X9C103PI [XICOR]

E2POT⑩ Nonvolatile Digital Potentiometer; E2POT⑩非易失性数字电位计
X9C103PI
型号: X9C103PI
厂家: XICOR INC.    XICOR INC.
描述:

E2POT⑩ Nonvolatile Digital Potentiometer
E2POT⑩非易失性数字电位计

数字电位计
文件: 总15页 (文件大小:85K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APPLICATION NOTES  
A V A I L A B L E  
AN42 • AN44–48 • AN50 • AN52 • AN53 • AN71 • AN73  
Terminal Voltage ±5V, 100 Taps  
X9C102/103/104/503  
E2POTNonvolatile Digital Potentiometer  
FEATURES  
DESCRIPTION  
Compatible with X9102/103/104/503  
Low Power CMOS  
TheXicorX9C102/103/104/503isasolidstatenonvola-  
tile potentiometer and is ideal for digitally controlled  
resistance trimming.  
—V  
= 5V  
CC  
—Active Current, 3mA Max  
—Standby Current, 500µA Max  
99 Resistive Elements  
TheX9C102/103/104/503isaresistorarraycomposedof  
99 resistive elements. Between each element and at  
either end are tap points accessible to the wiper element.  
The position of the wiper element is controlled by the CS,  
U/D, and INC inputs. The position of the wiper can be  
stored in nonvolatile memory and then be recalled upon a  
subsequent power-up operation.  
—Temperature Compensated  
± 20% End to End Resistance Range  
100 Wiper Tap Points  
—Wiper Positioned via Three-Wire Interface  
—Similar to TTL Up/Down Counter  
—Wiper Position Stored in Nonvolatile  
Memory and Recalled on Power-Up  
100 Year Wiper Position Data Retention  
X9C102 = 1KΩ  
The resolution of the X9C102/103/104/503 is equal to  
the maximum resistance value divided by 99. As an  
example, for the X9C503 (50K) each tap point repre-  
sents 505.  
X9C103 = 10KΩ  
All Xicor nonvolatile memories are designed and tested  
for applications requiring extended endurance and data  
retention.  
X9C503 = 50KΩ  
X9C104 = 100KΩ  
FUNCTIONAL DIAGRAM  
U/D  
INC  
CS  
7-BIT  
UP/DOWN  
COUNTER  
99  
V
H
98  
97  
96  
7-BIT  
NONVOLATILE  
MEMORY  
ONE  
OF  
ONE-  
HUNDRED  
DECODER  
TRANSFER  
GATES  
RESISTOR  
ARRAY  
2
1
0
STORE AND  
RECALL  
CONTROL  
CIRCUITRY  
V
CC  
GND  
V
V
L
W
3863 FHD F01  
E2POTis a trademark of Xicor, Inc.  
©Xicor, Inc. 1994, 1995 Patents Pending  
3863-2.4 9/18/96 T2/C0/D0 SH  
Characteristics subject to change without notice  
1
X9C102/103/104/503  
PIN DESCRIPTIONS  
PIN CONFIGURATION  
V and V  
H
L
The high (V ) and low (V ) terminals of the X9C102/103/  
H
L
DIP/SOIC  
104/503 are equivalent to the fixed terminals of a  
mechanical potentiometer. The minimum voltage is –5V  
and the maximum is +5V. It should be noted that the  
INC  
U/D  
1
2
3
4
8
7
6
5
V
CC  
CS  
X9C102/  
103/104/503  
terminology of V and V references the relative position  
L
H
V
H
V
L
of the terminal in relation to wiper movement direction  
selected by the U/D input and not the voltage potential on  
the terminal.  
V
V
SS  
W
3863 FHD F02.2  
V
W
V
W
is the wiper terminal, equivalent to the movable  
terminal of a mechanical potentiometer. The position  
of the wiper within the array is determined by the  
control inputs. The wiper terminal series resistance is  
typically 40.  
PIN NAMES  
Symbol  
Description  
V
V
V
V
V
High Terminal  
Wiper Terminal  
Low Terminal  
Ground  
H
Up/Down (U/D)  
W
L
The U/D input controls the direction of the wiper  
movement and whether the counter is incremented or  
decremented.  
SS  
CC  
Supply Voltage  
Up/Down Input  
Increment Input  
Chip Select Input  
No Connect  
Increment (INC)  
U/D  
INC  
CS  
The INC input is negative-edge triggered. Toggling INC  
will move the wiper and either increment or decrement  
thecounterinthedirectionindicatedbythelogiclevelon  
the U/D input.  
NC  
3863 PGM T01  
Chip Select (CS)  
The device is selected when the CS input is LOW. The  
current counter value is stored in nonvolatile memory  
when CS is returned HIGH while the INC input is also  
HIGH.AfterthestoreoperationiscompletetheX9C102/  
103/104/503 will be placed in the low power standby  
mode until the device is selected once again.  
2
X9C102/103/104/503  
DEVICE OPERATION  
OPERATION NOTES  
There are three sections of the X9C102/103/104/503:  
the input control, counter and decode section; the non-  
volatilememory;andtheresistorarray.Theinputcontrol  
section operates just like an up/down counter. The  
output of this counter is decoded to turn on a single  
electronicswitchconnectingapointontheresistorarray  
to the wiper output. Under the proper conditions the  
contents of the counter can be stored in nonvolatile  
memory and retained for future use. The resistor array  
is comprised of 99 individual resistors connected in  
series. At either end of the array and between each  
resistor is an electronic switch that transfers the  
potential at that point to the wiper.  
ThesystemmayselecttheX9C102/103/104/503, move  
the wiper, and deselect the device without having to  
store the latest wiper, position in nonvolatile memory.  
The wiper movement is performed as described above;  
once the new position is reached, the system would the  
keep INC LOW while taking CS HIGH. The new wiper  
position would be maintained until changed by the  
system or until a power-down/up cycle recalled the  
previously stored data.  
This would allow the system to always power-up to a  
preset value stored in nonvolatile memory; then during  
system operation minor adjustments could be made.  
The adjustments might be based on user preference:  
system parameter changes due to temperature drift,  
etc...  
TheINC,U/DandCSinputscontrolthemovementofthe  
wiper along the resistor array. With CS set LOW the  
X9C102/103/104/503 is selected and enabled to  
respond to the U/D and INC inputs. HIGH to LOW  
transitions on INC will increment or decrement  
(depending on the state of the U/D input) a seven-bit  
counter. The output of this counter is decoded to  
select one of one-hundred wiper positions along the  
resistive array.  
The state of U/D may be changed while CS remains  
LOW. This allows the host system to enable the  
X9C102/103/104/503 and then move the wiper up and  
down until the proper trim is attained.  
T
/R  
IW TOTAL  
The electronic switches on the X9C102/103/104/503  
operate in a “make before break” mode when the wiper  
changes tap positions. If the wiper is moved several  
positions, multiple taps are connected to the wiper for  
The wiper, when at either fixed terminal, acts like its  
mechanical equivalent and does not move beyond the  
last position. That is, the counter does not wrap around  
when clocked to either extreme.  
t
IW  
(INCtoV change). TheR  
valueforthedevice  
W
TOTAL  
can temporarily be reduced by a significant amount  
if the wiper is moved several positions.  
The value of the counter is stored in nonvolatile memory  
whenever CS transistions HIGH while the INC input is  
also HIGH.  
R
TOTAL  
with V Removed  
CC  
Theendtoendresistanceofthearraywillfluctuateonce  
is removed.  
When the X9C102/103/104/503 is powered-down, the  
last counter position stored will be maintained in the  
nonvolatile memory. When power is restored, the con-  
tentsofthememoryarerecalledandthecounterisreset  
to the value last stored.  
V
CC  
SYMBOL TABLE  
WAVEFORM  
INPUTS  
OUTPUTS  
Must be  
steady  
Will be  
steady  
May change  
from LOW  
to HIGH  
Will change  
from LOW  
to HIGH  
May change  
from HIGH  
to LOW  
Will change  
from HIGH  
to LOW  
Don’t Care:  
Changes  
Allowed  
Changing:  
State Not  
Known  
N/A  
Center Line  
is High  
Impedance  
3
X9C102/103/104/503  
ABSOLUTE MAXIMUM RATINGS*  
*COMMENT  
Temperature under Bias .................. –65°C to +135°C  
Storage Temperature ....................... –65°C to +150°C  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only and the functional operation  
of the device at these or any other conditions above  
those listed in the operational sections of this specifica-  
tion is not implied. Exposure to absolute maximum  
ratingconditionsforextendedperiodsmayaffectdevice  
reliability.  
Voltage on CS, INC, U/D and V  
CC  
with Respect to V ............................... –1V to +7V  
SS  
L
Voltage on V and V  
H
Referenced to V  
................................. –8V to +8V  
SS  
V = |V –V |  
H
L
X9C102............................................................. 4V  
X9C103, X9C503, and X9C104...................... 10V  
Lead Temperature (Soldering, 10 seconds).... +300°C  
Wiper Current..................................................... ±1mA  
ANALOG CHARACTERISTICS  
Electrical Characteristics  
Temperature Coefficient  
End-to-End Resistance Tolerance ..................... ±20%  
Power Rating at 25°C  
(–40°C to +85°C)  
X9C102 ......................................+600 ppm/°C Typical  
X9C103, X9C503, X9C104 ........+300 ppm/°C Typical  
Ratiometric Temperature Coefficient ............ ±20 ppm  
X9C102....................................................... 16mW  
X9C103, X9C503, and X9C104.................. 10mW  
Wiper Current............................................ ±1mA Max.  
Typical Wiper Resistance......................... 40at 1mA  
Typical Noise..........................< 120dB/ Hz Ref: 1V  
Wiper Adjustability  
Unlimited Wiper Adjustment (Non-Store operation)  
Wiper Position Store Operations ................... 10,000  
Data Changes  
Resolution  
Resistance ............................................................. 1%  
Physical Characteristics  
Linearity  
Marking Includes  
(1)  
(3)  
(2)  
(2)  
Manufacturer‘s Trademark  
Resistance Value or Code  
Date Code  
Absolute Linearity ........................................ ±1.0 Ml  
Relative Linearity ..................................... ±0.2 Ml  
Test Circuit #1  
Test Circuit #2  
V
H
V
H
TEST POINT  
TEST POINT  
V
W
FORCE  
CURRENT  
V
W
V
L
V
L
3863 FHD F04  
3863 FHD F05  
Notes: (1) Absolute Linearity is utilized to determine actual wiper voltage versus expected voltage  
= (V (actual) – V (expected)) = ±1 Ml Maximum.  
w(n)  
w(n)  
(2) 1 Ml = Minimum Increment = R  
/99.  
TOT  
(3) Relative Linearity is a measure of the error in step size between taps = V  
– [V  
+ Ml] = +0.2 Ml.  
W(n+1)  
w(n)  
4
X9C102/103/104/503  
RECOMMENDED OPERATING CONDITIONS  
Temperature  
Min.  
Max.  
Supply Voltage  
Limits  
Commercial  
Industrial  
Military  
0°C  
+70°C  
+85°C  
+125°C  
X9C102/103/104/503  
5V ±10%  
3863 PGM T04.2  
–40°C  
–55°C  
3863 PGM T03.1  
D.C. OPERATING CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)  
Limits  
(4)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
CS = V , U/D = V or V and  
I
I
I
V
Active Current  
1
3
mA  
CC  
SB  
LI  
CC  
IL  
IL  
IH  
INC = 0.4V to 2.4V @ max. t  
CYC  
Standby Supply Current  
200  
500  
µA  
µA  
V
CS = V – 0.3V, U/D and INC =  
CC  
V
SS  
or V – 0.3V  
CC  
CS, INC, U/D Input  
Leakage Current  
±10  
V
IN  
= V to V  
SS CC  
V
V
CS, INC, U/D Input  
HIGH Voltage  
2
V
+ 1  
CC  
IH  
CS, INC, U/D Input  
–1  
0.8  
V
IL  
LOW Voltage  
R
Wiper Resistence  
40  
100  
+5  
V
Max. Wiper Current ±1mA  
W
H
L
V
V
VH Terminal Voltage  
VL Terminal Voltage  
–5  
–5  
+5  
V
(5)  
C
IN  
CS, INC, U/D Input  
10  
pF  
V
CC  
= 5V, V = V  
,
IN  
SS  
Capacitance  
T = 25°C, f = 1MHz  
A
3863 PGM T05.3  
STANDARD PARTS  
Part Number  
Maximum Resistance  
Wiper Increments  
Minimum Resistance  
X9C102  
X9C103  
X9C503  
X9C104  
1KΩ  
10KΩ  
50KΩ  
100KΩ  
10.1Ω  
101Ω  
505Ω  
1010Ω  
40Ω  
40Ω  
40Ω  
40Ω  
3863 PGM T08.1  
Notes: (4) Typical values are for T = 25°C and nominal supply voltage.  
A
(5) This parameter is periodically sampled and not 100% tested.  
5
X9C102/103/104/503  
A.C. CONDITIONS OF TEST  
MODE SELECTION  
Input Pulse Levels  
0V to 3V  
10ns  
CS  
INC  
U/D  
Mode  
Wiper Up  
Input Rise and Fall Times  
Input Reference Levels  
L
L
H
L
1.5V  
Wiper Down  
3863 PGM T05.1  
H
X
L
X
X
X
Store Wiper Position  
Standby Current  
No Store, Return to  
H
Standby  
3863 PGM T06  
A.C. OPERATING CHARACTERISTICS (Over recommended operating conditions unless otherwise specified)  
Limits  
(6)  
Symbol  
Parameter  
CS to INC Setup  
INC HIGH to U/D Change  
U/D to INC Setup  
INC LOW Period  
INC HIGH Period  
INC Inactive to CS Inactive  
CS Deselect Time  
INC to Vw Change  
INC Cycle Time  
INC Input Rise and Fall Time  
Power up to Wiper Stable  
Min.  
Typ.  
Max.  
Units  
t
t
t
t
t
t
t
t
t
t
t
100  
100  
2.9  
1
ns  
ns  
µs  
µs  
µs  
µs  
ms  
µs  
µs  
µs  
µs  
Cl  
lD  
DI  
lL  
1
lH  
1
lC  
20  
CPH  
IW  
CYC  
100  
500  
4
(7)  
t
500  
500  
50  
R, F  
(7)  
PU  
(7)  
t V  
V Power-up Rate  
CC  
0.2  
mV/µs  
R
CC  
3863 PGM T07.3  
A.C. Timing  
CS  
t
CYC  
t
t
t
t
t
CI  
IL  
IH  
IC  
CPH  
90% 90%  
10%  
INC  
U/D  
t
t
t
t
ID  
DI  
F
R
t
IW  
(8)  
MI  
V
W
3863 FHD F03  
Notes: (6) Typical values are for T = 25°C and nominal supply voltage.  
A
(7) This parameter is periodically sampled and not 100% tested.  
(8) MI in the A.C. timing diagram refers to the minimum incremental change in the V output due to a change in the wiper position.  
W
6
X9C102/103/104/503  
Typical Frequency Response for X9C102  
9
6
TEST CONDITIONS  
VCC = 5V  
Temp. = 25°C  
Wiper @ Tap 50  
VH = 0.5VRMS  
3
0
Normalized (0dB @ 1KHz)  
Test Circuit #1  
–3  
–6  
–9  
–12  
–15  
–18  
–21  
0.01  
0.10  
1.00  
10.00 100.00 1000.00 10000.00  
FREQUENCY IN KHz  
3863 FHD F06  
Typical Total Harmonic Distortion for X9C102  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
TEST CONDITIONS  
VCC = 5V  
Temp. = 25°C  
Wiper @ Tap 50  
VH = 2VRMS  
Test Circuit #1  
0.01  
0.10  
1.00  
10.00 100.00 1000.00 10000.00  
FREQUENCY IN KHz  
3863 FHD F07  
7
X9C102/103/104/503  
Typical Linearity for X9C102  
10  
8
TEST CONDITIONS  
VCC = 5V  
Temp. = 25°C  
Test Circuit #2  
6
4
2
KEY:  
0
= ABSOLUTE  
–2  
–4  
–6  
–8  
–10  
= RELATIVE  
0
10 20 30 40 50 60 70 80 90 100  
WIPER POSITION  
3863 FHD F08  
Typical Frequency Response for X9C103  
9
6
TEST CONDITIONS  
VCC = 5V  
3
Temp. = 25°C  
Wiper @ Tap 50  
VH = 0.5VRMS  
0
Normalized (0dB @ 1KHz)  
Test Circuit #1  
–3  
–6  
–9  
–12  
–15  
–18  
–21  
0.01  
0.10  
1.00  
10.00 100.00 1000.00  
FREQUENCY IN KHz  
3863 FHD F09  
8
X9C102/103/104/503  
Typical Total Harmonic Distortion for X9C103  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
TEST CONDITIONS  
VCC = 5V  
Temp. = 25°C  
Wiper @ Tap 50  
VH = 2VRMS  
Test Circuit #1  
0.01  
0.10  
1.00  
10.00 100.00 1000.00  
FREQUENCY IN KHz  
3863 FHD F10  
Typical Linearity for X9C103  
10  
8
TEST CONDITIONS  
VCC = 5V  
Temp. = 25°C  
Test Circuit #2  
6
4
2
KEY:  
0
= ABSOLUTE  
–2  
–4  
–6  
–8  
–10  
= RELATIVE  
0
10 20 30 40 50 60 70 80 90 100  
WIPER POSITION  
3863 FHD F11  
9
X9C102/103/104/503  
Typical Frequency Response for X9C503  
9
6
TEST CONDITIONS  
VCC = 5V  
Temp. = 25°C  
Wiper @ Tap 50  
VH = 0.5VRMS  
Normalized (0dB @ 1 KHz)  
Test Circuit #1  
3
0
-3  
-6  
-9  
-12  
-15  
-18  
-21  
0.01  
0.10  
1.00  
10.00  
100.00  
1000.00  
FREQUENCY IN KHz  
3863 FHD F12  
Typical Total Harmonic Distortion for X9C503  
9
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
TEST CONDITIONS  
VCC = 5V  
Temp. = 25°C  
Wiper @ Tap 50  
VH = 2VRMS  
Test Circuit #1  
0.01  
0.10  
1.00  
10.00 100.00 1000.00  
FREQUENCY IN KHz  
3863 FHD F13  
10  
X9C102/103/104/503  
Typical Linearity for X9C503  
10  
8
TEST CONDITIONS  
VCC = 5V  
Temp. = 25°C  
Test Circuit #2  
6
4
2
KEY:  
0
= ABSOLUTE  
-2  
-4  
-6  
-8  
-10  
= RELATIVE  
0
10 20 30 40 50 60 70 80 90 100  
WIPER POSITION  
3863 FHD F14  
Typical Frequency Response for X9C104  
9
6
TEST CONDITIONS  
VCC = 5V  
Temp. = 25°C  
Wiper @ Tap 50  
VH = 0.5VRMS  
3
0
Normalized (0dB @ 1 KHz)  
Test Circuit #1  
-3  
-6  
-9  
-12  
-15  
-18  
-21  
0.01  
0.10  
1.00  
10.00  
100.00  
1000.00  
FREQUENCY IN KHz  
3863 FHD F15  
11  
X9C102/103/104/503  
Typical Total Harmonic Distortion for X9C104  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
TEST CONDITIONS  
VCC = 5V  
Temp. = 25°C  
Wiper @ Tap 50  
VH = 2VRMS  
Test Circuit #1  
0.01  
0.10  
1.00  
10.00 100.00 1000.00 10000.00  
FREQUENCY IN KHz  
3863 FHD F16  
Typical Linearity for X9C104  
10  
8
TEST CONDITIONS  
VCC = 5V  
Temp. = 25°C  
Test Circuit #2  
6
4
2
KEY:  
0
= ABSOLUTE  
= RELATIVE  
-2  
-4  
-6  
-8  
-10  
0
10 20 30 40 50 60 70 80 90 100  
WIPER POSITION  
3863 FHD F17  
12  
X9C102/103/104/503  
PACKAGING INFORMATION  
8-LEAD PLASTIC DUAL IN-LINE PACKAGE TYPE P  
0.430 (10.92)  
0.360 (9.14)  
0.092 (2.34)  
DIA. NOM.  
0.255 (6.47)  
0.245 (6.22)  
PIN 1 INDEX  
PIN 1  
0.060 (1.52)  
0.020 (0.51)  
0.300  
(7.62) REF.  
HALF SHOULDER WIDTH ON  
ALL END PINS OPTIONAL  
0.140 (3.56)  
0.130 (3.30)  
SEATING  
PLANE  
0.020 (0.51)  
0.015 (0.38)  
0.150 (3.81)  
0.125 (3.18)  
0.062 (1.57)  
0.058 (1.47)  
0.110 (2.79)  
0.090 (2.29)  
0.020 (0.51)  
0.016 (0.41)  
0.325 (8.25)  
0.300 (7.62)  
0.015 (0.38)  
MAX.  
0°  
15°  
TYP. 0.010 (0.25)  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
3926 FHD F01  
13  
X9C102/103/104/503  
PACKAGING INFORMATION  
8-LEAD PLASTIC SMALL OUTLINE GULL WING PACKAGE TYPE S  
0.150 (3.80)  
0.158 (4.00)  
0.228 (5.80)  
0.244 (6.20)  
PIN 1 INDEX  
PIN 1  
0.014 (0.35)  
0.019 (0.49)  
0.188 (4.78)  
0.197 (5.00)  
(4X) 7°  
0.053 (1.35)  
0.069 (1.75)  
0.004 (0.19)  
0.010 (0.25)  
0.050 (1.27)  
0.010 (0.25)  
0.020 (0.50)  
X 45°  
0° – 8°  
0.0075 (0.19)  
0.010 (0.25)  
0.027 (0.683)  
0.037 (0.937)  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESIS IN MILLIMETERS)  
3926 FHD F22  
14  
X9C102/103/104/503  
ORDERING INFORMATION  
X9CXXX  
X
X
Temperature Range  
Blank = Commercial = 0°C to +70°C  
I = Industrial = –40°C to +85°C  
M = Military = –55°C to +125°C  
Package  
P = 8-Lead Plastic DIP  
S = 8-Lead SOIC  
End to End Resistance  
102 = 1KΩ  
103 = 10KΩ  
503 = 50KΩ  
104 = 100KΩ  
LIMITED WARRANTY  
Devices sold by Xicor, Inc. are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. Xicor, Inc. makes no warranty,  
express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement.  
Xicor, Inc. makes no warranty of merchantability or fitness for any purpose. Xicor, Inc. reserves the right to discontinue production and change specifications and  
prices at any time and without notice.  
Xicor, Inc. assumes no responsibility for the use of any circuitry other than circuitry embodied in a Xicor, Inc. product. No other circuits, patents, licenses are  
implied.  
U.S. PATENTS  
Xicor products are covered by one or more of the following U.S. Patents: 4,263,664; 4,274,012; 4,300,212; 4,314,265; 4,326,134; 4,393,481; 4,404,475;  
4,450,402; 4,486,769; 4,488,060; 4,520,461; 4,533,846; 4,599,706; 4,617,652; 4,668,932; 4,752,912; 4,829, 482; 4,874, 967; 4,883, 976. Foreign patents and  
additional patents pending.  
LIFE RELATED POLICY  
In situations where semiconductor component failure may endanger life, system designers using this product should design the system with appropriate error  
detection and correction, redundancy and back-up features to prevent such an occurence.  
Xicor's products are not authorized for use in critical components in life support devices or systems.  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose  
failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant  
injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or effectiveness.  
15  

相关型号:

X9C103PIZ

Digitally Controlled Pot (XDCP)
INTERSIL

X9C103PIZ

Digitally Controlled Potentiometer (XDCP&trade;); PDIP8, SOIC8; Temp Range: See Datasheet
RENESAS

X9C103PIZT1

Digital Potentiometer
RENESAS

X9C103PM

E2POT⑩ Nonvolatile Digital Potentiometer
XICOR

X9C103PMB

Digital Potentiometer, 10000ohm, Increment/decrement Control Interface, 100 Positions, PDIP8, PLASTIC, DIP-8
XICOR

X9C103PZ

Digitally Controlled Pot (XDCP)
INTERSIL

X9C103PZ

Digitally Controlled Potentiometer (XDCP&trade;); PDIP8, SOIC8; Temp Range: See Datasheet
RENESAS

X9C103PZT1

Digital Potentiometer
RENESAS

X9C103S

Digitally Controlled Pot (XDCP)
INTERSIL

X9C103S

E2POT⑩ Nonvolatile Digital Potentiometer
XICOR

X9C103SI

Digitally Controlled Pot (XDCP)
INTERSIL

X9C103SI

E2POT⑩ Nonvolatile Digital Potentiometer
XICOR