WM8195_05 [WOLFSON]

14-bit 12MSPS CIS/CCD Analogue Front End/Digitiser; 14位12MSPS CIS / CCD模拟前端/数字转换器
WM8195_05
型号: WM8195_05
厂家: WOLFSON MICROELECTRONICS PLC    WOLFSON MICROELECTRONICS PLC
描述:

14-bit 12MSPS CIS/CCD Analogue Front End/Digitiser
14位12MSPS CIS / CCD模拟前端/数字转换器

转换器 CD
文件: 总33页 (文件大小:374K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
WM8195  
w
14-bit 12MSPS CIS/CCD Analogue Front End/Digitiser  
DESCRIPTION  
FEATURES  
14-bit ADC  
The WM8195 is a 14-bit analogue front end/digitiser IC  
which processes and digitises the analogue output signals  
from CCD sensors or Contact Image Sensors (CIS) at pixel  
sample rates of up to 12MSPS.  
No missing codes guaranteed  
12MSPS conversion rate  
Low power – 210mW typical  
5V single supply or 5V/3.3V dual supply operation  
Single or 3 channel operation  
The device includes three analogue signal processing  
channels each of which contains Reset Level Clamping,  
Correlated Double Sampling and Programmable Gain and  
Offset Adjust functions. Three multiplexers allow single  
channel processing. The output from each of these  
channels is time multiplexed into a single high-speed 14-bit  
analogue-to-digital converter. The digital output data is  
available in 14-bit parallel or 8, 7 or 4-bit wide multiplexed  
format, with no missing codes.  
Correlated double sampling  
Programmable gain (8-bit resolution)  
Programmable offset adjust (8-bit resolution)  
Programmable clamp voltage  
14-bit parallel or 8, 7 or 4-bit wide multiplexed data output  
formats  
Internally generated voltage references  
48-lead TQFP package  
Serial or parallel control interface  
An internal 4-bit DAC is supplied for internal reference level  
generation. This may be used during CDS to reference CIS  
signals or during Reset Level Clamping to clamp CCD  
signals. Alternatively an external reference level may be  
applied. ADC references are generated internally, ensuring  
optimum performance from the device.  
APPLICATIONS  
Flatbed and sheetfeed scanners  
USB compatible scanners  
Multi-function peripherals  
High-performance CCD sensor interface  
Using an analogue supply voltage of 5V and a digital  
interface supply of either 5V or 3.3V, the WM8195 typically  
only consumes 210mW when operating from a single 5V  
supply and less than 20µA when in power down mode.  
BLOCK DIAGRAM  
VSMP MCLK  
AVDD1-2  
VRX VRB  
VRT  
VRLC/VBIAS  
DVDD1-3  
w
WM8195  
CL  
RS VS  
TIMING CONTROL  
VREF/BIAS  
R
G
B
M
U
X
8
OFFSET  
DAC  
OEB  
OP[0]  
OP[1]  
OP[2]  
OP[3]  
OP[4]  
OP[5]  
OP[6]  
OP[7]  
OP[8]  
OP[9]  
OP[10]  
OP[11]  
OP[12]  
OP[13]/SDO  
RINP  
RLC  
RLC  
CDS  
CDS  
PGA  
+
+
+
+
M
U
X
I/P SIGNAL  
POLARITY  
ADJUST  
R
G
B
8
M
U
X
DATA  
I/O  
PORT  
M
U
X
14-  
BIT  
ADC  
GINP  
BINP  
PGA  
8
OFFSET  
DAC  
8
I/P SIGNAL  
POLARITY  
ADJUST  
RLC  
PGA  
+
CDS  
+
8
OFFSET  
DAC  
8
I/P SIGNAL  
POLARITY  
ADJUST  
SEN/STB  
SCK/RNW  
SDI/DNA  
RLC/ACYC  
NRESET  
CONFIGURABLE  
SERIAL/  
PARALLEL  
CONTROL  
RLC  
DAC  
4
INTERFACE  
AGND1-6  
DGND1-5  
Production Data July 2005 Rev 4.1  
WOLFSON MICROELECTRONICS plc  
To receive regular email updates, sign up at http://www.wolfsonmicro.com/enews/  
Copyright 2005 Wolfson Microelectronics plc.  
WM8195  
Production Data  
TABLE OF CONTENTS  
DESCRIPTION .......................................................................................................1  
FEATURES.............................................................................................................1  
APPLICATIONS .....................................................................................................1  
BLOCK DIAGRAM .................................................................................................1  
TABLE OF CONTENTS .........................................................................................2  
PIN CONFIGURATION...........................................................................................3  
ORDERING INFORMATION ..................................................................................3  
PIN DESCRIPTION ................................................................................................4  
ABSOLUTE MAXIMUM RATINGS.........................................................................6  
RECOMMENDED OPERATING CONDITIONS .....................................................6  
ELECTRICAL CHARACTERISTICS ......................................................................7  
INPUT VIDEO SAMPLING............................................................................................... 9  
OUTPUT DATA TIMING .................................................................................................. 9  
SERIAL INTERFACE..................................................................................................... 11  
PARALLEL INTERFACE......................................................................................12  
INTRODUCTION ........................................................................................................... 13  
INPUT SAMPLING......................................................................................................... 13  
RESET LEVEL CLAMPING (RLC) ................................................................................. 13  
CDS/NON-CDS PROCESSING ..................................................................................... 14  
OFFSET ADJUST AND PROGRAMMABLE GAIN......................................................... 15  
ADC INPUT BLACK LEVEL ADJUST ............................................................................ 16  
OVERALL SIGNAL FLOW SUMMARY .......................................................................... 16  
CALCULATING OUTPUT FOR ANY GIVEN INPUT...................................................... 17  
OUTPUT FORMATS...................................................................................................... 18  
CONTROL INTERFACE ................................................................................................ 19  
TIMING REQUIREMENTS............................................................................................. 20  
PROGRAMMABLE VSMP DETECT CIRCUIT ............................................................... 21  
REFERENCES............................................................................................................... 21  
POWER SUPPLY .......................................................................................................... 22  
POWER MANAGEMENT............................................................................................... 22  
LINE-BY-LINE OPERATION.......................................................................................... 22  
OPERATING MODES.................................................................................................... 24  
OPERATING MODE TIMING DIAGRAMS..................................................................... 25  
DEVICE CONFIGURATION .................................................................................27  
REGISTER MAP............................................................................................................ 27  
REGISTER MAP DESCRIPTION................................................................................... 28  
RECOMMENDED EXTERNAL COMPONENTS ..................................................31  
PACKAGE DIMENSIONS ....................................................................................32  
IMPORTANT NOTICE..........................................................................................33  
ADDRESS:..................................................................................................................... 33  
PD Rev 4.1 July 2005  
w
2
Production Data  
WM8195  
PIN CONFIGURATION  
48 47 46 45 44 43 42 41 40 39 38 37  
36  
VRX  
VRLC/VBIAS  
AGND1  
1
2
DGND4  
DVDD3  
OP[10]  
OP[9]  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
3
BINP  
4
AGND2  
GINP  
5
OP[8]  
6
OP[7]  
AGND3  
RINP  
7
DGND3  
OP[6]  
8
AGND4  
DVDD1  
OEB  
9
OP[5]  
OP[4]  
10  
11  
12  
OP[3]  
SEN/STB  
DGND2  
19  
13 14 15 16 17 18  
20 21 22 23 24  
ORDERING INFORMATION  
TEMPERATURE  
MOISTURE  
SENSITIVITY LEVEL  
PEAK SOLDERING  
TEMPERATURE  
DEVICE  
RANGE  
PACKAGE  
48-lead TQFP  
1mm thick body  
XWM8195SCFT/V  
XWM81955CFT/RV  
0 to 70°C  
0 to 70°C  
MSL2  
MSL2  
260oC  
(Pb-free)  
48-lead TQFP  
1mm thick body  
260oC  
(Pb-free, tape and  
reel)  
Note:  
Reel quantity = 2,200  
PD Rev 4.1 July 2005  
3
w
WM8195  
Production Data  
PIN DESCRIPTION  
PIN  
NAME  
TYPE  
Analogue output Input return bias voltage.  
This pin must be decoupled to AGND via a capacitor.  
Selectable analogue output voltage for RLC or single-ended bias reference.  
DESCRIPTION  
1
VRX  
2
VRLC/VBIAS  
Analogue I/O  
This pin would typically be decoupled to AGND via a capacitor.  
VRLC can be externally driven if programmed Hi-Z.  
3
4
AGND1  
BINP  
Supply  
Analogue input  
Supply  
Analogue ground (0V).  
Blue channel input video.  
Analogue ground (0V).  
Green channel input video.  
Analogue ground (0V).  
Red channel input video.  
Analogue ground (0V).  
5
AGND2  
GINP  
6
Analogue input  
Supply  
7
AGND3  
RINP  
8
Analogue input  
Supply  
9
AGND4  
DVDD1  
10  
Supply  
Digital supply (5V) for logic and clock generator. This must be operated at the same  
potential as AVDD.  
11  
12  
OEB  
Digital input  
Digital input  
Output Hi-Z control, all digital outputs disabled when OEB = 1.  
SEN/STB  
Serial interface: enable pulse, active high  
Parallel interface: strobe, active low  
Latched on NRESET rising edge: if Low then device control is via serial interface,  
if high then device control is via parallel interface.  
13  
14  
SDI/DNA  
Digital input  
Digital input  
Serial interface: serial input data signal  
Parallel interface:  
High = data, Low = address  
SCK/RNW  
Serial interface: serial clock signal  
Parallel interface:  
High: OP[13:6] is output bus.  
Low: OP[13:6] is input bus (Hi-Z).  
15  
16  
VSMP  
Digital input  
Digital input  
Video sample synchronisation pulse.  
RLC/ACYC  
RLC (active high) selects reset level  
clamp on a pixel-by-pixel basis – tie high  
if used on every pixel.  
ACYC autocycles between R, G, B  
inputs when in Line-by-Line mode.  
17  
MCLK  
Digital input  
Supply  
Master clock. This clock is applied at N times the input pixel rate (N = 2, 3, 6, 8 or  
any multiple of 2 thereafter depending on input sample mode).  
18  
19  
20  
21  
22  
23  
DGND1  
NC  
Digital ground (0V).  
No connection.  
NC  
No connection.  
OP[0]  
OP[1]  
OP[2]  
Digital output  
Digital output  
Digital output  
Pins OP[13:0] form a Hi-Z digital bi-directional bus. There are several modes:  
Hi-Z: when OEB = 1.  
14-bit output: 14-bit data is output on OP[13:0].  
8-bit multiplexed output: data is output on OP[13:6] at 2 ADC conversion rate.  
7-bit multiplexed output: data is output on OP[13:6] at 2 ADC conversion rate.  
4-bit multiplexed output: data is output on OP[13:10] at 4 ADC conversion rate.  
See Output Formats section in Device Description for further details.  
Input 8-bit: control data is input on OP[13:6] in parallel mode when SCK/RNW = 0,  
and SEN/STB = 0.  
Output 8-bit: register read back data is output in parallel on OP[13:6] when  
SCK/RNW = 1, and SEN/STB = 0, or in serial on pin SDO when SEN/STB = 1.  
24  
25  
26  
27  
28  
29  
30  
DVDD2  
DGND2  
OP[3]  
Supply  
Supply  
Digital I/O supply (3.3V/5V).  
Digital ground (0V).  
Digital output  
Digital output  
Digital output  
Digital I/O  
Supply  
See pins 21 to 23 for details.  
OP[4]  
OP[5]  
OP[6]  
DGND3  
Digital ground (0V).  
PD Rev 4.1 July 2005  
4
w
Production Data  
WM8195  
PIN  
31  
32  
33  
34  
35  
36  
37  
38  
39  
NAME  
TYPE  
DESCRIPTION  
OP[7]  
OP[8]  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Supply  
See pins 21 to 23 for details.  
OP[9]  
OP[10]  
DVDD3  
DGND4  
OP[11]  
Digital I/O supply (3.3V/5V).  
Digital ground (0V).  
Supply  
Digital I/O  
Digital I/O  
Digital I/O  
See pins 21 to 23 for details.  
If the device has been configured to use the serial interface, pin OP[13]/SDO may  
be used to output register read-back data when OEB = 0 and SEN has been  
pulsed high.  
OP[12]  
OP[13]/SDO  
See Serial Interface sections in Device Description for further details.  
40  
41  
42  
DGND5  
NC  
Supply  
Digital ground (0V).  
No connection.  
NRESET  
Digital input  
Reset input, active low. This signal forces a reset of all internal registers and selects  
whether the serial or parallel control interface is used. See pin SEN/STB.  
43  
44  
45  
46  
47  
48  
AVDD1  
AVDD2  
AGND5  
AGND6  
VRB  
Supply  
Supply  
Supply  
Supply  
Analogue supply (5V).  
Analogue supply (5V).  
Analogue ground (0V).  
Analogue ground (0V).  
Analogue output Lower reference voltage. This pin must be capacitively decoupled to AGND.  
Analogue output Lower reference voltage. This pin must be capacitively decoupled to AGND.  
VRT  
PD Rev 4.1 July 2005  
w
5
WM8195  
Production Data  
ABSOLUTE MAXIMUM RATINGS  
Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at  
or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical  
Characteristics at the test conditions specified.  
ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible  
to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage  
of this device.  
Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage  
conditions prior to surface mount assembly. These levels are:  
MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag.  
MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.  
MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.  
The Moisture Sensitivity Level for each package type is specified in Ordering Information.  
CONDITION  
MIN  
MAX  
Analogue supply voltages: AVDD1, 2  
Digital supply voltages: DVDD1 3  
Digital grounds: DGND1 5  
Analogue grounds: AGND1 6  
Digital inputs, digital outputs and digital I/O pins  
Analogue inputs (RINP, GINP, BINP)  
Other pins  
GND - 0.3V  
GND - 0.3V  
GND - 0.3V  
GND - 0.3V  
GND - 0.3V  
GND - 0.3V  
GND - 0.3V  
GND + 7V  
GND + 7V  
GND + 0.3V  
GND + 0.3V  
DVDD2 + 0.3V  
AVDD + 0.3V  
AVDD + 0.3V  
°
°
Operating temperature range: TA  
Storage temperature  
0 C  
+70 C  
°
°
-65 C  
+150 C  
Notes:  
1. GND denotes the voltage of any ground pin.  
2. AGND1 6 and DGND1 5 pins are intended to be operated at the same potential. Differential voltages  
between these pins will degrade performance.  
RECOMMENDED OPERATING CONDITIONS  
CONDITION  
SYMBOL  
TA  
MIN  
0
TYP  
MAX  
70  
UNITS  
Operating temperature range  
Analogue supply voltage  
Digital core supply voltage  
Digital I/O supply voltage  
°C  
V
AVDD1, 2  
DVDD1  
4.75  
4.75  
5.0  
5.0  
5.25  
5.25  
V
5V I/O  
DVDD2, 3  
DVDD2, 3  
4.75  
2.97  
5.0  
3.3  
5.25  
3.63  
V
V
3.3V I/O  
PD Rev 4.1 July 2005  
6
w
Production Data  
WM8195  
ELECTRICAL CHARACTERISTICS  
Test Conditions  
AVDD1 = AVDD2 = DVDD1 = DVDD2 = DVDD3 =4.75 to 5.25V, AGND = DGND = 0V, TA = 0 to 70°C, MCLK = 24MHz unless  
otherwise stated.  
PARAMETER  
SYMBOL  
TEST  
MIN  
TYP  
MAX  
UNIT  
CONDITIONS  
Overall System Specification (including 14-bit ADC, PGA, Offset and CDS functions)  
NO MISSING CODES GUARANTEED  
Conversion rate  
12  
0.4  
MSPS  
Vp-p  
Vp-p  
V
Full-scale input voltage range  
(see Note 1)  
Max Gain  
Min Gain  
4.08  
Input signal limits (see Note 2)  
Full-scale transition error  
VIN  
0
AVDD  
Gain = 0dB;  
PGA[7:0] = 4B(hex)  
20  
20  
mV  
Zero-scale transition error  
Gain = 0dB;  
mV  
PGA[7:0] = 4B(hex)  
Differential non-linearity  
Integral non-linearity  
DNL  
INL  
1.25  
LSB  
LSB  
8
1
1
3
Channel to channel gain matching  
Total output noise  
%
Min Gain  
Max Gain  
LSB rms  
LSB rms  
References  
Upper reference voltage  
VRT  
VRB  
VRX  
VRTB  
2.85  
1.35  
1.65  
1.5  
V
V
V
V
Lower reference voltage  
Input return bias voltage  
Diff. reference voltage (VRT-VRB)  
Output resistance VRT, VRB, VRX  
VRLC/Reset-Level Clamp (RLC)  
RLC switching impedance  
VRLC short-circuit current  
VRLC output resistance  
1.4  
1.6  
1
50  
5
mA  
2
VRLC Hi-Z leakage current  
RLCDAC resolution  
VRLC = 0 to AVDD  
1
µA  
4
bits  
V/step  
V/step  
V
RLCDAC step size, RLCDAC = 0  
RLCDAC step size, RLCDAC = 1  
VRLCSTEP  
VRLCSTEP  
VRLCBOT  
0.25  
0.17  
0.39  
RLCDAC output voltage at  
code 0(hex), RLCDACRNG = 0  
RLCDAC output voltage at  
code 0(hex), RLCDACRNG = 1  
VRLCBOT  
VRLCTOP  
VRLCTOP  
0.26  
4.16  
2.81  
V
V
RLCDAC output voltage at  
code F(hex) RLCDACRNG, = 0  
RLCDAC output voltage at  
V
code F(hex), RLCDACRNG = 1  
VRLC deviation  
-50  
+50  
mV  
Offset DAC, Monotonicity Guaranteed  
Resolution  
8
bits  
LSB  
Differential non-linearity  
Integral non-linearity  
Step size  
DNL  
INL  
0.1  
0.5  
1
0.25  
2.04  
-260  
+260  
LSB  
mV/step  
mV  
Output voltage  
Code 00(hex)  
Code FF(hex)  
mV  
Notes:  
1.  
2.  
Full-scale input voltage denotes the maximum amplitude of the input signal at the specified gain.  
Input signal limits are the limits within which the full-scale input voltage signal must lie.  
PD Rev 4.1 July 2005  
7
w
WM8195  
Production Data  
Test Conditions  
AVDD1 = AVDD2 = DVDD1 = DVDD2 = DVDD3 =4.75 to 5.25V, AGND = DGND = 0V, TA = 0 to 70°C, MCLK = 24MHz unless  
otherwise stated.  
PARAMETER  
SYMBOL  
TEST  
MIN  
TYP  
MAX  
UNIT  
CONDITIONS  
Programmable Gain Amplifier  
Resolution  
Gain  
8
208  
bits  
V/V  
283 PGA[7 : 0]  
Max gain, each channel  
Min gain, each channel  
Gain error, each channel  
Analogue to Digital Converter  
Resolution  
GMAX  
GMIN  
7.4  
0.74  
1
V/V  
V/V  
%
14  
12  
3
bits  
MSPS  
V
Speed  
Full-scale input range  
(2*(VRT-VRB))  
DIGITAL SPECIFICATIONS  
Digital Inputs  
High level input voltage  
Low level input voltage  
High level input current  
Low level input current  
Input capacitance  
VIH  
VIL  
IIH  
IIL  
0.8 DVDD2/3  
V
0.2 DVDD2/3  
V
1
1
µA  
µA  
pF  
CI  
5
Digital Outputs  
High level output voltage  
Low level output voltage  
High impedance output current  
Digital IO Pins  
VOH  
VOL  
IOZ  
IOH = 1mA  
IOL = 1mA  
DVDD2/3 - 0.5  
V
V
0.5  
1
µA  
Applied high level input voltage  
Applied low level input voltage  
High level output voltage  
Low level output voltage  
Low level input current  
High level input current  
Input capacitance  
VIH  
VIL  
VOH  
VOL  
IIL  
0.8 DVDD2/3  
DVDD2/3 - 0.5  
V
V
0.2 DVDD2/3  
IOH = 1mA  
IOL = 1mA  
V
0.5  
1
V
µA  
µA  
pF  
µA  
IIH  
1
CI  
5
High impedance output current  
Supply Currents  
IOZ  
1
Total supply current active  
(Three channel mode)  
Total supply current active  
(Single channel mode)  
42  
35  
65  
mA  
mA  
MCLK = 24MHz  
LINEBYLINE = 1  
MCLK = 24MHz  
Total analogue supply current −  
active (Three channel mode)  
IAVDD  
IAVDD  
37  
30  
mA  
mA  
MCLK = 24MHz  
Total analogue supply current −  
active (One channel mode)  
LINEBYLINE = 1  
MCLK = 24MHz  
Digital core supply current,  
DVDD1 active (Note1)  
3
2
mA  
mA  
µA  
MCLK = 24MHz  
MCLK = 24MHz  
Digital I/O supply current, DVDD2  
active (Note1)  
Supply current full power down  
20  
60  
mode  
PD Rev 4.1 July 2005  
8
w
Production Data  
WM8195  
INPUT VIDEO SAMPLING  
tPER  
tMCLKH tMCLKL  
MCLK  
tVSMPSU  
tVSMPH  
VSMP  
INPUT  
tVSU  
tVH  
tRSU  
tRH  
VIDEO  
Figure 1 Input Video Timing  
Test Conditions  
AVDD1 = AVDD2 = DVDD1 = DVDD2 = DVDD3 =4.75 to 5.25V, AGND = DGND = 0V, TA = 0 to 70°C, MCLK = 24MHz  
unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MCLK period  
tPER  
41.6  
ns  
MCLK high period  
MCLK low period  
VSMP set-up time  
VSMP hold time  
tMCLKH  
tMCLKL  
tVSMPSU  
tVSMPH  
tVSU  
18.8  
18.8  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
Video level set-up time  
Video level hold time  
Reset level set-up time  
Reset level hold time  
Notes:  
10  
3
tVH  
tRSU  
10  
3
tRH  
1.  
2.  
t
VSU and tRSU denote the set-up time required after the input video signal has settled.  
Parameters are measured at 50% of the rising/falling edge.  
OUTPUT DATA TIMING  
MCLK  
tPD  
OP[13:0]  
Figure 2 Output Data Timing  
PD Rev 4.1 July 2005  
9
w
WM8195  
Production Data  
OEB  
tPZE  
tPEZ  
OP[13:0]  
Hi-Z  
Hi-Z  
Figure 3 Output Data Enable Timing  
Test Conditions  
AVDD1 = AVDD2 = DVDD1 = DVDD2 = DVDD3 =4.75 to 5.25V, AGND = DGND = 0V, TA = 0 to 70°C, MCLK = 24MHz  
unless otherwise stated.  
PARAMETER  
SYMBOL  
tPD  
TEST CONDITIONS  
MIN  
TYP  
MAX  
40  
UNITS  
ns  
Output propagation delay  
Output enable time  
Output disable time  
IOH = 1mA, IOL = 1mA  
tPZE  
20  
ns  
tPEZ  
15  
ns  
MCLK  
tACYCSU  
tACYCH  
tACYCH  
tACYCSU  
RLC/ACYC  
PGA/OFFSET  
MUX OUTPUT  
Figure 4 Auto Cycle Timing  
Test Conditions  
AVDD = DVDD1 = 4.75 to 5.25V, DVDD2 = 2.97 to 3.63V, AGND = DGND = 0V, TA = 0 to 70°C, MCLK = 32MHz unless  
otherwise stated.  
PARAMETER  
SYMBOL  
tACYCSU  
tACYCH  
TEST CONDITIONS  
MIN  
6
TYP  
MAX  
UNITS  
ns  
Auto Cycle set-up time  
Auto Cycle hold time  
3
ns  
PD Rev 4.1 July 2005  
10  
w
Production Data  
WM8195  
SERIAL INTERFACE  
tSPER  
tSCKL tSCKH  
SCK  
tSSU  
tSH  
SDI  
SEN  
SDO  
tSCE  
tSEW tSEC  
tSCRDZ  
tSERD  
tSCRD  
ADC  
DATA  
ADC DATA  
MSB  
LSB  
REGISTER DATA  
Figure 5 Serial Interface Timing  
Test Conditions  
AVDD1 = AVDD2 = DVDD1 = DVDD2 = DVDD3 =4.75 to 5.25V, AGND = DGND = 0V, TA = 0 to 70°C, MCLK = 24MHz  
unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SCK period  
tSPER  
41.6  
ns  
SCK high  
tSCKH  
tSCKL  
tSSU  
18.8  
18.8  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK low  
SDI set-up time  
SDI hold time  
tSH  
6
SCK to SEN set-up time  
SEN to SCK set-up time  
SEN pulse width  
tSCE  
12  
12  
25  
tSEC  
tSEW  
tSERD  
tSCRD  
tSCADC  
SEN low to SDO = Register data  
SCK low to SDO = Register data  
SCK low to SDO = ADC data  
30  
30  
30  
Note: Parameters are measured at 50% of the rising/falling edge.  
PD Rev 4.1 July 2005  
11  
w
WM8195  
Production Data  
PARALLEL INTERFACE  
tSTB  
STB  
tASU  
Hi-Z  
tAH  
tDH  
tSTAO  
tSTDO  
tDSU  
Hi-Z  
ADC DATA OUT  
ADDRESS IN  
DATA IN  
ADC DATA OUT  
REG. DATA OUT  
ADC DATA OUT  
OP[13:6]  
tADLS  
tADLH  
tADHS  
tADHH  
DNA  
tOPZ  
tOPD  
RNW  
Figure 6 Parallel Interface Timing  
Test Conditions  
AVDD1 = AVDD2 = DVDD1 = DVDD2 = DVDD3 =4.75 to 5.25V, AGND = DGND = 0V, TA = 0 to 70°C, MCLK = 24MHz  
unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RNW low to OP[13:6] Hi-Z  
tOPZ  
10  
ns  
Address set-up time to STB low  
DNA low set-up time to STB low  
Strobe low time  
tASU  
tADLS  
tSTB  
0
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
30  
5
Address hold time from STB high  
DNA low hold time from STB high  
Data set-up time to STB low  
DNA high set-up time to STB low  
Data hold time from STB high  
Data high hold time from STB high  
RNW high to OP[13:6] output  
tAH  
tADLH  
tDSU  
tADHS  
tDH  
5
0
5
5
tADHH  
tOPD  
tSTDO  
5
30  
30  
Data output propogation delay from  
STB low  
ADC data out propogation delay  
from STB high  
tSTAO  
30  
ns  
Note: Parameters are measured at 50% of the rising/falling edge.  
PD Rev 4.1 July 2005  
12  
w
Production Data  
WM8195  
DEVICE DESCRIPTION  
INTRODUCTION  
A block diagram of the device showing the signal path is presented on Page 1.  
The WM8195 samples up to three inputs (RINP, GINP and BINP) simultaneously. The device then  
processes the sampled video signal with respect to the video reset level or an internally/externally  
generated reference level using either one or three processing channels.  
Each processing channel consists of an Input Sampling block with optional Reset Level Clamping  
(RLC) and Correlated Double Sampling (CDS), a 8-bit programmable offset DAC and an 8-bit  
Programmable Gain Amplifier (PGA).  
The ADC then converts each resulting analogue signal to a 14-bit digital word. The digital output from  
the ADC is presented on a 14-bit wide bus, with optional 8+6-bit, 7+7-bit or 4+4+4+2-bit multiplexed  
formats.  
On-chip control registers determine the configuration of the device, including the offsets and gains  
applied to each channel. These registers are programmable via a serial or parallel interface.  
INPUT SAMPLING  
The WM8195 can sample and process one to three inputs through one or three processing channels  
as follows:  
Colour Pixel-by-Pixel: The three inputs (RINP, GINP and BINP) are simultaneously sampled for  
each pixel and a separate channel processes each input. The signals are then multiplexed into the  
ADC, which converts all three inputs within the pixel period.  
Monochrome: A single chosen input (RINP, GINP, or BINP) is sampled, processed by the  
corresponding channel, and converted by the ADC. The choice of input and channel can be changed  
via the control interface, e.g. on a line-by-line basis if required.  
Colour Line-by-Line: A single chosen input (RINP, GINP, or BINP) is sampled and multiplexed into  
the red channel for processing before being converted by the ADC. The input selected can be  
switched in turn (RINP GINP BINP RINP…) together with the PGA and offset DAC control  
registers by pulsing the RLC/ACYC pin. This is known as auto-cycling. Alternatively, other sampling  
sequences can be generated via the control registers. This mode causes the blue and green  
channels to be powered down. Refer to the Line-by-Line Operation section for more details.  
RESET LEVEL CLAMPING (RLC)  
To ensure that the signal applied to the WM8195 lies within its input range (0V to AVDD) the CCD  
output signal is usually level shifted by coupling through a capacitor, CIN. The RLC circuit clamps the  
WM8195 side of this capacitor to a suitable voltage during the CCD reset period.  
A typical input configuration is shown in Figure 7 An internal clamp pulse, CL, is generated from  
MCLK and VSMP by the Timing Control Block. When CL is active the voltage on the WM8195 side of  
CIN, at RINP, is forced to the VRLC/VBIAS voltage (VVRLC) by closing of switch 1. When the CL pulse  
turns off, switch 1 opens, the voltage at RINP initially remains at VVRLC but any subsequent variation  
in sensor voltage (from reset to video level) will couple through CIN to RINP.  
RLC is compatible with both CDS and non-CDS operating modes, as selected by switch 2. Refer to  
the CDS/Non-CDS Processing section.  
PD Rev 4.1 July 2005  
13  
w
WM8195  
Production Data  
RLC/ACYC MCLK VSMP  
TIMING CONTROL  
FROM CONTROL  
INTERFACE  
CL  
RS  
VS  
CIN  
S/H  
+
-
TO OFFSET DAC  
+
RINP  
2
S/H  
1
RLC  
CDS  
INPUT SAMPLING  
BLOCK FOR RED  
CHANNEL  
EXTERNAL VRLC  
CDS  
VRLC/  
VBIAS  
4-BIT  
RLC DAC  
FROM CONTROL  
INTERFACE  
VRLCEXT  
Figure 7 Reset Level Clamping and CDS Circuitry  
If auto-cycling is not required, RLC can be selected pixel-by-pixel by pin RLC/ACYC. Figure 8  
illustrates control of RLC for a typical CCD waveform, with CL applied during the reset period.  
The input signal applied to the RLC/ACYC pin is sampled on the positive edge of MCLK that occurs  
during each VSMP pulse. The sampled level, high (or low) controls the presence (or absence) of the  
internal CL pulse on the next reset level. The position of CL can be adjusted by using control bits  
CDSREF[1:0] (Figure 9).  
If auto-cycling is required, pin RLC/ACYC is no longer available for this function and control bit  
RLCINT determines whether clamping is applied.  
MCLK  
VSMP  
ACYC/RLC  
or RLCINT  
1
X
X
0
X
X
0
Programmable Delay  
CL  
(CDSREF = 01)  
INPUT VIDEO  
RGB  
RGB  
RGB  
RLC on this Pixel  
No RLC on this Pixel  
Figure 8 Relationship of RLC Pin, MCLK and VSMP to Internal Clamp Pulse, CL  
The VRLC/VBIAS pin can be driven internally by a 4-bit DAC (RLCDAC) by writing to control bits  
RLCV[3:0]. The RLCDAC range and step size may be increased by writing to control bit  
RLCDACRNG. Alternatively, the VRLC/VBIAS pin can be driven externally by writing to control bit  
VRLCEXT to disable the RLCDAC and then applying a d.c. voltage to the pin.  
CDS/NON-CDS PROCESSING  
For CCD type input signals, the signal may be processed using CDS, which will remove pixel-by-pixel  
common mode noise. For CDS operation, the video level is processed with respect to the video reset  
level, regardless of whether RLC has been performed. To sample using CDS, control bit CDS must  
be set to 1 (default), this sets switch 2 into the position shown in (Figure 7) and causes the signal  
reference to come from the video reset level. The time at which the reset level is sampled, by clock  
Rs/CL, is adjustable by programming control bits CDSREF[1:0], as shown in Figure 9.  
PD Rev 4.1 July 2005  
14  
w
Production Data  
WM8195  
MCLK  
VSMP  
VS  
RS/CL (CDSREF = 00)  
RS/CL (CDSREF = 01)  
RS/CL (CDSREF = 10)  
RS/CL (CDSREF = 11)  
Figure 9 Reset Sample and Clamp Timing  
For CIS type sensor signals, non-CDS processing is used. In this case, the video level is processed  
with respect to the voltage on pin VRLC/VBIAS, generated internally or externally as described  
above. The VRLC/VBIAS pin is sampled by Rs at the same time as Vs samples the video level in  
this mode; non-CDS processing is achieved by setting switch 2 in the lower position. CDS = 0.  
OFFSET ADJUST AND PROGRAMMABLE GAIN  
The output from the CDS block is a differential signal, which is added to the output of an 8-bit Offset  
DAC to compensate for offsets and then amplified by an 8-bit PGA. The gain and offset for each  
channel are independently programmable by writing to control bits DAC[7:0] and PGA[7:0].  
The gain characteristic of the WM8195 PGA is shown in Figure 10. Figure 11 shows the maximum  
device input voltage that can be gained up to match the ADC full-scale input range (3V).  
8
7
6
5
4
3
2
1
0
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
64  
128  
192  
256  
0
64  
128  
192  
256  
Gain register value (PGA[7:0])  
Gain register value (PGA[7:0])  
Figure 10 PGA Gain Characteristic  
Figure 11 Peak Input Voltage to Match ADC Full-scale Range  
In colour line-by-line mode the gain and offset coefficients for each colour can be multiplexed in order  
(Red Green Blue Red…) by pulsing the ACYC/RLC pin, or controlled via the FME,  
ACYCNRLC and INTM[1:0] bits. Refer to the Line-by-Line Operation section for more details.  
PD Rev 4.1 July 2005  
15  
w
WM8195  
Production Data  
ADC INPUT BLACK LEVEL ADJUST  
The output from the PGA should be offset to match the full-scale range of the ADC (3V). For  
negative-going input video signals, a black level (zero differential) output from the PGA should be  
offset to the top of the ADC range by setting register bits PGAFS[1:0]=10. For positive going input  
signal the black level should be offset to the bottom of the ADC range by setting PGAFS[1:0]=11.  
Bipolar input video is accommodated by setting PGAFS[1:0]=00 or PGAFS[1:0]=01 (zero differential  
input voltage gives mid-range ADC output).  
OVERALL SIGNAL FLOW SUMMARY  
Figure 12 represents the processing of the video signal through the WM8195.  
OUTPUT  
INVERT  
BLOCK  
INPUT  
SAMPLING  
BLOCK  
OFFSET DAC PGA  
ADC BLOCK  
BLOCK  
BLOCK  
D2  
x (16383/VFS  
if PGAFS[1:0]=11  
)
V1  
V2  
V3  
D1  
+0  
X
+16383 if PGAFS[1:0]=10  
+8191 if PGAFS[1:0]=0x  
OP[13:0]  
+
+
VIN  
digital  
analog  
+
-
CDS = 1  
CDS = 0  
D2 = D1 if INVOP = 0  
D2 = 16383-D1 if INVOP = 1  
VRESET  
PGA gain  
A = 208/(283-PGA[7:0])  
VVRLC  
Offset  
DAC  
260mV*(DAC[7:0]-127.5)/127.5  
VIN is RINP or GINP or BINP  
VRESET is VIN sampled during reset clamp  
VRLC is voltage applied to VRLC pin  
RLCEXT=1  
RLCEXT=0  
V
CDS, RLCEXT,RLCV[3:0], DAC[7:0],  
PGA[7:0], PGAFS[1:0] and INVOP are set  
by programming internal control registers.  
CDS = 1 for CDS, 0 for non-CDS  
RLC  
DAC  
VRLCSTEP*RLCV[3:0] + VRLCBOT  
Figure 12 Overall Signal Flow  
The INPUT SAMPLING BLOCK produces an effective input voltage V1. For CDS, this is the  
difference between the input video level VIN and the input reset level VRESET. For non-CDS this is the  
difference between the input video level VIN and the voltage on the VRLC/VBIAS pin, VVRLC  
optionally set via the RLC DAC.  
,
The OFFSET DAC BLOCK then adds the amount of fine offset adjustment required to move the  
black level of the input signal towards 0V, producing V2.  
The PGA BLOCK then amplifies the white level of the input signal to maximise the ADC range,  
outputting voltage V3.  
The ADC BLOCK then converts the analogue signal, V3, to a 14-bit unsigned digital output, D1.  
The digital output is then inverted, if required, through the OUTPUT INVERT BLOCK to produce D2.  
PD Rev 4.1 July 2005  
16  
w
Production Data  
WM8195  
CALCULATING OUTPUT FOR ANY GIVEN INPUT  
The following equations describe the processing of the video and reset level signals though  
the WM8199. The values of V1 V2 and V3 are often calculated in reverse order during device  
setup. The PGA value is written first to set tshe input Voltage range, the Offset DAC is then  
adjusted to compensate for any Black/Reset level offsets and finally the RLC DAC value is  
set to position the reset level correctly during operation.  
Note: Refer to WAN0123 for detailed information on device calibration procedures.  
The following equations describe the processing of the video and reset level signals through  
the WM8195.  
INPUT SAMPLING BLOCK: INPUT SAMPLING AND REFERENCING  
If CDS = 1, (CDS operation) the previously sampled reset level, VRESET, is subtracted from the input  
video.  
V1  
=
VIN - VRESET ................................................................... Eqn. 1  
If CDS = 0, (non-CDS operation) the simultaneously sampled voltage on pin VRLC is subtracted  
instead.  
V1  
=
VIN - VVRLC .................................................................... Eqn. 2  
If RLCEXT = 1, VVRLC is an externally applied voltage on pin VRLC/VBIAS.  
If RLCEXT = 0, VVRLC is the output from the internal RLC DAC.  
VVRLC  
=
(VRLCSTEP RLCV[3:0]) + VRLCBOT ................................. Eqn. 3  
V
RLCSTEP is the step size of the RLC DAC and VRLCBOT is the minimum output of the RLC DAC.  
OFFSET DAC BLOCK: OFFSET (BLACK-LEVEL) ADJUST  
The resultant signal V1 is added to the offset DAC output.  
V2  
=
V1 + {260mV (DAC[7:0]-127.5) } / 127.5 ..................... Eqn. 4  
PGA NODE: GAIN ADJUST  
The signal is then multiplied by the PGA gain,  
V3  
=
V2 208/(283- PGA[7:0]) .............................................. Eqn. 5  
ADC BLOCK: ANALOGUE-DIGITAL CONVERSION  
The analogue signal is then converted to a 14-bit unsigned number, with input range configured by  
PGAFS[1:0].  
D1[13:0] = INT{ (V3 /VFS  
D1[13:0] = INT{ (V3 /VFS  
D1[13:0] = INT{ (V3 /VFS  
)
)
)
16383} + 8191 PGAFS[1:0] = 00 or 01 ...... Eqn. 6  
16383} PGAFS[1:0] = 11 ............... Eqn. 7  
16383} + 16383 PGAFS[1:0] = 10 ............... Eqn. 8  
where the ADC full-scale range, VFS = 3V.  
OUTPUT INVERT BLOCK: POLARITY ADJUST  
The polarity of the digital output may be inverted by control bit INVOP.  
D2[13:0] = D1[13:0]  
(INVOP = 0) ...................... Eqn. 9  
(INVOP = 1) ...................... Eqn. 10  
D2[13:0] = 16383 – D1[13:0]  
PD Rev 4.1 July 2005  
17  
w
WM8195  
Production Data  
OUTPUT FORMATS  
The digital data output from the ADC is available to the user in either 14-bit parallel or 8/7/4-bit wide  
multiplexed formats by setting control bits MUXOP[1:0]. Latency of valid output data with respect to  
VSMP is programmable by writing to control bits DEL[1:0]. The latency for each mode is shown in the  
Operating Mode Timing Diagrams section.  
Figure 13 shows the output data formats for Modes 1 – 2 and 4 – 6. Figure 14 shows the output data  
formats for Mode 3. Table 1 summarises the output data obtained for each format.  
MCLK  
MCLK  
14-BIT PARALLEL  
OUTPUT  
14-BIT PARALLEL  
OUTPUT  
A
A
8+6 AND 7+7-BIT  
OUTPUT  
8+6 AND 7+7-BIT  
OUTPUT  
A
B
A
B
4+4+4+2-BIT  
OUTPUT  
4+4+4+2-BIT  
OUTPUT  
A
B
C
D
A B A B C D  
Figure 13 Output Data Formats  
Figure 14 Output Data Formats  
(Mode 3)  
(Modes 1 2, 4 6)  
OUTPUT  
FORMAT  
MUXOP[1:0]  
OUTPUT  
PINS  
OUTPUT  
14-bit parallel  
00  
01  
10  
OP[13:0]  
A = d13, d12, d11, d10, d9, d8, d7, d6, d5, d4, d3,  
d2, d1, d0  
8+6-bit  
multiplexed  
OP[13:6]  
OP[13:6]  
A = d13, d12, d11, d10, d9, d8, d7, d6  
B = d5, d4, d3, d2, d1, d0, CC, OVRNG  
7+7-bit  
A = d13, d12, d11, d10, d9, d8, d7, CC  
B = d6, d5, d4, d3, d2, d1, d0, OVRNG  
4+4+4+2-bit  
(nibble)  
11  
OP[13:10]  
A = d13, d12, d11, d10  
B = d9, d8, d7, d6  
C = d5, d4, d3, d2  
D = d1, d0, CC, OVRNG  
Table 1 Details of Output Data Shown in Figure 13 and Figure 14.  
FLAGS  
The following flags are output during multiplexed modes:  
CC can be used in colour modes 1 and 5 to identify the green channel output, from which the blue  
and red data can be identified.  
INPUT  
RINP  
GINP  
BINP  
CC  
0
1
0
Table 2 Input Sampled Flags CC[1:0]  
OVRNG indicates that the current output data was produced by an input signal that exceeded the  
input range limit of the device. 1 = out of range, 0 = within range.  
PD Rev 4.1 July 2005  
18  
w
Production Data  
WM8195  
CONTROL INTERFACE  
The internal control registers are programmable via the serial or parallel digital control interface. The  
register contents can be read back via the parallel interface on pins OP[13:6], or via the serial  
interface on pin OP[13]/SDO.  
Note: It is recommended that a software reset is carried out after the power-up sequence, before  
writing to any other register. This ensures that all registers are set to their default values (as shown  
in Table 6).  
SERIAL INTERFACE: REGISTER WRITE  
Figure 15 shows register writing in serial mode. Three pins, SCK, SDI and SEN are used. A six-bit  
address (a5, 0, a3, a2, a1, a0) is clocked in through SDI, MSB first, followed by an eight-bit data  
word (b7, b6, b5, b4, b3, b2, b1, b0), also MSB first. Each bit is latched on the rising edge of SCK.  
When the data has been shifted into the device, a pulse is applied to SEN to transfer the data to the  
appropriate internal register. Note all valid registers have address bit a4 equal to 0 in write mode.  
SCK  
a5  
0
a3  
a2  
a1  
a0  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
SDI  
Address  
Data Word  
SEN  
Figure 15 Serial Interface Register Write  
Using the serial interface, a software reset is carried out by writing to Address “000100” with any  
value of data (i.e. Data Word = XXXXXXXX).  
SERIAL INTERFACE: REGISTER READ-BACK  
Figure 16 shows register read-back in serial mode. Read-back is initiated by writing to the serial bus  
as described above but with address bit a4 set to 1, followed by an 8-bit dummy data word. Writing  
address (a5, 1, a3, a2, a1, a0) will cause the contents (d7, d6, d5, d4, d3, d2, d1, d0) of  
corresponding register (a5, 0, a3, a2, a1, a0) to be output MSB first on pin SDO (on the falling edge  
of SCK). Note that pin SDO is shared with an output pin, OP[13], therefore OEB should always be  
held low when register read-back data is expected on this pin. The next word may be read in to SDI  
while the previous word is still being output on SDO.  
SCK  
a5  
1
a3 a2 a1 a0  
x
x
x
x
x
x
x
x
SDI  
Address  
Data Word  
SEN  
SDO/  
d7 d6 d5 d4 d3 d2 d1 d0  
OP[13]  
Output Data Word  
OEB  
Figure 16 Serial Interface Register Read-back  
PD Rev 4.1 July 2005  
19  
w
WM8195  
Production Data  
PARALLEL INTERFACE: REGISTER WRITE  
Figure 17 shows register write in parallel mode. The parallel interface uses bits OP[13:6] of the  
output bus and the STB, DNA and RNW pins. Pin RNW must be low during a write operation. The  
DNA pin defines whether the data byte is address (low) or data (high). The 6-bit address (a5, 0, a3,  
a2, a1, a0) is input into OP[11:6], LSB into OP[6], (OP[12] and OP[13] are ignored) when DNA is low,  
then the 8-bit data word is input into OP[13:6], LSB into OP[6], when DNA is high. The data bus  
OP[13:6] for both address and data is clocked in on the falling edge of STB. Note all valid registers  
have address bit a4 equal to 0.  
STB  
Driven Externally  
Driven by AFE  
Driven by AFE  
Hi-Z  
Hi-Z  
Normal Output Data  
Normal Output Data  
Address  
Data  
OP[13:6]  
DNA  
RNW  
Figure 17 Parallel Interface Register Write  
Using the parallel interface, a software reset is carried out by writing “000100” to OP[13:8] when  
RNW and DNA are low. Any value of data can be written for this address when DNA changes to high  
(i.e. Data = XXXXXXXX on OP[15:8]).  
PARALLEL INTERFACE: REGISTER READ-BACK  
Figure 18 shows register read-back in parallel mode. Read-back is initiated by writing the 6-bit  
address (a5, 1, a3, a2, a1, a0) into OP[11:6] by pulsing the STB pin low. Note that a4 = 1 and pins  
RNW and DNA are low. When RNW and DNA are high and STB is strobed again, the contents (d7,  
d6, d5, d4, d3, d2, d1, d0) of the corresponding register (a5, 0, a3, a2, a1, a0) will be output on  
OP[13:6], LSB on pin OP[6]. Until STB is pulsed low, the current contents of the ADC (shown as  
Normal Output Data) will be present on OP[13:6]. Note that the register data becomes available on  
the output data pins so OEB should be held low when read-back data is expected.  
STB  
Driven by AFE  
Driven by AFE  
Driven Externally  
Address  
Hi-Z  
Hi-Z  
Normal Output Data  
Normal Output Data  
OP[13:6]  
DNA  
Read Data  
RNW  
Figure 18 Parallel Interface Register Read-back  
TIMING REQUIREMENTS  
To use this device a master clock (MCLK) of up to 24MHz and a per-pixel synchronisation clock  
(VSMP) of up to 12MHz are required. These clocks drive a timing control block, which produces  
internal signals to control the sampling of the video signal. MCLK to VSMP ratios and maximum  
sample rates for the various modes are shown in Table 5.  
PD Rev 4.1 July 2005  
20  
w
Production Data  
WM8195  
PROGRAMMABLE VSMP DETECT CIRCUIT  
The VSMP input is used to determine the sampling point and frequency of the WM8195. Under  
normal operation a pulse of 1 MCLK period should be applied to VSMP at the desired sampling  
frequency (as shown in the Operating Mode Timing Diagrams) and the input sample will be taken on  
the first rising MCLK edge after VSMP has gone low. However, in certain applications such a signal  
may not be readily available. The programmable VSMP detect circuit in the WM8195 allows the  
sampling point to be derived from any signal of the correct frequency, such as a CCD shift register  
clock, when applied to the VSMP pin.  
When enabled, by setting the VSMPDET control bit, the circuit detects either a rising or falling edge  
(determined by POSNNEG control bit) on the VSMP input pin and generates an internal VSMP pulse.  
This pulse can optionally be delayed by a number of MCLK periods, specified by the VDEL[2:0] bits.  
Figure 19 shows the internal VSMP pulses that can be generated by this circuit for a typical clock  
input signal. The internal VSMP pulse is then applied to the timing control block in place of the  
normal VSMP pulse provided from the input pin. The sampling point then occurs on the first rising  
MCLK edge after this internal VSMP pulse, as shown in the Operating Mode Timing Diagrams.  
MCLK  
INPUT  
PINS  
VSMP  
POSNNEG = 1  
VS  
VS  
VS  
(VDEL = 000) INTVSMP  
(VDEL = 001) INTVSMP  
(VDEL = 010) INTVSMP  
(VDEL = 011) INTVSMP  
(VDEL = 100) INTVSMP  
(VDEL = 101) INTVSMP  
(VDEL = 110) INTVSMP  
(VDEL = 111) INTVSMP  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
POSNNEG = 0  
(VDEL = 000) INTVSMP  
(VDEL = 001) INTVSMP  
(VDEL = 010) INTVSMP  
(VDEL = 011) INTVSMP  
(VDEL = 100) INTVSMP  
(VDEL = 101) INTVSMP  
(VDEL = 110) INTVSMP  
(VDEL = 111) INTVSMP  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
Figure 19 Internal VSMP Pulses Generated by Programmable VSMP Detect Circuit  
REFERENCES  
The ADC reference voltages are derived from an internal bandgap reference, and buffered to pins  
VRT and VRB, where they must be decoupled to ground. Pin VRX is driven by a similar buffer, and  
also requires decoupling. The output buffer from the RLCDAC also requires decoupling at pin  
VRLC/VBIAS.  
PD Rev 4.1 July 2005  
21  
w
WM8195  
Production Data  
POWER SUPPLY  
The WM8195 can run from a 5V single supply or from split 5V (core) and 3.3V (digital interface)  
supplies.  
POWER MANAGEMENT  
Power management for the device is performed via the Control Interface. The device can be powered  
on or off completely by setting the EN bit and SELPD bit low. Alternatively, when control bit SELPD is  
high, only blocks selected by further control bits (SELDIS[3:0]) are powered down. This allows the  
user to optimise power dissipation in certain modes, or to define an intermediate standby mode to  
allow a quicker recovery into a fully active state. In Line-by-Line operation, the green and blue  
channel PGAs are automatically powered down.  
All the internal registers maintain their previously programmed value in power down modes and the  
control interface inputs remain active. Table 3 summarises the power down control bit functions.  
EN  
0
SELDPD  
0
0
1
Device completely powers down.  
1
Device completely powers up.  
X
Blocks with respective SELDIS[3:0] bit high are disabled.  
Table 3 Power Down Control  
LINE-BY-LINE OPERATION  
Certain linear sensors (e.g. Contact Image Sensors) give colour output on a line-by-line basis. i.e. a  
full line of red pixels followed by a line of green pixels followed by a line of blue pixels. In order to  
accommodate this type of signal the WM8195 can be set into Monochrome mode, with the input  
channel switched by writing to control bits CHAN[1:0] between every line. Alternatively, the WM8195  
can be placed into colour line-by-line mode by setting the LINEBYLINE control bit. When this bit is  
set the green and blue processing channels are powered down and the device is forced internally to  
only operate in MONO mode (because only one colour is sampled at a time) through the red channel.  
Figure 20 shows the signal path when operating in colour line-by-line mode.  
VRLC/VBIAS  
VSMP  
MCLK  
CL  
RS VS TIMING CONTROL  
R
8
OFFSET  
MUX  
OFFSET  
DAC  
G
B
14-  
BIT  
ADC  
DATA  
I/O  
PORT  
RINP  
RLC  
RLC  
RLC  
CDS  
+
PGA  
8
+
OP[13:0]  
INPUT  
MUX  
R
I/P SIGNAL  
POLARITY  
ADJUST  
PGA  
MUX  
G
GINP  
BINP  
B
SEN/STB  
SCK/RNW  
SDI/DNA  
RLC/ACYC  
NRESET  
CONFIGURABLE  
SERIAL/  
PARALLEL  
CONTROL  
RLC  
DAC  
4
INTERFACE  
Figure 20 Signal Path When in Line-by-Line Mode  
In this mode the input multiplexer and (optionally) the PGA/Offset register multiplexers can be auto-  
cycled by the application of pulses to the RLC/ACYC input pin by setting the ACYCNRLC register bit.  
See Figure 4 for detailed timing information. The multiplexers change on the first MCLK rising edge  
after RLC/ACYC is taken high. A write to the auto-cycle reset register causes these multiplexers to  
be reset; selecting the RINP pin and the RED offset/gain registers. Alternatively, all three  
multiplexers can be controlled via the serial interface by writing to register bits INTM[1:0] to select the  
desired colour. It is also possible for the input multiplexer to be controlled separately from the PGA  
and Offset multiplexers. Table 4 describes all the multiplexer selection modes that are possible.  
PD Rev 4.1 July 2005  
22  
w
Production Data  
WM8195  
FME ACYCNRLC  
NAME  
Internal,  
no force mux  
DESCRIPTION  
0
0
1
0
1
0
Input mux, offset and gain registers determined by  
internal register bits INTM1, INTM0.  
Auto-cycling,  
no force mux  
Input mux, offset and gain registers auto-cycled, RINP  
GINP BINP RINP… on RLC/ACYC pulse.  
Internal,  
Input mux selected from internal register bits FM1, FM0;  
force mux  
Offset and gain registers selected from internal register  
bits INTM1, INTM0.  
1
1
Auto-cycling,  
force mux  
Input mux selected from internal register bits FM1, FM0;  
Offset and gain registers auto-cycled, RED GREEN  
BLUE RED… on RLC/ACYC pulse.  
Table 4 Colour Selection Description in Line-by-Line Mode  
PD Rev 4.1 July 2005  
23  
w
WM8195  
Production Data  
OPERATING MODES  
Table 5 summarises the most commonly used modes, the clock waveforms required and the register  
contents required for CDS and non-CDS operation.  
MODE  
DESCRIPTION  
CDS  
MAX  
SENSOR  
INTERFACE  
DESCRIPTION  
TIMING  
REQUIRE-  
MENTS  
REGISTER  
CONTENTS  
WITH CDS  
REGISTER  
CONTENTS  
WITHOUT  
CDS  
AVAILABLE SAMPLE  
RATE  
1
Colour  
Pixel-by-Pixel  
Yes  
4MSPS  
The 3 input channels  
are sampled in  
MCLK max  
= 24MHz  
SetReg1:  
03(hex)  
SetReg1:  
01(hex)  
x 3 chans  
parallel. The signal is  
then gain and offset  
adjusted before being  
multiplexed into a  
single data stream  
and converted by the  
ADC, giving an output  
data rate of 12MSPS  
max.  
MCLK:  
VSMP  
ratio is 6:1  
2
3
Monochrome/  
Colour  
Line-by-Line  
Yes  
Yes  
4MSPS  
As mode 1 except:  
Only one input  
channel at a time  
is continuously  
sampled.  
MCLK max  
= 24MHz  
SetReg1:  
07(hex)  
SetReg1:  
05(hex)  
x 1 chan  
MCLK:  
VSMP  
ratio is 6:1  
Fast  
Monochrome/  
Colour  
8MSPS  
Identical to mode 2  
MCLK max  
= 24MHz  
Identical to  
mode 2 plus  
SetReg3:  
bits 5:4 must  
be set to  
Identical to  
mode 2  
x 1 chan  
MCLK:  
VSMP  
ratio is 3:1  
Line-by-Line  
0(hex)  
4
5
Maximum  
speed  
Monochrome/  
Colour  
No  
12MSPS  
x 1 chan  
Identical to mode 2  
Identical to mode 1  
MCLK max  
= 24MHz  
CDS not  
possible  
SetReg1:  
45(hex)  
MCLK:  
VSMP  
ratio is 2:1  
Line-by-Line  
Slow Colour  
Pixel-by-Pixel  
Yes  
3MSPS  
MCLK max  
= 24MHz  
Identical to  
mode 1  
Identical to  
mode 1  
x 3 chans  
MCLK:  
VSMP  
ratio is  
2n:1, n 4  
6
Slow  
Monochrome/  
Colour  
Yes  
3MSPS  
Identical to mode 2  
MCLK max  
= 24MHz  
Identical to  
mode 2  
Identical to  
mode 2  
x 1 chan  
MCLK:  
VSMP  
Line-by-Line  
ratio is  
2n:1, n 4  
Table 5 WM8195 Operating Modes  
Notes:  
1.  
2.  
In Monochrome mode, Setup Register 3 bits 7:6 determine which input is to be sampled.  
For Colour Line-by-Line, set control bit LINEBYLINE. For input selection, refer to Table 4, Colour Selection  
Description in Line-by-Line Mode.  
PD Rev 4.1 July 2005  
24  
w
Production Data  
WM8195  
OPERATING MODE TIMING DIAGRAMS  
The following diagrams show 14-bit parallel format output and MCLK, VSMP and input video  
requirements for operation of the most commonly used modes as shown in Table 5. The diagrams  
are identical for both CDS and non-CDS operation. Outputs from RINP, GINP and BINP are shown  
as R, G and B respectively. X denotes invalid data.  
16.5 MCLK PERIODS  
MCLK  
VSMP  
INPUT VIDEO  
R
B
G
R
B
R
B
G
R
B
R
B
G
R
B
R
B
G
R
B
R
B
G
R
B
OP[13:0] (DEL = 00)  
OP[13:0] (DEL = 01)  
G
G
G
G
G
G
R
B
R
B
G
R
B
R
B
G
R
B
R
B
G
R
B
R
B
G
R
B
R
B
OP[13:0] (DEL = 10)  
OP[13:0] (DEL = 11)  
G
G
G
G
G
Figure 21 Mode 1 Operation  
Figure 22 Mode 2 Operation  
Figure 23 Mode 3 Operation  
PD Rev 4.1 July 2005  
25  
w
WM8195  
Production Data  
Figure 24 Mode 4 Operation  
16.5 MCLK PERIODS  
MCLK  
VSMP  
INPUT VIDEO  
X
B
G
R
R
X
B
G
G
R
X
B
B
G
R
X
X
B
G
R
R
X
B
G
G
R
X
B
B
G
R
X
X
B
G
R
R
X
B
G
G
R
X
B
B
G
R
X
X
B
G
R
R
X
B
G
G
R
X
B
OP[13:0] (DEL = 00)  
OP[13:0] (DEL = 01)  
OP[13:0] (DEL = 10)  
OP[13:0] (DEL = 11)  
Figure 25 Mode 5 Operation (MCLK:VSMP Ratio = 8:1)  
Figure 26 Mode 6 Operation (MCLK:VSMP Ratio = 8:1)  
PD Rev 4.1 July 2005  
26  
w
Production Data  
WM8195  
DEVICE CONFIGURATION  
REGISTER MAP  
The following table describes the location of each control bit used to determine the operation of the  
WM8195. The register map is programmed by writing the required codes to the appropriate  
addresses via the serial or parallel interface.  
ADDRESS  
<a5:a0>  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
100000  
100001  
DESCRIPTION  
DEF  
(hex)  
03  
RW  
BIT  
b7  
b6  
b5  
b4  
PGAFS[0]  
0
b3  
b2  
b1  
b0  
Setup Reg 1  
Setup Reg 2  
Setup Reg 3  
Software Reset  
Auto-cycle Reset  
Setup Reg 4  
Revision Number  
Setup Reg 5  
Setup Reg 6  
Reserved  
RW  
RW  
RW  
W
MODE4  
DEL[0]  
PGAFS[1]  
RLCDACRNG  
CDSREF [1]  
SELPD  
MONO  
INVOP  
RLCV[2]  
CDS  
EN  
20  
DEL[1]  
VRLCEXT  
RLCV[3]  
MUXOP[1]  
RLCV[1]  
MUXOP[0]  
RLCV[0]  
1F  
00  
CHAN[1] CHAN[0]  
CDSREF [0]  
00  
W
00  
RW  
R
FM[1]  
FM[0]  
INTM[1]  
INTM[0]  
RLCINT  
FME  
ACYCNRLC  
LINEBYLINE  
41  
00  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
0
0
POSNNEG  
VDEL[2]  
VDEL[1]  
VDEL[0]  
VSMPDET  
00  
0
0
0
0
SELDIS[3]  
SELDIS[2]  
SELDIS[1]  
SELDIS[0]  
00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reserved  
00  
Reserved  
00  
0
0
0
0
0
0
0
0
DAC Value (Red)  
80  
DAC[7]  
DAC[7]  
DAC[6]  
DAC[6]  
DAC[5]  
DAC[5]  
DAC[4]  
DAC[4]  
DAC[3]  
DAC[3]  
DAC[2]  
DAC[2]  
DAC[1]  
DAC[1]  
DAC[0]  
DAC[0]  
DAC Value  
(Green)  
80  
100010  
100011  
101000  
101001  
DAC Value (Blue)  
DAC Value (RGB)  
PGA Gain (Red)  
80  
80  
00  
00  
RW  
W
DAC[7]  
DAC[7]  
PGA[7]  
PGA[7]  
DAC[6]  
DAC[6]  
PGA[6]  
PGA[6]  
DAC[5]  
DAC[5]  
PGA[5]  
PGA[5]  
DAC[4]  
DAC[4]  
PGA[4]  
PGA[4]  
DAC[3]  
DAC[3]  
PGA[3]  
PGA[3]  
DAC[2]  
DAC[2]  
PGA[2]  
PGA[2]  
DAC[1]  
DAC[1]  
PGA[1]  
PGA[1]  
DAC[0]  
DAC[0]  
PGA[0]  
PGA[0]  
RW  
RW  
PGA Gain  
(Green)  
101010  
101011  
PGA Gain (Blue)  
PGA Gain (RGB)  
00  
00  
RW  
W
PGA[7]  
PGA[7]  
PGA[6]  
PGA[6]  
PGA[5]  
PGA[5]  
PGA[4]  
PGA[4]  
PGA[3]  
PGA[3]  
PGA[2]  
PGA[2]  
PGA[1]  
PGA[1]  
PGA[0]  
PGA[0]  
Table 6 Register Map  
PD Rev 4.1 July 2005  
27  
w
WM8195  
Production Data  
REGISTER MAP DESCRIPTION  
The following table describes the function of each of the control bits shown in Table 7.  
REGISTER  
BIT  
NO  
BIT  
NAME(S)  
DEFAULT  
DESCRIPTION  
Setup  
0
EN  
1
When SELPD = 1 this bit has no effect.  
Register 1  
When SELPD = 0 this bit controls the global power down:  
0 = complete power down, 1 = fully active.  
1
CDS  
1
Select correlated double sampling mode: 0 = single ended mode,  
1 = CDS mode.  
2
3
MONO  
SELPD  
0
0
Mono/colour select: 0 = colour, 1 = monochrome operation.  
Selective power down: 0 = no individual control,  
1 = individual blocks can be disabled (controlled by SELDIS[3:0]).  
5:4  
PGAFS[1:0]  
00  
Offsets PGA output to optimise the ADC range for different polarity sensor  
output signals. Zero differential PGA input signal gives:  
00 = Zero output  
(use for bipolar video)  
01 = Zero output  
10 = Full-scale positive output  
(use for negative going video)  
11 = Full-scale negative output  
(use for positive going video)  
6
MODE4  
0
Required when operating in MODE4: 0 = other modes, 1 = MODE4.  
Determines the output data format.  
Setup  
1:0  
MUXOP[1:0]  
00  
Register 2  
00 = 14-bit parallel  
10 = 7-bit multiplexed mode (7+7 bits)  
01 = 8-bit multiplexed (8+6 bits)  
11 = 4-bit multiplexed mode (4+4+4+2 bits)  
2
INVOP  
0
Digitally inverts the polarity of output data.  
0 = negative going video gives negative going output,  
1 = negative going video gives positive going output data.  
3
5
VRLCEXT  
0
1
When set powers down the RLCDAC, changing its output to Hi-Z, allowing  
VRLC/VBIAS to be externally driven.  
RLCDACRNG  
Sets the output range of the RLCDAC.  
0 = RLCDAC ranges from 0 to AVDD (approximately),  
1 = RLCDAC ranges from 0 to VRT (approximately).  
7:6  
DEL[1:0]  
00  
Sets the output latency in ADC clock periods.  
1 ADC clock period = 2 MCLK periods except in Mode 3 where 1 ADC clock  
period = 3 MCLK periods.  
00 = Minimum latency  
01 = Delay by one ADC clock  
period  
10 = Delay by two ADC clock periods  
11 = Delay by three ADC clock periods  
Setup  
Register 3  
3:0  
5:4  
RLCV[3:0]  
1111  
01  
Controls RLCDAC driving VRLC/VBIAS pin to define single ended signal  
reference voltage or Reset Level Clamp voltage. See Electrical Characteristics  
section for ranges.  
CDSREF[1:0]  
CDS mode reset timing adjust.  
00 = Advance 1 MCLK period  
01 = Normal  
10 = Retard 1 MCLK period  
11 = Retard 2 MCLK periods  
7:6  
CHAN[1:0]  
00  
Monochrome mode channel select.  
00 = Red channel select  
01 = Green channel select  
10 = Blue channel select  
11 = Reserved  
Software  
Reset  
Any write to Software Reset causes all cells to be reset. It is recommended  
that a software reset be performed after a power-up before any other register  
writes.  
Auto-cycle  
Reset  
Any write to Auto-cycle Reset causes the auto-cycle counter to reset  
to RINP. This function is only required when LINEBYLINE = 1.  
PD Rev 4.1 July 2005  
28  
w
Production Data  
WM8195  
REGISTER  
BIT  
NO  
BIT  
NAME(S)  
DEFAULT  
DESCRIPTION  
Setup  
Register 4  
0
LINEBYLINE  
0
Selects line by line operation 0 = normal operation,  
1 = line by line operation.  
When line by line operation is selected MONO is forced to 1 and CHAN[1:0] to  
00 internally, ensuring that the correct internal timing signals are produced.  
Green and Blue PGAs are also disabled to save power.  
1
ACYCNRLC  
0
When LINEBYLINE = 0 this bit has no effect.  
When LINEBYLINE = 1 this bit determines the function of the RLC/ACYC input  
pin and the input multiplexer and offset/gain register controls.  
0 = RLC/ACYC pin enabled for Reset Level Clamp. Internal selection of input  
and gain/offset multiplexers,  
1 = Auto-cycling enabled by pulsing the RLC/ACYC input pin.  
See Table 4, Colour Selection Description in Line-by-Line Mode for colour  
selection mode details.  
When auto-cycling is enabled, the RLC/ACYC pin cannot be used for reset  
level clamping. The RLCINT bit may be used instead.  
2
FME  
0
When LINEBYLINE = 0 this bit has no effect.  
When LINEBYLINE = 1 this bit controls the input force mux mode:  
0 = No force mux, 1 = Force mux mode. Forces the input mux to be selected  
by FM[1:0] separately from gain and offset multiplexers.  
See Table 4 for details.  
3
RLCINT  
0
When LINEBYLINE = 1 and ACYCNRLC = 1 this bit is used to determine  
whether Reset Level Clamping is used.  
0 = RLC disabled, 1 = RLC enabled.  
5:4  
INTM[1:0]  
00  
Colour selection bits used in internal modes.  
00 = Red, 01 = Green, 10 = Blue and 11 = Reserved.  
See Table 4 for details.  
7:6  
0
FM[1:0]  
00  
0
Colour selection bits used in input force mux modes.  
00 = RINP, 01 = GINP, 10 = BINP and 11 = Reserved.  
See Table 4 for details.  
Setup  
Register 5  
VSMPDET  
0 = Normal operation, signal on VSMP input pin is applied directly to Timing  
Control block.  
1 = Programmable VSMP detect circuit is enabled. An internal synchronisation  
pulse is generated from signal applied to VSMP input pin and is applied to  
Timing Control block.  
3:1  
4
VDEL[2:0]  
000  
When VSMPDET = 0 these bits have no effect.  
When VSMPDET = 1 these bits set a programmable delay from the detected  
edge of the signal applied to the VSMP pin. The internally generated pulse is  
delayed by VDEL MCLK periods from the detected edge.  
See Figure 19, Internal VSMP Pulses Generated for details.  
POSNNEG  
0
When VSMPDET = 0 this bit has no effect.  
When VSMPDET = 1 this bit controls whether positive or negative edges  
are detected:  
0 = Negative edge on VSMP pin is detected and used to generate internal  
timing pulse.  
1 = Positive edge on VSMP pin is detected and used to generate internal  
timing pulse.  
See Figure 19 for further details.  
Setup  
Register 6  
3:0  
SELDIS[3:0]  
0000  
Selective power disable register - activated when SELPD = 1.  
Each bit disables respective cell when 1, enabled when 0.  
SELDIS[0] = Red CDS, PGA  
SELDIS[1] = Green CDS, PGA  
SELDIS[2] = Blue CDS, PGA  
SELDIS[3] = ADC  
PD Rev 4.1 July 2005  
29  
w
WM8195  
Production Data  
REGISTER  
BIT  
NO  
BIT  
NAME(S)  
DEFAULT  
DESCRIPTION  
Offset DAC  
(Red)  
7:0  
DAC[7:0]  
0
Red channel offset DAC value.  
Offset DAC  
(Green)  
7:0  
7:0  
7:0  
DAC[7:0]  
DAC[7:0]  
DAC[7:0]  
0
0
0
Green channel offset DAC value  
Blue channel offset DAC value  
Offset DAC  
(Blue)  
Offset DAC  
(RGB)  
A write to this register location causes the red, green and blue offset DAC  
registers to be overwritten by the new value  
PGA gain  
(Red)  
7:0  
7:0  
7:0  
7:0  
PGA[7:0]  
PGA[7:0]  
PGA[7:0]  
PGA[7:0]  
0
0
0
0
Determines the gain of the red channel PGA according to the equation:  
Red channel PGA gain = 208/(283-PGA[7:0])  
PGA gain  
(Green)  
Determines the gain of the green channel PGA according to the equation:  
Green channel PGA gain = 208/(283-PGA[7:0])  
PGA gain  
(Blue)  
Determines the gain of the blue channel PGA according to the equation:  
Blue channel PGA gain = 208/(283-PGA[7:0])  
PGA gain  
(RGB)  
A write to this register location causes the red, green and blue PGA gain  
registers to be overwritten by the new value  
Table 7 Register Control Bits  
PD Rev 4.1 July 2005  
30  
w
Production Data  
WM8195  
RECOMMENDED EXTERNAL COMPONENTS  
DVDD1  
DVDD2, 3  
10  
24  
35  
18  
25  
30  
36  
40  
DVDD1  
DVDD2  
DVDD3  
DGND1  
DGND2  
DGND3  
DGND4  
DGND5  
C1  
C2  
C3  
3
5
DGND  
AGND1  
AGND2  
AGND3  
AGND4  
AGND5  
AGND6  
AVDD  
43  
44  
AVDD1  
AVDD2  
7
C4  
9
45  
46  
AGND  
8
6
4
RINP  
GINP  
BINP  
AGND  
Video  
Inputs  
48  
1
VRT  
VRX  
VRB  
C5  
C6  
2
47  
VRLC/VBIAS  
C10  
C7  
C8  
C9  
WM8195  
AGND  
AGND  
17  
15  
39  
38  
37  
34  
33  
32  
31  
29  
28  
27  
26  
23  
22  
21  
MCLK  
VSMP  
OP[13]/SDO  
OP[12]  
OP[11]  
OP[10]  
OP[9]  
Timing  
Signals  
12  
14  
13  
16  
42  
SEN/STB  
SCK/RNW  
SDI/DNA  
RLC/ACYC  
NRESET  
DVDD1  
DVDD2, 3 AVDD1, 2  
OP[8]  
C11  
+
C12  
C13  
+
Interface  
Controls  
Output  
Data  
Bus  
+
OP[7]  
OP[6]  
OP[5]  
11  
OEB  
OP[4]  
AGND  
OP[3]  
OP[2]  
OP[1]  
OP[0]  
NOTES: 1. C1-10 should be fitted as close to WM8195 as possible.  
2. AGND1-6 and DGND1-5 should be connected as close to WM8195 as possible.  
3. DVDD1-3 should be connected as close to WM8195 as possible.  
Figure 27 External Components Diagram  
COMPONENT  
REFERENCE  
SUGGESTED  
VALUE  
DESCRIPTION  
C1  
C2  
100nF  
100nF  
100nF  
100nF  
10nF  
1µF  
De-coupling for DVDD1.  
De-coupling for DVDD2.  
De-coupling for DVDD3.  
C3  
C4  
De-coupling for AVDD1 and AVDD2.  
High frequency de-coupling between VRT and VRB.  
C5  
C6  
Low frequency de-coupling between VRT and VRB (non-polarised).  
De-coupling for VRB.  
C7  
100nF  
100nF  
100nF  
100nF  
1µF  
C8  
De-coupling for VRX.  
C9  
De-coupling for VRT.  
C10  
C11  
C12  
C13  
De-coupling for VRLC.  
Reservoir capacitor for DVDD1.  
Reservoir capacitor for DVDD2 and DVDD3.  
Reservoir capacitor for AVDD1 and AVDD2.  
1µF  
1µF  
Table 8 External Components Descriptions  
PD Rev 4.1 July 2005  
31  
w
WM8195  
Production Data  
PACKAGE DIMENSIONS  
FT: 48 PIN TQFP (7 x 7 x 1.0 mm)  
DM004.C  
b
e
36  
25  
37  
24  
E1  
E
48  
13  
1
12  
Θ
D1  
D
c
L
A1  
A
A2  
-C-  
SEATING PLANE  
ccc C  
Dimensions  
(mm)  
Symbols  
MIN  
-----  
0.05  
0.95  
0.17  
0.09  
NOM  
-----  
-----  
1.00  
0.22  
-----  
MAX  
1.20  
0.15  
1.05  
0.27  
0.20  
A
A1  
A2  
b
c
D
D1  
E
E1  
e
L
Θ
9.00 BSC  
7.00 BSC  
9.00 BSC  
7.00 BSC  
0.50 BSC  
0.60  
0.45  
0o  
0.75  
7o  
3.5o  
Tolerances of Form and Position  
0.08  
ccc  
REF:  
JEDEC.95, MS-026  
NOTES:  
A. ALL LINEAR DIMENSIONS ARE IN MILLIMETERS.  
B. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.  
C. BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSION, NOT TO EXCEED 0.25MM.  
D. MEETS JEDEC.95 MS-026, VARIATION = ABC. REFER TO THIS SPECIFICATION FOR FURTHER DETAILS.  
PD Rev 4.1 July 2005  
32  
w
Production Data  
WM8195  
IMPORTANT NOTICE  
Wolfson Microelectronics plc (WM) reserve the right to make changes to their products or to discontinue any product or  
service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing  
orders, that information being relied on is current. All products are sold subject to the WM terms and conditions of sale  
supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation  
of liability.  
WM warrants performance of its products to the specifications applicable at the time of sale in accordance with WM’s  
standard warranty. Testing and other quality control techniques are utilised to the extent WM deems necessary to support  
this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by  
government requirements.  
In order to minimise risks associated with customer applications, adequate design and operating safeguards must be used  
by the customer to minimise inherent or procedural hazards. Wolfson products are not authorised for use as critical  
components in life support devices or systems without the express written approval of an officer of the company. Life  
support devices or systems are devices or systems that are intended for surgical implant into the body, or support or  
sustain life, and whose failure to perform when properly used in accordance with instructions for use provided, can be  
reasonably expected to result in a significant injury to the user. A critical component is any component of a life support  
device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or  
system, or to affect its safety or effectiveness.  
WM assumes no liability for applications assistance or customer product design. WM does not warrant or represent that  
any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual  
property right of WM covering or relating to any combination, machine, or process in which such products or services might  
be or are used. WM’s publication of information regarding any third party’s products or services does not constitute WM’s  
approval, license, warranty or endorsement thereof.  
Reproduction of information from the WM web site or datasheets is permissible only if reproduction is without alteration and  
is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this  
information with alteration voids all warranties provided for an associated WM product or service, is an unfair and deceptive  
business practice, and WM is not responsible nor liable for any such use.  
Resale of WM’s products or services with statements different from or beyond the parameters stated by WM for that  
product or service voids all express and any implied warranties for the associated WM product or service, is an unfair and  
deceptive business practice, and WM is not responsible nor liable for any such use.  
ADDRESS:  
Wolfson Microelectronics plc  
Westfield House  
26 Westfield Road  
Edinburgh  
EH11 2QB  
United Kingdom  
Tel :: +44 (0)131 272 7000  
Fax :: +44 (0)131 272 7001  
Email :: sales@wolfsonmicro.com  
PD Rev 4.1 July 2005  
33  
w

相关型号:

WM8196

(8+8)BIT OUTPUT 16-BIT CIS/CCD AFE/DIGITISER
WOLFSON

WM8196SCDS

(8 + 8) Bit Output 16-bit CIS/CCD AFE/Digitiser
WOLFSON

WM8196SCDS/R

(8 + 8) Bit Output 16-bit CIS/CCD AFE/Digitiser
WOLFSON

WM8196SCDS/RV

Analog Circuit, 1 Func, CMOS, PDSO28, SSOP-28
CIRRUS

WM8196SCDS/V

Analog Circuit, 1 Func, CMOS, PDSO28, SSOP-28
CIRRUS

WM8196_07

(8 + 8) Bit Output 16-bit CIS/CCD AFE/Digitiser
WOLFSON

WM8198

(8 + 8 ) BIT OUTPUT 16 BIT CIS/CCD AFE/DIGITISER
WOLFSON

WM8198CDS

(8 + 8 ) BIT OUTPUT 16 BIT CIS/CCD AFE/DIGITISER
WOLFSON

WM8198CDS/R

(8 + 8 ) BIT OUTPUT 16 BIT CIS/CCD AFE/DIGITISER
WOLFSON

WM8198SCDS

(8 + 8 ) BIT OUTPUT 16 BIT CIS/CCD AFE/DIGITISER
WOLFSON

WM8198SCDS/R

(8 + 8 ) BIT OUTPUT 16 BIT CIS/CCD AFE/DIGITISER
WOLFSON

WM8199

20MSPS 16-bit CCD Digitiser
WOLFSON