WM8196SCDS/R [WOLFSON]

(8 + 8) Bit Output 16-bit CIS/CCD AFE/Digitiser; (8 + 8)位输出16位CIS / CCD AFE /数字转换器
WM8196SCDS/R
型号: WM8196SCDS/R
厂家: WOLFSON MICROELECTRONICS PLC    WOLFSON MICROELECTRONICS PLC
描述:

(8 + 8) Bit Output 16-bit CIS/CCD AFE/Digitiser
(8 + 8)位输出16位CIS / CCD AFE /数字转换器

转换器 光电二极管 CD
文件: 总32页 (文件大小:364K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
WM8196  
w
(8 + 8) Bit Output 16-bit CIS/CCD AFE/Digitiser  
DESCRIPTION  
FEATURES  
16-bit ADC  
The WM8196 is a 16-bit analogue front end/digitiser IC  
which processes and digitises the analogue output signals  
from CCD sensors or Contact Image Sensors (CIS) at pixel  
sample rates of up to 12MSPS.  
12MSPS conversion rate  
Low power – 320mW typical  
5V single supply or 5V/3.3V dual supply operation  
Single or 3 channel operation  
The device includes three analogue signal processing  
channels each of which contains Reset Level Clamping,  
Correlated Double Sampling and Programmable Gain and  
Offset adjust functions. Three multiplexers allow single  
channel processing. The output from each of these  
channels is time multiplexed into a single high-speed 16-bit  
Analogue to Digital Converter. The digital output data is  
available in 8 or 4-bit wide multiplexed format.  
Correlated double sampling  
Programmable gain (8-bit resolution)  
Programmable offset adjust (8-bit resolution)  
Programmable clamp voltage  
8 or 4-bit wide multiplexed data output formats  
Internally generated voltage references  
28-lead SSOP package  
An internal 4-bit DAC is supplied for internal reference level  
generation. This may be used during CDS to reference CIS  
signals or during Reset Level Clamping to clamp CCD  
signals. An external reference level may also be supplied.  
ADC references are generated internally, ensuring optimum  
performance from the device.  
Serial control interface  
APPLICATIONS  
Flatbed and sheetfeed scanners  
USB compatible scanners  
Using an analogue supply voltage of 5V and a digital  
interface supply of either 5V or 3.3V, the WM8196 typically  
only consumes 300mW when operating from a single  
5V supply.  
Multi-function peripherals  
High-performance CCD sensor interface  
BLOCK DIAGRAM  
VRLC/VBIAS  
VSMP MCLK  
AVDD DVDD1 DVDD2  
VRT VRX VRB  
w
CL  
RS VS  
TIMING CONTROL  
WM8196  
VREF/BIAS  
R
8
M
U
X
OFFSET  
DAC  
OEB  
G
B
RINP  
RLC  
RLC  
CDS  
CDS  
PGA  
+
+
+
+
M
U
X
I/P SIGNAL  
POLARITY  
ADJUST  
R
G
B
8
OP[0]  
OP[1]  
M
U
X
OP[2]  
OP[3]  
OP[4]  
OP[5]  
DATA  
I/O  
PORT  
16-  
BIT  
ADC  
M
U
X
GINP  
BINP  
PGA  
8
OP[6]  
OP[7]/SDO  
OFFSET  
DAC  
8
I/P SIGNAL  
POLARITY  
ADJUST  
RLC  
CDS  
PGA  
+
+
8
OFFSET  
DAC  
8
I/P SIGNAL  
POLARITY  
ADJUST  
SEN  
SCK  
CONFIGURABLE  
SERIAL  
CONTROL  
INTERFACE  
SDI  
RLC/ACYC  
RLC  
DAC  
4
AGND1  
AGND2  
DGND  
Production Data, March 2007, Rev 4.3  
WOLFSON MICROELECTRONICS plc  
Copyright ©2007 Wolfson Microelectronics plc  
To receive regular email updates, sign up at http://www.wolfsonmicro.com/enews/  
WM8196  
Production Data  
TABLE OF CONTENTS  
DESCRIPTION .......................................................................................................1  
FEATURES.............................................................................................................1  
APPLICATIONS .....................................................................................................1  
BLOCK DIAGRAM .................................................................................................1  
TABLE OF CONTENTS .........................................................................................2  
PIN CONFIGURATION...........................................................................................3  
ORDERING INFORMATION ..................................................................................3  
PIN DESCRIPTION ................................................................................................4  
ABSOLUTE MAXIMUM RATINGS.........................................................................5  
RECOMMENDED OPERATING CONDITIONS .....................................................5  
THERMAL PERFORMANCE .................................................................................5  
ELECTRICAL CHARACTERISTICS ......................................................................6  
INPUT VIDEO SAMPLING............................................................................................. 8  
OUTPUT DATA TIMING ................................................................................................ 8  
SERIAL INTERFACE ................................................................................................... 10  
INTERNAL POWER ON RESET CIRCUIT ..........................................................11  
DEVICE DESCRIPTION.......................................................................................13  
INTRODUCTION.......................................................................................................... 13  
INPUT SAMPLING....................................................................................................... 13  
RESET LEVEL CLAMPING (RLC) ............................................................................... 13  
CDS/NON-CDS PROCESSING ................................................................................... 14  
OFFSET ADJUST AND PROGRAMMABLE GAIN....................................................... 15  
ADC INPUT BLACK LEVEL ADJUST .......................................................................... 16  
OVERALL SIGNAL FLOW SUMMARY ........................................................................ 16  
CALCULATING OUTPUT FOR ANY GIVEN INPUT .................................................... 16  
OUTPUT FORMATS.................................................................................................... 17  
CONTROL INTERFACE .............................................................................................. 18  
TIMING REQUIREMENTS........................................................................................... 19  
PROGRAMMABLE VSMP DETECT CIRCUIT ............................................................. 19  
REFERENCES............................................................................................................. 20  
POWER SUPPLY ........................................................................................................ 20  
POWER MANAGEMENT............................................................................................. 20  
LINE-BY-LINE OPERATION........................................................................................ 21  
OPERATING MODES.................................................................................................. 22  
OPERATING MODE TIMING DIAGRAMS ................................................................... 23  
DEVICE CONFIGURATION .................................................................................26  
REGISTER MAP.......................................................................................................... 26  
REGISTER MAP DESCRIPTION................................................................................. 27  
APPLICATIONS INFORMATION .........................................................................30  
RECOMMENDED EXTERNAL COMPONENTS........................................................... 30  
RECOMMENDED EXTERNAL COMPONENT VALUE ................................................ 30  
PACKAGE DIMENSIONS ....................................................................................31  
IMPORTANT NOTICE..........................................................................................32  
ADDRESS:................................................................................................................... 32  
PD Rev 4.3 March 2007  
w
2
WM8196  
Production Data  
PIN CONFIGURATION  
RINP  
AGND2  
DVDD1  
OEB  
1
2
3
4
5
6
7
8
28  
27  
26  
25  
24  
23  
22  
21  
GINP  
BINP  
VRLC/VBIAS  
VRX  
VSMP  
VRT  
RLC/ACYC  
MCLK  
VRB  
AGND1  
AVDD  
DGND  
SEN  
DVDD2  
SDI  
9
20  
19  
18  
17  
16  
15  
OP[7]/SDO  
OP[6]  
10  
11  
12  
13  
14  
OP[5]  
SCK  
OP[4]  
OP[0]  
OP[1]  
OP[3]  
OP[2]  
ORDERING INFORMATION  
MOISTURE  
SENSITIVITY  
LEVELS  
TEMPERATURE  
PEAK SOLDERING  
TEMPERATURE  
DEVICE  
PACKAGE  
RANGE  
28-lead SSOP  
(Pb free)  
WM8196SCDS  
WM8196SCDS/R  
0 to 70oC  
MSL1  
260oC  
28-lead SSOP  
0 to 70oC  
MSL1  
260oC  
(Pb free, tape and  
reel)  
Note:  
Reel quantity = 2,000  
PD Rev 4.3 March 2007  
w
3
WM8196  
Production Data  
PIN DESCRIPTION  
PIN  
1
NAME  
RINP  
TYPE  
Analogue input  
Supply  
DESCRIPTION  
Red channel input video.  
Analogue ground (0V).  
2
AGND2  
DVDD1  
3
Supply  
Digital supply (5V) for logic and clock generator. This must be operated at the same  
potential as AVDD.  
4
5
6
OEB  
VSMP  
Digital input  
Digital input  
Digital input  
Output Hi-Z control, all digital outputs disabled when OEB = 1.  
Video sample synchronisation pulse.  
RLC/ACYC  
RLC (active high) selects reset level clamp on a pixel-by-pixel basis – tie high if  
used on every pixel. ACYC autocycles between R, G, B inputs.  
7
MCLK  
Digital input  
Master clock. This clock is applied at N times the input pixel rate (N = 2, 3, 6, 8 or  
any multiple of 2 thereafter depending on input sample mode).  
8
DGND  
SEN  
Supply  
Digital ground (0V).  
9
Digital input  
Supply  
Enables the serial interface when high.  
Digital supply (5V/3.3V), all digital I/O pins.  
Serial data input.  
10  
11  
12  
DVDD2  
SDI  
Digital input  
Digital input  
SCK  
Serial clock.  
Digital multiplexed output data bus.  
ADC output data (d15:d0) is available in two multiplexed formats as shown, under  
the control of register MUXOP [1:0]  
See ‘Output Formats’ description in Device Description section for further details.  
8+8-bit  
4+4+4+4-bit  
A
B
A
B
C
D
13  
14  
15  
16  
17  
18  
19  
20  
OP[0]  
OP[1]  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
d8  
d0  
d1  
d2  
d3  
d4  
d5  
d6  
d7  
d9  
OP[2]  
d10  
d11  
d12  
d13  
d14  
d15  
OP[3]  
OP[4]  
d12  
d13  
d14  
d15  
d8  
d9  
d4  
d5  
d6  
d7  
d0  
OP[5]  
d1  
d2  
d3  
OP[6]  
d10  
d11  
OP[7]/SDO  
Alternatively, pin OP[7]/SDO may be used to output register read-back data when  
OEB = 0 and SEN has been pulsed high. See Serial Interface description in Device  
Description section for further details.  
21  
22  
23  
AVDD  
AGND1  
VRB  
Supply  
Supply  
Analogue supply (5V). This must be operated at the same potential as DVDD1.  
Analogue ground (0V).  
Analogue output Lower reference voltage.  
This pin must be connected to AGND via a decoupling capacitor.  
Analogue output Upper reference voltage.  
This pin must be connected to AGND via a decoupling capacitor.  
Analogue output Input return bias voltage.  
This pin must be connected to AGND via a decoupling capacitor.  
24  
25  
26  
VRT  
VRX  
VRLC/VBIAS  
Analogue I/O  
Selectable analogue output voltage for RLC or single-ended bias reference.  
This pin would typically be connected to AGND via a decoupling capacitor.  
VRLC can be externally driven if programmed Hi-Z.  
27  
28  
BINP  
GINP  
Analogue input  
Analogue input  
Blue channel input video.  
Green channel input video.  
PD Rev 4.3 March 2007  
w
4
WM8196  
Production Data  
ABSOLUTE MAXIMUM RATINGS  
Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at  
or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical  
Characteristics at the test conditions specified.  
ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible  
to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage  
of this device.  
Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage  
conditions prior to surface mount assembly. These levels are:  
MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag.  
MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.  
MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.  
The Moisture Sensitivity Level for each package type is specified in Ordering Information.  
CONDITION  
MIN  
MAX  
Analogue supply voltage: AVDD  
Digital supply voltages: DVDD1 2  
Digital ground: DGND  
GND - 0.3V  
GND - 0.3V  
GND - 0.3V  
GND - 0.3V  
GND - 0.3V  
GND - 0.3V  
GND - 0.3V  
GND + 7V  
GND + 7V  
GND + 0.3V  
GND + 0.3V  
DVDD2 + 0.3V  
AVDD + 0.3V  
AVDD + 0.3V  
Analogue grounds: AGND1 2  
Digital inputs, digital outputs and digital I/O pins  
Analogue inputs (RINP, GINP, BINP)  
Other pins  
°
°
Operating temperature range: TA  
Storage temperature prior to soldering  
Storage temperature after soldering  
Notes:  
0 C  
+70 C  
°
30 C max / 85% RH max  
°
°
+150 C  
-65 C  
1.  
2.  
GND denotes the voltage of any ground pin.  
AGND1, AGND2 and DGND pins are intended to be operated at the same potential. Differential voltages  
between these pins will degrade performance.  
RECOMMENDED OPERATING CONDITIONS  
CONDITION  
SYMBOL  
TA  
MIN  
0
TYP  
MAX  
70  
UNITS  
Operating temperature range  
Analogue supply voltage  
Digital core supply voltage  
Digital I/O supply voltage  
°C  
V
AVDD  
DVDD1  
4.75  
4.75  
5.0  
5.0  
5.25  
5.25  
V
5V I/O  
DVDD2  
DVDD2  
4.75  
2.97  
5.0  
3.3  
5.25  
3.63  
V
V
3.3V I/O  
THERMAL PERFORMANCE  
PARAMETER  
Performance  
SYMBOL  
RθJC  
RθJA  
TEST CONDITIONS  
MIN  
TYP  
23.9  
67.1  
MAX  
UNIT  
°C/W  
°C/W  
Thermal resistance – junction to  
case  
T
ambient = 25°C  
Thermal resistance – junction to  
ambient  
Notes:  
1. Figures given are for package mounted on 4-layer FR4 according to JESD51-5 and JESD51-7.  
PD Rev 4.3 March 2007  
5
w
WM8196  
Production Data  
ELECTRICAL CHARACTERISTICS  
Test Conditions  
AVDD = DVDD1 = 5.0V, DVDD2 = 3.3V, AGND = DGND = 0V, TA = 25°C, MCLK = 24MHz unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST  
MIN  
TYP  
MAX  
UNIT  
CONDITIONS  
Overall System Specification (including 16-bit ADC, PGA, Offset and CDS functions)  
Conversion Rate  
12  
0.4  
MSPS  
Vp-p  
Vp-p  
V
Full-scale input voltage range  
(see Note 1)  
4.08  
Input signal limits (see Note 2)  
Full-scale transition error  
VIN  
0
AVDD  
Gain = 0dB;  
PGA[7:0] = 4B(hex)  
20  
20  
mV  
Zero-scale transition error  
Gain = 0dB;  
mV  
PGA[7:0] = 4B(hex)  
Differential non-linearity  
Integral non-linearity  
DNL  
INL  
1.25  
25  
LSB  
LSB  
Channel to channel gain matching  
Total output noise  
1
%
Min Gain  
Max Gain  
4.5  
14  
LSB rms  
LSB rms  
References  
Upper reference voltage  
VRT  
VRB  
VRX  
VRTB  
2.85  
1.35  
1.65  
1.5  
V
V
V
V
Lower reference voltage  
Input return bias voltage  
1.4  
1.6  
Diff. reference voltage (VRT-VRB)  
Output resistance VRT, VRB, VRX  
VRLC/Reset-Level Clamp (RLC)  
RLC switching impedance  
VRLC short-circuit current  
VRLC output resistance  
1
50  
2
mA  
2
VRLC Hi-Z leakage current  
RLCDAC resolution  
VRLC = 0 to AVDD  
AVDD=5V  
1
µA  
4
bits  
V/step  
V/step  
V
RLCDAC step size, RLCDAC = 0  
RLCDAC step size, RLCDAC = 1  
VRLCSTEP  
VRLCSTEP  
VRLCBOT  
0.25  
0.17  
0.39  
RLCDAC output voltage at  
AVDD=5V  
code 0(hex), RLCDACRNG = 0  
RLCDAC output voltage at  
code 0(hex), RLCDACRNG = 1  
VRLCBOT  
VRLCTOP  
VRLCTOP  
0.26  
4.16  
2.81  
V
V
RLCDAC output voltage at  
code F(hex) RLCDACRNG, = 0  
AVDD=5V  
RLCDAC output voltage at  
V
code F(hex), RLCDACRNG = 1  
VRLC deviation  
-50  
+50  
mV  
Offset DAC, Monotonicity Guaranteed  
Resolution  
8
bits  
LSB  
Differential non-linearity  
Integral non-linearity  
Step size  
DNL  
INL  
0.1  
0.5  
1
0.25  
2.04  
-260  
+260  
LSB  
mV/step  
mV  
Output voltage  
Code 00(hex)  
Code FF(hex)  
mV  
Notes:  
1.  
2.  
Full-scale input voltage denotes the maximum amplitude of the input signal at the specified gain.  
Input signal limits are the limits within which the full-scale input voltage signal must lie.  
PD Rev 4.3 March 2007  
6
w
WM8196  
Production Data  
Test Conditions  
AVDD = DVDD1 = 5.0V, DVDD2 = 3.3V, AGND = DGND = 0V, TA = 25°C, MCLK = 24MHz unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST  
MIN  
TYP  
MAX  
UNIT  
CONDITIONS  
Programmable Gain Amplifier  
Resolution  
Gain  
8
208  
bits  
V/V  
283 PGA[7 : 0]  
Max gain, each channel  
Min gain, each channel  
Gain error, each channel  
Analogue to Digital Converter  
Resolution  
GMAX  
GMIN  
7.4  
0.74  
1
V/V  
V/V  
%
16  
12  
3
Bits  
MSPS  
V
Speed  
Full-scale input range  
(2*(VRT-VRB))  
DIGITAL SPECIFICATIONS  
Digital Inputs  
High level input voltage  
Low level input voltage  
High level input current  
Low level input current  
Input capacitance  
VIH  
VIL  
IIH  
0.8 DVDD2  
V
0.2 DVDD2  
V
1
1
µA  
µA  
pF  
IIL  
CI  
5
Digital Outputs  
High level output voltage  
Low level output voltage  
High impedance output current  
Digital IO Pins  
VOH  
VOL  
IOZ  
IOH = 1mA  
IOL = 1mA  
DVDD2 - 0.5  
V
V
0.5  
1
µA  
Applied high level input voltage  
Applied low level input voltage  
High level output voltage  
Low level output voltage  
Low level input current  
High level input current  
Input capacitance  
VIH  
VIL  
VOH  
VOL  
IIL  
0.8 DVDD2  
V
V
0.2 DVDD2  
IOH = 1mA  
IOL = 1mA  
DVDD2 - 0.5  
V
0.5  
1
V
µA  
µA  
pF  
µA  
IIH  
1
CI  
5
High impedance output current  
Supply Currents  
IOZ  
1
Total supply current active  
(Three channel mode)  
Total supply current active  
(Single channel mode)  
60  
45  
mA  
mA  
MCLK = 24MHz  
LINEBYLINE = 1  
MCLK = 24MHz  
Total analogue supply current −  
IAVDD  
IAVDD  
56  
41  
mA  
mA  
MCLK = 24MHz  
active (Three channel mode)  
Total analogue supply current −  
active (One channel mode)  
LINEBYLINE = 1  
MCLK = 24MHz  
Digital core supply current,  
DVDD1 active (Note1)  
Digital I/O supply current,  
DVDD2 active (Note1)  
Supply current full power down  
mode  
3
1
mA  
mA  
µA  
MCLK = 24MHz  
MCLK = 24MHz  
300  
PD Rev 4.3 March 2007  
7
w
WM8196  
Production Data  
INPUT VIDEO SAMPLING  
tPER  
tMCLKH tMCLKL  
MCLK  
tVSMPH  
tVSMPSU  
VSMP  
INPUT  
tVSU  
tVH  
tRSU  
tRH  
VIDEO  
Figure 1 Input Video Timing  
Note:  
1.  
See Page 14 (Programmable VSMP Detect Circuit) for video sampling description.  
Test Conditions  
AVDD = DVDD1 = 5.0V, DVDD2 = 3.3V, AGND = DGND = 0V, TA = 25°C, MCLK = 24MHz unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MCLK period  
tPER  
41.6  
ns  
MCLK high period  
MCLK low period  
VSMP set-up time  
VSMP hold time  
tMCLKH  
tMCLKL  
tVSMPSU  
tVSMPH  
tVSU  
18.8  
18.8  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
Video level set-up time  
Video level hold time  
Reset level set-up time  
Reset level hold time  
Notes:  
10  
3
tVH  
tRSU  
10  
3
tRH  
1.  
2.  
tVSU and tRSU denote the set-up time required after the input video signal has settled.  
Parameters are measured at 50% of the rising/falling edge.  
OUTPUT DATA TIMING  
MCLK  
tPD  
OP[7:0]  
Figure 2 Output Data Timing  
PD Rev 4.3 March 2007  
8
w
WM8196  
Production Data  
OEB  
tPZE  
tPEZ  
OP[7:0]  
Hi-Z  
Hi-Z  
Figure 3 Output Data Enable Timing  
Test Conditions  
AVDD = DVDD1 = 5.0V, DVDD2 = 3.3V, AGND = DGND = 0V, TA = 25°C, MCLK = 24MHz unless otherwise stated.  
PARAMETER  
SYMBOL  
tPD  
TEST CONDITIONS  
IOH = 1mA, IOL = 1mA  
MIN  
TYP  
MAX  
40  
UNITS  
ns  
Output propagation delay  
Output enable time  
Output disable time  
tPZE  
20  
ns  
tPEZ  
15  
ns  
MCLK  
tACYCSU  
tACYCH  
tACYCH  
tACYCSU  
RLC/ACYC  
PGA/OFFSET  
MUX OUTPUT  
Figure 4 Auto Cycle Timing  
Test Conditions  
AVDD = DVDD1 = 5.0V, DVDD2 = 3.3V, AGND = DGND = 0V, TA = 25°C, MCLK = 24MHz unless otherwise stated.  
PARAMETER  
SYMBOL  
tACYCSU  
tACYCH  
TEST CONDITIONS  
MIN  
6
TYP  
MAX  
UNITS  
ns  
Auto Cycle set-up time  
Auto Cycle hold time  
3
ns  
PD Rev 4.3 March 2007  
9
w
WM8196  
Production Data  
SERIAL INTERFACE  
tSPER  
tSCKL tSCKH  
SCK  
tSSU  
tSH  
SDI  
SEN  
SDO  
tSCE  
tSEW tSEC  
tSCRDZ  
LSB  
tSERD  
tSCRD  
ADC  
DATA  
ADC DATA  
MSB  
REGISTER DATA  
Figure 5 Serial Interface Timing  
Test Conditions  
AVDD = DVDD1 = 5.0V, DVDD2 = 3.3V, AGND = DGND = 0V, TA = 25°C, MCLK = 24MHz unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SCK period  
tSPER  
41.6  
ns  
SCK high  
tSCKH  
tSCKL  
tSSU  
18.8  
18.8  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK low  
SDI set-up time  
SDI hold time  
tSH  
6
SCK to SEN set-up time  
SEN to SCK set-up time  
SEN pulse width  
tSCE  
12  
12  
25  
tSEC  
tSEW  
tSERD  
tSCRD  
tSCRDZ  
SEN low to SDO = Register data  
SCK low to SDO = Register data  
SCK low to SDO = ADC data  
30  
30  
30  
Note:  
1. Parameters are measured at 50% of the rising/falling edge  
PD Rev 4.3 March 2007  
10  
w
WM8196  
Production Data  
INTERNAL POWER ON RESET CIRCUIT  
Figure 6 Internal Power On Reset Circuit Schematic  
The WM8196 includes an internal Power-On-Reset Circuit, as shown in Figure 6, which is used to  
reset the digital logic into a default state after power up. The POR circuit is powered from AVDD and  
monitors DVDD1. It asserts PORB low if AVDD or DVDD1 is below a minimum threshold.  
The power supplies can be brought up in any order but is important that either AVDD is brought up  
and is stable before DVDD comes up or vice versa as shown in Figure 7 and Figure 8.  
Figure 7 Typical Power up Sequence where AVDD is Powered before DVDD1  
Figure 7 shows a typical power-up sequence where AVDD is powered up first. When AVDD rises  
above the minimum threshold, Vpora, there is enough voltage for the circuit to guarantee PORB is  
asserted low and the chip is held in reset. In this condition, all writes to the control interface are  
ignored. Now AVDD is at full supply level. Next DVDD1 rises to Vpord_on and PORB is released  
high and all registers are in their default state and writes to the control interface may take place.  
On power down, where AVDD falls first, PORB is asserted low whenever AVDD drops below the  
minimum threshold Vpora_off.  
PD Rev 4.3 March 2007  
11  
w
WM8196  
Production Data  
Figure 8 Typical Power up Sequence where DVDD1 is Powered before AVDD  
Figure 8 shows a typical power-up sequence where DVDD1 is powered up first. It is assumed that  
DVDD1 is already up to specified operating voltage. When AVDD goes above the minimum  
threshold, Vpora, there is enough voltage for the circuit to guarantee PORB is asserted low and the  
chip is held in reset. In this condition, all writes to the control interface are ignored. When AVDD rises  
to Vpora_on, PORB is released high and all registers are in their default state and writes to the  
control interface may take place.  
On power down, where DVDD1 falls first, PORB is asserted low whenever DVDD1 drops below the  
minimum threshold Vpord_off.  
SYMBOL  
Vpora  
TYP  
0.6  
1.2  
0.6  
0.7  
0.6  
UNIT  
V
V
V
V
V
Vpora_on  
Vpora_off  
Vpord_on  
Vpord_off  
Table 1 Typical POR Operation (typical values, not tested)  
Note: It is recommended that every time power is cycled to the WM8196 a software reset is written  
to the software register to ensure that the contents of the control registers are at their default values  
before carrying out any other register writes.  
PD Rev 4.3 March 2007  
12  
w
WM8196  
Production Data  
DEVICE DESCRIPTION  
INTRODUCTION  
A block diagram of the device showing the signal path is presented on Page 1.  
The WM8196 samples up to three inputs (RINP, GINP and BINP) simultaneously. The device then  
processes the sampled video signal with respect to the video reset level or an internally/externally  
generated reference level using either one or three processing channels.  
Each processing channel consists of an Input Sampling block with optional Reset Level Clamping  
(RLC) and Correlated Double Sampling (CDS), an 8-bit programmable offset DAC and an 8-bit  
Programmable Gain Amplifier (PGA).  
The ADC then converts each resulting analogue signal to a 16-bit digital word. The digital output from  
the ADC is presented on an 8-bit wide bi-directional bus, with optional 8 or 4-bit multiplexed formats.  
On-chip control registers determine the configuration of the device, including the offsets and gains  
applied to each channel. These registers are programmable via a serial interface.  
INPUT SAMPLING  
The WM8196 can sample and process one to three inputs through one or three processing channels  
as follows:  
Colour Pixel-by-Pixel: The three inputs (RINP, GINP and BINP) are simultaneously sampled for  
each pixel and a separate channel processes each input. The signals are then multiplexed into the  
ADC, which converts all three inputs within the pixel period.  
Monochrome: A single chosen input (RINP, GINP, or BINP) is sampled, processed by the  
corresponding channel, and converted by the ADC. The choice of input and channel can be changed  
via the control interface, e.g. on a line-by-line basis if required.  
Colour Line-by-Line: A single chosen input (RINP, GINP, or BINP) is sampled and multiplexed into  
the red channel for processing before being converted by the ADC. The input selected can be  
switched in turn (RINP GINP BINP RINP…) together with the PGA and Offset DAC control  
registers by pulsing the RLC/ACYC pin. This is known as auto-cycling. Alternatively, other sampling  
sequences can be generated via the control registers. This mode causes the blue and green  
channels to be powered down. Refer to the Line-by-Line Operation section for more details.  
RESET LEVEL CLAMPING (RLC)  
To ensure that the signal applied to the WM8196 lies within its input range (0V to AVDD) the CCD  
output signal is usually level shifted by coupling through a capacitor, CIN. The RLC circuit clamps the  
WM8196 side of this capacitor to a suitable voltage during the CCD reset period.  
A typical input configuration is shown in Figure 9. An internal clamp pulse, CL, is generated from  
MCLK and VSMP by the Timing Control Block. When CL is active the voltage on the WM8196 side of  
CIN, at RINP, is forced to the VRLC/VBIAS voltage (VVRLC ) by closing of switch 1. When the CL  
pulse turns off switch 1 opens, the voltage at RINP initially remains at VVRLC but any subsequent  
variation in sensor voltage (from reset to video level) will couple through CIN to RINP.  
RLC is compatible with both CDS and non-CDS operating modes, as selected by switch 2. Refer to  
the CDS/non-CDS Processing section.  
PD Rev 4.3 March 2007  
13  
w
WM8196  
Production Data  
RLC/ACYC MCLK VSMP  
TIMING CONTROL  
FROM CONTROL  
INTERFACE  
CL  
RS  
VS  
CIN  
S/H  
+
-
TO OFFSET DAC  
+
RINP  
2
S/H  
1
RLC  
CDS  
INPUT SAMPLING  
BLOCK FOR RED  
CHANNEL  
EXTERNAL VRLC  
CDS  
VRLC/  
VBIAS  
4-BIT  
RLC DAC  
FROM CONTROL  
INTERFACE  
VRLCEXT  
Figure 9 Reset Level Clamping and CDS Circuitry  
If auto-cycling is not required, RLC can be selected by pin RLC/ACYC. Figure 10 illustrates control of  
RLC for a typical CCD waveform, with CL applied during the reset period.  
The input signal applied to the RLC/ACYC pin is sampled on the positive edge of MCLK that occurs  
during each VSMP pulse. The sampled level, high (or low) controls the presence (or absence) of the  
internal CL pulse on the next reset level. The position of CL can be adjusted by using control bits  
CDSREF[1:0] (Figure 11).  
If auto-cycling is required, pin RLC/ACYC is no longer available for this function and control bit  
RLCINT determines whether clamping is applied.  
MCLK  
VSMP  
ACYC/RLC  
or RLCINT  
1
X
X
0
X
X
0
Programmable Delay  
CL  
(CDSREF = 01)  
INPUT VIDEO  
RGB  
RGB  
RGB  
RLC on this Pixel  
No RLC on this Pixel  
Figure 10 Relationship of RLC Pin, MCLK and VSMP to Internal Clamp Pulse, CL  
The VRLC/VBIAS pin can be driven internally by a 4-bit DAC (RLCDAC) by writing to control bits  
RLCV[3:0]. The RLCDAC range and step size may be increased by writing to control bit  
RLCDACRNG. Alternatively, the VRLC/VBIAS pin can be driven externally by writing to control bit  
VRLCEXT to disable the RLCDAC and then applying a d.c. voltage to the pin.  
CDS/NON-CDS PROCESSING  
For CCD type input signals, the signal may be processed using CDS, which will remove pixel-by-pixel  
common mode noise. For CDS operation, the video level is processed with respect to the video reset  
level, regardless of whether RLC has been performed. To sample using CDS, control bit CDS must  
be set to 1 (default), this sets switch 2 into the position shown in Figure 9 and causes the signal  
reference to come from the video reset level. The time at which the reset level is sampled, by clock  
Rs/CL, is adjustable by programming control bits CDSREF[1:0], as shown in Figure 11.  
PD Rev 4.3 March 2007  
14  
w
WM8196  
Production Data  
MCLK  
VSMP  
VS  
RS/CL (CDSREF = 00)  
RS/CL (CDSREF = 01)  
RS/CL (CDSREF = 10)  
RS/CL (CDSREF = 11)  
Figure 11 Reset Sample and Clamp Timing  
For CIS type sensor signals, non-CDS processing is used. In this case, the video level is processed  
with respect to the voltage on pin VRLC/VBIAS, generated internally or externally as described  
above. The VRLC/VBIAS pin is sampled by Rs at the same time as Vs samples the video level in this  
mode; non-CDS processing is achieved by setting switch 2 in the lower position, CDS = 0.  
OFFSET ADJUST AND PROGRAMMABLE GAIN  
The output from the CDS block is a differential signal, which is added to the output of an 8-bit Offset  
DAC to compensate for offsets and then amplified by an 8-bit PGA. The gain and offset for each  
channel are independently programmable by writing to control bits DAC[7:0] and PGA[7:0].  
The gain characteristic of the WM8196 PGA is shown in Figure 12. Figure 13 shows the maximum  
device input voltage that can be gained up to match the ADC full-scale input range (3V).  
8
7
6
5
4
3
2
1
0
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
64  
128  
192  
256  
0
64  
128  
192  
256  
Gain register value (PGA[7:0])  
Gain register value (PGA[7:0])  
Figure 12 PGA Gain Characteristic  
Figure 13 Peak Input Voltage to Match ADC Full-scale Range  
In colour line-by-line mode the gain and offset coefficients for each colour can be multiplexed in order  
(Red Green Blue Red…) by pulsing the ACYC/RLC pin, or controlled via the FME,  
ACYCNRLC and INTM[1:0] bits. Refer to the Line-by-Line Operation section for more details.  
PD Rev 4.3 March 2007  
15  
w
WM8196  
Production Data  
ADC INPUT BLACK LEVEL ADJUST  
The output from the PGA should be offset to match the full-scale range of the ADC (3V). For  
negative-going input video signals, a black level (zero differential) output from the PGA should be  
offset to the top of the ADC range by setting register bits PGAFS[1:0]=10. For positive going input  
signal the black level should be offset to the bottom of the ADC range by setting PGAFS[1:0]=11.  
Bipolar input video is accommodated by setting PGAFS[1:0]=00 or PGAFS[1:0]=01 (zero differential  
input voltage gives mid-range ADC output).  
OVERALL SIGNAL FLOW SUMMARY  
Figure 14 represents the processing of the video signal through the WM8196.  
OUTPUT  
INVERT  
BLOCK  
INPUT  
SAMPLING  
BLOCK  
OFFSET DAC PGA  
ADC BLOCK  
BLOCK  
BLOCK  
D2  
x (65535/VFS  
)
V1  
V2  
V3  
D1  
+0  
if PGAFS[1:0]=11  
X
+65535 if PGAFS[1:0]=10  
+32768 if PGAFS[1:0]=0x  
OP[7:0]  
+
+
VIN  
digital  
analog  
+
-
CDS = 1  
CDS = 0  
D2 = D1 if INVOP = 0  
D2 = 65535-D1 if INVOP = 1  
VRESET  
PGA gain  
A = 208/(283-PGA[7:0])  
VVRLC  
Offset  
DAC  
260mV*(DAC[7:0]-127.5)/127.5  
VIN is RINP or GINP or BINP  
VRESET is VIN sampled during reset clamp  
VRLC is voltage applied to VRLC pin  
RLCEXT=1  
RLCEXT=0  
CDS, RLCEXT,RLCV[3:0], DAC[7:0],  
PGA[7:0], PGAFS[1:0] and INVOP are set  
by programming internal control registers.  
CDS=1 for CDS, 0 for non-CDS  
RLC  
DAC  
See parametrics for  
DAC voltages.  
Figure 14 Overall Signal Flow  
The INPUT SAMPLING BLOCK produces an effective input voltage V1. For CDS, this is the  
difference between the input video level VIN and the input reset level VRESET. For non-CDS this is the  
difference between the input video level VIN and the voltage on the VRLC/VBIAS pin, VVRLC  
optionally set via the RLC DAC.  
,
The OFFSET DAC BLOCK then adds the amount of fine offset adjustment required to move the  
black level of the input signal towards 0V, producing V2.  
The PGA BLOCK then amplifies the white level of the input signal to maximise the ADC range,  
outputting voltage V3.  
The ADC BLOCK then converts the analogue signal, V3, to a 16-bit unsigned digital output, D1.  
The digital output is then inverted, if required, through the OUTPUT INVERT BLOCK to produce D2.  
CALCULATING OUTPUT FOR ANY GIVEN INPUT  
The following equations describe the processing of the video and reset level signals through  
the WM8196. The values if V1 V2 and V3 are often calculated in reverse order during device  
setup. The PGA value is written first to set the input Voltage range, the Offset DAC is then  
adjusted to compensate for any Black/Reset level offsets and finally the RLC DAC value is  
set to position the reset level correctly during operation.  
Note: Refer to WAN0123 for detailed information on device calibration procedures.  
INPUT SAMPLING BLOCK: INPUT SAMPLING AND REFERENCING  
If CDS = 1, (i.e. CDS operation) the previously sampled reset level, VRESET, is subtracted from the  
input video.  
V1  
=
VIN - VRESET ................................................................... Eqn. 1  
If CDS = 0, (non-CDS operation) the simultaneously sampled voltage on pin VRLC is subtracted  
instead.  
V1  
=
VIN - VVRLC .................................................................... Eqn. 2  
If RLCEXT = 1, VVRLC is an externally applied voltage on pin VRLC/VBIAS.  
PD Rev 4.3 March 2007  
16  
w
WM8196  
Production Data  
If RLCEXT = 0, VVRLC is the output from the internal RLC DAC.  
VVRLC  
=
(VRLCSTEP RLCV[3:0]) + VRLCBOT ................................. Eqn. 3  
V
RLCSTEP is the step size of the RLC DAC and VRLCBOT is the minimum output of the RLC DAC.  
OFFSET DAC BLOCK: OFFSET (BLACK-LEVEL) ADJUST  
The resultant signal V1 is added to the Offset DAC output.  
V2  
=
V1 + {260mV (DAC[7:0]-127.5) } / 127.5 ..................... Eqn. 4  
PGA NODE: GAIN ADJUST  
The signal is then multiplied by the PGA gain,  
V3  
=
V2 208/(283- PGA[7:0]) .............................................. Eqn. 5  
ADC BLOCK: ANALOGUE-DIGITAL CONVERSION  
The analogue signal is then converted to a 16-bit unsigned number, with input range configured by  
PGAFS[1:0].  
D1[15:0] = INT{ (V3 /VFS) 65535} + 32767 PGAFS[1:0] = 00 or 01 ...... Eqn. 6  
D1[15:0] = INT{ (V3 /VFS) 65535}  
PGAFS[1:0] = 11 ............... Eqn. 7  
D1[15:0] = INT{ (V3 /VFS) 65535} + 65535 PGAFS[1:0] = 10 ............... Eqn. 8  
where the ADC full-scale range, VFS = 3V  
OUTPUT INVERT BLOCK: POLARITY ADJUST  
The polarity of the digital output may be inverted by control bit INVOP.  
D2[15:0] = D1[15:0]  
(INVOP = 0) ...................... Eqn. 9  
(INVOP = 1) ...................... Eqn. 10  
D2[15:0] = 65535 – D1[15:0]  
OUTPUT FORMATS  
The digital data output from the ADC is available to the user in 8 or 4-bit wide multiplexed formats by  
setting control bit MUXOP[1:0]. Latency of valid output data with respect to VSMP is programmable  
by writing to control bits DEL[1:0]. The latency for each mode is shown in the Operating Mode Timing  
Diagrams section.  
Figure 15 shows the output data formats for Modes 1 – 2 and 4 – 6. Figure 16 shows the output data  
formats for Mode 3. Table 2 summarises the output data obtained for each format.  
MCLK  
MCLK  
8+8-BIT  
OUTPUT  
8+8-BIT  
OUTPUT  
A
B
A
B
4+4+4+4-BIT  
OUTPUT  
4+4+4+4-BIT  
OUTPUT  
A
B
C
D
A B A B C  
D
Figure 15 Output Data Formats  
Figure 16 Output Data Formats  
(Mode 3)  
(Modes 1 2, 4 6)  
PD Rev 4.3 March 2007  
17  
w
WM8196  
Production Data  
OUTPUT  
FORMAT  
MUXOP[1:0]  
00, 01, 10  
11  
OUTPUT  
PINS  
OUTPUT  
8+8-bit  
multiplexed  
OP[7:0]  
A = d15, d14, d13, d12, d11, d10, d9, d8  
B = d7, d6, d5, d4, d3, d2, d1,d0  
4+4+4+4-bit  
(nibble)  
OP[7:4]  
A = d15, d14, d13, d12  
B = d11, d10, d9, d8  
C = d7, d6, d5, d4  
D = d3, d2, d1, d0  
Table 2 Details of Output Data Shown in Figure 15 and Figure 16.  
CONTROL INTERFACE  
The internal control registers are programmable via the serial digital control interface. The register  
contents can be read back via the serial interface on pin OP[7]/SDO.  
Note: It is recommended that a software reset is carried out after the power-up sequence, before  
writing to any other register. This ensures that all registers are set to their default values (as shown  
in Table 6).  
SERIAL INTERFACE: REGISTER WRITE  
Figure 17 shows register writing in serial mode. Three pins, SCK, SDI and SEN are used. A six-bit  
address (a5, 0, a3, a2, a1, a0) is clocked in through SDI, MSB first, followed by an eight-bit data  
word (b7, b6, b5, b4, b3, b2, b1, b0), also MSB first. Each bit is latched on the rising edge of SCK.  
When the data has been shifted into the device, a pulse is applied to SEN to transfer the data to the  
appropriate internal register. Note all valid registers have address bit a4 equal to 0 in write mode.  
SCK  
a5  
0
a3  
a2  
a1  
a0  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
SDI  
Address  
Data Word  
SEN  
Figure 17 Serial Interface Register Write  
A software reset is carried out by writing to Address “000100” with any value of data, i.e. Data Word  
= XXXXXXXX.  
SERIAL INTERFACE: REGISTER READ-BACK  
Figure 18 shows register read-back in serial mode. Read-back is initiated by writing to the serial bus  
as described above but with address bit a4 set to 1, followed by an 8-bit dummy data word. Writing  
address (a5, 1, a3, a2, a1, a0) will cause the contents (d7, d6, d5, d4, d3, d2, d1, d0) of  
corresponding register (a5, 0, a3, a2, a1, a0) to be output MSB first on pin SDO (on the falling edge  
of SCK). Note that pin SDO is shared with an output pin, OP[7], therefore OEB should always be  
held low when register read-back data is expected on this pin. The next word may be read in to SDI  
while the previous word is still being output on SDO.  
PD Rev 4.3 March 2007  
18  
w
WM8196  
Production Data  
SCK  
SDI  
a5  
1
a3 a2 a1 a0  
x
x
x
x
x
x
x
x
Address  
Data Word  
SEN  
SDO/  
OP[7]  
d7 d6 d5 d4 d3 d2 d1 d0  
Output Data Word  
OEB  
Figure 18 Serial Interface Register Read-back  
TIMING REQUIREMENTS  
To use this device a master clock (MCLK) of up to 24MHz and a per-pixel synchronisation clock  
(VSMP) of up to 12MHz are required. These clocks drive a timing control block, which produces  
internal signals to control the sampling of the video signal. MCLK to VSMP ratios and maximum  
sample rates for the various modes are shown in Table 5.  
PROGRAMMABLE VSMP DETECT CIRCUIT  
The VSMP input is used to determine the sampling point and frequency of the WM8196. Under  
normal operation a pulse of 1 MCLK period should be applied to VSMP at the desired sampling  
frequency (as shown in the Operating Mode Timing Diagrams) and the input sample will be taken on  
the first rising MCLK edge after VSMP has gone low. However, in certain applications such a signal  
may not be readily available. The programmable VSMP detect circuit in the WM8196 allows the  
sampling point to be derived from any signal of the correct frequency, such as a CCD shift register  
clock, when applied to the VSMP pin.  
When enabled, by setting the VSMPDET control bit, the circuit detects either a rising or falling edge  
(determined by POSNNEG control bit) on the VSMP input pin and generates an internal VSMP pulse.  
This pulse can optionally be delayed by a number of MCLK periods, specified by the VDEL[2:0] bits.  
Figure 19 shows the internal VSMP pulses that can be generated by this circuit for a typical clock  
input signal. The internal VSMP pulse is then applied to the timing control block in place of the  
normal VSMP pulse provided from the input pin. The sampling point then occurs on the first rising  
MCLK edge after this internal VSMP pulse, as shown in the Operating Mode Timing Diagrams.  
PD Rev 4.3 March 2007  
19  
w
WM8196  
Production Data  
MCLK  
VSMP  
INPUT  
PINS  
POSNNEG = 1  
(VDEL = 000) INTVSMP  
(VDEL = 001) INTVSMP  
(VDEL = 010) INTVSMP  
(VDEL = 011) INTVSMP  
(VDEL = 100) INTVSMP  
(VDEL = 101) INTVSMP  
(VDEL = 110) INTVSMP  
(VDEL = 111) INTVSMP  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
POSNNEG = 0  
(VDEL = 000) INTVSMP  
(VDEL = 001) INTVSMP  
(VDEL = 010) INTVSMP  
(VDEL = 011) INTVSMP  
(VDEL = 100) INTVSMP  
(VDEL = 101) INTVSMP  
(VDEL = 110) INTVSMP  
(VDEL = 111) INTVSMP  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
VS  
Figure 19 Internal VSMP Pulses Generated by Programmable VSMP Detect Circuit  
REFERENCES  
The ADC reference voltages are derived from an internal bandgap reference, and buffered to pins  
VRT and VRB, where they must be decoupled to ground. Pin VRX is driven by a similar buffer, and  
also requires decoupling. The output buffer from the RLCDAC also requires decoupling at pin  
VRLC/VBIAS  
POWER SUPPLY  
The WM8196 can run from a 5V single supply or from split 5V (core) and 3.3V (digital interface)  
supplies.  
POWER MANAGEMENT  
Power management for the device is performed via the Control Interface. The device can be powered  
on or off completely setting by the EN bit and SELPD bit low. Alternatively, when control bit SELPD is  
high, only blocks selected by further control bits (SELDIS[3:0]) are powered down. This allows the  
user to optimise power dissipation in certain modes, or to define an intermediate standby mode to  
allow a quicker recovery into a fully active state. In Line-by-line operation, the green and blue channel  
PGAs are automatically powered down.  
All the internal registers maintain their previously programmed value in power down modes and the  
Control Interface inputs remain active. Table 3 summarises the power down control bit functions.  
EN  
0
SELDPD  
0
0
1
Device completely powers down.  
1
Device completely powers up.  
X
Blocks with respective SELDIS[3:0] bit high are disabled.  
Table 3 Power Down Control  
PD Rev 4.3 March 2007  
20  
w
WM8196  
Production Data  
LINE-BY-LINE OPERATION  
Certain linear sensors (e.g. Contact Image Sensors) give colour output on a line-by-line basis. i.e. a  
full line of red pixels followed by a line of green pixels followed by a line of blue pixels. In order to  
accommodate this type of signal the WM8196 can be set into Monochrome mode, with the input  
channel switched by writing to control bits CHAN[1:0] between every line. Alternatively, the WM8196  
can be placed into colour line-by-line mode by setting the LINEBYLINE control bit. When this bit is  
set the green and blue processing channels are powered down and the device is forced internally to  
only operate in MONO mode (because only one colour is sampled at a time) through the red channel.  
Figure 20 shows the signal path when operating in colour line-by-line mode.  
VRLC/VBIAS  
VSMP  
MCLK  
CL  
RS VS TIMING CONTROL  
R
8
OFFSET  
MUX  
OFFSET  
DAC  
G
B
16-  
BIT  
ADC  
DATA  
I/O  
PORT  
RINP  
RLC  
RLC  
RLC  
CDS  
+
PGA  
8
+
OP[7:0]  
INPUT  
MUX  
R
I/P SIGNAL  
POLARITY  
ADJUST  
PGA  
MUX  
G
GINP  
BINP  
B
SEN/STB  
SCK/RNW  
SDI/DNA  
RLC/ACYC  
NRESET  
CONFIGURABLE  
SERIAL/  
PARALLEL  
CONTROL  
RLC  
DAC  
4
INTERFACE  
Figure 20 Signal Path When in Line-by-Line Mode  
In this mode the input multiplexer and (optionally) the PGA/Offset register multiplexers can be auto-  
cycled by the application of pulses to the RLC/ACYC input pin by setting the ACYCNRLC register bit.  
See Figure 4 for detailed timing information. The multiplexers change on the first MCLK rising edge  
after RLC/ACYC is taken high. A write to the auto-cycle reset register causes these multiplexers to  
be reset; selecting the RINP pin and the RED offset/gain registers. Alternatively, all three  
multiplexers can be controlled via the serial interface by writing to register bits INTM[1:0] to select the  
desired colour. It is also possible for the input multiplexer to be controlled separately from the PGA  
and Offset multiplexers. Table 4 describes all the multiplexer selection modes that are possible.  
FME ACYCNRLC  
NAME  
Internal,  
no force mux  
DESCRIPTION  
0
0
1
0
1
0
Input mux, offset and gain registers determined by  
internal register bits INTM1, INTM0.  
Auto-cycling,  
no force mux  
Input mux, offset and gain registers auto-cycled, RINP  
GINP BINP RINP… on RLC/ACYC pulse.  
Input mux selected from internal register bits FM1, FM0;  
Internal,  
force mux  
Offset and gain registers selected from internal register  
bits INTM1, INTM0.  
1
1
Auto-cycling,  
force mux  
Input mux selected from internal register bits FM1, FM0;  
Offset and gain registers auto-cycled, RED GREEN  
BLUE RED… on RLC/ACYC pulse.  
Table 4 Colour Selection Description in Line-by-Line Mode  
PD Rev 4.3 March 2007  
21  
w
WM8196  
Production Data  
OPERATING MODES  
Table 5 summarises the most commonly used modes, the clock waveforms required and the register  
contents required for CDS and non-CDS operation.  
MODE  
DESCRIPTION  
CDS  
AVAILABLE  
MAX  
SAMPLE  
RATE  
SENSOR  
INTERFACE  
DESCRIPTION  
TIMING  
REQUIRE-  
MENTS  
REGISTER  
CONTENTS  
WITH CDS  
REGISTER  
CONTENTS  
WITHOUT CDS  
1
Colour  
Pixel-by-Pixel  
Yes  
4MSPS  
The 3 input  
channels are  
sampled in  
parallel. The  
signal is then  
gain and offset  
adjusted before  
being  
MCLK max =  
24MHz  
SetReg1:  
03(hex)  
SetReg1: 01(hex)  
MCLK: VSMP  
ratio is 6:1  
multiplexed into  
a single data  
stream and  
converted by the  
ADC, giving an  
output data rate  
of 12MSPS max.  
2
3
Monochrome/  
Colour  
Line-by-Line  
Yes  
Yes  
4MSPS  
8MSPS  
As mode 1  
except:  
Only one input  
channel at a time  
is continuously  
sampled.  
MCLK max =  
24MHz  
SetReg1:  
07(hex)  
SetReg1: 05(hex)  
MCLK: VSMP  
ratio is 6:1  
Fast  
Monochrome/  
Colour  
Identical to mode MCLK max =  
2
Identical to  
mode 2 plus  
SetReg3:  
bits 5:4 must  
be set to  
Identical to  
mode 2  
24MHz  
MCLK: VSMP  
ratio is 3:1  
Line-by-Line  
0(hex)  
4
5
Maximum  
speed  
Monochrome/  
Colour  
No  
12MSPS Identical to mode MCLK max =  
CDS not  
possible  
SetReg1: 45(hex)  
2
24MHz  
MCLK: VSMP  
ratio is 2:1  
Line-by-Line  
Slow Colour  
Pixel-by-Pixel  
Yes  
3MSPS  
3MPS  
Identical to mode MCLK max =  
Identical to  
mode 1  
Identical to  
mode 1  
1
24MHz  
MCLK: VSMP  
ratio is  
2n:1, n 4  
6
Slow  
Monochrome/  
Colour  
Yes  
Identical to mode MCLK max =  
Identical to  
mode 2  
Identical to  
mode 2  
2
24MHz  
MCLK: VSMP  
ratio is  
Line-by-Line  
2n:1, n 4  
Table 5 WM8196 Operating Modes  
Notes:  
1.  
2.  
In Monochrome mode, SetReg3 bits 7:6 determine which input is to be sampled.  
For Colour Line-by-Line, set control bit LINEBYLINE. For input selection, refer to Table 4, Colour Selection  
Description in Line-by-Line Mode.  
PD Rev 4.3 March 2007  
22  
w
WM8196  
Production Data  
OPERATING MODE TIMING DIAGRAMS  
The following diagrams show 8-bit multiplexed output data and MCLK, VSMP and input video  
requirements for operation of the most commonly used modes as shown in Table 5. The diagrams  
are identical for both CDS and non-CDS operation. Outputs from RINP, GINP and BINP are shown  
as R, G and B respectively. X denotes invalid data.  
16.5 MCLK PERIODS  
MCLK  
VSMP  
INPUT VIDEO  
OP[7:0]  
(DEL = 00)  
RA RB GA GB BA BB RA RB GA GB BA BB RA RB GA GB BA BB RA RB GA GB BA BB RA RB GA GB BA BB  
BA BB RA RB GA GB BA BB RA RB GA GB BA BB RA RB GA GB BA BB RA RB GA GB BA BB RA RB GA GB  
GA GB BA BB RA RB GA GB BA BB RA RB GA GB BA BB RA RB GA GB BA BB RA RB GA GB BA BB RA RB  
RA RB GA GB BA BB RA RB GA GB BA BB RA RB GB GA BA BB RA RB GA GB BA BB RA RB GA GB BA BB  
OP[7:0]  
(DEL = 01)  
OP[7:0]  
(DEL = 10)  
OP[7:0]  
(DEL = 11)  
Figure 21 Mode 1 Operation  
Figure 22 Mode 2 Operation  
PD Rev 4.3 March 2007  
23  
w
WM8196  
Production Data  
Figure 23 Mode 3 Operation  
Figure 24 Mode 4 Operation  
PD Rev 4.3 March 2007  
24  
w
WM8196  
Production Data  
16.5 MCLK PERIODS  
MCLK  
VSMP  
INPUT  
VIDEO  
OP[7:0]  
RA RB GA GB BA BB  
RA RB GA GB BA BB  
RA RB GA GB BA BB  
RA RB GA GB  
X
X
X
X
X
X
X
X
(DEL = 00)  
OP[7:0]  
BA BB  
RA RB GA GB BA BB  
RA RB GA GB BA BB  
RA RB GA GB BA BB  
RA RB  
X
X
X
X
X
X
X
X
(DEL = 01)  
OP[7:0]  
GA GB BA BB  
RA RB GA GB BA BB  
RA RB GA GB BA BB  
RA RB GA GB BA BB  
X
X
X
X
X
X
X
X
(DEL = 10)  
OP[7:0]  
RA RB GA GB BA BB  
RA RB GA GB BA BB  
RA RB GA GB BA BB  
RA RB GA GB BA BB  
X
X
X
X
X
X
(DEL = 11)  
Figure 25 Mode 5 Operation (MCLK:VSMP Ratio = 8:1)  
Figure 26 Mode 6 Operation (MCLK:VSMP Ratio = 8:1)  
PD Rev 4.3 March 2007  
25  
w
WM8196  
Production Data  
DEVICE CONFIGURATION  
REGISTER MAP  
The following table describes the location of each control bit used to determine the operation of the  
WM8196. The register map is programmed by writing the required codes to the appropriate  
addresses via the serial interface.  
ADDRESS  
<a5:a0>  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
100000  
100001  
DESCRIPTION  
DEF  
(hex)  
03  
RW  
BIT  
b7  
0
b6  
b5  
b4  
PGAFS[0]  
0
b3  
b2  
b1  
b0  
Setup Reg 1  
Setup Reg 2  
Setup Reg 3  
Software Reset  
Auto-cycle Reset  
Setup Reg 4  
Revision Number  
Setup Reg 5  
Setup Reg 6  
Reserved  
RW  
RW  
RW  
W
MODE4  
DEL[0]  
PGAFS[1]  
RLCDACRNG  
CDSREF [1]  
SELPD  
MONO  
INVOP  
RLCV[2]  
CDS  
EN  
20  
DEL[1]  
VRLCEXT  
RLCV[3]  
MUXOP[1]  
RLCV[1]  
MUXOP[0]  
RLCV[0]  
1F  
00  
CHAN[1] CHAN[0]  
CDSREF [0]  
00  
W
00  
RW  
R
FM[1]  
FM[0]  
INTM[1]  
INTM[0]  
RLCINT  
FME  
ACYCNRLC  
LINEBYLINE  
41  
00  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
0
0
POSNNEG  
VDEL[2]  
VDEL[1]  
VDEL[0]  
VSMPDET  
00  
0
0
0
0
SELDIS[3]  
SELDIS[2]  
SELDIS[1]  
SELDIS[0]  
00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reserved  
00  
Reserved  
00  
0
0
0
0
0
0
0
0
DAC Value (Red)  
80  
DAC[7]  
DAC[7]  
DAC[6]  
DAC[6]  
DAC[5]  
DAC[5]  
DAC[4]  
DAC[4]  
DAC[3]  
DAC[3]  
DAC[2]  
DAC[2]  
DAC[1]  
DAC[1]  
DAC[0]  
DAC[0]  
DAC Value  
(Green)  
80  
100010  
100011  
101000  
101001  
DAC Value (Blue)  
DAC Value (RGB)  
PGA Gain (Red)  
80  
80  
00  
00  
RW  
W
DAC[7]  
DAC[7]  
PGA[7]  
PGA[7]  
DAC[6]  
DAC[6]  
PGA[6]  
PGA[6]  
DAC[5]  
DAC[5]  
PGA[5]  
PGA[5]  
DAC[4]  
DAC[4]  
PGA[4]  
PGA[4]  
DAC[3]  
DAC[3]  
PGA[3]  
PGA[3]  
DAC[2]  
DAC[2]  
PGA[2]  
PGA[2]  
DAC[1]  
DAC[1]  
PGA[1]  
PGA[1]  
DAC[0]  
DAC[0]  
PGA[0]  
PGA[0]  
RW  
RW  
PGA Gain  
(Green)  
101010  
101011  
PGA Gain (Blue)  
PGA Gain (RGB)  
00  
00  
RW  
W
PGA[7]  
PGA[7]  
PGA[6]  
PGA[6]  
PGA[5]  
PGA[5]  
PGA[4]  
PGA[4]  
PGA[3]  
PGA[3]  
PGA[2]  
PGA[2]  
PGA[1]  
PGA[1]  
PGA[0]  
PGA[0]  
Table 6 Register Map  
PD Rev 4.3 March 2007  
26  
w
WM8196  
Production Data  
REGISTER MAP DESCRIPTION  
The following table describes the function of each of the control bits shown in Table 6.  
REGISTER  
BIT  
NO  
BIT  
NAME(S)  
DEFAULT  
DESCRIPTION  
Setup  
0
EN  
1
When SELPD = 1 this bit has no effect.  
Register 1  
When SELPD = 0 this bit controls the global power down:  
0 = complete power down, 1 = fully active.  
1
CDS  
1
Select correlated double sampling mode: 0 = single ended mode,  
1 = CDS mode.  
2
3
MONO  
SELPD  
0
0
Mono/colour select: 0 = colour, 1 = monochrome operation.  
Selective power down: 0 = no individual control,  
1 = individual blocks can be disabled (controlled by SELDIS[3:0]).  
5:4  
PGAFS[1:0]  
00  
Offsets PGA output to optimise the ADC range for different polarity sensor  
output signals. Zero differential PGA input signal gives:  
00 = Zero output  
(use for bipolar video)  
01 = Zero output  
10 = Full-scale positive output  
(use for negative going video)  
11 = Full-scale negative output  
(use for positive going video)  
6
7
MODE4  
Reserved  
0
0
Required when operating in MODE4: 0 = other modes, 1 = MODE4.  
Must be set to zero  
Setup  
1:0  
MUXOP[1:0]  
00  
Determines the output data format.  
Register 2  
00 = 16-bit parallel  
10 = 8-bit multiplexed mode (8+8 bits)  
01 = 8-bit multiplexed (8+8 bits) 11 = 4-bit multiplexed mode (4+4+4+4 bits)  
2
INVOP  
0
Digitally inverts the polarity of output data.  
0 = negative going video gives negative going output,  
1 = negative-going video gives positive going output data.  
3
5
VRLCEXT  
0
1
When set powers down the RLCDAC, changing its output to Hi-Z, allowing  
VRLC/VBIAS to be externally driven.  
RLCDACRNG  
Sets the output range of the RLCDAC.  
0 = RLCDAC ranges from 0 to AVDD (approximately),  
1 = RLCDAC ranges from 0 to VRT (approximately).  
7:6  
DEL[1:0]  
00  
Sets the output latency in ADC clock periods.  
1 ADC clock period = 2 MCLK periods except in Mode 3 where 1 ADC clock  
period = 3 MCLK periods.  
00 = Minimum latency  
01 = Delay by one ADC clock  
period  
10 = Delay by two ADC clock periods  
11 = Delay by three ADC clock periods  
Setup  
Register 3  
3:0  
5:4  
RLCV[3:0]  
1111  
01  
Controls RLCDAC driving VRLC pin to define single ended signal reference  
voltage or Reset Level Clamp voltage. See Electrical Characteristics section  
for ranges.  
CDSREF[1:0]  
CDS mode reset timing adjust.  
00 = Advance 1 MCLK period  
01 = Normal  
10 = Retard 1 MCLK period  
11 = Retard 2 MCLK periods  
7:6  
CHAN[1:0]  
00  
Monochrome mode channel select.  
00 = Red channel select  
01 = Green channel select  
10 = Blue channel select  
11 = Reserved  
Software  
Reset  
Any write to Software Reset causes all cells to be reset. It is recommended  
that a software reset be performed after a power-up before any other register  
writes.  
Auto-cycle  
Reset  
Any write to Auto-cycle Reset causes the auto-cycle counter to reset  
to RINP. This function is only required when LINEBYLINE = 1.  
PD Rev 4.3 March 2007  
27  
w
WM8196  
Production Data  
REGISTER  
BIT  
NO  
BIT  
NAME(S)  
DEFAULT  
DESCRIPTION  
Setup  
Register 4  
0
LINEBYLINE  
0
Selects line by line operation 0 = normal operation,  
1 = line by line operation.  
When line by line operation is selected MONO is forced to 1 and CHAN[1:0] to  
00 internally, ensuring that the correct internal timing signals are produced.  
Green and Blue PGAs are also disabled to save power.  
1
ACYCNRLC  
0
When LINEBYLINE = 0 this bit has no effect.  
When LINEBYLINE = 1 this bit determines the function of the RLC/ACYC  
input pin and the input multiplexer and offset/gain register controls.  
0 = RLC/ACYC pin enabled for Reset Level Clamp. Internal selection of input  
and gain/offset multiplexers,  
1 = Auto-cycling enabled by pulsing the RLC/ACYC input pin.  
See Table 4, Colour Selection Description in Line-by-Line Mode for colour  
selection mode details.  
When auto-cycling is enabled, the RLC/ACYC pin cannot be used for reset  
level clamping. The RLCINT bit may be used instead.  
2
FME  
0
When LINEBYLINE = 0 this bit has no effect.  
When LINEBYLINE = 1 this bit controls the input force mux mode:  
0 = No force mux, 1 = Force mux mode. Forces the input mux to be selected  
by FM[1:0] separately from gain and offset multiplexers.  
See Table 4 for details.  
3
RLCINT  
0
When LINEBYLINE = 1 and ACYCNRLC = 1 this bit is used to determine  
whether Reset Level Clamping is used.  
0 = RLC disabled, 1 = RLC enabled.  
5:4  
INTM[1:0]  
00  
Colour selection bits used in internal modes.  
00 = Red, 01 = Green, 10 = Blue and 11 = Reserved.  
See Table 4 for details.  
7:6  
0
FM[1:0]  
00  
0
Colour selection bits used in input force mux modes.  
00 = RINP, 01 = GINP, 10 = BINP and 11 = Reserved.  
See Table 4 for details.  
Setup  
Register 5  
VSMPDET  
0 = Normal operation, signal on VSMP input pin is applied directly to Timing  
Control block.  
1 = Programmable VSMP detect circuit is enabled. An internal synchronisation  
pulse is generated from signal applied to VSMP input pin and is applied to  
Timing Control block.  
3:1  
VDEL[2:0]  
000  
When VSMPDET = 0 these bits have no effect.  
When VSMPDET = 1 these bits set a programmable delay from the detected  
edge of the signal applied to the VSMP pin. The internally generated pulse is  
delayed by VDEL MCLK periods from the detected edge.  
See Figure 19, Internal VSMP Pulses Generated for details.  
4
POSNNEG  
0
When VSMPDET = 0 this bit has no effect.  
When VSMPDET = 1 this bit controls whether positive or negative edges  
are detected:  
0 = Negative edge on VSMP pin is detected and used to generate internal  
timing pulse.  
1 = Positive edge on VSMP pin is detected and used to generate internal  
timing pulse.  
See Figure 19 for further details.  
7:5  
3:0  
Reserved  
000  
Must be set to zero  
Setup  
Register 6  
SELDIS[3:0]  
0000  
Selective power disable register - activated when SELPD = 1.  
Each bit disables respective cell when 1, enabled when 0.  
SELDIS[0] = Red CDS, PGA  
SELDIS[1] = Green CDS, PGA  
SELDIS[2] = Blue CDS, PGA  
SELDIS[3] = ADC  
7:4  
Reserved  
0000  
Must be set to zero  
PD Rev 4.3 March 2007  
28  
w
WM8196  
Production Data  
REGISTER  
BIT  
NO  
BIT  
NAME(S)  
DEFAULT  
DESCRIPTION  
Offset DAC  
(Red)  
7:0  
DAC[7:0]  
10000000  
Red channel offset DAC value.  
Offset DAC  
(Green)  
7:0  
7:0  
7:0  
DAC[7:0]  
DAC[7:0]  
DAC[7:0]  
10000000  
10000000  
10000000  
Green channel offset DAC value  
Blue channel offset DAC value  
Offset DAC  
(Blue)  
Offset DAC  
(RGB)  
A write to this register location causes the red, green and blue offset DAC  
registers to be overwritten by the new value  
PGA gain  
(Red)  
7:0  
7:0  
7:0  
7:0  
PGA[7:0]  
PGA[7:0]  
PGA[7:0]  
PGA[7:0]  
00000000  
00000000  
00000000  
00000000  
Determines the gain of the red channel PGA according to the equation:  
Red channel PGA gain = 208/(283-PGA[7:0])  
PGA gain  
(Green)  
Determines the gain of the green channel PGA according to the equation:  
Green channel PGA gain = 208/(283-PGA[7:0])  
PGA gain  
(Blue)  
Determines the gain of the blue channel PGA according to the equation:  
Blue channel PGA gain = 208/(283-PGA[7:0])  
PGA gain  
(RGB)  
A write to this register location causes the red, green and blue PGA gain  
registers to be overwritten by the new value  
Table 7 Register Control Bits  
PD Rev 4.3 March 2007  
29  
w
WM8196  
Production Data  
APPLICATIONS INFORMATION  
RECOMMENDED EXTERNAL COMPONENTS  
DVDD2  
DVDD1  
3
8
DVDD1  
DVDD2  
DGND  
10  
C1  
C2  
AVDD  
21  
22  
2
AVDD  
AGND1  
AGND2  
C3  
DGND  
AGND  
AGND  
24  
25  
23  
VRT  
VRX  
VRB  
1
RINP  
GINP  
BINP  
C4  
C5  
Video  
Inputs  
28  
27  
C6  
C7  
C8  
26  
VRLC/VBIAS  
C9  
AGND  
WM8196  
AGND  
20  
19  
18  
17  
16  
15  
14  
13  
OP[7]/SDO  
DVDD1 DVDD2  
AVDD  
7
5
6
MCLK  
OP[6]  
Timing  
Signals  
VSMP  
OP[5]  
C10  
C11  
C12  
+
+
+
Output  
Data  
Bus  
RLC/ACYC  
OP[4]  
OP[3]  
12  
11  
9
SCK  
SDI  
OP[2]  
DGND  
AGND  
OP[1]  
SEN  
OP[0]  
Interface  
Controls  
4
OEB  
NOTES: 1. C1-9 should be fitted as close to WM8196 as possible.  
2. AGND and DGND should be connected as close to WM8196 as possible.  
Figure 26 External Components Diagram  
RECOMMENDED EXTERNAL COMPONENT VALUE  
COMPONENT  
REFERENCE  
SUGGESTED VALUE  
DESCRIPTION  
C1  
C2  
100nF  
100nF  
100nF  
10nF  
De-coupling for DVDD1.  
De-coupling for DVDD2.  
De-coupling for AVDD.  
C3  
C4  
High frequency de-coupling between VRT and VRB.  
C5  
1µF  
Low frequency de-coupling between VRT and VRB (non-polarised).  
De-coupling for VRB.  
C6  
100nF  
100nF  
100nF  
100nF  
10µF  
C7  
De-coupling for VRX.  
C8  
De-coupling for VRT.  
C9  
De-coupling for VRLC.  
C10  
C11  
C12  
Reservoir capacitor for DVDD1.  
Reservoir capacitor for DVDD2.  
Reservoir capacitor for AVDD.  
10µF  
10µF  
Table 8 External Components Descriptions  
PD Rev 4.3 March 2007  
30  
w
WM8196  
Production Data  
PACKAGE DIMENSIONS  
DS: 28 PIN SSOP (10.2 x 5.3 x 1.75 mm)  
DM007.E  
b
e
28  
15  
E1  
E
GAUGE  
PLANE  
Θ
14  
1
D
0.25  
L
c
A1  
L1  
A A2  
-C-  
0.10 C  
SEATING PLANE  
Dimensions  
(mm)  
NOM  
-----  
Symbols  
MIN  
-----  
0.05  
1.65  
0.22  
0.09  
9.90  
MAX  
A
A1  
A2  
b
c
D
e
E
E1  
L
2.0  
0.25  
1.85  
0.38  
0.25  
10.50  
-----  
1.75  
0.30  
-----  
10.20  
0.65 BSC  
7.80  
7.40  
5.00  
0.55  
8.20  
5.60  
0.95  
5.30  
0.75  
L1  
θ
1.25 REF  
0o  
4o  
8o  
JEDEC.95, MO-150  
REF:  
NOTES:  
A. ALL LINEAR DIMENSIONS ARE IN MILLIMETERS.  
B. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.  
C. BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSION, NOT TO EXCEED 0.20MM.  
D. MEETS JEDEC.95 MO-150, VARIATION = AH. REFER TO THIS SPECIFICATION FOR FURTHER DETAILS.  
PD Rev 4.3 March 2007  
31  
w
WM8196  
Production Data  
IMPORTANT NOTICE  
Wolfson Microelectronics plc (“Wolfson”) products and services are sold subject to Wolfson’s terms and conditions of sale,  
delivery and payment supplied at the time of order acknowledgement.  
Wolfson warrants performance of its products to the specifications in effect at the date of shipment. Wolfson reserves the  
right to make changes to its products and specifications or to discontinue any product or service without notice. Customers  
should therefore obtain the latest version of relevant information from Wolfson to verify that the information is current.  
Testing and other quality control techniques are utilised to the extent Wolfson deems necessary to support its warranty.  
Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation.  
In order to minimise risks associated with customer applications, the customer must use adequate design and operating  
safeguards to minimise inherent or procedural hazards. Wolfson is not liable for applications assistance or customer  
product design. The customer is solely responsible for its selection and use of Wolfson products. Wolfson is not liable for  
such selection or use nor for use of any circuitry other than circuitry entirely embodied in a Wolfson product.  
Wolfson’s products are not intended for use in life support systems, appliances, nuclear systems or systems where  
malfunction can reasonably be expected to result in personal injury, death or severe property or environmental damage.  
Any use of products by the customer for such purposes is at the customer’s own risk.  
Wolfson does not grant any licence (express or implied) under any patent right, copyright, mask work right or other  
intellectual property right of Wolfson covering or relating to any combination, machine, or process in which its products or  
services might be or are used. Any provision or publication of any third party’s products or services does not constitute  
Wolfson’s approval, licence, warranty or endorsement thereof. Any third party trade marks contained in this document  
belong to the respective third party owner.  
Reproduction of information from Wolfson datasheets is permissible only if reproduction is without alteration and is  
accompanied by all associated copyright, proprietary and other notices (including this notice) and conditions. Wolfson is  
not liable for any unauthorised alteration of such information or for any reliance placed thereon.  
Any representations made, warranties given, and/or liabilities accepted by any person which differ from those contained in  
this datasheet or in Wolfson’s standard terms and conditions of sale, delivery and payment are made, given and/or  
accepted at that person’s own risk. Wolfson is not liable for any such representations, warranties or liabilities or for any  
reliance placed thereon by any person.  
ADDRESS:  
Wolfson Microelectronics plc  
Westfield House  
26 Westfield Road  
Edinburgh  
EH11 2QB  
United Kingdom  
Tel :: +44 (0)131 272 7000  
Fax :: +44 (0)131 272 7001  
Email :: sales@wolfsonmicro.com  
PD Rev 4.3 March 2007  
32  
w

相关型号:

WM8196SCDS/RV

Analog Circuit, 1 Func, CMOS, PDSO28, SSOP-28
CIRRUS

WM8196SCDS/V

Analog Circuit, 1 Func, CMOS, PDSO28, SSOP-28
CIRRUS

WM8196_07

(8 + 8) Bit Output 16-bit CIS/CCD AFE/Digitiser
WOLFSON

WM8198

(8 + 8 ) BIT OUTPUT 16 BIT CIS/CCD AFE/DIGITISER
WOLFSON

WM8198CDS

(8 + 8 ) BIT OUTPUT 16 BIT CIS/CCD AFE/DIGITISER
WOLFSON

WM8198CDS/R

(8 + 8 ) BIT OUTPUT 16 BIT CIS/CCD AFE/DIGITISER
WOLFSON

WM8198SCDS

(8 + 8 ) BIT OUTPUT 16 BIT CIS/CCD AFE/DIGITISER
WOLFSON

WM8198SCDS/R

(8 + 8 ) BIT OUTPUT 16 BIT CIS/CCD AFE/DIGITISER
WOLFSON

WM8199

20MSPS 16-bit CCD Digitiser
WOLFSON

WM8199CDR

20MSPS 16-bit CCD Digitiser
WOLFSON

WM8199CDS

20MSPS 16-bit CCD Digitiser
WOLFSON

WM8199SCDR

20MSPS 16-bit CCD Digitiser
WOLFSON