DG429DN [VISHAY]

Single 8-Ch/Differential 4-Ch Latchable Analog Multiplexers; 单8通道/差分4通道可锁存模拟多路复用器
DG429DN
型号: DG429DN
厂家: VISHAY    VISHAY
描述:

Single 8-Ch/Differential 4-Ch Latchable Analog Multiplexers
单8通道/差分4通道可锁存模拟多路复用器

复用器 开关 复用器或开关 信号电路
文件: 总12页 (文件大小:151K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DG428/429  
Vishay Siliconix  
Single 8-Ch/Differential 4-Ch Latchable Analog Multiplexers  
FEATURES  
BENEFITS  
APPLICATIONS  
D Low rDS(on): 55 W  
D Low Charge Injection: 1 pC  
D Improved System Accuracy  
D Microprocessor Bus Compatible  
D Easily Interfaced  
D Data Acquisition Systems  
D Automatic Test Equipment  
D Avionics and Military Systems  
D Communication Systems  
D On-Board TTL Compatible  
Address Latches  
D Reduced Crosstalk  
D High Throughput  
D High Speed—tTRANS: 160 ns  
D Break-Before-Make  
D Microprocessor-Controlled  
Analog Systems  
D Improved Reliability  
D Low Power Consumption: 0.3 mW  
D Medical Instrumentation  
DESCRIPTION  
The DG428/DG429 analog multiplexers have on-chip address  
and control latches to simplify design in microprocessor based  
applications. Break-before-make switching action protects  
against momentary crosstalk of adjacent input signals.  
several devices. All control inputs, address (Ax) and enable  
(EN) are TTL compatible over the full specified operating  
temperature range.  
The silicon-gate CMOS process enables operation over a  
wide range of supply voltages. The absolute maximumvoltage  
rating is extended to 44 V. Additionally, single supply operation  
is also allowed and an epitaxial layer prevents latchup.  
The DG428 selects one of eight single-ended inputs to a  
common output, while the DG429 selects one of four  
differential inputs to a common differential output.  
An on channel conducts current equally well in both directions.  
In the off state each channel blocks voltages up to the power  
supply rails. An enable (EN) function allows the user to reset  
the multiplexer/demultiplexer to all switches off for stacking  
On-board TTL-compatible address latches simplify the digital  
interface design and reduce board space in bus-controlled  
systems such as data acquisition systems, process controls,  
avionics, and ATE.  
FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION  
DG428  
DG428  
Dual-In-Line  
PLCC  
WR  
RS  
1
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
3
2
1
20 19  
A
0
A
1
Latches  
EN  
V–  
A
2
EN  
V–  
4
5
6
7
8
18  
A
2
Latches  
17 GND  
Decoders/Drivers  
Decoders/Drivers  
GND  
V+  
V+  
S
1
S
2
S
3
16  
15  
14  
S
1
S
5
S
2
S
5
S
6
S
3
S
6
9
10 11 12 13  
Top View  
S
4
S
7
D
S
8
Top View  
Document Number: 70063  
S-52433—Rev. J, 06-Sep-99  
www.vishay.com S FaxBack 408-970-5600  
5-1  
DG428/429  
Vishay Siliconix  
FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION  
DG429  
DG429  
Dual-In-Line and SOIC  
PLCC  
WR  
RS  
1
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
3
2
1
20 19  
A
0
A
1
Latches  
EN  
V–  
GND  
V+  
EN  
V–  
4
5
6
7
8
18 GND  
Latches  
17  
16  
15  
14  
V
S
Decoders/Drivers  
DD  
Decoders/Drivers  
1b  
S
1a  
2a  
3a  
S
S
S
S
S
1a  
2a  
3a  
1b  
2b  
3b  
S
S
S
S
2b  
S
S
S
3b  
9
10 11 12 13  
Top View  
4a  
4b  
D
a
D
b
Top View  
TRUTH TABLE  
Ċ
DG429  
TRUTH TABLE  
Ċ
DG428  
Differential 4-Channel Multiplexer  
8-Channel Single-Ended Multiplexer  
A1 A0 EN WR RS On Switch  
A1  
A0  
EN  
X
WR  
RS  
1
On Switch  
A2  
Latching  
Latching  
Maintains previous  
switch condition  
X
X
Maintains previous  
switch condition  
X
X
X
X
X
X
X
1
0
Reset  
Reset  
X
X
X
X
0
None (latches cleared)  
X
X
None (latches cleared)  
Transparent Operation  
Transparent Operation  
X
0
0
1
1
X
0
1
0
1
0
1
1
1
1
0
0
0
0
0
1
1
1
1
1
None  
X
0
0
0
0
1
1
1
1
X
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
None  
1
2
3
4
1
2
3
4
5
6
7
8
Logic “0” = V v 0.8 V  
AL  
Logic “1” = V w 2.4 V  
AH  
X = Don’t Care  
ORDERING INFORMATION  
Ċ
DG428  
ORDERING INFORMATION  
Ċ
DG429  
Temp Range  
Package  
Part Number  
Temp Range  
Package  
Part Number  
18-Pin Plastic DIP  
20-Pin PLCC  
DG428DJ  
DG428DN  
18-Pin Plastic DIP  
20-Pin PLCC  
DG429DJ  
DG429DN  
DG429DW  
–40 to 85_C  
–40 to 85_C  
18-Pin Widebody SOIC  
Document Number: 70063  
S-52433—Rev. J, 06-Sep-99  
www.vishay.com S FaxBack 408-970-5600  
5-2  
DG428/429  
Vishay Siliconix  
ABSOLUTE MAXIMUM RATINGS  
b
Voltage Referenced to V–  
Power Dissipation (Package)  
c
18-Pin Plastic DIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470 mW  
18-Pin CerDIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 900 mW  
20-Pin PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800 mW  
V+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 V  
d
GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 V  
a
f
Digital Inputs , V , V . . . . . . . . . . . . . . . . . . . . . . . . (V–) –2 V to (V+) +2 V or  
S
D
f
28-Pin Widebody SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 mW  
30 mA, whichever occurs first  
Notes:  
Current (Any Terminal) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 mA  
a. Signals on S , D or IN exceeding V+ or V– will be clamped by internal  
X
X
X
diodes. Limit forward diode current to maximum current ratings.  
b. All leads soldered or welded to PC board.  
c. Derate 6.3 mW/_C above 75_C.  
Peak Current, S or D  
(Pulsed at 1 ms, 10% Duty Cycle Max) . . . . . . . . . . . . . . . . . . . . . . . . 100 mA  
Storage Temperature  
(AK Suffix) . . . . . . . . . . . . . . . . . . –65 to 150_C  
(DJ, DN Suffix) . . . . . . . . . . . . . . –65 to 125_C  
d. Derate 12 mW/_C above 75_C.  
e. Derate 10 mW/_C above 75_C.  
f.  
Derate 6 mW/_C above 75_C.  
a
SPECIFICATIONS  
Test Conditions  
Unless Otherwise Specified  
A Suffix  
–55 to 125_C  
D Suffix  
–40 to 85_C  
V+ = 15 V, V– = –15 V, WR = 0,  
f
Parameter  
Symbol  
Tempb Typc Mind Maxd Mind Maxd Unit  
RS = 2.4 V, V = 2.4 V, 0.8 V  
IN  
Analog Switch  
e
Analog Signal Range  
V
Full  
–15  
15  
–15  
15  
V
ANALOG  
Drain-Source  
On-Resistance  
V
= "10 V, V = 0.8 V  
I = –1 mA, V = 2.4 V  
S AH  
Room  
Full  
55  
100  
125  
100  
125  
D
AL  
r
W
DS(on)  
Greatest Change in r  
Between Channels  
–10 V < V < 10 V  
S
DS(on)  
Dr  
Room  
5
%
DS(on)  
S(off)  
g
I = –1 mA  
S
Source Off  
Leakage Current  
V
S
= "10 V, V = #10 V  
Room  
Full  
"0.03  
–0.5  
–50  
0.5  
50  
–0.5  
–50  
0.5  
50  
D
= 0 V  
I
V
EN  
Room  
Full  
"0.07  
"0.05  
"0.07  
"0.05  
–1  
–100  
1
100  
–1  
–100  
1
100  
DG428  
DG429  
DG428  
DG429  
V
V
V
= "10 V  
= #10 V  
D
S
EN  
Drain Off  
Leakage Current  
I
D(off)  
Room  
Full  
–1  
–50  
1
50  
–1  
–50  
1
50  
= 0 V  
nA  
Room  
Full  
–1  
–100  
1
100  
–1  
–100  
1
100  
V
= V = "10 V  
S
D
Drain On  
Leakage Current  
V
= 2.4 V  
= 0.8 V  
= 2.4 V  
EN  
AL  
AH  
I
D(on)  
V
V
Room  
Full  
–1  
–50  
1
50  
–1  
–50  
1
50  
Digital Control  
V
= 2.4 V  
= 15 V  
Full  
Full  
0.01  
0.01  
1
1
1
1
A
Logic Input Current  
Input Voltage High  
I
AH  
V
A
mA  
Logic Input Current  
Input Voltage Low  
V
= 0 V, 2.4 V, V = 0 V  
EN A  
I
Full  
–0.01  
8
–1  
10  
–1  
10  
AL  
RS = 0 V, WR = 0 V  
f = 1 MHz  
Logic Input Capacitance  
C
Room  
pF  
in  
Dynamic Characteristics  
Room  
Full  
150  
250  
300  
250  
300  
Transition Time  
t
See Figure 5  
See Figure 4  
TRANS  
Break-Before-Make Interval  
Enable and Write  
t
Full  
30  
90  
OPEN  
ns  
Room  
Full  
150  
225  
150  
225  
t
See Figures 6 and 7  
ON(EN,WR)  
Turn-On Time  
Enable and Reset  
Turn-Off Time  
Room  
Full  
55  
150  
300  
150  
300  
t
See Figures 6 and 8  
OFF(EN,RS)  
V
C
= 0 V, R  
= 1 nF, See Figure 9  
= 0 W  
GEN  
GEN  
Charge Injection  
Q
Room  
Room  
1
pC  
dB  
L
V
EN  
= 0 V, R = 300 W, C = 15 pF  
L
L
Off Isolation  
OIRR  
–75  
V
S
= 7 V  
f = 100 kHz  
RMS,  
Source Off Capacitance  
C
V
= 0 V, V = 0 V, f = 1 MHz  
Room  
Room  
Room  
Room  
Room  
11  
40  
20  
54  
34  
S(off)  
D(off)  
S
EN  
DG428  
Drain Off Capacitance  
Drain On Capacitance  
C
DG429  
DG428  
DG429  
pF  
V
D
= 0 V, V = 0 V  
EN  
f = 1 MHz  
C
D(on)  
Document Number: 70063  
S-52433—Rev. J, 06-Sep-99  
www.vishay.com S FaxBack 408-970-5600  
5-3  
DG428/429  
Vishay Siliconix  
a
SPECIFICATIONS  
Test Conditions  
Unless Otherwise Specified  
A Suffix  
–55 to 125_C  
D Suffix  
–40 to 85_C  
V+ = 15 V, V– = –15 V, WR = 0, RS = 2.4  
f
Parameter  
Symbol  
Tempb Typc Mind Maxd Mind Maxd Unit  
V, V = 2.4 V, 0.8 V  
IN  
Minimum Input Timing Requirements  
Write Pulse Width  
t
Full  
Full  
Full  
Full  
100  
100  
10  
100  
100  
10  
W
A , EN Data Set Up time  
X
t
See Figure 2  
S
H
ns  
A , EN Data Hold Time  
X
t
Reset Pulse Width  
t
V
S
= 5 V, See Figure 3  
100  
100  
RS  
Power Supplies  
Positive Supply Current  
Negative Supply Current  
I+  
I–  
Room  
Room  
20  
100  
100  
mA  
V
EN  
= 0 V, V = 0, RS = 5 V  
A
–0.001  
–5  
–5  
a
SPECIFICATIONS FOR SINGLE SUPPLY  
Test Conditions  
Unless Otherwise Specified  
A Suffix  
–55 to 125_C  
D Suffix  
–40 to 85_C  
V+ = 12 V, V– = 0 V, WR = 0  
f
Parameter  
Symbol  
Tempb Typc Mind Maxd Mind Maxd Unit  
RS = 2.4 V, V = 2.4 V, 0.8 V  
IN  
Analog Switch  
e
Analog Signal Range  
V
Full  
0
12  
0
12  
V
ANALOG  
Drain-Source  
On-Resistance  
V = +10 V, V = 0.8 V  
D AL  
= –500 mA, V = 2.4 V  
S AH  
r
Room  
80  
150  
150  
W
DS(on)  
I
0 V < V < 10 V  
S
g
r
Match  
Dr  
Room  
5
%
DS(on)  
DS(on)  
S(off)  
I
S
= –1 mA  
Source Off  
V
S
= 0 V, 10 V, V = 10 V, 0 V  
Room  
Full  
"0.03  
–0.5  
–50  
0.5  
50  
–0.5  
–50  
0.5  
50  
D
= 0 V  
I
Leakage Current  
V
EN  
Room  
Full  
"0.07  
"0.05  
"0.07  
"0.05  
–1  
–100  
1
100  
–1  
–100  
1
100  
DG428  
DG429  
DG428  
DG429  
V
= 0 V, 10 V  
= 10 V, 0 V  
D
Drain Off  
Leakage Current  
I
V
S
D(off)  
D(on)  
Room  
Full  
–1  
–50  
1
50  
–1  
–50  
1
50  
V
EN  
= 0 V  
nA  
Room  
Full  
–1  
–100  
1
100  
–1  
–100  
1
100  
V
= V = 0 V, 10 V  
D
S
Drain On  
Leakage Current  
V
V
V
= 2.4 V  
= 0.8 V  
= 2.4 V  
EN  
AL  
AH  
I
Room  
Full  
–1  
–50  
1
50  
–1  
–50  
1
50  
Digital Control  
V
= 2.4 V  
= 12 V  
Full  
Full  
1
1
1
1
A
Logic Input Current  
Input Voltage High  
I
AH  
V
A
mA  
Logic Input Current  
Input Voltage Low  
V
= 0 V, 2.4 V, V = 0 V  
RS = 0 V, WR = 0 V  
EN A  
I
AL  
Full  
–1  
–1  
Dynamic Characteristics  
S
1
= 10 V/2 V, S = 2 V/ 10 V  
8
Room  
Full  
160  
280  
350  
280  
350  
Transition Time  
t
TRANS  
See Figure 5  
Break-Before-Make  
Interval  
Room  
Full  
40  
110  
70  
25  
10  
25  
10  
t
See Figure 4  
OPEN  
ns  
Enable and Write  
Turn-On Time  
S
1
=5 V  
Room  
Full  
300  
400  
300  
400  
t
ON(EN, WR)  
See Figures 6 and 7  
Enable and Reset  
Turn-Off Time  
S
1
=5 V  
Room  
Full  
300  
400  
300  
400  
t
OFF(EN, RS)  
See Figures 6 and 8  
V
C
= 6 V, R = 0 W  
= 1 nF, See Figure 9  
GEN  
GEN  
Charge Injection  
Off Isolation  
Q
Room  
Room  
4
pC  
dB  
L
V
EN  
= 0 V, R = 300 W, C = 15 pF  
L
L
OIRR  
–75  
V
S
= 7 V  
f = 100 kHz  
RMS,  
Document Number: 70063  
S-52433—Rev. J, 06-Sep-99  
www.vishay.com S FaxBack 408-970-5600  
5-4  
DG428/429  
Vishay Siliconix  
a
SPECIFICATIONS FOR SINGLE SUPPLY  
Test Conditions  
Unless Otherwise Specified  
A Suffix  
–55 to 125_C  
D Suffix  
–40 to 85_C  
V+ = 12 V, V– = 0 V, WR = 0  
f
Parameter  
Symbol  
Tempb Typc Mind Maxd Mind Maxd Unit  
RS = 2.4 V, V = 2.4 V, 0.8 V  
IN  
Minimum Input Timing Requirements  
Write Pulse Width  
t
Full  
Full  
100  
100  
100  
100  
W
A , EN  
X
Data Set Up Time  
t
S
See Figure 2  
ns  
A , EN  
X
Data Hold Time  
t
Full  
Full  
10  
10  
H
Reset Pulse Width  
t
V
S
= 5 V, See Figure 3  
100  
100  
RS  
Power Supplies  
Positive Supply Current  
I+  
V
EN  
= 0 V, V = 0, RS = 5 V  
Room  
20  
100  
100  
mA  
A
Notes:  
a. Refer to PROCESS OPTION FLOWCHART.  
b. Room = 25_C, Full = as determined by the operating temperature suffix.  
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.  
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.  
e. Guaranteed by design, not subject to production test.  
f.  
V
IN  
= input voltage to perform proper function.  
r
MAX – r  
MIN  
DS(on)  
DS(on)  
g.  
Dr  
+
x 100%  
ǒ
Ǔ
DS(on)  
r
AVE  
DS(on)  
Document Number: 70063  
S-52433—Rev. J, 06-Sep-99  
www.vishay.com S FaxBack 408-970-5600  
5-5  
DG428/429  
Vishay Siliconix  
TYPICAL CHARACTERISTICS (_2C5 UNLESS NOTED)  
r
vs. V and Temperature  
r
vs. V and Supply Voltage  
DS  
D
DS(on)  
D
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
140  
120  
100  
"5 V  
125_C  
85_C  
"10 V  
80  
60  
"12 V  
"15 V  
"8 V  
25_C  
–55_C  
40  
"20 V  
–40_C  
20  
0
V+ = 15 V  
V– = –15 V  
–20 –16 –12 –8 –4  
0
4
8
12 16 20  
–15  
–10  
–5  
0
5
10  
15  
V
D
– Drain Voltage (V)  
V
D
– Drain Voltage (V)  
Single Supply r  
vs. V and Supply  
I
I Leakage Currents vs. Analog Voltage  
S
DS(on)  
D
D,  
200  
160  
120  
80  
40  
30  
V+ = 15 V  
V– = –15 V  
V– = 0 V  
V
V
= –V for I  
S
D
D D(off)  
V+ = 7.5 V  
= V for I  
S
D(on)  
20  
10 V  
10  
I
S(off)  
12 V  
0
15 V  
20 V  
I
I
D(on), D(off)  
–10  
–20  
–30  
40  
0
0
4
8
12  
16  
20  
–15  
–10  
–5  
0
5
10  
15  
V
D
– Drain Voltage (V)  
V V – Source, Drain Voltage (V)  
S, D  
I
I
Leakages vs. Temperature  
Switching Times vs. Power Supply Voltage  
D,  
S
10 nA  
1 nA  
250  
200  
150  
100  
50  
V+ = 15 V  
V– = –15 V  
S,  
V
V
= "14 V  
D
t
TRANS  
I
S (off)  
I
I
100 pA  
10 pA  
1 pA  
D(on), D(off)  
t
ON(EN)  
t
OFF(EN)  
0
”5  
”10  
”15  
”20  
–55 –35 –15  
5
25  
45  
65  
85 105 125  
Temperature (C_)  
Supply Voltage (V)  
Document Number: 70063  
S-52433—Rev. J, 06-Sep-99  
www.vishay.com S FaxBack 408-970-5600  
5-6  
DG428/429  
Vishay Siliconix  
TYPICAL CHARACTERISTICS (_2C5 UNLESS NOTED)  
Charge Injection vs. Analog Voltage  
Switching Times vs. Single Supply  
350  
V– = 0 V  
60  
40  
300  
250  
200  
150  
100  
50  
V+ = 12 V  
V– = 0 V  
20  
t
TRANS  
0
t
–20  
–40  
–60  
ON  
t
OFF  
V+ = 15 V  
V– = –15 V  
0
–15  
–10  
–5  
0
5
10  
15  
5
10  
15  
20  
V+ – Positive Supply (V)  
V
S
– Source Voltage (V)  
Off-Isolation vs. Frequency  
Supply Current vs. Switching Frequency  
8
6
–140  
–120  
–100  
–80  
I+  
E
N
A
X
= 5 V  
= 0 or 5 V  
4
2
I
GND  
0
–2  
–4  
–6  
–8  
–60  
–40  
I–  
–20  
1 k  
10 k  
100 k  
1 M  
10 M  
1 k  
10 k  
100 k  
1 M  
10 M  
f – Frequency (Hz)  
f – Frequency (Hz)  
Input Switching Threshold  
vs. PositiveSupply Voltage  
Switching Times vs. Temperature  
200  
150  
100  
50  
3
2.5  
2
V+ = 15 V  
V– = –15 V  
t
TRANS  
t
ON  
1.5  
1
t
OFF  
0.5  
0
0
–55 –35 –15  
25  
45  
85  
125  
5
65  
105  
0
5
10  
15  
20  
Temperature (C_)  
V+ Positive – Supply Voltage (V)  
Document Number: 70063  
S-52433—Rev. J, 06-Sep-99  
www.vishay.com S FaxBack 408-970-5600  
5-7  
DG428/429  
Vishay Siliconix  
SCHEMATIC DIAGRAM (TYPICAL CHANNEL)  
V+  
V
REF  
GND  
EN  
D
D
D
Q
Q
O
O
V+  
V–  
Level  
Shift  
Decode/  
Drive  
A
X
n
n
S
1
Latches  
WR  
CLK  
V+  
V–  
RESET  
S
n
RS  
V–  
FIGURE 1.  
TIMING DIAGRAMS  
3 V  
RS  
50%  
3 V  
50%  
WR  
0 V  
t
0 V  
RS  
t
W
t
OFF(RS)  
t
H
t
S
V
O
80%  
3 V  
0 V  
Switch  
Output  
A , A , (A )  
20%  
0
1
2
80%  
EN  
0 V  
FIGURE 2.  
FIGURE 3.  
TEST CIRCUITS  
+15 V  
t <20 ns  
r
t <20 ns  
f
V+  
+2.4 V  
RS  
3 V  
0 V  
Logic  
Input  
50%  
EN  
All S and D  
+5 V  
a
DG428  
DG429  
A , A , (A )  
D , D  
b
0
1
2
V
O
V
S
WR  
GND  
V–  
80%  
Switch  
Output  
50 W  
300 W  
35 pF  
–15 V  
V
O
t
OPEN  
0 V  
FIGURE 4. Break-Before-Make  
Document Number: 70063  
S-52433—Rev. J, 06-Sep-99  
www.vishay.com S FaxBack 408-970-5600  
5-8  
DG428/429  
Vishay Siliconix  
TEST CIRCUITS  
+15 V  
V+  
RS  
"10 V  
#10 V  
S
+2.4 V  
1
EN  
S
– S  
7
2
A
A
A
0
t <20 ns  
r
DG428  
t <20 ns  
f
1
3 V  
0 V  
S
8
Logic  
Input  
2
50%  
V
O
D
WR  
GND  
V–  
35 pF  
50 W  
300 W  
–15 V  
V
S1  
90%  
Switch  
Output  
+15 V  
V
O
0 V  
V+  
RS  
EN  
10%  
+2.4 V  
S
#10 V  
#10 V  
1b  
V
S8  
S
1a  
– S , D  
4a  
and S  
a
3b  
S
t
t
TRANS  
2b  
TRANS  
A
0
S ON  
1
S
8
ON  
S
4b  
DG429  
A
1
D
V
O
b
WR  
GND  
V–  
35 pF  
50 W  
300 W  
–15 V  
FIGURE 5. Transition Time  
+15 V  
V+  
+2.4 V  
RS  
EN  
S
1
– 5 V  
DG428  
S
– S  
8
2
A
A
A
0
1
2
V
D
O
t <20 ns  
t <20 ns  
f
r
WR  
GND  
V–  
3 V  
Logic  
Input  
50 W  
50%  
35 pF  
300 W  
0 V  
t
–15 V  
t
ON(EN)  
OFF(EN)  
0 V  
+15 V  
Switch  
Output  
V+  
+2.4 V  
RS  
EN  
S
– 5 V  
1b  
V
O
DG429  
90%  
V
O
S
1a  
– S , D  
4a  
a
4b  
A
0
S
2b  
– S  
V–  
A
1
D
V
O
b
WR  
GND  
50 W  
35 pF  
300 W  
–15 V  
FIGURE 6. Enable t /t  
Time  
ON OFF  
Document Number: 70063  
S-52433—Rev. J, 06-Sep-99  
www.vishay.com S FaxBack 408-970-5600  
5-9  
DG428/429  
Vishay Siliconix  
TEST CIRCUITS  
+15 V  
V+  
S
or S  
1b  
EN  
0
+5 V  
3 V  
0 V  
1
+2.4 V  
A , A , (A )  
1
2
WR  
50%  
t
Remaining  
Switches  
RS  
V
O
ON(WR)  
DG428  
Switch  
Output  
DG429 D , D  
WR  
b
V
O
GND  
V–  
20%  
35 pF  
300 W  
–15 V  
0 V  
FIGURE 7. Write Turn-On Time t  
ON(WR)  
+15 V  
V+  
3 V  
0 V  
S
1
or S  
1b  
EN  
0
+5 V  
+2.4 V  
RS  
A , A , (A )  
50%  
1
2
Remaining  
Switches  
t
OFF(RS)  
DG42  
DG429  
V
O
D , D  
b
RS  
80%  
V
O
Switch  
Output  
WR  
GND  
V–  
35 pF  
300 W  
–15 V  
0 V  
FIGURE 8. Reset Turn-Off Time t  
OFF(RS)  
+15 V  
V+  
A , A , (A )  
OFF  
ON  
OFF  
DV  
RS  
D
0
1
2
2.4 V  
EN  
R
g
O
S
V
O
V
O
IN  
C
L
1 nF  
V
g
3 V  
WR  
V–  
GND  
DV is the measured voltage error due to  
O
charge injection. The charge in coulombs is Q =  
x DV  
C
L
O
–15 V  
FIGURE 9. Charge Injection  
Document Number: 70063  
S-52433—Rev. J, 06-Sep-99  
www.vishay.com S FaxBack 408-970-5600  
5-10  
DG428/429  
Vishay Siliconix  
DETAILED DESCRIPTION  
APPLICATIONS  
The internal structure of the DG428/DG429 includes a 5-V  
logicinterfacewithinputprotectioncircuitryfollowedbyalatch,  
level shifter, decoder and finally the switch constructed with  
parallel n- and p-channel MOSFETs (see Figure 1).  
Bus Interfacing  
The DG428/DG429 minimize the amount of interface  
hardware between a microprocessor system bus and the  
analogsystem being controlled or measured. The internal TTL  
compatiblelatches give these multiplexers write-only memory,  
that is, they can be programmed to stay in a particular switch  
state (e.g., switch 1 on) until the microprocessor determines it  
isnecessarytoturndifferentswitchesonorturnallswitchesoff  
(see Figure 10).  
The input protection on the logic lines A0, A1, A2, EN and  
control lines WR, RS shown in Figure 1 minimizes  
susceptibility to ESD that may be encountered during handling  
and operational transients.  
The input latches become transparent when WR is held low;  
therefore,thesemultiplexersoperatebydirectcommandofthe  
coded switch state on A2, A1, A0. In this mode the DG428 is  
identical to the popular DG408. The same is true of the DG429  
versus the popular DG409.  
ThelogicinterfaceisaCMOSlogicinputwithitssupplyvoltage  
from an internal +5 V reference voltage. The output of the input  
inverter feeds the data input of a D type latch. The level  
sensitiveDlatchcontinuouslyplacestheDX inputsignalonthe  
QX output when the WR input is low, resulting in transparent  
latch operation. As soon as WRreturnshighthelatchholdsthe  
datalastpresentontheDn input, subjecttotheMinimumInput  
Timing Requirements” table.  
During system power-up, RS would be low, maintaining all  
eight switches in the off state. After RS returned high the  
DG428 maintains all switches in the off state.  
Following the latches the Qn signals are level shifted and  
decodedtoprovideproperdrivelevelsfortheCMOSswitches.  
This level shifting ensures full on/off switch operation for any  
analog signal level between the V+ and V– supply rails.  
When the system program performs a write operation to the  
address assigned to the DG428, the address decoder  
provides a CS active low signal which is gated with the WRITE  
(WR)controlsignal.AtthistimethedataontheDATABUS(that  
will determine which switch to close) is stabilizing. When the  
WR signal returns to the high state, (positive edge) the input  
latches of the DG428 save the data from the DATA BUS. The  
coded information in the A0, A1, A2 and EN latches is decoded  
and the appropriate switch is turned on.  
The EN pin is used to enable the address latches during the  
WRpulse. ItcanbehardwiredtothelogicsupplyortoV+ifone  
of the channels will always be used (except during a reset) or  
itcanbetiedtoaddressdecodingcircuitryformemorymapped  
operation. The RS pin is used as a master reset. All latches are  
clearedregardlessofthestateofanyotherlatchorcontrolline.  
The WR pin is used to transfer the state of the address control  
lines to their latches, except during a reset or when EN is low  
(see Truth Tables).  
TheENlatchallowsallswitchestobeturnedoffunderprogram  
control. This becomes useful when two or more DG428s are  
cascaded to build 16-line and larger multiplexers.  
+15 V  
"15 V  
Analog  
Inputs  
S
1
V+  
Data Bus  
A , A , A , EN  
0
1
2
DG428  
RS  
RESET  
Processor  
System  
+5 V  
Bus  
S
8
WRITE  
WR  
D
Address  
Bus  
Analog  
Output  
V–  
Address  
Decoder  
– 15 V  
FIGURE 10.Bus Interface  
Document Number: 70063  
S-52433—Rev. J, 06-Sep-99  
www.vishay.com S FaxBack 408-970-5600  
5-11  
Legal Disclaimer Notice  
Vishay  
Disclaimer  
All product specifications and data are subject to change without notice.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf  
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein  
or in any other disclosure relating to any product.  
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any  
information provided herein to the maximum extent permitted by law. The product specifications do not expand or  
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed  
therein, which apply to these products.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this  
document or by any conduct of Vishay.  
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless  
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such  
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting  
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding  
products designed for such applications.  
Product names and markings noted herein may be trademarks of their respective owners.  
Document Number: 91000  
Revision: 18-Jul-08  
www.vishay.com  
1

相关型号:

DG429DN-E3

Single 8-Ch/Differential 4-Ch Latchable Analog Multiplexers
VISHAY

DG429DN-T1

IC 4-CHANNEL, DIFFERENTIAL MULTIPLEXER, PQCC20, HALOGEN FREE AND ROHS COMPLIANT, PLASTIC, LCC-20, Multiplexer or Switch
VISHAY

DG429DW

Single 8-Ch/Differential 4-Ch Latchable Analog Multiplexers
VISHAY

DG429DW-E3

Single 8-Ch/Differential 4-Ch Latchable Analog Multiplexers
VISHAY

DG429DW-T1

IC 4-CHANNEL, DIFFERENTIAL MULTIPLEXER, PDSO18, HALOGEN FREE AND ROHS COMPLIANT, SOIC-18, Multiplexer or Switch
VISHAY

DG429N

IC DUAL 4-CHANNEL, DIFFERENTIAL MULTIPLEXER, PQCC, PLASTIC, LCC, Multiplexer or Switch
VISHAY

DG43-B1A

Snap-Action Switches Insert molding terminals
HRS

DG43-B1AA

Snap-Action Switches Insert molding terminals
HRS

DG43-B2A

Snap-Action Switches Insert molding terminals
HRS

DG43-B2AA

Snap-Action Switches Insert molding terminals
HRS

DG43-B3A

Snap-Action Switches Insert molding terminals
HRS

DG43-B3AA

Snap-Action Switches Insert molding terminals
HRS