AN807 [VISHAY]

N-Channel 60-V (D-S) MOSFET; N通道60 -V (D -S )的MOSFET
AN807
型号: AN807
厂家: VISHAY    VISHAY
描述:

N-Channel 60-V (D-S) MOSFET
N通道60 -V (D -S )的MOSFET

文件: 总10页 (文件大小:257K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
New Product  
Si2308BDS  
Vishay Siliconix  
N-Channel 60-V (D-S) MOSFET  
FEATURES  
PRODUCT SUMMARY  
Halogen-free According to IEC 61249-2-21  
VDS (V)  
RDS(on) (Ω)  
Qg (Typ.)  
I
D (A)a  
2.3  
Available  
TrenchFET® Power MOSFET  
100 % R Tested  
g
0.156 at VGS = 10 V  
0.192 at VGS = 4.5 V  
60  
2.3 nC  
2.1  
100 % UIS Tested  
APPLICATIONS  
Battery Switch  
DC/DC Converter  
TO-236  
(SSOT23)  
G
S
1
3
D
2
Top View  
Si2308BDS (L8)*  
*Marking Code  
Ordering Information: Si2308BDS-T1-E3 (Lead (Pb)-free)  
Si2308BDS-T1-GE3 (Lead (Pb)-free and Halogen-free)  
ABSOLUTE MAXIMUM RATINGS T = 25 °C, unless otherwise noted  
A
Unit  
Parameter  
Symbol  
Limit  
60  
Drain-Source Voltage  
Gate-Source Voltage  
VDS  
V
VGS  
20  
T
T
T
C = 25 °C  
C = 70 °C  
A = 25 °C  
2.3  
1.8  
1.9b, c  
1.5b, c  
8
Continuous Drain Current (TJ = 150 °C)  
ID  
TA = 70 °C  
A
Pulsed Drain Current  
IDM  
IS  
T
C = 25 °C  
A = 25 °C  
1.39  
0.91b, c  
Continuous Source-Drain Diode Current  
T
Avalanche Current  
IAS  
6
1.8  
L = 0.1 mH  
TC = 25 °C  
mJ  
W
Single-Pulse Avalanche Energy  
EAS  
1.66  
T
C = 70 °C  
A = 25 °C  
1.06  
PD  
Maximum Power Dissipation  
1.09b, c  
0.7b, c  
- 55 to 150  
T
TA = 70 °C  
TJ, Tstg  
°C  
Operating Junction and Storage Temperature Range  
THERMAL RESISTANCE RATINGS  
Parameter  
Symbol  
RthJA  
Typical  
90  
Maximum  
Unit  
Maximum Junction-to-Ambientb, d  
Maximum Junction-to-Foot (Drain)  
5 s  
Steady State  
115  
75  
°C/W  
RthJF  
60  
Notes:  
a. Based on TC = 25 °C.  
b. Surface Mounted on 1" x 1" FR4 board.  
c. t = 5 s.  
d. Maximum under Steady State conditions is 130 °C/W.  
Document Number: 69958  
S-83053-Rev. B, 29-Dec-08  
www.vishay.com  
1
New Product  
Si2308BDS  
Vishay Siliconix  
MOSFET SPECIFICATIONS T = 25 °C, unless otherwise noted  
J
Parameter  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
Static  
VDS  
VDS = 0 V, ID = 250 µA  
Drain-Source Breakdown Voltage  
60  
V
V
DS Temperature Coefficient  
ΔVDS/TJ  
55  
- 5  
mV/°C  
ID = 250 µA  
VGS(th) Temperature Coefficient  
Δ
V
/T  
GS(th) J  
VGS(th)  
IGSS  
VDS = VGS, ID = 250 µA  
Gate-Source Threshold Voltage  
Gate-Source Leakage  
1
8
3
V
VDS = 0 V, VGS  
=
20 V  
100  
1
nA  
VDS = 60 V, VGS = 0 V  
DS = 60 V, VGS = 0 V, TJ = 55 °C  
VDS 5 V, VGS = 10 V  
IDSS  
ID(on)  
RDS(on)  
gfs  
Zero Gate Voltage Drain Current  
On-State Drain Currenta  
µA  
A
V
10  
VGS = 10 V, ID = 1.9 A  
0.130  
0.160  
5
0.156  
0.192  
Drain-Source On-State Resistancea  
Forward Transconductancea  
Ω
S
V
GS = 4.5 V, ID = 1.7 A  
VDS = 15V, ID = 1.9 A  
Dynamicb  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
190  
26  
15  
4.5  
2.3  
0.8  
1
VDS = 30 V, VGS = 0 V, f = 1 MHz  
pF  
V
DS = 30 V, VGS = 10 V, ID = 1.9 A  
VDS = 30 V, VGS = 4.5 V, ID = 1.9 A  
f = 1 MHz  
6.8  
3.5  
Qg  
Total Gate Charge  
nC  
Ω
Qgs  
Qgd  
Rg  
Gate-Source Charge  
Gate-Drain Charge  
Gate Resistance  
0.6  
2.8  
4
5.6  
6
td(on)  
tr  
td(off)  
tf  
td(on)  
tr  
td(off)  
tf  
Turn-On Delay Time  
Rise Time  
10  
10  
7
15  
15  
10.5  
23  
24  
17  
17  
V
DD = 30 V, RL = 20 Ω  
ns  
ID 1.5 A, VGEN = 10 V, RG = 1 Ω  
Turn-Off Delay Time  
Fall Time  
Turn-On Delay Time  
Rise Time  
15  
16  
11  
11  
V
DD = 30 V, RL = 20 Ω  
ns  
A
ID = 1.5 A, VGEN = 4.5 V, RG = 1 Ω  
Turn-Off Delay Time  
Fall Time  
Drain-Source Body Diode Characteristics  
Continuous Source-Drain Diode Current  
IS  
ISM  
VSD  
trr  
TC = 25 °C  
IS = 1.5 A  
1.39  
8
Pulse Diode Forward Currenta  
Body Diode Voltage  
0.8  
15  
10  
12  
3
1.2  
23  
V
Body Diode Reverse Recovery Time  
Body Diode Reverse Recovery Charge  
Reverse Recovery Fall Time  
Reverse Recovery Rise Time  
ns  
nC  
Qrr  
ta  
15  
IF = 1.5 A, dI/dt = 100 A/µs, TJ = 25 °C  
ns  
tb  
Notes:  
a. Pulse test; pulse width 300 µs, duty cycle 2 %.  
b. Guaranteed by design, not subject to production testing.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation  
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
www.vishay.com  
2
Document Number: 69958  
S-83053-Rev. B, 29-Dec-08  
New Product  
Si2308BDS  
Vishay Siliconix  
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
4
3
2
1
0
10  
V
GS  
= 10 thru 5 V  
8
6
4
2
0
V
GS  
= 4 V  
T
= - 55 °C  
C
T
= 125 °C  
C
V
V
= 3 V  
GS  
T
= 25 °C  
2.1  
C
= 2 V  
GS  
0.0  
0.7  
1.4  
2.8  
3.5  
0
1
2
3
4
5
V
GS  
- Gate-to-Source Voltage (V)  
V
DS  
- Drain-to-Source Voltage (V)  
Output Characteristics  
Transfer Characteristics  
0.30  
0.24  
0.18  
0.12  
0.06  
300  
240  
180  
120  
60  
C
iss  
V
= 4.5 V  
= 10 V  
GS  
V
GS  
C
oss  
C
rss  
0
0
2
4
6
8
10  
0
10  
20  
30  
40  
50  
60  
I
- Drain Current (A)  
V
DS  
- Drain-to-Source Voltage (V)  
D
On-Resistance vs. Drain Current and Gate Voltage  
Capacitance  
10  
2.0  
1.7  
1.4  
1.1  
0.8  
0.5  
I
= 1.9 A  
D
8
V
GS  
= 10 V, I = 1.9 A  
D
V
DS  
= 30 V  
6
V
DS  
= 48 V  
V
GS  
= 4.5 V, I = 1.7 A  
D
4
2
0
0
1
2
3
4
5
- 50 - 25  
0
25  
50  
75  
100 125 150  
T
J
- Junction Temperature (°C)  
Q
g
- Total Gate Charge (nC)  
On-Resistance vs. Junction Temperature  
Gate Charge  
Document Number: 69958  
S-83053-Rev. B, 29-Dec-08  
www.vishay.com  
3
New Product  
Si2308BDS  
Vishay Siliconix  
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
10  
I
= 1.9 A  
D
T
J
= 125 °C  
T
J
= 150 °C  
T
J
= 25 °C  
1
T
= 25 °C  
J
0.1  
3
4
5
6
7
8
9
10  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
V
SD  
- Source-to-Drain Voltage (V)  
V
GS  
- Gate-to-Source Voltage (V)  
On-Resistance vs. Gate-to-Source Voltage  
Source-Drain Diode Forward Voltage  
2.4  
2.1  
1.8  
1.5  
1.2  
10  
8
I
= 250 µA  
D
T
= 25 °C  
A
6
4
2
0
Single Pulse  
- 50 - 25  
0
25  
50  
75  
100 125 150  
0.01  
0.1  
1
10  
100  
600  
T
- Temperature (°C)  
Time (s)  
Single Pulse Power  
J
Threshold Voltage  
10  
Limited by R  
*
DS(on)  
100 µs  
1
1 ms  
10 ms  
0.1  
100 ms  
1 s, 10 s  
DC  
T
= 25 °C  
A
BVDSS Limited  
Single Pulse  
0.01  
0.1  
100  
1
10  
V
DS  
- Drain-to-Source Voltage (V)  
* V > minimum V at which R is specified  
DS(on)  
GS  
GS  
Safe Operating Area  
www.vishay.com  
4
Document Number: 69958  
S-83053-Rev. B, 29-Dec-08  
New Product  
Si2308BDS  
Vishay Siliconix  
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
3.0  
2.4  
1.8  
1.2  
0.6  
0.0  
0
25  
50  
75  
100  
125  
150  
T
C
- Case Temperature (°C)  
Current Derating*  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
1.2  
0.9  
0.6  
0.3  
0.0  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
T - Ambient Temperature (°C)  
A
75  
100  
125  
150  
T
C
- Case Temperature (°C)  
Power Derating, Junction-to-Case  
Power Derating, Junction-to-Ambient  
* The power dissipation PD is based on TJ(max.) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper  
dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package  
limit.  
Document Number: 69958  
S-83053-Rev. B, 29-Dec-08  
www.vishay.com  
5
New Product  
Si2308BDS  
Vishay Siliconix  
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
1
Duty Cycle = 0.5  
0.2  
0.1  
0.1  
Notes:  
P
DM  
0.05  
t
1
0.02  
t
2
t
t
1
1. Duty Cycle, D =  
2
2. Per Unit Base = R  
= 130 °C/W  
thJA  
(t)  
3. T - T = P  
JM  
Z
A
DM thJA  
Single Pulse  
4. Surface Mounted  
0.01  
-4  
-3  
-2  
-1  
10  
10  
10  
10  
Square Wave Pulse Duration (s)  
Normalized Thermal Transient Impedance, Junction-to-Ambient  
1
10  
100  
600  
1
Duty Cycle = 0.5  
0.2  
0.1  
0.1  
0.05  
0.02  
Single Pulse  
0.01  
-4  
-3  
-2  
-1  
10  
10  
10  
10  
1
10  
Square Wave Pulse Duration (s)  
Normalized Thermal Transient Impedance, Junction-to-Foot  
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon  
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and  
reliability data, see www.vishay.com/ppg?69958.  
www.vishay.com  
6
Document Number: 69958  
S-83053-Rev. B, 29-Dec-08  
Package Information  
Vishay Siliconix  
SOT-23 (TO-236): 3-LEAD  
b
3
E
1
E
1
2
e
S
e
1
D
0.10 mm  
0.004"  
C
C
0.25 mm  
q
A
2
A
Gauge Plane  
Seating Plane  
Seating Plane  
C
A
1
L
L
1
MILLIMETERS  
INCHES  
Dim  
Min  
0.89  
0.01  
Max  
1.12  
0.10  
Min  
0.035  
0.0004  
Max  
0.044  
0.004  
A
A1  
A2  
0.88  
0.35  
0.085  
2.80  
2.10  
1.20  
1.02  
0.50  
0.18  
3.04  
2.64  
1.40  
0.0346  
0.014  
0.003  
0.110  
0.083  
0.047  
0.040  
0.020  
0.007  
0.120  
0.104  
0.055  
b
c
D
E
E1  
e
0.95 BSC  
1.90 BSC  
0.0374 Ref  
e1  
0.0748 Ref  
L
0.40  
0.60  
8°  
0.016  
0.024  
8°  
L1  
0.64 Ref  
0.50 Ref  
0.025 Ref  
0.020 Ref  
S
q
3°  
3°  
ECN: S-03946-Rev. K, 09-Jul-01  
DWG: 5479  
Document Number: 71196  
09-Jul-01  
www.vishay.com  
1
AN807  
Vishay Siliconix  
Mounting LITTLE FOOTR SOT-23 Power MOSFETs  
Wharton McDaniel  
Surface-mounted LITTLE FOOT power MOSFETs use integrated  
circuit and small-signal packages which have been been modified  
to provide the heat transfer capabilities required by power devices.  
Leadframe materials and design, molding compounds, and die  
attach materials have been changed, while the footprint of the  
packages remains the same.  
ambient air. This pattern uses all the available area underneath the  
body for this purpose.  
0.114  
2.9  
0.081  
2.05  
See Application Note 826, Recommended Minimum Pad  
Patterns With Outline Drawing Access for Vishay Siliconix  
MOSFETs, (http://www.vishay.com/doc?72286), for the basis  
of the pad design for a LITTLE FOOT SOT-23 power MOSFET  
footprint . In converting this footprint to the pad set for a power  
device, designers must make two connections: an electrical  
connection and a thermal connection, to draw heat away from the  
package.  
0.150  
3.8  
0.059  
1.5  
0.0394  
1.0  
0.037  
0.95  
FIGURE 1. Footprint With Copper Spreading  
The electrical connections for the SOT-23 are very simple. Pin 1 is  
the gate, pin 2 is the source, and pin 3 is the drain. As in the other  
LITTLE FOOT packages, the drain pin serves the additional  
function of providing the thermal connection from the package to  
the PC board. The total cross section of a copper trace connected  
to the drain may be adequate to carry the current required for the  
application, but it may be inadequate thermally. Also, heat spreads  
in a circular fashion from the heat source. In this case the drain pin  
is the heat source when looking at heat spread on the PC board.  
Since surface-mounted packages are small, and reflow soldering  
is the most common way in which these are affixed to the PC  
board, “thermal” connections from the planar copper to the pads  
have not been used. Even if additional planar copper area is used,  
there should be no problems in the soldering process. The actual  
solder connections are defined by the solder mask openings. By  
combining the basic footprint with the copper plane on the drain  
pins, the solder mask generation occurs automatically.  
Figure 1 shows the footprint with copper spreading for the SOT-23  
package. This pattern shows the starting point for utilizing the  
board area available for the heat spreading copper. To create this  
pattern, a plane of copper overlies the drain pin and provides  
planar copper to draw heat from the drain lead and start the  
process of spreading the heat so it can be dissipated into the  
A final item to keep in mind is the width of the power traces. The  
absolute minimum power trace width must be determined by the  
amount of current it has to carry. For thermal reasons, this  
minimum width should be at least 0.020 inches. The use of wide  
traces connected to the drain plane provides a low-impedance  
path for heat to move away from the device.  
Document Number: 70739  
26-Nov-03  
www.vishay.com  
1
Application Note 826  
Vishay Siliconix  
RECOMMENDED MINIMUM PADS FOR SOT-23  
0.037  
0.022  
(0.950)  
(0.559)  
0.053  
(1.341)  
0.097  
(2.459)  
Recommended Minimum Pads  
Dimensions in Inches/(mm)  
Return to Index  
Document Number: 72609  
Revision: 21-Jan-08  
www.vishay.com  
25  
Legal Disclaimer Notice  
www.vishay.com  
Vishay  
Disclaimer  
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE  
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,  
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other  
disclosure relating to any product.  
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or  
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all  
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,  
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular  
purpose, non-infringement and merchantability.  
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical  
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements  
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular  
product with the properties described in the product specification is suitable for use in a particular application. Parameters  
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All  
operating parameters, including typical parameters, must be validated for each customer application by the customer’s  
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,  
including but not limited to the warranty expressed therein.  
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining  
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.  
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please  
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by  
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.  
Material Category Policy  
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the  
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council  
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment  
(EEE) - recast, unless otherwise specified as non-compliant.  
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that  
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.  
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free  
requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference  
to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21  
conform to JEDEC JS709A standards.  
Revision: 02-Oct-12  
Document Number: 91000  
1

相关型号:

AN8072

Multi Output Power Supply Regulator
PANASONIC

AN8072N

Multi Output Power Supply Regulator
PANASONIC

AN8079

Fixed & Adjustable Voltage Regulator
ETC

AN8081NK

Voltage-Mode SMPS Controller
ETC

AN8083

Low Voltage Operation IC for DC-DC Converter
PANASONIC

AN8083S

Low Voltage Operation IC for DC-DC Converter
PANASONIC

AN8085

3-pin, positive output, low dropout voltage regulator (50 mA type)
PANASONIC

AN8085M

3-pin, positive output, low dropout voltage regulator (50 mA type)
PANASONIC

AN8086

Low Voltage Operation IC for DC-DC Converter
PANASONIC

AN8086S

Low Voltage Operation IC for DC-DC Converter
PANASONIC

AN8090

OVERVOLTAGE PROTECTIVE CIRCUIRS BUILT-IN SWITCHING POWER SUPPLY
PANASONIC