10-0B06PPA010RC01-L025A19 [VINCOTECH]

Optimised collector emitter saturation voltage and forward voltage for low conduction losses;Reverse conductive IGBT technology;Smooth switching performance leading to low EMI levels;
10-0B06PPA010RC01-L025A19
型号: 10-0B06PPA010RC01-L025A19
厂家: VINCOTECH    VINCOTECH
描述:

Optimised collector emitter saturation voltage and forward voltage for low conduction losses;Reverse conductive IGBT technology;Smooth switching performance leading to low EMI levels

双极性晶体管
文件: 总29页 (文件大小:5766K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-0B06PPA010RC01-L025A19  
datasheet  
flow PIM 0B + PFC  
Features  
600 V / 10 A  
flow 0 B housing  
● Converter, PFC, inverter in one housing  
● New high speed IGBT for PFC  
● One screw heatsink mounting  
Target applications  
Schematic  
● Embedded drives  
Types  
● 10-0B06PPA010RC01-L025A19  
Maximum Ratings  
Tj=25°C, unless otherwise specified  
Inverter Switch  
Copyright Vincotech  
1
23 Mar. 2021 / Revision 4  
10-0B06PPA010RC01-L025A19  
datasheet  
PFC Switch  
PFC Diode  
PFC Switch Protection Diode  
Rectifier Diode  
Copyright Vincotech  
2
23 Mar. 2021 / Revision 4  
10-0B06PPA010RC01-L025A19  
datasheet  
Characteristic Values  
Inverter Switch  
Copyright Vincotech  
3
23 Mar. 2021 / Revision 4  
10-0B06PPA010RC01-L025A19  
datasheet  
PFC Switch  
Copyright Vincotech  
4
23 Mar. 2021 / Revision 4  
10-0B06PPA010RC01-L025A19  
datasheet  
PFC Diode  
PFC Protection Diode  
Copyright Vincotech  
5
23 Mar. 2021 / Revision 4  
10-0B06PPA010RC01-L025A19  
datasheet  
Rectifier Diode  
Thermistor  
R
ΔR/R  
P
Rated resistance  
Deviation of R100  
Power dissipation  
Power dissipation constant  
B-value  
25  
100  
25  
25  
25  
25  
22  
kΩ  
%
R100 = 1484 Ω  
-5  
5
5
mW  
mW/K  
K
1,5  
B(25/50)  
Tol. ±1 %  
Tol. ±1 %  
3962  
4000  
B(25/100)  
B-value  
K
Vincotech NTC Reference  
I
Module Properties  
Copyright Vincotech  
6
23 Mar. 2021 / Revision 4  
10-0B06PPA010RC01-L025A19  
datasheet  
Inverter Switch Characteristics  
Typical output characteristics  
IGBT  
Typical output characteristics  
IGBT  
IC = f(VCE  
)
IC = f(VCE)  
tp  
=
250  
15  
μs  
25 °C  
125 °C  
150 °C  
tp  
=
250  
150  
7 V to 17 V in steps of 1 V  
μs  
VGE  
=
V
Tj:  
Tj =  
°C  
VGE from  
Typical transfer characteristics  
IGBT  
Transient thermal impedance as a function of pulse width  
IGBT  
IC = f(VCE  
)
Z thJH = f(tp)  
tp(s)  
tp  
=
100  
10  
μs  
25 °C  
125 °C  
150 °C  
D =  
R thJH  
tp / T  
VCE  
=
V
Tj:  
=
2,15  
K/W  
IGBT thermal model values  
R (K/W) Tau (s)  
7,60E-02  
1,59E-01  
1,01E+00  
6,48E-01  
2,57E-01  
2,82E+00  
4,19E-01  
6,63E-02  
2,63E-02  
3,72E-03  
Copyright Vincotech  
7
23 Mar. 2021 / Revision 4  
10-0B06PPA010RC01-L025A19  
datasheet  
Inverter Switch Characteristics  
Gate voltage vs Gate charge  
IGBT  
VGE = f(Q g)  
480V  
120V  
At  
IC=  
10  
A
Short circuit withstand time as a function of VGE  
IGBT  
Typical short circuit collector current as a function of VGE  
IGBT  
tsc = f(VGE  
)
ISC = f(VGE)  
At  
At  
VCE  
=
VCE  
400  
150  
V
400  
25  
V
Tj  
ºC  
Tj  
ºC  
Copyright Vincotech  
8
23 Mar. 2021 / Revision 4  
10-0B06PPA010RC01-L025A19  
datasheet  
PFC Switch Characteristics  
Typical output characteristics  
IGBT  
Typical output characteristics  
IGBT  
IC = f(VCE  
)
IC = f(VCE)  
I
I
tp  
=
250  
15  
μs  
25 °C  
125 °C  
150 °C  
tp  
Tj =  
VGE from  
=
250  
125  
μs  
°C  
T
:
VGE  
=
V
7 V to 17 V in steps of 1 V  
Typical transfer characteristics  
IGBT  
Transient Thermal Impedance as function of Pulse duration  
IGBT  
IC = f(VGE  
)
Z th(j-s) = f(tp)  
101  
I
Z
100  
10-1  
10-2  
10-4  
10-3  
10-2  
10-1  
10  
101  
tp(s)  
102  
tp  
=
100  
10  
μs  
25 °C  
125 °C  
150 °C  
D =  
R th(j-s)  
tp / T  
1,74  
T :  
VCE  
=
V
=
K/W  
IGBT thermal model values  
R th (K/W)  
τ (s)  
1,29E-01  
7,29E-01  
6,55E-01  
1,29E-01  
9,92E-02  
5,83E-01  
6,38E-02  
2,28E-02  
2,24E-03  
3,38E-04  
Copyright Vincotech  
9
23 Mar. 2021 / Revision 4  
10-0B06PPA010RC01-L025A19  
datasheet  
PFC Switch Characteristics  
Gate voltage vs Gate charge  
IGBT  
VGE = f(QG  
)
V
At  
IC=  
30  
A
PFC Diode Characteristics  
Typical forward characteristics  
FWD  
Transient thermal impedance as a function of pulse width  
FWD  
IF = f(VF)  
Z
thJH  
= f(tp)  
D = 0,5  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
250  
μs  
25 °C  
125 °C  
150 °C  
D =  
RthJH  
tp  
=
tp / T  
2,80  
Tj:  
K/W  
=
FWD thermal model values  
R (K/W)  
Tau (s)  
5,38E-02  
3,99E+00  
5,17E-01  
5,71E-02  
1,18E-02  
2,38E-03  
1,47E-01  
1,06E+00  
8,73E-01  
6,63E-01  
Copyright Vincotech  
10  
23 Mar. 2021 / Revision 4  
10-0B06PPA010RC01-L025A19  
datasheet  
PFC Protection Diode characteristics  
Typical forward characteristics  
FWD  
Transient thermal impedance as a function of pulse width  
FWD  
IF = f(VF)  
Z th(j-s) = f(tp)  
101  
Z
100  
D = 0,5  
10-1  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
10-2  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
tp  
=
250  
μs  
25 °C  
125 °C  
150 °C  
T j:  
D =  
R th(j-s)  
tp / T  
3,01  
=
K/W  
FWD thermal model values  
R (K/W)  
τ (s)  
5,15E-02  
9,53E-02  
3,22E-01  
1,35E+00  
8,32E-01  
3,58E-01  
9,38E+00  
8,91E-01  
1,25E-01  
2,97E-02  
8,19E-03  
1,78E-03  
Copyright Vincotech  
11  
23 Mar. 2021 / Revision 4  
10-0B06PPA010RC01-L025A19  
datasheet  
Rectifier characteristics  
Typical forward characteristics  
Rectifier Diode  
Transient thermal impedance as a function of pulse width  
Rectifier Diode  
IF = f(VF)  
Z th(j-s) = f(tp)  
101  
Z
100  
D = 0,5  
10-1  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
10-2  
10-4  
=
10-3  
10-2  
10-1  
100  
101  
102  
tp  
=
250  
μs  
25 °C  
125 °C  
150 °C  
D =  
tp / T  
2,09  
T j:  
R th(j-s)  
K/W  
Diode thermal model values  
R (K/W)  
τ(s)  
4,86E-02  
1,45E-01  
1,18E+00  
5,40E-01  
1,74E-01  
1,03E+01  
6,91E-01  
6,09E-02  
1,88E-02  
1,96E-03  
Thermistor Characteristics  
figure 1.  
Thermistor  
Typical Thermistor resistance values  
Typical NTC characteristic as a function of temperature  
as a function of temperature  
R = f(T)  
NTC-typical temperature characteristic  
25000  
20000  
15000  
10000  
5000  
0
25  
50  
75  
100  
125  
T (°C)  
Copyright Vincotech  
12  
23 Mar. 2021 / Revision 4  
10-0B06PPA010RC01-L025A19  
datasheet  
Inverter Switching Definitions  
Figure 1.  
IGBT  
Figure 2.  
IGBT  
Typical switching energy losses as a function of collector current  
Typical switching energy losses as a function of gate resistor  
E = f(IC  
)
E = f(R G)  
25 °C  
125 °C  
150 °C  
With an inductive load at  
25 °C  
125 °C  
150 °C  
With an inductive load at  
VCE  
VGE  
=
=
=
=
400  
±15  
32  
V
V
Ω
Ω
Tj:  
VCE  
VGE  
IC  
=
=
=
400  
±15  
10  
V
V
A
Tj:  
R gon  
R goff  
32  
Figure 3.  
FWD  
Figure 4.  
Typical reverse recovery energy loss as a function of gate resistor  
FWD  
Typical reverse recovery energy loss as a function of collector current  
Erec = f(Ic)  
Erec = f(R G)  
With an inductive load at  
25 °C  
125 °C  
150 °C  
With an inductive load at  
25 °C  
125 °C  
150 °C  
VCE  
VGE  
=
=
=
400  
±15  
32  
V
V
Ω
Tj:  
VCE=  
VGE=  
IC=  
400  
±15  
10  
V
V
A
Tj:  
R gon  
Copyright Vincotech  
13  
23 Mar. 2021 / Revision 4  
10-0B06PPA010RC01-L025A19  
datasheet  
Inverter Switching Definitions  
Figure 5.  
IGBT  
Figure 6.  
IGBT  
Typical switching times as a function of collector current  
Typical switching times as a function of gate resistor  
t = f(IC  
)
t = f(R G)  
With an inductive load at  
With an inductive load at  
Tj  
VCE  
=
=
=
=
=
125  
400  
±15  
32  
°C  
V
Tj  
VCE  
VGE  
IC  
=
=
=
=
125  
400  
±15  
10  
°C  
V
VGE  
V
V
R gon  
R goff  
Ω
Ω
A
32  
Figure 7.  
Typical reverse recovery time as a function of collector current  
FWD  
Figure 8.  
Typical reverse recovery time as a function of IGBT turn on gate resistor  
t rr = f(R gon  
FWD  
t rr = f(I C  
)
)
400  
At  
VCE  
VGE  
R gon  
=
400  
±15  
32  
V
V
Ω
25 °C  
125 °C  
150 °C  
At  
VCE  
VGE  
IC  
=
V
V
A
25 °C  
125 °C  
150 °C  
=
Tj:  
=
±15  
Tj:  
=
=
10  
Copyright Vincotech  
14  
23 Mar. 2021 / Revision 4  
10-0B06PPA010RC01-L025A19  
datasheet  
Inverter Switching Definitions  
Figure 9.  
FWD  
Figure 10.  
FWD  
Typical reverse recovery charge as a function of collector current  
Typical reverse recovery charge as a function of IGBT turn on gate resistor  
Qrr = f(IC  
)
Qrr = f(R gon)  
At  
VCE  
=
400  
±15  
32  
V
V
Ω
25 °C  
125 °C  
150 °C  
At  
VCE  
VGE  
IC  
=
400  
±15  
10  
V
V
A
25 °C  
125 °C  
150 °C  
VGE  
=
Tj:  
=
Tj:  
R gon  
=
=
Figure 11.  
FWD  
Figure 12.  
Typical reverse recovery current as a function of IGBT turn on gate resistor  
FWD  
Typical reverse recovery current as a function of collector current  
IRRM = f(IC  
)
IRRM = f(R gon)  
At  
VCE  
VGE  
R gon  
=
400  
±15  
32  
V
V
Ω
25 °C  
125 °C  
150 °C  
At  
VCE  
=
400  
±15  
10  
V
V
A
25 °C  
125 °C  
150 °C  
=
Tj:  
VGE  
=
=
Tj:  
=
IC  
Copyright Vincotech  
15  
23 Mar. 2021 / Revision 4  
10-0B06PPA010RC01-L025A19  
datasheet  
Inverter Switching Definitions  
Figure 13.  
FWD  
Figure 14.  
FWD  
Typical rate of fall of forward and reverse recovery current as a function of collector current  
Typical rate of fall of forward and reverse recovery current as a function of  
IGBT turn on gate resistor  
dI0/dt,dIrec/dt = f(Ic)  
dI0/dt  
dIrec/dt  
dI0/dt  
dIrec/dt  
At  
VCE  
=
400  
±15  
32  
V
V
Ω
At  
VCE  
VGE  
IC  
=
400  
±15  
10  
V
V
A
VGE  
=
=
R gon  
=
=
Figure 15.  
Reverse bias safe operating area  
IGBT  
IC = f(VCE  
)
IC MAX  
At  
Tj  
R gon  
R goff  
=
=
=
175  
°C  
Ω
32  
32  
Ω
Copyright Vincotech  
16  
23 Mar. 2021 / Revision 4  
10-0B06PPA010RC01-L025A19  
datasheet  
Inverter Switching Definitions  
General conditions  
T j  
=
=
=
125 °C  
Rgon  
Rgoff  
32 Ω  
32 Ω  
Figure 1.  
IGBT  
Figure 2.  
IGBT  
Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff)  
Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon)  
tdoff  
IC  
VCE  
VGE  
IC  
VGE  
tEoff  
VCE  
tEon  
VGE (0%) =  
-15  
V
V
V
A
VGE (0%) =  
-15  
V
VGE (100%) =  
VC (100%) =  
IC (100%) =  
15  
VGE (100%) =  
VC (100%) =  
IC (100%) =  
15  
V
400  
10  
400  
10  
V
A
tdoff  
tEoff  
=
=
0,105  
0,292  
μs  
μs  
tdon  
tEon  
=
=
0,071  
0,215  
μs  
μs  
Figure 3.  
IGBT  
Figure 4.  
IGBT  
Turn-off Switching Waveforms & definition of tf  
Turn-on Switching Waveforms & definition of tr  
IC  
VCE  
IC  
VCE  
tr  
tf  
VC (100%) =  
IC (100%) =  
400  
10  
V
VC (100%) =  
IC (100%) =  
400  
10  
V
A
A
tf  
=
0,035  
μs  
tr  
=
0,022  
μs  
Copyright Vincotech  
17  
23 Mar. 2021 / Revision 4  
10-0B06PPA010RC01-L025A19  
datasheet  
Inverter Switching Definitions  
Figure 5.  
IGBT  
Figure 6.  
IGBT  
Turn-off Switching Waveforms & definition of tEoff  
Turn-on Switching Waveforms & definition of tEon  
Pon  
Poff  
Eoff  
Eon  
tEoff  
tEon  
Poff (100%) =  
Eoff (100%) =  
4,00  
0,18  
0,29  
kW  
mJ  
μs  
Pon (100%) =  
Eon (100%) =  
4,00  
kW  
mJ  
μs  
0,36  
0,21  
tEoff  
=
tEon =  
Figure 7.  
FWD  
Turn-off Switching Waveforms & definition of trr  
Id  
Vd  
fitted  
Vd (100%) =  
Id (100%) =  
IRRM (100%) =  
400  
10  
V
A
-10  
A
trr  
=
0,233  
μs  
Copyright Vincotech  
18  
23 Mar. 2021 / Revision 4  
10-0B06PPA010RC01-L025A19  
datasheet  
Inverter Switching Definitions  
Figure 8.  
FWD  
Figure 9.  
FWD  
Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr)  
Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec)  
Erec  
Qrr  
Id  
tErec  
Prec  
Id (100%) =  
Qrr (100%) =  
10  
A
Prec (100%) =  
Erec (100%) =  
4,00  
0,24  
1,00  
kW  
mJ  
μs  
0,89  
1,00  
μC  
μs  
tQ rr  
=
tErec =  
Copyright Vincotech  
19  
23 Mar. 2021 / Revision 4  
10-0B06PPA010RC01-L025A19  
datasheet  
PFC Switching Definitions  
Figure 1.  
IGBT  
Figure 2.  
IGBT  
Typical switching energy losses as a function of collector current  
Typical switching energy losses as a function of gate resistor  
E = f(IC  
)
E = f(R G)  
25 °C  
125 °C  
150 °C  
With an inductive load at  
25 °C  
125 °C  
150 °C  
With an inductive load at  
VCE  
VGE  
=
=
=
=
400  
15/0  
16  
V
V
Ω
Ω
Tj:  
VCE  
VGE  
IC  
=
=
=
400  
15/0  
10  
V
V
A
Tj:  
R gon  
R goff  
16  
Figure 3.  
FWD  
Figure 4.  
Typical reverse recovery energy loss as a function of gate resistor  
FWD  
Typical reverse recovery energy loss as a function of collector current  
Erec = f(Ic)  
Erec = f(R G)  
With an inductive load at  
25 °C  
125 °C  
150 °C  
With an inductive load at  
25 °C  
125 °C  
150 °C  
VCE  
VGE  
=
=
=
400  
15/0  
16  
V
V
Ω
Tj:  
VCE=  
VGE=  
IC=  
400  
15/0  
10  
V
V
A
Tj:  
R gon  
Copyright Vincotech  
20  
23 Mar. 2021 / Revision 4  
10-0B06PPA010RC01-L025A19  
datasheet  
PFC Switching Definitions  
Figure 5.  
IGBT  
Figure 6.  
IGBT  
Typical switching times as a function of collector current  
Typical switching times as a function of gate resistor  
t = f(IC  
)
t = f(R G)  
With an inductive load at  
With an inductive load at  
Tj  
VCE  
=
=
=
=
=
125  
400  
15/0  
16  
°C  
V
Tj  
VCE  
VGE  
IC  
=
=
=
=
125  
400  
15/0  
10  
°C  
V
VGE  
V
V
R gon  
R goff  
Ω
Ω
A
16  
Figure 7.  
Typical reverse recovery time as a function of collector current  
FWD  
Figure 8.  
Typical reverse recovery time as a function of IGBT turn on gate resistor  
t rr = f(R gon  
FWD  
t rr = f(I C  
)
)
At  
VCE  
=
=
=
400  
15/0  
16  
V
V
Ω
25 °C  
125 °C  
150 °C  
At  
VCE  
VGE  
IC  
=
400  
15/0  
10  
V
V
A
25 °C  
125 °C  
150 °C  
VGE  
R gon  
Tj:  
=
=
Tj:  
Copyright Vincotech  
21  
23 Mar. 2021 / Revision 4  
10-0B06PPA010RC01-L025A19  
datasheet  
PFC Switching Definitions  
Figure 9.  
FWD  
Figure 10.  
FWD  
Typical reverse recovery charge as a function of collector current  
Typical reverse recovery charge as a function of IGBT turn on gate resistor  
Qrr = f(IC  
)
Qrr = f(R gon)  
400  
At  
VCE  
=
400  
15/0  
16  
V
V
Ω
25 °C  
125 °C  
150 °C  
At  
VCE  
VGE  
IC  
=
V
V
A
25 °C  
125 °C  
150 °C  
VGE  
=
Tj:  
=
15/0  
10  
Tj:  
R gon  
=
=
Figure 11.  
FWD  
Figure 12.  
Typical reverse recovery current as a function of IGBT turn on gate resistor  
FWD  
Typical reverse recovery current as a function of collector current  
IRRM = f(IC  
)
IRRM = f(R gon)  
At  
VCE  
VGE  
R gon  
=
400  
15/0  
16  
V
V
Ω
25 °C  
125 °C  
150 °C  
At  
VCE  
=
400  
15/0  
10  
V
V
A
25 °C  
125 °C  
150 °C  
=
Tj:  
VGE  
=
=
Tj:  
=
IC  
Copyright Vincotech  
22  
23 Mar. 2021 / Revision 4  
10-0B06PPA010RC01-L025A19  
datasheet  
PFC Switching Definitions  
Figure 13.  
FWD  
Figure 14.  
FWD  
Typical rate of fall of forward and reverse recovery current as a function of collector current  
Typical rate of fall of forward and reverse recovery current as a function of  
IGBT turn on gate resistor  
dI0/dt,dIrec/dt = f(Ic)  
dI0/dt  
dIrec/dt  
dI0/dt  
dIrec/dt  
At  
VCE  
=
400  
15/0  
16  
V
V
Ω
At  
VCE  
VGE  
IC  
=
400  
V
V
A
VGE  
=
=
15/0  
10  
R gon  
=
=
Figure 15.  
Reverse bias safe operating area  
IGBT  
IC = f(VCE  
)
IC MAX  
At  
Tj  
R gon  
R goff  
=
=
=
175  
°C  
Ω
16  
16  
Ω
Copyright Vincotech  
23  
23 Mar. 2021 / Revision 4  
10-0B06PPA010RC01-L025A19  
datasheet  
PFC Switching Definitions  
General conditions  
T j  
=
=
=
125 °C  
Rgon  
Rgoff  
16 Ω  
16 Ω  
Figure 1.  
IGBT  
Figure 2.  
IGBT  
Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff)  
Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon)  
IC  
tdoff  
VCE  
VGE  
IC  
tEoff  
VCE  
VGE  
tEon  
VGE (0%) =  
0
V
VGE (0%) =  
0
V
VGE (100%) =  
VC (100%) =  
IC (100%) =  
15  
V
VGE (100%) =  
VC (100%) =  
IC (100%) =  
15  
V
400  
10  
V
400  
V
A
10  
A
tdoff  
tE off  
=
=
0,192  
0,218  
μs  
μs  
tdon  
tE on  
=
=
0,020  
0,070  
μs  
μs  
Figure 3.  
IGBT  
Figure 4.  
IGBT  
Turn-off Switching Waveforms & definition of tf  
Turn-on Switching Waveforms & definition of tr  
IC  
VCE  
IC  
VCE  
tr  
tf  
VC (100%) =  
IC (100%) =  
400  
10  
V
VC (100%) =  
IC (100%) =  
400  
10  
V
A
A
tf  
=
0,002  
μs  
tr  
=
0,008  
μs  
Copyright Vincotech  
24  
23 Mar. 2021 / Revision 4  
10-0B06PPA010RC01-L025A19  
datasheet  
PFC Switching Definitions  
Figure 5.  
IGBT  
Figure 6.  
IGBT  
Turn-off Switching Waveforms & definition of tEoff  
Turn-on Switching Waveforms & definition of tEon  
Eoff  
Pon  
Eon  
Poff  
tEon  
tEoff  
Poff (100%) =  
Eoff (100%) =  
4,01  
0,06  
0,22  
kW  
mJ  
μs  
Pon (100%) =  
Eon (100%) =  
4,01  
0,08  
0,07  
kW  
mJ  
μs  
tE off  
=
tE on =  
Figure 7.  
FWD  
Turn-off Switching Waveforms & definition of trr  
Id  
fitted  
Vd  
Vd (100%) =  
Id (100%) =  
IRRM (100%) =  
400  
10  
V
A
-3  
A
trr  
=
0,016  
μs  
Copyright Vincotech  
25  
23 Mar. 2021 / Revision 4  
10-0B06PPA010RC01-L025A19  
datasheet  
PFC Switching Definitions  
Figure 8.  
FWD  
Figure 9.  
FWD  
Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr)  
Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec)  
Id  
Qrr  
Erec  
tErec  
Prec  
Id (100%) =  
Qrr (100%) =  
10  
A
Prec (100%) =  
Erec (100%) =  
4,01  
0,01  
0,03  
kW  
mJ  
μs  
0,04  
0,03  
μC  
μs  
tQ rr  
=
tE rec =  
Copyright Vincotech  
26  
23 Mar. 2021 / Revision 4  
10-0B06PPA010RC01-L025A19  
datasheet  
Ordering Code & Marking  
Version  
Ordering Code  
in DataMatrix as  
in packaging barcode as  
without thermal paste 17mm housing  
10-0B06PPA010RC01-L025A19  
L025A19  
L025A19  
Name  
Text  
Date code  
WWYY  
UL & Vinco  
UL Vinco  
Lot  
LLLLL  
Serial  
SSSS  
NN-NNNNNNNNNNNNNN  
TTTTTTT WWYY UL  
Vinco LLLLL SSSS  
NN-NNNNNNNNNNNNNN-TTTTTTT  
Type  
Lot number  
Serial  
SSSS  
Date code  
WWYY  
Datamatrix  
TTTT-TTT  
LLLLL  
Outline  
Pin table [mm]  
Pin  
X
Y
Function  
1
2
24,7  
21,7  
18,7  
15  
12  
9
0
0
0
0
0
0
0
0
0
3
DC-Rect  
DC-PFC  
G27  
3
4
DC-3  
G15  
5
6
DC-2  
G13  
7
6
8
3
DC-1  
G11  
9
0
10  
0
Therm2  
11  
12  
0
0
5,8  
10,8  
Therm1  
G12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
0
13,8  
13,8  
13,8  
13,8  
10,8  
9,3  
Ph1  
G14  
5,7  
8,7  
Ph2  
14,4  
14,4  
19,7  
22,9  
27,9  
27,9  
23,05  
Ph3  
G16  
DC+  
PFC  
13,8  
13,8  
6,95  
ACIn1  
ACIn2  
6,95 DC+Rect  
Copyright Vincotech  
27  
23 Mar. 2021 / Revision 4  
10-0B06PPA010RC01-L025A19  
datasheet  
Copyright Vincotech  
28  
23 Mar. 2021 / Revision 4  
10-0B06PPA010RC01-L025A19  
datasheet  
Packaging instruction  
Handling instruction  
Standard packaging quantity (SPQ) 160  
>SPQ  
Standard  
<SPQ  
Sample  
Handling instructions for flow 0 B packages see vincotech.com website.  
Package data  
Package data for flow 0 B packages see vincotech.com website.  
UL recognition and file number  
This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.  
Document No.:  
Date:  
Modification:  
Pages  
10-0B06PPA010RC01-L025A19-D4-14  
23 Mar. 2021  
Update Thermistor  
6, 12  
DISCLAIMER  
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to  
reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations  
that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability,  
function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said  
information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons  
or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine  
the suitability of the information and the product for reader’s intended use.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval  
of Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or  
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be  
reasonably expected to result in significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause  
the failure of the life support device or system, or to affect its safety or effectiveness.  
Copyright Vincotech  
29  
23 Mar. 2021 / Revision 4  

相关型号:

10-0B06PPA010RC02-L025A89

Optimised collector emitter saturation voltage and forward voltage for low conduction losses;Reverse conductive IGBT technology;Smooth switching performance leading to low EMI levels
VINCOTECH

10-0B06PRA004RC-L022C09

Optimised collector emitter saturation voltage and forward voltage for low conduction losses;Reverse conductive IGBT technology;Smooth switching performance leading to low EMI levels
VINCOTECH

10-0B166BA028SC-M989G09

High inrush current capability
VINCOTECH

10-1

Power Transformer
BEL

10-1%-FA4-20PPM-TANDR

Fixed Resistor, Wire Wound, 4W, 10ohm, 210V, 1% +/-Tol, -20,20ppm/Cel,
VISHAY

10-1-208/KIT

NOCKENSCHLOSS KUNSTSTOFF 5ZUHALTUNGEN
ETC

10-10

Wiping Contact Pushbutton Switches
GRAYHILL

10-10-1021

5.08mm (.200") Pitch KK® PC Board Connector, Right Angle Mount Style A, 1.0μm (40μ") Tin (Sn), 2 Circuits
MOLEX

10-10-1023

5.08mm (.200") Pitch KK® PC Board Connector, Top Entry Mount Style C, 1.0μm (40μ") Tin (Sn), 2 Circuits
MOLEX

10-10-1031

5.08mm (.200") Pitch KK® PC Board Connector, Right Angle Mount Style A, 1.0μm (40μ") Tin (Sn), 3 Circuits
MOLEX

10-10-1033

5.08mm (.200") Pitch KK® PC Board Connector, Top Entry Mount Style C, 1.0μm (40μ") Tin (Sn), 3 Circuits
MOLEX

10-10-1034

5.08mm (.200") Pitch KK® PC Board Connector, Right Angle Mount Style A, 0.5μm (20μ") Gold (Au), 3 Circuits
MOLEX