70-W212NMA300SC-M208P [VINCOTECH]

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;
70-W212NMA300SC-M208P
型号: 70-W212NMA300SC-M208P
厂家: VINCOTECH    VINCOTECH
描述:

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current

文件: 总28页 (文件大小:2896K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
70-W212NMA300SC-M208P  
datasheet  
VINcoMNPC X4  
Features  
1200 V / 300 A  
VINco X4 housing  
● Mixed-voltage NPC  
● Low inductive  
● High power screw interface  
● Integrated DC-snubber capacitors  
Target Applications  
● Solar inverter  
● UPS  
Schematic  
● High speed motor drive  
Types  
● 70-W212NMA300SC-M208P  
Maximum Ratings  
T j = 25 °C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Buck Switch ( T1 , T4 )  
V CE  
I C  
Collector-emitter breakdown voltage  
1200  
270  
900  
646  
±20  
V
A
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
DC collector current  
I CRM  
P tot  
V GE  
t p limited by T jmax  
T j = T jmax  
Repetitive peak collector current  
Power dissipation  
A
W
V
Gate-emitter peak voltage  
Short circuit ratings  
t SC  
V CC  
T j ≤ 150 °C  
10  
µs  
V
V GE = 15 V  
800  
V CE max = 1200V  
T vj max= 150°C  
I cmax  
T jmax  
Turn off safe operating area (RBSOA)  
Maximum Junction Temperature  
600  
175  
A
°C  
Buck Diode ( D2 , D3 )  
V RRM  
Peak Repetitive Reverse Voltage  
600  
244  
V
A
I F  
T j = T jmax  
T s = 80 °C  
T vj < 150°C  
DC forward current  
Surge forward current  
I2t-value  
I FSM  
698  
A
A2s  
A
t p = 10 ms, sine halfwave  
I 2  
I FRM  
P tot  
t
2440  
T vj < 150°C  
T s = 80 °C  
Repetitive peak forward current  
Power dissipation per FWD  
tP = 1 ms  
600  
357  
175  
T j = T jmax  
W
T jmax  
Maximum Junction Temperature  
°C  
copyright Vincotech  
1
28 Sep. 2021 / Revision 7  
70-W212NMA300SC-M208P  
datasheet  
Maximum Ratings  
T j = 25 °C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Boost Switch ( T2 , T3 )  
V CE  
I C  
Collector-emitter breakdown voltage  
600  
252  
900  
476  
±20  
V
A
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
DC collector current  
I CRM  
P tot  
V GE  
t p limited by T jmax  
T j = T jmax  
Repetitive peak collector current  
Power dissipation  
A
W
V
Gate-emitter peak voltage  
Short circuit ratings  
t SC  
V CC  
T j ≤ 150 °C  
6
µs  
V
V GE = 15 V  
360  
V CE max = 1200V  
T vj max= 150°C  
I cmax  
T jmax  
Turn off safe operating area (RBSOA)  
Maximum Junction Temperature  
600  
175  
A
°C  
Boost Diode ( D1 , D4 )  
V RRM  
Peak Repetitive Reverse Voltage  
1200  
222  
V
A
I F  
T j = T jmax  
T s = 80 °C  
T j=150°C  
DC forward current  
Surge forward current  
I2t-value  
I FSM  
1720  
3700  
A
A2s  
A
t p=10ms , sin 180°  
I 2  
I FRM  
P tot  
t
t p limited by T jmax  
T j = T jmax  
Repetitive peak forward current  
Power dissipation per FWD  
900  
476  
175  
T s = 80 °C  
W
T jmax  
Maximum Junction Temperature  
°C  
DC link Capacitor  
V MAX  
T c=25°C  
Max.DC voltage  
630  
V
General Module Properties  
Material of module baseplate  
Cu  
Material of internal isulation  
Al2O3  
Thermal Properties  
T stg  
T op  
Storage temperature  
-40…+125  
°C  
°C  
-40…+(T jmax - 25)  
Operation temperature under switching condition  
Isolation Properties  
DC Test Voltage*  
AC Voltage  
t p = 2 s  
6000  
2500  
V
V isol  
Isolation voltage  
t p = 1 min  
V
Creepage distance  
Clearance  
min 12,7  
min 12,7  
>200  
mm  
mm  
Comparative Tracking Index  
CTI  
*100% tested in production  
28 Sep. 2021 / Revision 7  
copyright Vincotech  
2
70-W212NMA300SC-M208P  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V] I C [A]  
V GE [V]  
V GS [V]  
V CE [V] I F [A]  
V DS [V] I D [A]  
T j [°C]  
Min  
Max  
Buck Switch ( T1 , T4 )  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off current incl.  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
V GE(th)  
V CEsat  
I CES  
I GES  
R gint  
t d(on)  
t r  
V CE = V GE  
0,012  
25  
5
5,8  
6,5  
2,4  
V
V
25  
125  
1,6  
2,03  
2,29  
15  
0
300  
1200  
0
25  
25  
0,6  
mA  
nA  
Ω
20  
3000  
2,5  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
201  
212  
42  
50  
260  
318  
50  
82  
8
Rise time  
ns  
t d(off)  
t f  
Turn-off delay time  
R goff = 1 Ω  
R gon = 1 Ω  
±15  
350  
300  
Fall time  
E on  
Turn-on energy loss  
11  
9
16  
mWs  
pF  
E off  
C ies  
C oss  
C rss  
Q G  
Turn-off energy loss  
125  
Input capacitance  
17600  
1160  
940  
Output capacitance  
f = 1 MHz  
0
25  
25  
25  
Reverse transfer capacitance  
Gate charge  
15  
960  
300  
1400  
nC  
λ paste = 0,8 W/mK  
(P12)  
R th(j-s)  
Thermal resistance junction to sink  
0,15  
K/W  
Buck Diode ( D2 , D3 )  
FWD forward voltage  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
1,2  
1,61  
1,58  
180  
217  
154  
274  
14  
2,2  
V F  
I RRM  
300  
300  
V
A
Peak reverse recovery current  
Reverse recovery time  
t rr  
ns  
Q rr  
R gon = 1 Ω  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovered energy  
±15  
350  
µC  
25  
2014  
1364  
3
( di rf/dt )max  
E rec  
A/µs  
mWs  
125  
5
λ paste = 0,8 W/mK  
(P12)  
R th(j-s)  
Thermal resistance junction to sink  
0,27  
K/W  
Boost Switch ( T2 , T3 )  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off incl.  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
V GE(th)  
V CEsat  
I CES  
I GES  
R gint  
t d(on)  
t r  
V CE = V GE  
0,0048  
300  
25  
5
1
5,8  
6
V
V
25  
125  
1,59  
1,82  
2,2  
15  
0
600  
0
25  
25  
0,1  
mA  
nA  
Ω
20  
3000  
1
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
179  
185  
29  
34  
231  
258  
43  
65  
4
Rise time  
ns  
t d(off)  
t f  
Turn-off delay time  
R goff = 1 Ω  
R gon = 1 Ω  
±15  
350  
300  
Fall time  
E on  
Turn-on energy loss  
7
8
12  
mWs  
pF  
E off  
C ies  
C oss  
C rss  
Q G  
Turn-off energy loss  
125  
Input capacitance  
18800  
1200  
580  
Output capacitance  
f = 1 MHz  
0
25  
25  
25  
Reverse transfer capacitance  
Gate charge  
15  
480  
75  
1860  
nC  
λ paste = 0,8 W/mK  
(P12)  
R th(j-s)  
Thermal resistance junction to sink  
0,20  
K/W  
28 Sep. 2021 / Revision 7  
copyright Vincotech  
3
70-W212NMA300SC-M208P  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V] I C [A]  
V GE [V]  
V GS [V]  
V CE [V] I F [A]  
V DS [V] I D [A]  
T j [°C]  
Min  
Max  
Boost Diode ( D1 , D4 )  
FWD forward voltage  
25  
125  
1
2,28  
2,40  
2,9  
V F  
300  
V
μA  
I r  
I RRM  
Reverse leakage current  
1200  
25  
480  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
309  
384  
62  
152  
18  
Peak reverse recovery current  
Reverse recovery time  
A
t rr  
ns  
Q rr  
R gon = 1 Ω  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovery energy  
±15  
350  
300  
µC  
36  
14916  
10204  
4
( di rf/dt )max  
E rec  
A/µs  
mWs  
9
λ paste = 0,8 W/mK  
(P12)  
R th(j-s)  
Thermal resistance junction to sink  
0,20  
K/W  
DC link Capacitor  
C value  
C
2 * 0,68  
µF  
Stray inductance of on board capacitors  
Series resistance of on board capacitors  
ESL  
ESR  
26/2  
14/2  
nH  
mΩ  
Thermistor  
Rated resistance  
Deviation of R 100  
Power dissipation  
Power dissipation constant  
B-value  
R
Δ R/R  
P
25  
100  
25  
25  
25  
25  
25  
22000  
Ω
%
R 100 = 1486 Ω  
-12  
+14  
200  
2
mW  
mW/K  
K
B (25/50)  
Tol. ±3%  
Tol. ±3%  
3950  
3996  
B (25/100)  
B-value  
K
Vincotech NTC Reference  
B
Module Properties  
Module inductance (from chips to PCB)  
Module inductance (from PCB to PCB using Intercon  
Resistance of Intercon boards (from PCB to PCB usin  
Mounting torque  
LsCE  
5
3
nH  
nH  
mΩ  
Nm  
Nm  
Nm  
g
LsCE  
Tc=25°C, per switch  
Rcc'1+EE'  
1,5  
Screw M4 - mounting according to valid application note  
VINcoX-*-HI  
Screw M5 - mounting according to valid application note  
VINcoX-*-HI  
Screw M6 - mounting according to valid application note  
VINcoX-*-HI  
M
M
M
G
2
4
2,2  
6
Mounting torque  
Terminal connection torque  
Weight  
2,5  
5
710  
28 Sep. 2021 / Revision 7  
copyright Vincotech  
4
70-W212NMA300SC-M208P  
datasheet  
Buck  
half bridge IGBT and neutral point FWD  
figure 1.  
IGBT  
figure 2.  
IGBT  
Typical output characteristics  
Typical output characteristics  
I C = f(V CE  
)
I C = f(V CE)  
1000  
1000  
800  
600  
400  
200  
800  
600  
400  
200  
0
0
0
0
1
2
3
4
5
1
2
3
4
5
VCE (V)  
VCE (V)  
At  
At  
t p  
=
t p =  
350  
25  
μs  
°C  
350  
125  
μs  
°C  
T j =  
T j =  
V GE from  
V GE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
figure 3.  
Typical transfer characteristics  
IGBT  
figure 4.  
FWD  
Typical FWD forward current as  
a function of forward voltage  
I F = f(V F)  
I C = f(V GE  
)
350  
300  
250  
200  
150  
100  
50  
1000  
800  
600  
400  
Tj = Tjmax-25°C  
Tj = Tjmax-25°C  
200  
Tj = 25°C  
Tj = 25°C  
0
0
0
0
0,5  
1
1,5  
2
2,5  
3
2
4
6
8
10  
12  
VGE (V)  
VF (V)  
At  
At  
t p  
=
t p  
=
350  
10  
μs  
V
350  
μs  
V CE  
=
28 Sep. 2021 / Revision 7  
copyright Vincotech  
5
70-W212NMA300SC-M208P  
datasheet  
Buck  
half bridge IGBT and neutral point FWD  
figure 5.  
IGBT  
figure 6.  
IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(I C)  
Typical switching energy losses  
as a function of gate resistor  
E = f(R G)  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
Eon High T  
Eoff High T  
Eon High T  
Eon Low T  
Eoff Low T  
Eoff High T  
Eon Low T  
Eoff Low T  
0
0
0
100  
200  
300  
400  
500  
600  
0
2
4
6
8
10  
I
C (A)  
R
G ( Ω)  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
°C  
V
°C  
V
25/125  
350  
±15  
1
25/125  
350  
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
±15  
V
=
I C =  
Ω
Ω
300  
A
=
1
figure 7.  
FWD  
figure 8.  
FWD  
Typical reverse recovery energy loss  
as a function of collector current  
E rec = f(I c)  
Typical reverse recovery energy loss  
as a function of gate resistor  
E rec = f(R G)  
8
6
4
2
0
8
6
4
2
0
Erec High T  
Erec High T  
Erec Low T  
Erec Low T  
0
100  
200  
300  
400  
500  
600  
I C (A)  
0
2
4
6
8
10  
R G ( Ω)  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
25/125  
350  
±15  
1
°C  
V
25/125  
350  
°C  
V
V CE  
V GE  
R gon  
=
V CE  
V GE  
=
=
=
V
±15  
V
=
I C =  
Ω
300  
A
28 Sep. 2021 / Revision 7  
copyright Vincotech  
6
70-W212NMA300SC-M208P  
datasheet  
Buck  
half bridge IGBT and neutral point FWD  
figure 9.  
IGBT  
figure 10.  
IGBT  
Typical switching times as a  
function of collector current  
t = f(I C)  
Typical switching times as a  
function of gate resistor  
t = f(R G)  
1,00  
1,00  
tdoff  
tdon  
tdoff  
tdon  
tf  
0,10  
0,10  
tf  
tr  
tr  
0,01  
0,01  
0,00  
0,00  
0
100  
200  
300  
400  
500  
600  
0
2
4
6
8
10  
I C (A)  
R G ( Ω)  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
125  
350  
±15  
1
°C  
V
125  
350  
±15  
300  
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
V
=
I C =  
Ω
Ω
A
=
1
figure 11.  
FWD  
figure 12.  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
FWD  
Typical reverse recovery time as a  
function of collector current  
t rr = f(I c)  
t rr = f(R gon  
)
0,4  
0,3  
0,2  
0,1  
0,0  
0,4  
trr  
High T  
trr High T  
0,3  
0,2  
0,1  
trr Low T  
trr Low T  
0,0  
0
0
100  
200  
300  
400  
500  
600  
2
4
6
8
10  
I C (A)  
R gon ( Ω)  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
350  
±15  
1
°C  
25/125  
350  
°C  
V
V CE  
V GE  
=
=
V
V
Ω
300  
A
R gon  
=
V GE =  
±15  
V
28 Sep. 2021 / Revision 7  
copyright Vincotech  
7
70-W212NMA300SC-M208P  
datasheet  
Buck  
half bridge IGBT and neutral point FWD  
figure 13.  
FWD  
figure 14.  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Q rr = f(I C)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Q rr = f(R gon  
)
40  
30  
Qrr High T  
25  
20  
15  
10  
5
Qrr High T  
30  
Qrr Low T  
20  
10  
0
Qrr Low T  
0
0
2
4
6
8
10  
I C (A)  
R gon ( )  
0
150  
300  
450  
600  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
350  
±15  
1
°C  
V
25/125  
350  
°C  
V
V CE  
V GE  
=
=
V
300  
A
R gon  
=
V GE =  
Ω
±15  
V
figure 15.  
FWD  
figure 16.  
FWD  
Typical reverse recovery current as a  
function of collector current  
I RRM = f(I C)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
I RRM = f(R gon  
)
300  
300  
250  
200  
150  
100  
50  
IRRM High T  
250  
200  
150  
100  
50  
IRRM Low T  
IRRM High T  
IRRM Low T  
0
0
0
2
4
6
8
10  
0
100  
200  
300  
400  
500  
600  
I C (A)  
R gon ( Ω)  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
350  
±15  
1
°C  
25/125  
350  
°C  
V
V CE  
V GE  
R gon  
=
V
V
Ω
=
300  
A
=
V GE =  
±15  
V
28 Sep. 2021 / Revision 7  
copyright Vincotech  
8
70-W212NMA300SC-M208P  
datasheet  
Buck  
half bridge IGBT and neutral point FWD  
figure 17.  
FWD  
figure 18.  
FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI 0/dt ,dI rec/dt = f(I c)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI 0/dt ,dI rec/dt = f(R gon  
)
12000  
10000  
dIrec/dt T  
dIrec/dt T  
dIo/dt T  
dIo/dt T  
10000  
8000  
6000  
4000  
2000  
0
8000  
6000  
4000  
2000  
0
0
2
4
6
8
10  
0
100  
200  
300  
400  
500  
600  
I
C (A)  
R gon ( Ω)  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
350  
±15  
1
°C  
V
25/125  
350  
°C  
V
V CE  
V GE  
R gon  
=
=
V
300  
A
=
V GE =  
Ω
±15  
V
figure 19.  
IGBT  
figure 20.  
FWD  
IGBT transient thermal impedance  
FWD transient thermal impedance  
as a function of pulse width  
as a function of pulse width  
Z th(j-s) = f(t p)  
Z th(j-s) = f(t p)  
100  
100  
10-1  
10-2  
10-3  
10-1  
10-2  
10-3  
D = 0,5  
0,2  
D = 0,5  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
102  
t p (s)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
102  
At  
At  
t p / T  
t p / T  
D =  
D =  
R th(j-s)  
=
R th(j-s) =  
0,15  
K/W  
0,27  
K/W  
IGBT thermal model values  
FWD thermal model values  
R (K/W) Tau (s)  
4,1E-02 3,0E+00  
3,4E-02 4,9E-01  
4,4E-02 5,7E-02  
1,8E-02 1,4E-02  
9,1E-03 5,7E-04  
R (K/W) Tau (s)  
2,5E-02 9,7E+00  
5,8E-02 1,8E+00  
4,0E-02 3,0E-01  
8,5E-02 4,3E-02  
3,8E-02 9,8E-03  
1,9E-02 5,4E-04  
28 Sep. 2021 / Revision 7  
copyright Vincotech  
9
70-W212NMA300SC-M208P  
datasheet  
Buck  
half bridge IGBT and neutral point FWD  
figure 21.  
IGBT  
figure 22.  
IGBT  
Power dissipation as a  
function of heatsink temperature  
P tot = f(T s)  
Collector current as a  
function of heatsink temperature  
I C = f(T s)  
1200  
1000  
800  
600  
400  
200  
0
400  
300  
200  
100  
0
T s (  
o C)  
T s (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
T j =  
T j =  
175  
°C  
175  
15  
°C  
V
V GE  
=
figure 23.  
Power dissipation as a  
FWD  
figure 24.  
Forward current as a  
FWD  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T s)  
I F = f(T s)  
800  
600  
400  
200  
0
400  
300  
200  
100  
0
0
50  
100  
150  
200  
T s (  
o C)  
0
50  
100  
150  
200  
T s (  
o C)  
At  
At  
T j =  
T j =  
175  
°C  
175  
°C  
28 Sep. 2021 / Revision 7  
copyright Vincotech  
10  
70-W212NMA300SC-M208P  
datasheet  
Buck  
half bridge IGBT and neutral point FWD  
figure 25.  
IGBT  
figure 26.  
IGBT  
Safe operating area as a function  
of collector-emitter voltage  
Gate voltage vs Gate charge  
I C = f(V CE  
)
V GE = f(Q g)  
18  
16  
14  
12  
10  
8
103  
240 V  
960 V  
102  
101  
6
100  
4
10-1  
2
0
0
400  
800  
1200  
1600  
2000  
2400  
102  
103  
101  
Q g (nC)  
100  
VCE (V)  
At  
At  
D =  
single pulse  
I C  
=
300  
A
T s =  
80  
ºC  
V GE  
=
±15  
T jmax  
V
T j =  
ºC  
figure 27.  
Reverse bias safe operating area  
IGBT  
I C = f(V CE  
)
700  
IC MAX  
600  
500  
400  
300  
200  
100  
0
0
200  
400  
600  
800  
1000  
1200  
1400  
VCE (V)  
At  
T j =  
T jmax-25  
ºC  
3 level switching  
Uccminus=Uccplus  
Switching mode :  
28 Sep. 2021 / Revision 7  
copyright Vincotech  
11  
70-W212NMA300SC-M208P  
datasheet  
Boost  
neutral point IGBT and half bridge FWD  
figure 1.  
IGBT  
figure 2.  
IGBT  
Typical output characteristics  
Typical output characteristics  
I C = f(V CE  
)
I C = f(V CE)  
1000  
1000  
800  
600  
400  
200  
800  
600  
400  
200  
0
0
0
0
1
2
3
4
5
VCE (V)  
1
2
3
4
VCE (V)  
5
At  
At  
t p  
=
t p =  
350  
25  
μs  
°C  
350  
125  
μs  
°C  
T j =  
T j =  
V GE from  
V GE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
figure 3.  
Typical transfer characteristics  
IGBT  
figure 4.  
FWD  
Typical FWD forward current as  
a function of forward voltage  
I F = f(V F)  
I C = f(V GE  
)
350  
300  
250  
200  
150  
100  
50  
1000  
800  
600  
400  
200  
0
Tj = 25°C  
Tj = Tjmax-25°C  
Tj = 25°C  
Tj = Tjmax-25°C  
0
0
2
4
6
8
10  
12  
0
1
2
3
4
5
VGE (V)  
VF (V)  
At  
At  
t p  
=
t p  
=
350  
10  
μs  
V
350  
μs  
V CE  
=
28 Sep. 2021 / Revision 7  
copyright Vincotech  
12  
70-W212NMA300SC-M208P  
datasheet  
Boost  
neutral point IGBT and half bridge FWD  
figure 5.  
IGBT  
figure 6.  
IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(I C)  
Typical switching energy losses  
as a function of gate resistor  
E = f(R G)  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
Eon High T  
Eoff High T  
Eon Low T  
Eoff Low T  
Eon High T  
Eoff High T  
Eoff Low T  
Eon Low T  
0
0
0
100  
200  
300  
400  
500  
600  
0
2
4
6
8
10  
I
C (A)  
R G ( )  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
25/125  
350  
±15  
1
°C  
V
25/125  
350  
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
±15  
V
=
I C =  
Ω
Ω
300  
A
=
1
figure 7.  
FWD  
figure 8.  
FWD  
Typical reverse recovery energy loss  
as a function of collector current  
E rec = f(I c)  
Typical reverse recovery energy loss  
as a function of gate resistor  
E rec = f(R G)  
15  
12  
9
10  
Erec High T  
8
Erec High T  
6
Erec Low T  
6
4
Erec Low T  
3
2
0
0
0
100  
200  
300  
400  
500  
600  
0
2
4
6
8
10  
R G ( )  
I C (A)  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
25/125  
350  
±15  
1
°C  
V
25/125  
350  
°C  
V
V CE  
V GE  
R gon  
=
V CE  
V GE  
=
=
=
V
±15  
V
=
I C =  
Ω
300  
A
28 Sep. 2021 / Revision 7  
copyright Vincotech  
13  
70-W212NMA300SC-M208P  
datasheet  
Boost  
neutral point IGBT and half bridge FWD  
figure 9.  
IGBT  
figure 10.  
IGBT  
Typical switching times as a  
function of collector current  
t = f(I C)  
Typical switching times as a  
function of gate resistor  
t = f(R G)  
1
1
tdoff  
tdon  
tdoff  
tdon  
tf  
0,1  
0,1  
tr  
tf  
0,01  
0,01  
tr  
0,001  
0,001  
0
100  
200  
300  
400  
500  
600  
0
2
4
6
8
10  
I
C (A)  
R G ( )  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
125  
350  
±15  
1
°C  
V
125  
350  
±15  
300  
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
V
=
I C =  
Ω
Ω
A
=
1
figure 11.  
FWD  
figure 12.  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
FWD  
Typical reverse recovery time as a  
function of collector current  
t rr = f(I c)  
t rr = f(R gon  
)
0,2  
0,2  
0,1  
0,1  
0,0  
0,8  
trr High T  
trr High T  
0,6  
0,4  
0,2  
trr Low T  
trr Low T  
0
0
0
100  
200  
300  
400  
500  
600  
2
4
6
8
10  
R gon ( Ω)  
I C (A)  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
350  
±15  
1
°C  
25/125  
350  
°C  
V
V CE  
V GE  
=
=
V
V
Ω
300  
A
R gon  
=
V GE =  
±15  
V
28 Sep. 2021 / Revision 7  
copyright Vincotech  
14  
70-W212NMA300SC-M208P  
datasheet  
Boost  
neutral point IGBT and half bridge FWD  
figure 13.  
FWD  
figure 14.  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Q rr = f(I C)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Q rr = f(R gon  
)
50  
40  
30  
20  
10  
0
40  
Qrr High T  
Qrr High T  
30  
20  
10  
Qrr Low T  
Qrr Low T  
0
0
0
100  
200  
300  
400  
500  
600  
2
4
6
8
10  
I C (A)  
R gon ( )  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
350  
±15  
1
°C  
25/125  
350  
°C  
V
V CE  
V GE  
=
=
V
V
Ω
300  
A
R gon  
=
V GE =  
±15  
V
figure 15.  
FWD  
figure 16.  
FWD  
Typical reverse recovery current as a  
function of collector current  
I RRM = f(I C)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
I RRM = f(R gon  
)
600  
450  
300  
150  
0
500  
IRRM High T  
400  
300  
200  
100  
IRRM Low T  
IRRM High T  
IRRM Low T  
0
0
0
100  
200  
300  
400  
500  
600  
I C (A)  
2
4
6
8
10  
R gon ( Ω)  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
350  
±15  
1
°C  
25/125  
350  
°C  
V
V CE  
V GE  
R gon  
=
V
V
Ω
=
300  
A
=
V GE =  
±15  
V
28 Sep. 2021 / Revision 7  
copyright Vincotech  
15  
70-W212NMA300SC-M208P  
datasheet  
Boost  
neutral point IGBT and half bridge FWD  
figure 17.  
FWD  
figure 18.  
FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI 0/dt ,dI rec/dt = f(I c)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI 0/dt ,dI rec/dt = f(R gon  
)
20000  
25000  
dIrec/dt T  
dIrec/dt T  
dI0/dt T  
di0/dt T  
20000  
15000  
10000  
5000  
0
15000  
10000  
5000  
0
0
100  
200  
300  
400  
500  
600  
0
2
4
6
8
10  
I C (A)  
R gon ( Ω)  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
350  
±15  
1
°C  
V
25/125  
350  
°C  
V
V CE  
V GE  
R gon  
=
=
V
300  
A
=
V GE  
=
Ω
±15  
V
figure 19.  
IGBT  
figure 20.  
FWD  
IGBT transient thermal impedance  
FWD transient thermal impedance  
as a function of pulse width  
as a function of pulse width  
Z th(j-s) = f(t p)  
Z th(j-s) = f(t p)  
100  
100  
10-1  
10-2  
10-3  
10-1  
10-2  
10-3  
D = 0,5  
0,2  
D = 0,5  
0,2  
0,1  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
0,05  
0,02  
0,01  
0,005  
0,000  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
102  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
102  
t p (s)  
t p (s)  
At  
At  
t p / T  
t p / T  
D =  
D =  
R th(j-s)  
=
R th(j-s) =  
0,20  
K/W  
0,20  
K/W  
IGBT thermal model values  
FWD thermal model values  
R (K/W) Tau (s)  
2,3E-02 9,7E+00  
6,4E-02 1,9E+00  
2,8E-02 3,6E-01  
5,9E-02 4,3E-02  
1,5E-02 8,0E-03  
1,1E-02 4,7E-04  
R (K/W) Tau (s)  
1,2E-02 1,0E+01  
4,0E-02 1,6E+00  
4,5E-02 3,0E-01  
6,9E-02 4,5E-02  
2,0E-02 8,9E-03  
1,3E-02 8,0E-04  
28 Sep. 2021 / Revision 7  
copyright Vincotech  
16  
70-W212NMA300SC-M208P  
datasheet  
Boost  
neutral point IGBT and half bridge FWD  
figure 21.  
IGBT  
figure 22.  
IGBT  
Power dissipation as a  
function of heatsink temperature  
P tot = f(T s)  
Collector current as a  
function of heatsink temperature  
I C = f(T s)  
1000  
800  
600  
400  
200  
0
400  
300  
200  
100  
0
o C)  
0
50  
100  
150  
200  
T s (  
o C)  
T s  
(
0
50  
100  
150  
200  
At  
At  
T j =  
T j =  
175  
ºC  
175  
15  
ºC  
V
V GE  
=
figure 23.  
Power dissipation as a  
FWD  
figure 24.  
Forward current as a  
FWD  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T s)  
I F = f(T s)  
1000  
800  
600  
400  
200  
0
400  
300  
200  
100  
0
0
50  
100  
150  
200  
T s (  
o C)  
T s (  
o C)  
0
50  
100  
150  
200  
At  
At  
T j =  
T j =  
175  
ºC  
175  
ºC  
28 Sep. 2021 / Revision 7  
copyright Vincotech  
17  
70-W212NMA300SC-M208P  
datasheet  
Boost  
neutral point IGBT  
figure 25.  
IGBT  
Reverse bias safe operating area  
I C = f(V CE  
)
1400  
IC MAX  
1200  
1000  
800  
600  
400  
200  
0
0
100  
200  
300  
400  
500  
600  
700  
VCE (V)  
At  
T j =  
T jmax-25  
ºC  
Uccminus=Uccplus  
Switching mode :  
3 level switching  
28 Sep. 2021 / Revision 7  
copyright Vincotech  
18  
70-W212NMA300SC-M208P  
datasheet  
Thermistor  
figure 1.  
Thermistor  
Typical NTC characteristic  
as a function of temperature  
R T = f(T )  
24000  
20000  
16000  
12000  
8000  
4000  
0
25  
50  
75  
100  
125  
T (°C)  
28 Sep. 2021 / Revision 7  
copyright Vincotech  
19  
70-W212NMA300SC-M208P  
datasheet  
Switching Definitions Buck IGBT  
General conditions  
T j  
=
=
=
125 °C  
1 Ω  
1 Ω  
R gon  
R goff  
figure 1.  
IGBT  
figure 2.  
IGBT  
Turn-off Switching Waveforms & definition of t doff, t Eoff  
Turn-on Switching Waveforms & definition of t don, t Eon  
(t E off = integrating time for E off  
)
(t E on = integrating time for E on)  
150  
200  
%
%
IC  
VCE  
tdoff  
150  
100  
50  
0
VCE 90%  
IC  
VGE 90%  
VCE  
100  
VGE  
tdon  
tEoff  
50  
IC 1%  
VCE 3%  
IC 10%  
VGE 10%  
VGE  
0
tEon  
-50  
-50  
-0,3  
0
0,3  
0,6  
0,9  
1,2  
3,9  
4,1  
4,3  
4,5  
4,7  
time (us)  
time(us)  
V GE (0%) =  
-15  
V
V
V
A
V GE (0%) =  
-15  
15  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
15  
V GE (100%) =  
V C (100%) =  
I C (100%) =  
V
350  
400  
0,32  
1,04  
350  
400  
0,21  
0,54  
V
A
t doff  
=
=
μs  
μs  
t don  
=
=
μs  
μs  
t E off  
t E on  
figure 3.  
IGBT  
figure 4.  
IGBT  
Turn-off Switching Waveforms & definition of t f  
Turn-on Switching Waveforms & definition of t r  
125  
200  
fitted  
%
%
VCE  
IC  
IC  
100  
150  
IC 90%  
75  
50  
25  
0
100  
IC 60%  
IC 90%  
tr  
IC 40%  
50  
VCE  
IC 10%  
IC 10%  
0
tf  
-50  
-25  
4,1  
4,2  
4,3  
4,4  
4,5  
0,1  
0,2  
0,3  
0,4  
0,5  
0,6  
time (us)  
time(us)  
V C (100%) =  
I C (100%) =  
t f =  
350  
V
A
V C (100%) =  
I C (100%) =  
t r =  
350  
400  
0,05  
V
400  
A
0,08  
μs  
μs  
28 Sep. 2021 / Revision 7  
copyright Vincotech  
20  
70-W212NMA300SC-M208P  
datasheet  
Switching Definitions Buck IGBT  
figure 5.  
IGBT  
figure 6.  
IGBT  
Turn-off Switching Waveforms & definition of t Eoff  
Turn-on Switching Waveforms & definition of t Eon  
125  
125  
%
%
IC 1%  
Pon  
Eon  
Eoff  
100  
75  
50  
25  
0
100  
Poff  
75  
50  
25  
VGE 90%  
VGE10%  
VCE3%  
0
tEon  
tEoff  
-25  
-25  
3,9  
4,1  
4,3  
4,5  
4,7  
4,9  
-0,2  
0,2  
0,6  
1
1,4  
time (us)  
time(us)  
P off (100%) =  
E off (100%) =  
140  
kW  
mJ  
μs  
P on (100%) =  
E on (100%) =  
140  
kW  
mJ  
μs  
15,62  
1,04  
11,38  
0,54  
t E off  
=
t E on =  
figure 7.  
FWD  
Turn-off Switching Waveforms & definition of t rr  
150  
%
Id  
100  
trr  
50  
Vd  
fitted  
0
-50  
IRRM 10%  
IRRM 90%  
IRRM 100%  
-100  
4,2  
4,3  
4,4  
4,5  
4,6  
4,7  
time(us)  
V d (100%) =  
I d (100%) =  
I RRM (100%) =  
350  
V
400  
A
-217  
0,27  
A
t rr  
=
μs  
28 Sep. 2021 / Revision 7  
copyright Vincotech  
21  
70-W212NMA300SC-M208P  
datasheet  
Switching Definitions Buck IGBT  
figure 8.  
FWD  
figure 9.  
FWD  
Turn-on Switching Waveforms & definition of t Qrr  
(t Q rr = integrating time for Q rr)  
Turn-on Switching Waveforms & definition of t Erec  
(t Erec= integrating time for E rec  
)
150  
%
150  
%
Qrr  
Id  
100  
Erec  
100  
tQrr  
tErec  
50  
50  
0
0
-50  
Prec  
-50  
-100  
4
4,2  
4,4  
4,6  
4,8  
5
4
4,2  
4,4  
4,6  
4,8  
5
time(us)  
time(us)  
I d (100%) =  
Q rr (100%) =  
400  
A
P rec (100%) =  
E rec (100%) =  
140  
kW  
mJ  
μs  
25,32  
0,58  
μC  
μs  
5,33  
0,58  
t Q rr  
=
t E rec =  
Buck IGBT switching measurement circuit  
figure 10.  
28 Sep. 2021 / Revision 7  
copyright Vincotech  
22  
70-W212NMA300SC-M208P  
datasheet  
Switching Definitions Boost IGBT  
General conditions  
T j  
=
=
=
125 °C  
1 Ω  
1 Ω  
R gon  
R goff  
figure 1.  
IGBT  
figure 2.  
IGBT  
Turn-off Switching Waveforms & definition of t doff, t Eoff  
Turn-on Switching Waveforms & definition of t don, t Eon  
(t E off = integrating time for E off  
)
(t E on = integrating time for E on  
)
125  
250  
tdoff  
%
%
IC  
100  
200  
VGE 90%  
VCE 90%  
75  
50  
25  
0
150  
IC  
VCE  
100  
tEoff  
VGE  
tdon  
50  
VCE 3%  
VCE  
VGE 10%  
IC 10%  
tEon  
0
IC  
VGE  
1%  
-25  
-50  
-0,1  
0,1  
0,3  
0,5  
0,7  
3,9  
4,1  
4,3  
4,5  
4,7  
time (us)  
time(us)  
V GE (0%) =  
-15  
15  
V
V GE (0%) =  
-15  
15  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
V
350  
302  
0,23  
0,58  
V
350  
302  
0,19  
0,38  
V
A
A
t doff  
=
=
μs  
μs  
t don  
=
=
μs  
μs  
t E off  
t E on  
figure 3.  
IGBT  
figure 4.  
IGBT  
Turn-off Switching Waveforms & definition of t f  
Turn-on Switching Waveforms & definition of t r  
125  
%
250  
%
fitted  
VCE  
IC  
100  
75  
50  
25  
0
200  
Ic  
90%  
150  
Ic  
60%  
VCE  
100  
IC 90%  
Ic  
40%  
tr  
50  
Ic 10%  
Ic  
IC 10%  
tf  
0
-25  
-50  
0,10  
0,15  
0,20  
0,25  
0,30  
0,35  
time (us)  
0,40  
4,1  
4,15  
4,2  
4,25  
4,3  
4,35  
4,4  
time(us)  
V C (100%) =  
I C (100%) =  
t f =  
350  
V
V C (100%) =  
I C (100%) =  
t r =  
350  
V
302  
A
302  
A
0,065  
μs  
0,034  
μs  
28 Sep. 2021 / Revision 7  
copyright Vincotech  
23  
70-W212NMA300SC-M208P  
datasheet  
Switching Definitions Boost IGBT  
figure 5.  
IGBT  
figure 6.  
IGBT  
Turn-off Switching Waveforms & definition of t Eoff  
Turn-on Switching Waveforms & definition of t Eon  
125  
125  
%
%
Ic  
1%  
Pon  
Eon  
Eon  
100  
75  
50  
25  
0
100  
75  
50  
25  
0
Poff  
Uge 90%  
Uce 3%  
Uge 10%  
tEoff  
tEon  
-25  
-25  
3,9  
4
4,1  
4,2  
4,3  
4,4  
4,5  
time(us)  
-0,2  
0
0,2  
0,4  
0,6  
0,8  
time (us)  
P off (100%) =  
E off (100%) =  
106  
kW  
mJ  
μs  
P on (100%) =  
E on (100%) =  
106  
kW  
mJ  
μs  
11,52  
0,58  
13,39  
0,38  
t E off  
=
t E on =  
figure 7.  
FWD  
Turn-off Switching Waveforms & definition of t rr  
150  
%
Id  
100  
trr  
50  
fitted  
IRRM 10%  
Ud  
0
-50  
-100  
-150  
IRRM 90%  
IRRM 100%  
4,1  
4,15  
4,2  
4,25  
4,3  
4,35  
4,4  
time(us)  
V d (100%) =  
I d (100%) =  
350  
V
302  
A
I RRM (100%) =  
t rr  
-384  
0,15  
A
=
μs  
28 Sep. 2021 / Revision 7  
copyright Vincotech  
24  
70-W212NMA300SC-M208P  
datasheet  
Switching Definitions Boost IGBT  
figure 8.  
FWD  
figure 9.  
FWD  
Turn-on Switching Waveforms & definition of t Qrr  
(t Qrr= integrating time for Q rr)  
Turn-on Switching Waveforms & definition of t Erec  
(t Erec= integrating time for E rec  
)
150  
125  
%
%
Erec  
Id  
Qrr  
100  
100  
tQint  
tErec  
50  
75  
0
-50  
50  
25  
Prec  
0
-100  
-150  
-25  
4
4,3  
4,6  
4,9  
5,2  
5,5  
4
4,3  
4,6  
4,9  
5,2  
5,5  
time(us)  
time(us)  
I d (100%) =  
Q rr (100%) =  
302  
A
P rec (100%) =  
E rec (100%) =  
106  
kW  
mJ  
μs  
35,60  
0,33  
μC  
μs  
8,89  
0,33  
t Qint  
=
t E rec =  
Boost IGBT switching measurement circuit  
figure 10.  
28 Sep. 2021 / Revision 7  
copyright Vincotech  
25  
70-W212NMA300SC-M208P  
datasheet  
Ordering Code & Marking  
Version  
Ordering Code  
without PCM  
with PCM  
70-W612M3A300SC-M208P  
70-W612M3A300SC-M208P-/3/  
Name  
Date code  
UL  
&
VIN  
Lot  
Serial  
Name  
Text  
Date code  
Lot  
Serial  
UL  
NN-NNNNNNNNNNNNNN-TTTTTTVV  
WWYY  
UL VIN  
Date code  
WWYY  
LLLLL  
SSSS  
Type&Ver  
Lot number  
Serial  
Datamatrix  
TTTTTTTVV  
LLLLL  
SSSS  
Vincotech  
Outline  
Driver pins  
Y1  
Capacitor positions  
Pin  
1.1  
X1  
Function  
Capacitor  
X4  
Y4  
4,5  
78,65  
81,55  
78,65  
81,55  
68,4  
68,4  
68,4  
68,4  
46  
G1-1  
E1-1  
4.1  
4.2  
4.3  
4.4  
-0,75  
44,8  
-0,3  
44,8  
16,65  
16,65  
93,25  
93,25  
1.2  
4,5  
1.3  
39,5  
G1-2  
1.4  
39,5  
E1-2  
1.5  
1,95  
E2-1  
1.6  
4,85  
G2-1  
1.7  
39,15  
42,05  
-2,2  
G2-2  
1.8  
E2-2  
1.9  
G3-1  
1.10  
1.11  
1.12  
1.13  
1.14  
1.15  
1.16  
1.17  
1.18  
1.19  
1.20  
1.21  
1.22  
-2,2  
48,9  
46  
E3-1  
46,2  
G3-2  
46,2  
48,9  
29,2  
32,1  
29,2  
32,1  
30,15  
30,15  
44,65  
44,65  
86,7  
89,8  
E3-2  
-6,75  
-6,75  
50,75  
50,75  
19,45  
24,55  
19,45  
24,55  
67,65  
67,65  
E4-1  
G4-1  
E4-2  
G4-2  
Desat-DC+  
Desat-DC+  
Desat-GND  
Desat-GND  
NTC  
NTC  
Power interconnections  
M6 screw  
2.1  
X2  
0
Y2  
0
Function  
Phase  
Phase  
Phase  
DC+  
2.2  
22  
44  
0
0
2.3  
0
2.4  
110,4  
110,4  
110,4  
2.5  
22  
44  
Neutral  
DC-  
2.6  
Low current connections  
M4 screw  
3.1  
X3  
Y3  
Function  
DC+  
DC+  
CE  
-37,4  
81,4  
-37,4  
81,4  
-37,4  
81,4  
-37,4  
81,4  
89,8  
89,8  
65,2  
65,2  
45,2  
45,2  
20,6  
20,6  
3.2  
3.3  
3.4  
CE  
3.5  
Phase  
Phase  
DC-  
3.6  
3.7  
3.8  
DC-  
28 Sep. 2021 / Revision 7  
copyright Vincotech  
26  
70-W212NMA300SC-M208P  
datasheet  
Pinout  
NOTE: Driver pins for parallel devices are not connectedinside the module!  
Gx-1 to Gx-2 and Ex-1 to Ex-2 shall br connected on customer PCB!  
Where x = 1 to 4  
Identification  
Current  
ID  
Component  
Voltage  
Function  
Comment  
T1, T4  
T2, T3  
D2, D3  
D1, D4  
C
IGBT  
IGBT  
1200 V  
600 V  
600 V  
1200 V  
630 V  
300 A  
300 A  
300 A  
300 A  
Buck Switch  
Boost Switch  
Buck Diode  
FWD  
FWD  
Boost Diode  
Capacitor  
NTC  
DC Link Capacitor  
Thermistor  
NTC  
28 Sep. 2021 / Revision 7  
copyright Vincotech  
27  
70-W212NMA300SC-M208P  
datasheet  
Packaging instruction  
Handling instruction  
Standard packaging quantity (SPQ)  
>SPQ  
Standard  
<SPQ  
Sample  
variable*  
Handling instructions for VINco X4 packages see vincotech.com website.  
Package data  
Package data for VINco X4 packages see vincotech.com website.  
UL recognition and file number  
This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.  
*10 without PCM  
6 with PCM  
Document No.:  
Date:  
Modification:  
Pages  
1, 2, 3, 4  
Correction in 'Maximum Ratings' and 'Characteristic Values' headline text  
70-W612M3A300SC-M208P-D7-14  
28 Sep. 2021  
DISCLAIMER  
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in  
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or  
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No  
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use  
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third  
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s  
intended use.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of  
Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)  
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in  
significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of  
the life support device or system, or to affect its safety or effectiveness.  
28 Sep. 2021 / Revision 7  
copyright Vincotech  
28  

相关型号:

70-W212NMA400M7-LC08F71

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

70-W212NMA400SC-M209P

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

70-W212NMA600M7-LC09F71

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

70-W212NMA600SC-M200P

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

70-W212NMA800M7-LC00F7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

70-W212NMC400SH01-M709P

Easy paralleling;High speed switching;Low switching losses
VINCOTECH

70-W212NMC600SH01-M700P

Easy paralleling;High speed switching;Low switching losses
VINCOTECH

70-W224NIA400M703-L400F7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

70-W224NIA400SH-M400P

Easy paralleling;High speed switching;Low switching losses
VINCOTECH

70-W424NIA1K2M702-LD07FP7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

70-W424NIA800M7-M800F7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

70-W424NIA800SH-M800F

Easy paralleling;High speed switching;Low switching losses
VINCOTECH