit word appears out of SDO, where the last 10 bits  
contain the contents of the RDAC register (0x100).  
0x1C00  
0x0000  
0x0C00  
0x000X  
Prepare data read from the control register.  
NOP Instruction 0 sends 16-bit word out of SDO, where the last four bits contain the contents of the control  
register. If Bit C3 = 1, the fuse program command is successful.  
Table 11. Control Register Bit Map1  
DB9  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
X
X
X
X
X
X
C3  
C2  
C1  
C0  
1 X = don’t care.  
Table 12. Control Register Description  
Bit Name  
Description  
C0  
20-TP program enable  
0 = 20-TP program disabled (default)  
1 = enable device for 20-TP program  
RDAC register write protect  
0 = wiper position frozen to value in memory (default)1  
1 = allow update of wiper position through digital Interface  
Calibration enable  
C1  
C2  
C3  
0 = resistor performance mode enabled (default)  
1 = normal mode enabled  
20-TP memory program success  
0 = fuse program command unsuccessful (default)  
1 = fuse program command successful  
1 Wiper position frozen to value last programmed in 20-TP memory. Wiper is frozen to midscale if 20-TP memory has not been previously programmed.  
Rev. 0 | Page 19 of 28  
 
 
 
 
AD5291/AD5292  
Data from the selected memory location are clocked out of the  
SDO pin during the next SPI operation, where the last 10 bits  
contain the contents of the specified memory location.  
BASIC OPERATION  
The basic mode of setting the variable resistor wiper position  
(programming the RDAC register) is accomplished by loading  
the shift register with Command 1 (see Table 9) and the desired  
wiper position data. When the desired wiper position is deter-  
mined, the user can load the shift register with Command 3  
(see Table 9), which stores the wiper position data in the 20-TP  
memory register. After 6 ms, the wiper position is permanently  
stored in the 20-TP memory. The RDY pin can be used to moni-  
tor the completion of this 20-TP program. Table 10 provides a  
programming example, listing the sequence of serial data input  
(DIN) words with the serial data output appearing at the SDO  
pin in hexadecimal format.  
It is also possible to calculate the address of the most recently  
programmed memory location by reading back the contents of  
read-only Memory Address 0x14 and Memory Address 0x15  
using Command 5. The data bytes read back from Memory  
Address 0x014 and Memory Address 0x015 are thermometer  
encoded versions of the address of the last programmed  
memory location.  
For the example outlined in Table 13, the address of the last  
programmed location is calculated as  
(Number of Bits = 1 in Memory Address 0x14) + (Number  
of Bits = 1 in Memory Address 0x15) − 1 = 10 + 8 − 1 = 17  
(0x10)  
20-TP READBACK AND SPARE MEMORY STATUS  
It is possible to read back the contents of any of the 20-TP  
memory registers through SDO by using Command 5 (see  
Table 9). The lower five LSB bits (D0 to D4) of the data byte  
select which memory location is to be read back (see Table 14).  
If no memory location has been programmed, then the address  
generated is −1.  
Table 13. Example 20-TP Memory Readback  
DIN  
SDO  
Action  
0x1414 0xXXXX Prepares data read from Memory Address 0x14.  
0x1415 0x03FF  
Prepares data read from Memory Address 0x15. Sends 16-bit word out of SDO, where the last 10 bits contain the  
contents of Memory Address 0x14.  
0x0000 0x00FF  
0x1410 0x0000  
NOP Command 0 sends 16-bit word out of SDO, where last 10-bits contain the contents of Memory Address 0x15.  
Prepares data read from memory location 0x10.  
0x0000 0xXXXX NOP Instruction 0 sends 16-bit word out of SDO, where the last 10 bits contain the contents of Memory Address 0x10 (17).  
Table 14. Memory Map of Command 5  
Data Bits [DB9:DB0]1  
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Register Contents  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
1st programmed wiper location (0x00)  
2nd programmed wiper location (0x01)  
3rd programmed wiper location (0x02)  
4th programmed wiper location (0x03)  
5th programmed wiper location (0x04)  
10th programmed wiper location (0x09)  
15th programmed wiper location (0x0E)  
20th programmed wiper location (0x13)  
Programmed memory status (thermometer encoded)2 (0x14)  
Programmed memory status (thermometer encoded)2 (0x15)  
1 X = don’t care.  
2 Allows the user to calculate the remaining spare memory locations.  
Rev. 0 | Page 20 of 28  
 
 
 
AD5291/AD5292  
V
LOGIC  
SHUTDOWN MODE  
R
2.2k  
AD5291/  
AD5292  
AD5291/  
The AD5291/AD5292 can be placed in shutdown mode by  
executing the software shutdown command, Command 8 (see  
Table 9), and setting the LSB, D0, to 1. This feature places the  
RDAC in a special state in which Terminal A is open-circuited and  
Wiper W is connected to Terminal B. The contents of the  
RDAC register are unchanged by entering shutdown mode.  
However, all commands listed in Table 9 are supported while in  
shutdown mode. Execute Command 8 (see Table 9) and set the  
LSB, D0, to 0 to exit shutdown mode.  
P
AD5292  
MOSI  
MICRO-  
CONTROLLER  
SCLK SS  
DIN  
SDO  
DIN  
U1 SDO  
U2  
SYNC  
SCLK  
SYNC  
SCLK  
Figure 43. Daisy-Chain Configuration Using SDO  
RDAC ARCHITECTURE  
To achieve optimum cost performance, Analog Devices has  
patented the RDAC segmentation architecture for all the digital  
potentiometers. In particular, the AD5291/AD5292 employ a  
three-stage segmentation approach, as shown in Figure 44. The  
AD5291/AD5292 wiper switch is designed with the transmission  
gate CMOS topology and with the gate voltages derived from  
RESISTOR PERFORMANCE MODE  
This mode activates a new, patented 1% end-to-end resistor  
tolerance that ensures a 1% resistor tolerance on each code,  
that is, code = half scale, RWB = 10 kΩ 100 Ω. See Table 2  
(AD5291) or Table 4 (AD5292) to check which codes achieve  
1% resistor tolerance. The resistor performance mode is  
activated by programming Bit C2 of the control register (see  
Table 11 and Table 12). The typical settling time is shown in  
Figure 31.  
VDD and VSS.  
A
R
R
L
RESET  
RESET  
A low-to-high transition of the hardware  
pin loads the  
R
M
L
RDAC register with the contents of the most recently programmed  
20-TP memory location. The AD5291/AD5292 can also be reset  
through software by executing Command 4 (see Table 9). If no  
20-TP memory location is programmed, then the RDAC register  
loads with midscale upon reset. The control register is restored  
with default bit settings; see Table 12.  
S
W
R
M
R
R
W
W
W
8-/10-BIT  
ADDRESS  
DECODER  
R
M
DAISY-CHAIN OPERATION  
R
L
The shift register serial data output pin (SDO) serves two  
purposes. It can be used to read the contents of the wiper  
setting or the internal memory values using Command 2 and  
Command 5, respectively (see Table 9) or it can be used to  
daisy-chain multiple devices. The remaining instructions are valid  
for daisy-chaining multiple devices in simultaneous operations.  
Daisy-chaining minimizes the number of port pins required  
from the controlling IC (see Figure 43). The SDO pin contains  
an open-drain N-Channel FET that requires a pull-up resistor,  
if this function is used. As shown in Figure 43, users must tie  
the SDO pin of one package to the DIN pin of the next package.  
Users may need to increase the clock period, because the pull-  
up resistor and the capacitive loading at the SDO/DIN interface  
may require additional time delay between subsequent devices.  
R
M
R
L
B
Figure 44. AD5291/AD5292 Simplified RDAC Circuit  
PROGRAMMING THE VARIABLE RESISTOR  
Rheostat Operation—1% Resistor Tolerance  
The AD5291/AD5292 operate in rheostat mode when only two  
terminals are used as a variable resistor. The unused terminal  
can be left floating or tied to the W terminal, as shown in Figure 45.  
When two AD5291/AD5292 devices are daisy-chained, 32 bits  
of data are required. The first 16 bits go to U2, and the second  
A
A
A
W
W
W
SYNC  
16 bits go to U1. Hold the  
pin low until all 32 bits are  
B
B
B
SYNC  
clocked into their respective shift registers. The  
then pulled high to complete the operation.  
pin is  
Figure 45. Rheostat Mode Configuration  
The nominal resistance between Terminal A and Terminal B,  
RAB, is available in 20 kΩ and has 256 or 1024 tap points  
accessed by the wiper terminal. The 8-/10-bit data in the RDAC  
latch is decoded to select one of the 256/1024 possible wiper  
Rev. 0 | Page 21 of 28  
 
 
 
 
AD5291/AD5292  
settings. The AD5291/AD5292 contain an internal 1% resistor  
performance mode that can be disabled or enabled (this is  
enabled by default), by programming Bit C2 of the control  
register (see Table 11 and Table 12). The digitally programmed  
output resistance between the W terminal and the A terminal,  
of VDD to GND, which must be positive, voltage across A to B,  
W to A, and W to B can be at either polarity.  
V
IN  
A
W
V
OUT  
RWA, and between the W terminal and B terminal, RWB, is inter-  
B
nally calibrated to give a maximum of 1% absolute resistance  
error across a wide code range. As a result, the general equations  
for determining the digitally programmed output resistance  
between the W terminal and B terminal are  
Figure 46. Potentiometer Mode Configuration  
If ignoring the effect of the wiper resistance for simplicity, con-  
necting the A terminal to 30 V and the B terminal to ground  
produces an output voltage at the Wiper W to Terminal B  
ranging from 0 V to 1 LSB less than 30 V. Each LSB of voltage is  
equal to the voltage applied across Terminal A and Terminal B,  
divided by the 256/1024 positions of the potentiometer divider.  
The general equations defining the output voltage at VW with  
respect to ground for any valid input voltage applied to Terminal A  
and Terminal B are  
AD5291:  
D
256  
R
WB (D)   
RAB  
(1)  
(2)  
AD5292:  
D
1024  
RWB (D)   
RAB  
where:  
AD5291:  
D is the decimal equivalent of the binary code loaded in the  
8-/10-bit RDAC register.  
D
256  
256 D  
256  
VW (D)   
VA   
VB  
(5)  
(6)  
R
AB is the end-to-end resistance.  
AD5292:  
VW (D)   
Similar to the mechanical potentiometer, the resistance of the  
RDAC between the W terminal and the A terminal also produces a  
digitally controlled complementary resistance, RWA. RWA is also  
calibrated to give a maximum of 1% absolute resistance error.  
1024D  
D
1024  
VA   
VB  
1024  
If using the AD5291/AD5292 in voltage divider mode as in  
Figure 46, then the 1% resistor tolerance calibration feature  
RWA starts at the maximum resistance value and decreases as the  
data loaded into the latch increases. The general equations for  
this operation are  
reduces the error when matching with discrete resistors. However,  
it is recommended to disable the internal 1% resistor tolerance  
calibration feature by programming Bit C2 of the control  
register (see Table 11 and Table 12) to optimize wiper position  
update rate. In this configuration, the RDAC is ratiometric and  
resistor tolerance error does not affect performance.  
AD5291:  
256 D  
256  
R
WA (D)   
RAB  
(3)  
(4)  
AD5292:  
Operation of the digital potentiometer in the voltage divider  
mode results in a more accurate operation over temperature.  
Unlike the rheostat mode, the output voltage is dependent  
mainly on the ratio of the internal resistors, RWA and RWB, and  
not the absolute values. Therefore, the temperature drift reduces  
to 5 ppm/°C.  
1024 D  
1024  
RWA (D)   
RAB  
where:  
D is the decimal equivalent of the binary code loaded in the  
8-/10-bit RDAC register.  
R
AB is the end-to-end resistance.  
EXT_CAP CAPACITOR  
In the zero-scale condition, a finite total wiper resistance of 120 Ω  
is present. Regardless of which setting the part is operating in,  
take care to limit the current between Terminal A and Terminal B,  
between Terminal W and Terminal A, and between Terminal W  
and Terminal B, to the maximum continuous current of 3 mA or  
to the pulse current specified in Table 6. Otherwise, degradation  
or possible destruction of the internal resistors may occur.  
A 1 μF capacitor to GND must be connected to the EXT_CAP  
pin (see Figure 47) on power-up and throughout the operation  
of the AD5291/AD5292.  
AD5291/  
AD5292  
EXT_CAP  
OTP  
MEMORY  
BLOCK  
C1  
1µF  
PROGRAMMING THE POTENTIOMETER DIVIDER  
Voltage Output Operation  
GND  
The digital potentiometer easily generates a voltage divider at  
the wiper to B and at the wiper to A that is proportional to the  
input voltage at A to B, as shown in Figure 46. Unlike the polarity  
Figure 47. Hardware Setup for EXT_CAP Pin  
Rev. 0 | Page 22 of 28  
 
 
 
AD5291/AD5292  
control signals to the AD5291/AD5292 must be referenced to  
the device ground pin (GND), and satisfy the logic level defined  
in the Specifications section.  
TERMINAL VOLTAGE OPERATING RANGE  
The positive VDD and negative VSS power supplies of the  
AD5291/AD5292 define the boundary conditions for proper  
3-terminal digital potentiometer operation. Supply signals  
present on Terminal A, Terminal B, and Terminal W that  
exceed VDD or VSS are clamped by the internal forward-biased  
diodes (see Figure 48).  
Power-Up Sequence  
To ensure that the AD5291/AD5292 power up correctly, a 1 μF  
capacitor must be connected to the EXT_CAP pin. Because  
there are diodes to limit the voltage compliance at Terminal A,  
Terminal B, and Terminal W (see Figure 48), it is important to  
power VDD and VSS first before applying any voltage to Terminal A,  
Terminal B, and Terminal W. Otherwise, the diode is forward-  
biased such that VDD and VSS are powered up unintentionally.  
The ideal power-up sequence is GND, VSS, VLOGIC and VDD, the  
digital inputs, and then VA, VB, and VW. The order of powering  
up VA, VB, VW, and the digital inputs is not important as long as  
V
DD  
A
W
B
they are powered after VDD, VSS, and VLOGIC  
.
Regardless of the power-up sequence and the ramp rates of the  
power supplies, after VLOGIC is powered, the power-on preset  
activates, restoring the 20-TP memory value to the RDAC  
register.  
V
SS  
Figure 48. Maximum Terminal Voltages Set by VDD and V SS  
The ground pin of the AD5291/AD5292 device is primarily  
used as a digital ground reference. To minimize the digital  
ground bounce, the AD5291/AD5292 ground terminal should  
be joined remotely to the common ground. The digital input  
Rev. 0 | Page 23 of 28  
 
 
AD5291/AD5292  
APPLICATIONS INFOꢁMATION  
HIGH VOLTAGE DAC  
HIGH ACCURACY DAC  
The AD5292 can be configured as a high voltage DAC, with  
output voltage as high as 33 V. The circuit is shown in Figure 49.  
The output is  
It is possible to configure the AD5292 as a high accuracy DAC  
by optimizing the resolution of the device over a specific  
reduced voltage range. This is achieved by placing external  
resistors on either side of the RDAC, as shown in Figure 51.  
The improved 1% resistor tolerance specification greatly  
reduces error associated with matching to discrete resistors.  
D
R
(7)  
1.2 V 1  
2   
VOUT (D)   
1024  
R1  
where D is the decimal code from 0 to 1023.  
R3 (D1024 RAB ) V DD  
R1 ((1024D)1024) RAB R3  
VOUT (D)   
(8)  
V
DD  
V
DD  
V
DD  
R
BIAS  
U2  
U1A  
R
1
U1  
V+  
AD5292  
D1  
AD8512  
V–  
AD5292  
V
DD  
U1B  
20k  
ADR512  
U2  
V+  
OP1177  
V–  
R
20k  
2
V
OUT  
B
V
AD8512  
±1%  
OUT  
B
R
2
R
3
R
1
Figure 51. Optimizing Resolution  
Figure 49. High Voltage DAC  
VARIABLE GAIN INSTRUMENTATION AMPLIFIER  
PROGRAMMABLE VOLTAGE SOURCE WITH  
BOOSTED OUTPUT  
The AD8221 in conjunction with the AD5292 and the ADG1207,  
as shown in Figure 52, make an excellent instrumentation  
amplifier for use in data acquisition systems. The data acquisi-  
tion system’s low distortion and low noise enable it to condition  
signals in front of a variety of ADCs.  
For applications that require high current adjustments such as a  
laser diode or a tunable laser, a boosted voltage source can be  
considered (see Figure 50).  
U3 2N7002  
V
V
OUT  
IN  
ADG1207  
V
DD  
U1  
AD5292  
R
+V  
BIAS  
C
IN1  
C
A
U2  
OP184  
I
W
L
V
+V  
–V  
OUT  
AD5292  
IN4  
IN1  
SIGNAL  
LD  
AD8221  
B
–V  
IN4  
V
SS  
Figure 50. Programmable Boosted Voltage Source  
Figure 52. Data Acquisition System  
In this circuit, the inverting input of the op amp forces VOUT to  
be equal to the wiper voltage set by the digital potentiometer.  
The load current is then delivered by the supply via the N-channel  
FET (U3). The N-Channel FET power handling must be adequate  
to dissipate (VIN − VOUT) × IL power. This circuit can source a  
maximum of 100 mA with a 33 V supply.  
The gain can be calculated by using Equation 9.  
49.4 kꢀ  
(9)  
G(D) 1  
D 1024 RAB  
Rev. 0 | Page 24 of 28  
 
 
 
 
 
AD5291/AD5292  
The configuration to reduce zipper noise is shown in Figure 53,  
and the results of using this configuration are shown in Figure 54.  
The input is ac-coupled by C1 and attenuated down before feeding  
into the window comparator formed by U2, U3, and U4B. U6 is  
used to establish the signal zero reference. The upper limit of  
the comparator is set above its offset and, therefore, the output  
pulses high whenever the input falls between 2.502 V and 2.497 V  
(or 0.005 V window) in this example. This output is ANDed  
AUDIO VOLUME CONTROL  
The excellent THD performance and high voltage capability  
make the AD5291/AD5292 ideal for a digital volume control as  
an audio attenuator or gain amplifier. A typical problem in  
these systems is that a large step change in the volume level at  
any arbitrary time can lead to an abrupt discontinuity of the  
audio signal causing an audible zipper noise. To prevent this, a  
SYNC  
zero-crossing window detector can be inserted to the  
SYNC  
with the  
the signal crosses the window. To avoid a constant update of the  
SYNC  
signal such that the AD5293 updates whenever  
line to delay the device update until the audio signal crosses the  
window. Because the input signal can operate on top of any dc  
level rather than absolute 0 V level, zero-crossing in this case  
means the signal is ac-coupled, and the dc offset level is the  
signal zero reference point.  
device, the  
signal should be programmed as two pulses,  
rather than as one.  
In Figure 54, the lower trace shows that the volume level changes  
from a quarter-scale to full-scale when a signal change occurs  
near the zero-crossing window.  
C1  
1µF  
V
IN  
5V  
AD5292  
U1  
+15V  
R
1
+5V  
V
DD  
100k  
C3  
0.1µF  
A
U2  
CC  
ADCMP371  
GND  
V
C2  
0.1µF  
R
2
+15V  
U5  
200Ω  
R
90kΩ  
V
4
SS  
W
–15V  
U4B  
V+  
V
OUT  
4
5
U4A  
20kΩ  
6
1
2
+5V  
U3  
7408  
SYNC  
7408  
R
5
V–  
10kΩ  
V
CC  
5V  
SCLK  
DIN  
SCLK  
DIN  
ADCMP371  
GND  
B
–15V  
U6  
V+  
AD8541  
V–  
SYNC  
GND  
R
3
100kΩ  
Figure 53. Audio Volume Control with Zipper Noise Reduction  
1
2
CHANNEL 1  
FREQ = 20.25kHz  
1.03V p-p  
Figure 54. Zipper Noise Detector  
Rev. 0 | Page 25 of 28  
 
 
 
AD5291/AD5292  
OUTLINꢄ DIMꢄNSIONS  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65 BSC  
1.05  
1.00  
0.80  
1.20  
MAX  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.30  
0.19  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 55. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD5291BRUZ-201  
AD5291BRUZ-20-RL71  
AD5292BRUZ-201  
AD5292BRUZ-20-RL71  
RAB (kΩ)  
20  
20  
20  
20  
Resolution  
256  
256  
1,024  
1,024  
Memory  
20-TP  
20-TP  
20-TP  
20-TP  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
Package Description  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
Package Option  
RU-14  
RU-14  
RU-14  
RU-14  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 26 of 28  
 
 
AD5291/AD5292  
NOTꢄS  
Rev. 0 | Page 27 of 28  
AD5291/AD5292  
NOTꢄS  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07674-0-5/09(0)  
Rev. 0 | Page 28 of 28  

相关型号:

AD5291BRUZ-50

256-/1024-Position, Digital Potentiometers
ADI

AD5291BRUZ-50-RL7

256-/1024-Position, Digital Potentiometers
ADI

AD5292

256-/1024-Position, DigiPOT+ Potentiometers with Maximum ±1% R-Tolerance Error and 20-TP Memory
ADI

AD5292/AD5291

数字电位器
ETC

AD5292ABRUZ100

IC 100K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 1024 POSITIONS, PDSO14, MO-153AB-1, TSSOP-14, Digital Potentiometer
ADI

AD5292ABRUZ20

IC 20K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 1024 POSITIONS, PDSO14, MO-153AB-1, TSSOP-14, Digital Potentiometer
ADI

AD5292ABRUZ50

IC 50K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 1024 POSITIONS, PDSO14, MO-153AB-1, TSSOP-14, Digital Potentiometer
ADI

AD5292BRUZ-100

256-/1024-Position, Digital Potentiometers
ADI

AD5292BRUZ-100-RL7

256-/1024-Position, Digital Potentiometers
ADI

AD5292BRUZ-20

256-/1024-Position, DigiPOT+ Potentiometers with Maximum ±1% R-Tolerance Error and 20-TP Memory
ADI

AD5292BRUZ-20-RL7

256-/1024-Position, DigiPOT+ Potentiometers with Maximum ±1% R-Tolerance Error and 20-TP Memory
ADI

AD5292BRUZ-50

256-/1024-Position, Digital Potentiometers
ADI