TUSB3410 [TI]

USB TO SERIAL PORT CONTROLLER; USB转串口控制器
TUSB3410
型号: TUSB3410
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

USB TO SERIAL PORT CONTROLLER
USB转串口控制器

控制器
文件: 总92页 (文件大小:314K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂ ꢃꢄ ꢅ ꢆ ꢇ  
ꢁ ꢂꢃ ꢀ ꢈ ꢂ ꢉ ꢊ ꢋꢌꢍ ꢎ ꢈꢊ ꢏ ꢐ ꢈ ꢑ ꢏꢊꢈ ꢍꢍꢉ ꢊ  
Data Manual  
NOTE  
Designing with this device may require extensive support. Before incorporating this device into  
a design, customers should contact TI or an Authorized TI Distributor.  
June 2002  
MSP USB  
SLLS519B  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding third–party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Mailing Address:  
Texas Instruments  
Post Office Box 655303  
Dallas, Texas 75265  
Copyright 2002, Texas Instruments Incorporated  
Contents  
Section  
Title  
Page  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1  
1.1 Controller Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
2
2.1  
2.2  
2.3  
2.4  
USB Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
General Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Enhanced UART Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Pinout Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3
Detailed Controller Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
3.1  
3.2  
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
USB Interface Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3.2.1  
3.2.2  
External Memory Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Host Download Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3.3  
3.4  
3.5  
USB Data Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Serial Port Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Serial Port Data Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.5.1  
3.5.2  
3.5.3  
RS-232 Data Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
RS-485 Data Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
IrDA Data Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
4
MCU Memory Map (Internal Operation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1  
4.1  
Miscellaneous Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
4.1.1  
ROMS: ROM Shadow Configuration Register  
(Addr:FF90) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
4.1.2  
4.1.3  
Boot Operation (MCU Firmware Loading) . . . . . . . . . . . . . . 42  
WDCSR: Watchdog Timer, Control, and Status Register  
(Addr:FF93) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
4.2  
4.3  
Buffers + I/O RAM Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Endpoint Descriptor Block (EDB1 to EDB3) . . . . . . . . . . . . . . . . . . . 45  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
4.3.6  
OEPCNF_n: Output Endpoint Configuration (n = 1 to 3)  
(Addr:FF08, FF10, FF18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
OEPBBAX_n: Output Endpoint X-Buffer Base Address  
(n = 1 to 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
OEPBCTX_n: Output Endpoint X Byte Count  
(n = 1 to 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
OEPBBAY_n: Output Endpoint Y-Buffer Base Address  
(n = 1 to 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
OEPBCTY_n: Output Endpoint Y-Byte Count  
(n = 1 to 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
OEPSIZXY_n: Output Endpoint X-/Y-Buffer Size  
(n =1 to 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
iii  
4.3.7  
4.3.8  
IEPCNF_n: Input Endpoint Configuration (n = 1 to 3)  
(Addr:FF48, FF50, FF58) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
IEPBBAX_n: Input Endpoint X-buffer Base Address  
(n = 1 to 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
4.3.9  
IEPBCTX_n: Input Endpoint X-Byte Count (n = 1 to 3) . . . 49  
4.3.10  
IEPBBAY_n: Input Endpoint Y-Buffer Base Address  
(n = 1 to 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
4.3.11  
4.3.12  
IEPBCTY_n: Input Endpoint Y-Byte Count (n = 1 to 3) . . . 49  
IEPSIZXY_n: Output Endpoint X-/Y-Buffer Size  
(n = 1 to 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410  
4.4  
Endpoint-0 Descriptor Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410  
4.4.1  
4.4.2  
4.4.3  
4.4.4  
IEPCNFG_0: Input Endpoint-0 Configuration Register  
(Addr:FF80) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410  
IEPBCNT_0: Input Endpoint-0 Byte Count Register  
(Addr:FF81) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410  
OEPCNFG_0: Output Endpoint-0 Configuration Register  
(Addr:FF82) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411  
OEPBCNT_0: Output Endpoint-0 Byte Count Register  
(Addr:FF83) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411  
5
USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
5.1 USB Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
5.1.7  
FUNADR: Function Address Register (Addr:FFFF) . . . . . . 51  
USBSTA: USB Status Register (Addr:FFFE) . . . . . . . . . . . 51  
USBMSK: USB Interrupt Mask Register (Addr:FFFD) . . . . 52  
USBCTL: USB Control Register (Addr:FFFC) . . . . . . . . . . . 53  
MODECNFG: Mode Configuration Register (Addr:FFFB) 54  
Vendor ID/Product ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
SERNUM7: Device Serial Number Register (Byte 7)  
(Addr:FFEF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
5.1.8  
SERNUM6: Device Serial Number Register (Byte 6)  
(Addr:FFEE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
5.1.9  
SERNUM5: Device Serial Number Register (Byte 5)  
(Addr:FFED) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
5.1.10  
5.1.11  
5.1.12  
5.1.13  
5.1.14  
SERNUM4: Device Serial Number Register (Byte 4)  
(Addr:FFEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
SERNUM3: Device Serial Number Register (Byte 3)  
(Addr:FFEB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
SERNUM2: Device Serial Number Register (Byte 2)  
(Addr:FFEA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
SERNUM1: Device Serial Number Register (Byte 1)  
(Addr:FFE9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
SERNUM0: Device Serial Number Register (Byte 0)  
(Addr:FFE8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
5.1.15  
5.1.16  
Function Reset And Power-Up Reset Interconnect . . . . . . 57  
Pullup Resistor Connect/Disconnect . . . . . . . . . . . . . . . . . . 58  
iv  
6
DMA Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
6.1 DMA Controller Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
DMACDR1: DMA Channel Definition Register (UART Transmit  
Channel) (Addr:FFE0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
DMACSR1: DMA Control And Status Register (UART Transmit  
Channel) (Addr:FFE1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
DMACDR3: DMA Channel Definition Register (UART Receive  
Channel) (Addr:FFE4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
DMACSR3: DMA Control And Status Register (UART Receive  
Channel) (Addr:FFE5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
6.2  
Bulk Data I/O Using the EDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
6.2.1  
6.2.2  
IN Transaction (TUSB3410 to Host) . . . . . . . . . . . . . . . . . . . 65  
OUT Transaction (Host to TUSB3410) . . . . . . . . . . . . . . . . . 66  
7
UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
7.1 UART Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
7.1.1  
7.1.2  
7.1.3  
7.1.4  
7.1.5  
7.1.6  
7.1.7  
7.1.8  
7.1.9  
7.1.10  
7.1.11  
7.1.12  
7.1.13  
7.1.14  
RDR: Receiver Data Register (Addr:FFA0) . . . . . . . . . . . . . 71  
TDR: Transmitter Data Register (Addr:FFA1) . . . . . . . . . . . 71  
LCR: Line Control Register (Addr:FFA2) . . . . . . . . . . . . . . . 72  
FCRL: UART Flow Control Register (Addr:FFA3) . . . . . . . . 73  
Transmitter Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
MCR: Modem-Control Register (Addr:FFA4) . . . . . . . . . . . . 75  
LSR: Line-status Register (Addr:FFA5) . . . . . . . . . . . . . . . . 76  
MSR: Modem-Status Register (Addr:FFA6) . . . . . . . . . . . . 77  
DLL: Divisor Register Low Byte (Addr:FFA7) . . . . . . . . . . . 78  
DLH: Divisor Register High Byte (Addr:FFA8) . . . . . . . . . . . 78  
Baud-rate Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
XON: Xon Register (Addr:FFA9) . . . . . . . . . . . . . . . . . . . . . . 79  
XOFF: Xoff Register (Addr:FFAA) . . . . . . . . . . . . . . . . . . . . . 79  
MASK: UART Interrupt-Mask Register (Addr:FFAB) . . . . . 710  
7.2  
UART Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.2.5  
7.2.6  
Receiver Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710  
Hardware Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711  
Auto RTS (Receiver Control) . . . . . . . . . . . . . . . . . . . . . . . . . 711  
Auto CTS (Transmitter Control) . . . . . . . . . . . . . . . . . . . . . . . 711  
Xon/Xoff Receiver Flow Control . . . . . . . . . . . . . . . . . . . . . . . 712  
Xon/Xoff Transmit Flow Control . . . . . . . . . . . . . . . . . . . . . . . 712  
8
9
Expanded GPIO Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
8.1 Input/Output and Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
8.1.1 PUR_3: GPIO Pullup Register For Port 3 (Addr:FF9E) . . . 81  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
9.1 8052 Interrupt and Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
9.1.1  
9.1.2  
9.1.3  
9.1.4  
8052 Standard Interrupt Enable (SIE) Register . . . . . . . . . 91  
Additional Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
VECINT: Vector Interrupt Register (Addr:FF92) . . . . . . . . . 92  
Logical Interrupt Connection Diagram (Internal/External) . 93  
v
10 I2C-Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
10.1 I2C Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
10.1.1  
10.1.2  
10.1.3  
10.1.4  
I2CSTA: I2C Status and Control Register (Addr:FFF0) . . . 101  
I2CADR: I2C Address Register (Addr:FFF3) . . . . . . . . . . . . 102  
I2CDAI: I2C Data-Input Register (Addr:FFF2) . . . . . . . . . . 102  
I2CDAO: I2C Data-Output Register (Addr:FFF1) . . . . . . . . 102  
10.2 Random-Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
10.3 Current-Address Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
10.4 Sequential-Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
10.5 Byte-Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
10.6 Page-Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
11 TUSB3410 Bootcode Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
11.2 Bootcode Programming Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
11.3 Default Bootcode Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
11.3.1  
11.3.2  
11.3.3  
11.3.4  
11.3.5  
Device Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Configuration Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Interface Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Endpoint Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
String Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
11.4 External Device Header Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
11.4.1  
11.4.2  
Product Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Descriptor Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
11.4.2.1  
11.4.2.2  
Descriptor Prefix . . . . . . . . . . . . . . . . . . . . . . . . 117  
Descriptor Content . . . . . . . . . . . . . . . . . . . . . . 117  
11.5 Checksum in Descriptor Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
11.6 Header Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
11.6.1  
11.6.2  
11.6.3  
TUSB3410 Bootcode Supported Descriptor Block . . . . . 117  
USB Descriptor Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Autoexec Binary Firmware . . . . . . . . . . . . . . . . . . . . . . . . . 1110  
11.7 Host Driver Downloading Header Format . . . . . . . . . . . . . . . . . . . . . 1110  
11.8 Built-In Vendor Specific USB Requests . . . . . . . . . . . . . . . . . . . . . . . 1111  
11.8.1  
11.8.2  
11.8.3  
11.8.4  
11.8.5  
11.8.6  
11.8.7  
Reboot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1111  
Force Execute Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . 1111  
External Memory Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1111  
External Memory Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1111  
2
I C Memory Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1112  
2
I C Memory Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1112  
Internal ROM Memory Read . . . . . . . . . . . . . . . . . . . . . . . 1112  
11.9 Bootcode Programming Consideration . . . . . . . . . . . . . . . . . . . . . . . 1113  
11.9.1  
11.9.2  
USB Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1113  
Hardware Reset Introduced by Firmware . . . . . . . . . . . . 1116  
11.10 File Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1116  
12 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
vi  
12.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
12.2 Commercial Operating Condition (3.3 V) . . . . . . . . . . . . . . . . . . . . . . . 121  
12.3 Electrical Characteristics TA = 255C, VCC = 3.3 V +5%,  
VSS = 0 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
13 Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
13.1 Crystal Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
13.2 External Circuit Required for Reliable Bus Powered Suspend  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
14 Mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
vii  
List of Illustrations  
Figure  
Title  
Page  
11 Controller Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
12 USB-to-Serial (Single Channel) Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
31 RS-232 and IR Mode Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
32 USB-to-Serial Implementation (RS-232) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
33 RS-485 Bus Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
41 MCU Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
51 Reset Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
52 Pullup Resistor Connect/Disconnect Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
61 Transaction Time-Out Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
71 MSR and MCR Registers in Loop-Back Mode . . . . . . . . . . . . . . . . . . . . . . . . 77  
72 Receiver/Transmitter Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711  
73 Auto Flow Control Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711  
91 Internal Vector Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
111 Control Read Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1113  
112 Control Write Transfer Without Data Stage . . . . . . . . . . . . . . . . . . . . . . . . . 1114  
131 Crystal Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
132 External Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
viii  
List of Tables  
Table  
Title  
Page  
21 Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
41 ROM/RAM Size Definition Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
42 XDATA Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
43 Memory Mapped Registers Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
44 EDB Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
45 EDB Entries in RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
46 Input/Output EDB-0 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410  
61 DMA Controller Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
62 DMA OUT-Termination Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
63 DMA IN-Termination Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
71 UART Registers Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
72 Transmitter Flow-Control Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
73 Receiver Flow-Control Possibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
74 DLL/DLH Values and Resulted Baud Rates . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
91 8052 Interrupt Location Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
92 Vector Interrupt Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
111 Device Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
112 Configuration Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
113 Interface Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
114 Output Endpoint1 Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
115 String Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
116 USB Descriptors Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
117 Autoexec Binary Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1110  
118 Host Driver Downloading Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1110  
119 Bootcode Response to Control Read Transfer . . . . . . . . . . . . . . . . . . . . . . 1114  
1110 Bootcode Response to Control Write Without Data Stage . . . . . . . . . . . 1114  
1111 Vector Interrupt Values and Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1115  
ix  
x
1 Introduction  
1.1 Controller Description  
The TUSB3410 provides bridging between a USB port and an enhanced UART serial port. The TUSB3410 contains  
all the necessary logic to communicate with the host computer using the USB bus. It contains an 8052 microcontroller  
2
unit (MCU) with 16K bytes of RAM that can be loaded from the host or from external on-board memory via an I C  
bus. It also contains 10K bytes of ROM that allow the MCU to configure the USB port at boot time. The ROM code  
2
alsocontainsanI Cbootloader. AllthedevicefunctionssuchastheUSBcommanddecoding, UARTsetup, anderror  
reporting are managed by the internal MCU firmware under the auspices of the PC host.  
The TUSB3410 can be used to build an interface between a legacy serial peripheral device and a PC with USB ports,  
such as a legacy-free PC. Once configured, data flows from the host to the TUSB3410 via USB OUT commands and  
then out from the TUSB3410 on the SOUT line. Conversely, data flows into the TUSB3410 on the SIN line and then  
into the host via USB IN commands.  
Out  
SOUT  
Legacy  
Serial  
Peripheral  
Host  
(PC or OTG DRD)  
USB  
In  
TUSB3410  
SIN  
Figure 11. Data Flow  
11  
12 MHz  
Clock  
Oscillator  
8052  
Core  
PLL  
and  
24 MHz  
Dividers  
8
8
8
8
8
2 × 16-Bit  
Timers  
10K × 8  
ROM  
USB  
TxR  
DP, DM  
16K × 8  
RAM  
4
Port 3  
P3.(4, 3,1,0)  
2K × 8  
SRAM  
8
8
2
I C  
2
I C Bus  
Controller  
DMA-1  
DMA-3  
8
8
CPU-I/F  
Susp./Res.  
8
RTS  
CTS  
DTR  
DSR  
USB  
SIE  
8
UART1  
UBM  
USB Buffer  
Manager  
SIN  
SOUT  
TDM  
Control  
Logic  
IR  
M
Encoder  
U
X
SOUT/IR_SO  
SIN/IR_SIN  
IR  
M
U
X
Encoder  
Figure 12. USB-to-Serial (Single Channel) Controller Block Diagram  
12  
2 Main Features  
2.1 USB Features  
Fully compliant with USB 2.0 full speed Specifications  
Supports 12-Mbps USB data rate (full speed)  
Supports USB suspend, resume, and remote wakeup operations  
Supports two power source modes:  
Bus-powered mode  
Self-powered mode  
Can support a total of 3-input and 3-output (interrupt, bulk) endpoints  
2.2 General Features  
Integrated 8052 microcontroller with  
256 × 8 RAM for internal data  
2
10K × 8 ROM (with USB and I C boot loader)  
2
16K × 8 RAM for code space loadable from host or I C port  
2K × 8 Shared RAM used for data buffers and endpoint descriptor blocks (EDB)  
Four GPIO pins from 8052 port 3  
2
Master I C controller for EEPROM device access  
MCU operates at 24 MHz providing 2 MIPS operation  
128-ms Watchdog Timer  
Built-in two-channel DMA controller for USB/UART bulk I/O  
Operates from a 12-MHz crystal  
Supports USB suspend and resume  
Supports remote wake-up  
Available in 32-pin LQFP  
3.3-V operation with 1.8-V core operating voltage provided by on-chip 1.8-V voltage regulator  
2.3 Enhanced UART Features  
Software/hardware flow control:  
Programmable Xon/Xoff characters  
Programmable Auto-RTS/DTR and Auto-CTS/DSR  
Automatic RS485-bus transceiver control, with and without echo  
Selectable IrDA mode for up to 115.2 kbps transfer  
Software selectable baud rate from 50 to 921.6 k baud  
Programmable serial-interface characteristics  
5-, 6-, 7-, or 8-Bit characters  
Even, odd, or no parity-bit generation and detection  
1-, 1.5-, or 2-Stop bit generation  
Line break generation and detection  
21  
Internal test and loop-back capabilities  
Modem-control functions (CTS, RTS, DSR, DTR, RI, and DCD)  
Internal diagnostics capability  
Loopback control for communications link-fault isolation  
Break, parity, overrun, framing-error simulation  
2.4 Pinout Information  
VF PACKAGE  
(TOP VIEW)  
24 23 22 21 20 19 18 17  
25  
26  
27  
28  
29  
30  
31  
32  
VCC  
X2  
16 RI/CP  
15  
14  
13  
12  
11  
10  
9
DCD  
X1/CLK1  
GND  
DSR  
CTS  
P3.4  
WAKEUP  
SCL  
P3.3  
P3.1  
SDA  
P3.0  
RESET  
1
2 3 4 5 6 7 8  
22  
Table 21. Terminal Functions  
TERMINAL  
NAME  
CLKOUT  
I/O  
DESCRIPTION  
NO.  
22  
O
Clock output (controlled by CLKOUTEN and CLKSLCT in MODECNFG register (see Section 5.1.5  
and Note 1)  
CTS  
DCD  
DM  
13  
15  
7
I
I
UART: Clear to send (see Note 4)  
UART: Data carrier detect (see Note 4)  
Upstream USB port differential data minus  
Upstream USB port differential data plus  
UART: Data set ready (see Note 4)  
UART: Data terminal ready (see Note 1)  
I/O  
I/O  
I
DP  
6
DSR  
DTR  
GND  
P3.0  
P3.1  
P3.3  
P3.4  
PUR  
RESET  
RI/CP  
RTS  
SCL  
SDA  
14  
21  
O
8, 18, 28 GND Digital ground  
32  
31  
30  
29  
5
I/O  
I/O  
I/O  
I/O  
O
I
Port-3.0 (see Notes 3, 4, 5, and 8)  
Port-3.1 (see Notes 3, 4, 5, and 8)  
Port-3.3 (see Notes 3, 4, 5, and 8)  
Port-3.4 (see Notes 3, 4, 5, and 8)  
Pull-up resistor connection (see Note 2)  
Controller master reset signal (see Note 4)  
UART: Ring indicator (see Note 4)  
UART: Request to send (see Note 1)  
9
16  
20  
11  
10  
17  
19  
2
I
O
O
I/O  
I
2
Master I C controller: clock signal (see Note 1)  
2
Master I C controller: data signal (see Notes 1 and 5)  
SIN/IR_SIN  
SOUT/IR_SOUT  
SUSPEND  
TEST0  
UART: Serial input data / IR Serial data input (see Note 6)  
UART: Serial output data / IR Serial data output (see Note 7)  
Suspend condition signal (see Note 3)  
O
O
I
23  
24  
3, 25  
4
Test input (for factory test only) (see Note 5)  
TEST1  
I
Test input (for factory test only) (see Note 5)  
VCC  
PWR 3.3 V  
VDD18  
PWR 1.8-V Supply. An internal voltage regulator generates this supply voltage when terminal VREGEN  
is asserted. When VREGEN is deasserted, 1.8 V must be supplied externally.  
VREGEN  
WAKEUP  
X1/CLKI  
X2  
1
I
I
This active-low terminal is used to enable the 3.3-V to 1.8-V voltage regulator in the core.  
Remote wake-up request pin. When low, wakes up system (see Note 5)  
12-MHz crystal input or clock input  
12  
27  
26  
I
O
12-MHz crystal output  
NOTES: 1. 3-state CMOS output (±4-mA drive/sink)  
2. 3-state CMOS output (±8-mA drive/sink)  
3. 3-state CMOS output (±12-mA drive/sink)  
4. TTL-compatible, hysteresis input  
5. TTL-compatible, hysteresis input, with internal 100-µA active pullup  
6. TTL-compatible input without hysteresis, with internal 100-µA active pullup  
7. Normal or IR mode: 3-state CMOS output (±4-mA drive/sink)  
8. The MCU treats the outputs as open drain types in that the output can be driven low continuously, but a high output is driven for two  
clock cycles and then the output is tristated.  
23  
24  
3 Detailed Controller Description  
3.1 Operating Modes  
The TUSB3410 controls its USB interface in response to USB commands, and this action remains the same  
independent of the serial port mode selected. On the other hand, the serial port can be set up in three modes.  
As with any interface device, data movement is the TUSB3410s main function, but typically the initial configuration  
and error handling consume most of the support code. The following sections describe the various modes the device  
can be used in and the means of setting up the device.  
3.2 USB Interface Configuration  
The TUSB3410 contains onboard ROM microcode, which enables the MCU to enumerate the device as a USB  
peripheral. The ROM microcode can also load application code into internal RAM from either external memory via  
2
the I C bus or from the host via the USB.  
3.2.1 External Memory Case  
After reset, the TUSB3410 is disconnected from the USB because the pullup resistor CONT bit is cleared. The  
2
TUSB3410 checks the I C port for the existence of valid code, if it finds valid code, it uploads the code from the  
external memory device into the RAM program space. Once loaded, the TUSB3410 connects to the USB by setting  
the CONT bit and enumeration and configuration are performed. This is the most likely use of the device.  
3.2.2 Host Download Case  
2
If the valid code is not found at the I C port, the TUSB3410 connects to the USB by setting the CONT bit, and then  
an enumeration and default configuration are performed. The host can then download additional microcode into RAM  
to tailor the application. Then, the MCU causes a disconnect and reconnect by using the pullup resistor CONT bit  
in the USBCTL register, which causes the TUSB3410 to be re-enumerated with a new configuration.  
3.3 USB Data Movement  
From the USB perspective, the TUSB3410 looks like a USB peripheral device. It uses endpoint 0 as its control  
endpoint, as do all USB peripherals. It also configures up to three input and three output endpoints, although most  
applications use one bulk input endpoint for data in, one bulk output endpoint for data out, and one interrupt endpoint  
for status updates. The USB configuration likely remains the same regardless of the serial port configuration.  
Most data is moved from the USB side to the UART side and vice versa using on-chip DMA transfers. Some special  
cases may use programmed IO under control of the MCU.  
3.4 Serial Port Setup  
The serial port requires a few control registers to be written to configure its operation. This configuration likely remains  
the same regardless of the data mode used. These registers include the line control register that controls the serial  
word format and the divisor registers that control the baud rate.  
These registers are usually controlled by the host application.  
3.5 Serial Port Data Modes  
The serial port can be configured in three different, although similar, data modes. Similar to the USB mode, once  
configured for a specific application, it is unlikely that the mode would be changed. The different modes affect the  
timing of the serial input and output or the use of the control signals. However, the basic serial-to-parallel conversion  
31  
of the receiver and parallel-to-serial conversion of the transmitter remain the same in all modes. Some features are  
available in all modes, but are only applicable in certain modes. For instance, software flow control via Xoff/Xon  
characters can be used in all modes, but would usually only be used in RS-232 or IrDA mode because the RS-485  
mode is half-duplex communication. Similarly, hardware flow control via RTS/CTS (or DTR/DSR) handshaking is  
available in RS-232 or IrDA mode. However, this would probably be used only in RS-232 mode, since in IrDA mode  
only the SIN and SOUT paths are optically coupled.  
3.5.1 RS-232 Data Mode  
The default mode is called the RS-232 mode, and is usually used for full duplex communication on SOUT and SIN.  
In this mode, the modem control outputs (RTS and DTR) are used to communicate to a modem or as general outputs.  
The modem control inputs (CTS, DSR, DCD, and RI) are used for modem communication or as general inputs.  
Alternatively, RTS and CTS (or DTR and DSR) can be used to throttle the data flow on SOUT and SIN to prevent  
receive fifo overruns. Finally, software flow control via Xoff/Xon characters can be used for the same purpose.  
This mode represents the most general-purpose applications, and the other modes are subsets of this mode.  
3.5.2 RS-485 Data Mode  
The RS-485 mode is very similar to the RS-232 mode in that the SOUT and SIN formats remain the same. Since  
RS-485 is a bus architecture, it is inherently a single duplex communication system. The TUSB3410 in RS-485 mode  
controls the RTS and DTR signals such that either can be used to enable an RS-485 driver or RS-485 receiver. When  
in RS-485 mode, the enable signals for transmitting are automatically asserted whenever the DMA is set up for  
outbound data. The receiver can be left enabled while the driver is enabled to allow an echo if desired, but when  
receive data is expected, the driver must be disabled. Note that this precludes use of hardware flow control, since  
this is a half duplex operation, it would not be effective anyhow. Software flow control is supported, but may be of  
limited value.  
The RS-485 mode is enabled by setting the 485E bit in the FCRL register, and a receiver enable (RCVE) bit in the  
MCR allows the receiver to eavesdrop while in 485 mode.  
3.5.3 IrDA Data Mode  
The IrDA mode encodes SOUT and decodes SIN in the manner prescribed by the IrDA standard, up to 115.2 kbps.  
Connection to an external IrDA transceiver is required. Communications is usually full duplex. Generally in an IrDA  
system only the SOUT and SIN paths are connected, so hardware flow control is usually not an option. Software flow  
control is supported.  
The IrDA mode is enabled by setting the IREN bit in the USB control register.  
The IR encoder and decoder circuitry work with the UART to change the serial bit stream into a series of pulses and  
back again. For every zero bit in the outbound serial stream, the encoder sends a low-to-high-to-low pulse with the  
duration of 3/16 of a bit frame at the middle of the bit time. For every one bit in the serial stream, the output remains  
low for the entire bit time.  
The decoding process consists of receiving the signal from the IrDA receiver and converting it to a series of zeroes  
and ones. As the converse to the encoder, the decoder converts a pulse to a zero bit and the lack of a pulse to a one  
bit.  
32  
SOUT  
IR_TX  
0
M
U
X
SOUT/IR_SOUT  
SOUT  
IR  
From  
UART  
1
Encoder  
IREN  
0
UART  
BaudOut  
Clock  
M
U
X
SOFTSW  
1
TXCNTL  
0
M
U
X
CLKOUT Pin  
CLKOUTEN  
3.556 MHz  
CLKSLCT  
1
3.3 V  
0
To  
UART  
Receiver  
M
U
X
SIN  
IR_RX  
IR  
Decoder  
SIN/IR_SIN Pin  
1
Figure 31. RS-232 and IR Mode Select  
33  
DB9  
Connector  
Transceivers  
12 MHz  
4
7
DTR  
RTS  
RI  
DCD  
DSR  
CTS  
1
Serial Port  
6
8
3
2
SOUT  
SIN  
USB-0  
TUSB3410  
P3.0  
P3.1  
P3.3  
P3.4  
GPIO Pins for  
Other Onboard  
Control Function  
Figure 32. USB-to-Serial Implementation (RS-232)  
12 MHz  
RTS  
RS-485 Bus  
SOUT  
DTR  
SIN  
USB-0  
RS-485  
TUSB3410  
Transceiver  
2-Bits Time  
1-Bit Max  
SOUT  
DTR  
RTS  
Receiver is Disabled if RCVE = 0  
Figure 33. RS-485 Bus Implementation  
34  
4 MCU Memory Map (Internal Operation)  
Figure 41 illustrates the MCU memory map under boot and normal operation. For more information regarding the  
integrated 8052, see the TUSBxxxx Microcontroller Reference Guide (SLLU044).  
NOTE:  
The internal 256 bytes of RAM are not shown, since they are assumed to be in the standard  
8052 location (0000 to 00FF). The shaded areas represent the internal ROM/RAM.  
When SDW bit = 0 (boot mode): The 10K ROM is mapped to address (0x00000x27FF) and is duplicated in location  
(0x80000xA7FF) in code space. The internal 16K RAM is mapped to address range (0x00000x3FFF) in data  
space. Buffers, MMR, and I/O are mapped to address range (0xF8000xFFFF) in data space.  
When SDW bit = 1 (normal mode): The 10K ROM is mapped to (0x80000xA7FF) in code space. The internal 166K  
RAM is mapped to address range (0x00000x3FFFF) in code space. Buffers, MMR, and I/O are mapped to address  
range (0xF8000xFFFF) in data space.  
Boot Mode (SDW = 0)  
Normal Mode (SDW = 1)  
CODE  
XDATA  
CODE  
XDATA  
0000  
10K Boot ROM  
(16K)  
16K  
Read/Write  
Code RAM  
Read Only  
27FF  
3FFF  
8000  
10K Boot ROM  
10K Boot ROM  
A7FF  
F800  
2K Data  
MMR  
2K Data  
MMR  
FF7F  
FF80  
FFFF  
Figure 41. MCU Memory Map  
41  
4.1 Miscellaneous Registers  
4.1.1 ROMS: ROM Shadow Configuration Register (Addr:FF90)  
This register is used by the MCU to switch from boot mode to normal operation mode (boot mode is set on power-on  
reset only). In addition, this register provides the device revision number and the ROM/RAM configuration.  
7
6
5
4
3
2
1
0
ROA  
R/O  
S1  
S0  
R3  
R2  
R1  
R0  
SDW  
R/W  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
BIT  
NAME  
SDW  
RESET  
FUNCTION  
This bit enables/disables boot ROM. (Shadow the ROM).  
0
0
SDW = 0 When clear, the MCU executes from the 10K boot-ROM space. The boot ROM appears in two  
locations: 0000 and 8000h. The 16K RAM is mapped to XDATA space; therefore, read/write  
operation is possible. This bit is set by the MCU after the RAM load is completed. MCU cannot  
clear this bit; it is cleared on power-up reset or watchdog time-out reset.  
SDW = 1 WhensetbytheMCU,the10Kboot-ROMmapstolocation8000h,andthe16KRAMismapped  
to code space, starting at location 0000h. At this point, the MCU executes from RAM, and the  
write operation is disabled (no write operation is possible in code space).  
41  
65  
R[3:0]  
S[1:0]  
No effect  
No effect  
These bits reflect the device revision number.  
Code space size. These bits define the ROM or RAM code-space size (ROA bit defines ROM or RAM).  
These bits are permanently set and are not affected by reset (see Table 41).  
00 = 4K bytes code space size  
01 = 8K bytes code space size  
10 = 16K bytes code space size  
11 = 32K bytes code space size  
7
ROA  
No effect  
ROM or RAM version. This bit indicates whether the code space is RAM or ROM based. This bit is  
permanently set and is not affected by reset (see Table 41).  
ROA = 0 Code space is ROM  
ROA = 1 Code space is RAM  
Table 41. ROM/RAM Size Definition Table  
ROMS REGISTER  
BOOT ROM  
RAM CODE  
ROM CODE  
ROA  
S1  
0
S0  
0
0
0
0
1
1
1
1
1
None  
None  
None  
None  
10K  
None  
None  
4K  
8K  
0
1
1
0
None  
16K (reserved)  
32K (reserved)  
None  
1
1
None  
0
0
4K  
0
1
10K  
8K  
None  
1
0
10K  
16K  
None  
1
1
10K  
32K (reserved)  
None  
4.1.2 Boot Operation (MCU Firmware Loading)  
Since the code space is in RAM (with the exception of the boot ROM), the TUSB3410 firmware must be loaded from  
2
2
an external source. Two sources are available for booting: one from an external serial E PROM connected to the I C  
bus and the other from the host via the USB. On device reset, the SDW bit (in ROMS register) and CONT bit (in  
USBCTL: USB control register) are cleared. This configures the memory space to boot mode (see Memory Map) and  
keeps the device disconnected from the host. The first instruction is fetched from location 0000h (which is in the 10K  
ROM). The 16K RAM is mapped to XDATA space (location 0000h). The MCU executes a read from an external  
2
E PROM and tests whether it contains the code (by testing for boot signature). If it contains the code, the MCU reads  
2
from E PROM and writes to the 16K RAM in XDATA space. If it does not contain the code, the MCU proceeds to boot  
from the USB.  
42  
Once the code is loaded, the MCU sets SDW = 1. This switches the memory map to normal mode; i.e. the 16K RAM  
is mapped to code space, and the MCU starts executing from location 0000h. Once the switch is done, the MCU sets  
CONT = 1 (in the USBCTL register). This connects the device to the USB and results in normal USB device  
enumeration.  
4.1.3 WDCSR: Watchdog Timer, Control, and Status Register (Addr:FF93)  
A watchdog timer (WDT) with 1-ms clock is provided. If this register is not accessed for a period of 128 ms, the WDT  
counter resets the MCU. (see Figure 51). The watchdog timer is enabled by default and can be disabled by writing  
a pattern of 101010 into the WDD[5:0] bits.  
7
6
5
4
3
2
1
0
ROA  
R/W  
S1  
S0  
R3  
R2  
R1  
R0  
SDW  
W/O  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BIT  
NAME  
WDT  
RESET  
FUNCTION  
0
51  
6
0
MCU must write a 1 to this bit to prevent the WDT from resetting the MCU. If MCU does not write a 1  
in a period of 128 ms, the WDT resets the device. Writing a 0 has no effect on the WDT. (WDT is a  
7-bit counter using a 1-ms CLK). This bit is read as 0.  
WDD[5:1]  
WDR  
00000  
0
These bits are used to disable the watchdog timer. For the timer to be disabled these bits must be set  
to 10101 and WDD[0] must also be set to 0. If any other pattern is present, the watchdog timer is in  
operation.  
Watchdog reset indication bit. This bit indicates if the reset occurred due to power-on reset or  
watchdog timer reset.  
WDR = 0  
WDR = 1  
A power-up reset occurred  
A USB reset or watchdog time-out reset occurred. To clear this bit, the MCU must write a 1.  
Writing a 0 has no effect.  
7
WDD[0]  
1
This bit is one of the disable bits for the watchdog timer. This bit must be cleared in order for the  
watchdog timer to be disabled.  
4.2 Buffers + I/O RAM Map  
The address range from F800 to FFFF (2K bytes) is reserved for data buffers, setup packet, endpoint descriptors  
block (EDB), and all I/O. There are 128 locations reserved for MMR (memory mapped registers). Table 42  
represents the XDATA space allocation and access restriction for the DMA, UBM, and MCU.  
Table 42. XDATA Space  
DESCRIPTION  
ADDRESS RANGE  
UBM ACCESS  
DMA ACCESS  
MCU ACCESS  
FFFF  
FF80  
Internal MMRs  
(Memory Mapped Registers)  
No  
No  
Yes  
(Only EDB-0)  
(only Data reg. and EDB-0)  
FF7F  
FF08  
EDB  
Only for EDB update  
Only for EDB update  
Yes  
Yes  
Yes  
Yes  
Yes  
(Endpoint Descriptors Block)  
FF07  
FF00  
Setup Packet  
Input Endpoint-0 Buffer  
Output Endpoint-0 Buffer  
Data Buffers  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
FEFF  
FEF8  
FEF7  
FEF0  
FEEF  
F800  
43  
Table 43. Memory Mapped Registers Summary (XDATA Range = FF80 FFFF)  
ADDRESS  
FFFF  
FFFE  
FFFD  
FFFC  
FFFB  
FFFA  
FFF9  
FFF8  
FFF7  
FFF6  
FFF5  
REGISTER  
FUNADR  
DESCRIPTION  
Function address register  
USBSTA  
USBMSK  
USBCTL  
MODECNFG  
DEVVIDH  
DEVVIDL  
DEVPIDH  
DEVPIDL  
DEVREVH  
DEVREVL  
RESERVED  
I2CADR  
I2CDATI  
I2CDATO  
I2CSTA  
USB status register  
USB interrupt mask register  
USB control register  
Mode configuration register  
Device custom VID high byte register  
Device custom VID low byte register  
Device custom PID high byte register  
Device custom PID low byte register  
Device custom revision number high byte register  
Device custom revision number low byte register  
2
I C-port address register  
FFF3  
FFF2  
FFF1  
FFF0  
FFEF  
FFEE  
FFED  
FFEC  
FFEB  
FFEA  
FFE9  
FFE8  
2
I C-port data input register  
2
I C-port data output register  
2
I C-port status register  
SERNUM7  
SERNUM6  
SERNUM5  
SERNUM4  
SERNUM3  
SERNUM2  
SERNUM1  
SERNUM0  
RESERVED  
DMACSR3  
DMACDR3  
RESERVED  
DMACSR1  
DMACDR1  
RESERVED  
MASK  
Serial number byte 7 register  
Serial number byte 6 register  
Serial umber byte 5 register  
Serial number byte 4 register  
Serial number byte 3 register  
Serial number byte 2 register  
Serial number byte 1 register  
Serial number byte 0 register  
FFE5  
FFE4  
DMA3: Control and status register  
DMA3: Channel definition register  
FFE1  
FFE0  
DMA1: Control and status register  
DMA1: Channel definition register  
FFAB  
FFAA  
FFA9  
FFA8  
FFA7  
FFA6  
FFA5  
FFA4  
FFA3  
FFA2  
FFA1  
FFA0  
FF9E  
UART: Interrupt mask register  
UART: Xoff register  
XOFF  
XON  
UART: Xon register  
DLH  
UART: Divisor high-byte register  
UART: Divisor low-byte register  
UART: Modem status register  
UART: Line status register  
UART: Modem control register  
UART: Flow control register  
UART: Line control registers  
UART: Transmitter data registers  
UART: Receiver data registers  
GPIO: Pullup register for port 3  
DLL  
MSR  
LSR  
MCR  
FCRL  
LCR  
TDR  
RDR  
PUR_3  
44  
Table 43. Memory Mapped Registers Summary (XDATA Range = FF80 FFFF) (Continued)  
ADDRESS  
REGISTER  
RESERVED  
DESCRIPTION  
FF93  
WDCSR  
Watchdog timer control and status register  
Vector interrupt register  
FF92  
VECINT  
RESERVED  
ROMS  
FF90  
ROM shadow configuration register  
RESERVED  
OEPBCNT_0  
OEPCNFG_0  
IEPBCNT_0  
IEPCNFG_0  
FF83  
FF82  
FF81  
FF80  
Output endpoint_0: Byte count register  
Output endpoint_0: Configuration register  
Input endpoint_0: Byte count register  
Input endpoint_0: Configuration register  
Table 44. EDB Memory Locations  
ADDRESS  
REGISTER  
RESERVED  
IEPCNF_3  
DESCRIPTION  
FF58  
FF50  
FF48  
FF47  
Input endpoint_3: Configuration  
Input endpoint_2: Configuration  
Input endpoint_1: Configuration  
IEPCNF_2  
IEPCNF_1  
RESERVED  
FF20  
FF18  
FF10  
FF08  
FF07  
OEPCNF_3  
OEPCNF_2  
OEPCNF_1  
Output endpoint_3: Configuration  
Output endpoint_2: Configuration  
Output endpoint_1: Configuration  
(8 bytes)  
(8 bytes)  
Setup packet block  
FF00  
FEFF  
Input endpoint-0 buffer  
FEF8  
FEF7  
(8 bytes)  
Output endpoint-0 buffer  
Top of buffer space  
Buffer space  
FEF0  
FEEF  
TOPBUFF  
F800  
STABUFF  
Start of buffer space  
4.3 Endpoint Descriptor Block (EDB1 to EDB3)  
Data transfers between the USB, the MCU, and external devices that are defined by an endpoint descriptor Block  
(EDB). Three input- and three output-EDBs are provided. With the exception of EDB0 (I/O endpoint0), all EDBs  
are located in SRAM as per Table 43. Each EDB contains information describing the X- and Y-buffers. In addition,  
each EDB provides general status information.  
Table 45 illustrates the EDB entries for EDB1 to EDB3. EDB0 registers are described separately.  
45  
Table 45. EDB Entries in RAM (n = 1 to 3)  
OFFSET  
07  
ENTRY NAME  
EPSIZXY_n  
EPBCTY_n  
EPBBAY_n  
SPARE  
DESCRIPTION  
I/O Endpoint_n: X/Y-buffer size  
I/O Endpoint_n: Y-byte count  
I/O Endpoint_n: Y-buffer base address  
Not used  
06  
05  
04  
03  
SPARE  
Not used  
02  
EPBCTX_n  
EPBBAX_n  
EPCNF_n  
I/O Endpoint_n: X-byte count  
I/O Endpoint_n: X-buffer base address  
I/O Endpoint_n: Configuration  
01  
00  
4.3.1 OEPCNF_n: Output Endpoint Configuration (n = 1 to 3) (Addr:FF08, FF10, FF18)  
7
6
5
4
3
2
1
0
UBME  
R/W  
ISO=0  
R/W  
TOGLE  
R/W  
DBUF  
R/W  
STALL  
R/W  
USBIE  
R/W  
RSV  
R/W  
RSV  
R/W  
BIT  
NAME  
RSV  
RESET  
FUNCTION  
10  
x
x
Reserved = 0  
2
USBIE  
USB interrupt enable on transaction completion. Set/cleared by the MCU  
USBIE = 0 No interrupt  
USBIE = 1 Interrupt on transaction completion  
3
4
STALL  
0
x
USB stall condition indication. Set/cleared by the MCU  
STALL = 0 No stall  
Stall = 1  
USB stall condition. If set by the MCU, a STALL handshake is initiated and the bit is cleared  
by the MCU.  
DBUF  
Double-buffer enable. Set/cleared by the MCU  
DBUF = 0 Primary buffer only (X-buffer only)  
DBUF = 1 Toggle bit selects buffer  
5
6
TOGLE  
ISO  
x
x
USB toggle bit. This bit reflects the toggle sequence bit of DATA0, DATA1  
ISO = 0 Nonisochronous transfer. This bit must be cleared by the MCU since only nonisochronous transfer  
is supported  
7
UBME  
x
UBM enable/disable bit. Set/cleared by the MCU  
UBME = 0 UBM cannot use this endpoint  
UBME = 1 UBM can use this endpoint  
4.3.2 OEPBBAX_n: Output Endpoint X-Buffer Base Address (n = 1 to 3)  
7
6
5
4
3
2
1
0
A10  
R/W  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BIT  
70  
NAME  
RESET  
FUNCTION  
A[10:3]  
x
A[10:3] of X-buffer base address (padded with 3 LSB of zeros for a total of 11 bits). This value is set by the  
MCU. The UBM or DMA uses this value as the start-address of a given transaction. Note that the UBM or  
DMA does not change this value at the end of a transaction.  
46  
4.3.3 OEPBCTX_n: Output Endpoint X Byte Count (n = 1 to 3)  
7
6
5
4
3
2
1
0
NAK  
R/W  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BIT  
NAME  
C[6:0]  
RESET  
x
FUNCTION  
60  
X-buffer byte count:  
X000.0000b Count = 0  
X000.0001b Count = 1 byte  
:
:
X011.1111b Count = 63 bytes  
X100.0000b Count = 64 bytes  
Any value 100.0001b may result in unpredictable results.  
NAK =0 No valid data in buffer. Ready for host OUT  
NAK = 1 Buffer contains a valid packet from host (gives NAK response to Host OUT request)  
7
NAK  
x
4.3.4 OEPBBAY_n: Output Endpoint Y-Buffer Base Address (n = 1 to 3)  
7
6
5
4
3
2
1
0
A10  
R/W  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BIT  
70  
NAME  
RESET  
FUNCTION  
A[10:3]  
x
A[10:3] of Y-buffer base address (padded with 3 LSB of zeros for a total of 11 bits). This value is set by the  
MCU. The UBM or DMA uses this value as the start-address of a given transaction. Furthermore, UBM or  
DMA does not change this value at the end of a transaction.  
4.3.5 OEPBCTY_n: Output Endpoint Y-Byte Count (n = 1 to 3)  
7
6
5
4
3
2
1
0
NAK  
R/W  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BIT  
NAME  
C[6:0]  
RESET  
x
FUNCTION  
60  
Y-byte count:  
X000.0000b Count = 0  
X000.0001b Count = 1 byte  
:
:
X011.1111b Count = 63 bytes  
X100.0000b Count = 64 bytes  
Any value 100.0001b may result in unpredictable results.  
NAK =0 No valid data in buffer. Ready for host OUT  
NAK = 1 Buffer contains a valid packet from host (gives NAK response to Host OUT request)  
7
NAK  
x
47  
4.3.6 OEPSIZXY_n: Output Endpoint X-/Y-Buffer Size (n =1 to 3)  
7
6
5
4
3
2
1
0
RSV  
R/W  
S6  
S5  
S4  
S3  
S2  
S1  
S0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BIT  
NAME  
C[6:0]  
RESET  
x
FUNCTION  
60  
X- and Y-buffer size:  
0000.0000b Size = 0  
0000.0001b Size = 1 byte  
:
:
0011.1111b Size = 63 bytes  
0100.0000b Size = 64 bytes  
Any value 100.0001b may result in unpredictable results.  
7
RSV  
x
Reserved = 0  
4.3.7 IEPCNF_n: Input Endpoint Configuration (n = 1 to 3) (Addr:FF48, FF50, FF58)  
7
6
5
4
3
2
1
0
UBME  
R/W  
ISO=0  
R/W  
TOGLE  
R/W  
DBUF  
R/W  
STALL  
R/W  
USBIE  
R/W  
RSV  
R/W  
RSV  
R/W  
BIT  
NAME  
RSV  
RESET  
FUNCTION  
10  
x
x
Reserved = 0  
2
USBIE  
USB interrupt enable on transaction completion  
USBIE = 0 No interrupt  
USBIE = 1 Interrupt on transaction completion  
3
4
STALL  
0
x
USB stall condition indication. Set by the UBM but can be set/cleared by the MCU  
STALL = 0 No stall  
STALL = 1 USB stall condition. If set by the MCU a STALL handshake is initiated and the bit is cleared  
automatically.  
DBUF  
Double buffer enable  
DBUF = 0 Primary buffer only (X-buffer only)  
DBUF = 1 Toggle bit selects buffer  
5
6
TOGLE  
ISO  
x
x
USB toggle bit. This bit reflects the toggle sequence bit of DATA0, DATA1  
ISO = 0 Nonisochronous transfer. This bit must be cleared by the MCU since only nonisochronous  
transfer is supported  
7
UBME  
x
UBM enable/disable bit. Set/cleared by the MCU  
UBME = 0 UBM cannot use this endpoint  
UBME = 1 UBM can use this endpoint  
4.3.8 IEPBBAX_n: Input Endpoint X-buffer Base Address (n = 1 to 3)  
7
6
5
4
3
2
1
0
A10  
R/W  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BIT  
70  
NAME  
RESET  
FUNCTION  
A[10:3]  
x
A[10:3] of X-buffer base address (padded with 3 LSB of zeros for a total of 11 bits). This value is set by the  
MCU. The UBM or DMA uses this value as the start-address of a given transaction, but note that the UBM  
or DMA does not change this value at the end of a transaction.  
48  
4.3.9 IEPBCTX_n: Input Endpoint X-Byte Count (n = 1 to 3)  
7
6
5
4
3
2
1
0
NAK  
R/W  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BIT  
NAME  
C[6:0]  
RESET  
x
FUNCTION  
60  
X-Buffer byte count:  
X000.0000b Count = 0  
X000.0001b Count = 1 byte  
:
:
X011.1111b Count = 63 bytes  
X100.0000b Count = 64 bytes  
Any value 100.0001b may result in unpredictable results.  
7
NAK  
x
NAK = 0 Buffer contains a valid packet for host-IN transaction  
NAK = 1 Buffer is empty (gives NAK response to host-OUT request)  
4.3.10 IEPBBAY_n: Input Endpoint Y-Buffer Base Address (n = 1 to 3)  
7
6
5
4
3
2
1
0
A10  
R/W  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BIT  
70  
NAME  
RESET  
FUNCTION  
A[10:3]  
x
A[10:3] of Y-buffer base address (padded with 3 LSB of zeros for a total of 11 bits). This value is set by the  
MCU. The UBM or DMA uses this value as the start-address of a given transaction, but note that the UBM  
or DMA does not change this value at the end of a transaction.  
4.3.11 IEPBCTY_n: Input Endpoint Y-Byte Count (n = 1 to 3)  
7
6
5
4
3
2
1
0
NAK  
R/W  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BIT  
NAME  
C[6:0]  
RESET  
x
FUNCTION  
60  
Y-Byte count:  
X000.0000b Count = 0  
X000.0001b Count = 1 byte  
:
:
X011.1111b Count = 63 bytes  
X100.0000b Count = 64 bytes  
Any value 100.0001b may result in unpredictable results.  
NAK =0 Buffer contains a valid packet for host-IN transaction  
NAK = 1 Buffer is empty (gives NAK response to host-IN request)  
7
NAK  
x
49  
4.3.12 IEPSIZXY_n: Output Endpoint X-/Y-Buffer Size (n = 1 to 3)  
7
6
5
4
3
2
1
0
RSV  
R/W  
S6  
S5  
S4  
S3  
S2  
S1  
S0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BIT  
NAME  
C[6:0]  
RESET  
x
FUNCTION  
60  
X- and Y-buffer size:  
0000.0000b Size = 0  
0000.0001b Size = 1 byte  
:
:
0011.1111b Size = 63 bytes  
0100.0000b Size = 64 bytes  
Any value 100.0001b may result in unpredictable results.  
7
RSV  
x
Reserved = 0  
4.4 Endpoint-0 Descriptor Registers  
Unlike registers EDB1 to EDB3, which are defined as memory entries in SRAM, endpoint0 is described by a set  
of four registers (two for output and two for input). The registers and their respective addresses, used for EDB0  
description, are defined in Table 46. EDB0 has no base-address register, since these addresses are hardwired into  
FEF8 and FEF0. Note that the bit positions have been preserved to provide consistency with EDBn (n = 1 to 3).  
Table 46. Input/Output EDB-0 Registers  
ADDRESS  
REGISTER NAME  
DESCRIPTION  
BASE ADDRESS  
FEF0  
FF83  
FF82  
OEPBCNT_0  
OEPCNFG_0  
Output endpoint_0: Byte count register  
Output endpoint_0: Configuration register  
FF81  
FF80  
IEPBCNT_0  
IEPCNFG_0  
Output endpoint_0: Byte count register  
Output endpoint_0: Configuration register  
FEF8  
4.4.1 IEPCNFG_0: Input Endpoint-0 Configuration Register (Addr:FF80)  
7
6
5
4
3
2
1
0
UBME  
R/W  
RSV  
R/O  
TOGLE  
R/O  
RSV  
R/O  
STALL  
R/W  
USBIE  
R/W  
RSV  
R/O  
RSV  
R/O  
BIT  
NAME  
RSV  
RESET  
FUNCTION  
10  
0
0
Reserved = 0  
2
USBIE  
USB interrupt enable on transaction completion. Set/cleared by the MCU.  
USBIE = 0 No interrupt  
USBIE = 1 Interrupt on transaction completion  
3
4
STALL  
0
0
USB stall condition indication. Set/cleared by the MCU  
STALL = 0 No stall  
STALL = 1 USB stall condition. If set by the MCU a STALL handshake is initiated and the bit is cleared  
automatically by the next setup transaction.  
RSV  
Double buffer enable  
DBUF = 0 Primary buffer only (X-buffer only)  
DBUF = 1 Toggle bit selects buffer  
5
6
7
TOGLE  
RSV  
0
0
0
USB toggle bit. This bit reflects the toggle sequence bit of DATA0, DATA1.  
Reserved = 0  
UBME  
UBM enable/disable bit. Set/cleared by the MCU  
UBME = 0 UBM cannot use this endpoint  
UBME = 1 UBM can use this endpoint  
4.4.2 IEPBCNT_0: Input Endpoint-0 Byte Count Register (Addr:FF81)  
7
6
5
4
3
2
1
0
410  
NAK  
RSV  
RSV  
RSV  
C3  
C2  
C1  
C0  
R/W  
R/O  
R/O  
R/O  
R/W  
R/W  
R/W  
R/W  
BIT  
NAME RESET  
FUNCTION  
30  
C[3:0]  
0h  
Byte count:  
0000b Count = 0  
:
:
1111b Count = 7  
1000b Count = 8  
1001b to 1111b are reserved. (If used, they default to 8)  
64  
rsv  
0
1
Reserved = 0  
7
NAK  
NAK =0  
Buffer contains a valid packet for host-IN transaction  
NAK = 1 Buffer is empty (gives NAK response to host-IN request)  
4.4.3 OEPCNFG_0: Output Endpoint-0 Configuration Register (Addr:FF82)  
7
6
5
4
3
2
1
0
UBME  
R/W  
RSV  
R/O  
TOGLE  
R/O  
RSV  
R/O  
STALL  
R/W  
USBIE  
R/W  
RSV  
R/O  
RSV  
R/O  
BIT  
10  
2
NAME RESET  
FUNCTION  
RSV  
0
0
Reserved = 0  
USBIE  
USB interrupt enable on transaction completion. Set/cleared by the MCU.  
USBIE = 0 No interrupt  
USBIE = 1 Interrupt on transaction completion  
3
STALL  
0
USB stall condition indication. Set/cleared by the MCU  
STALL = 0 No stall  
STALL = 1 USB stall condition. If set by the MCU, a STALL handshake is initiated and the bit is cleared  
automatically.  
4
5
6
7
RSV  
0
0
0
0
Reserved = 0  
TOGLE  
RSV  
USB \toggle bit. This bit reflects the toggle sequence bit of DATA0, DATA1.  
Reserved = 0  
UBME  
UBM enable/disable bit. Set/cleared by the MCU  
UBME = 0 UBM cannot use this endpoint  
UBME = 1 UBM can use this endpoint  
4.4.4 OEPBCNT_0: Output Endpoint-0 Byte Count Register (Addr:FF83)  
7
6
5
4
3
2
1
0
NAK  
R/W  
RSV  
R/O  
RSV  
R/O  
RSV  
R/O  
C3  
C2  
C1  
C0  
R/O  
R/O  
R/O  
R/O  
BIT  
NAME RESET  
FUNCTION  
30  
C[3:0]  
0h  
Byte count:  
0000b Count = 0  
:
:
1111b Count = 7  
1000b Count = 8  
1001b to 1111b are reserved  
64  
rsv  
0
1
Reserved = 0  
7
NAK  
NAK =0  
No valid data in buffer. Ready for host OUT  
NAK = 1 Buffer contains a valid packet from host (gives NAK response to host-IN request).  
411  
412  
5 USB  
5.1 USB Registers  
5.1.1 FUNADR: Function Address Register (Addr:FFFF)  
This register contains the device function address.  
7
6
5
4
3
2
1
0
RSV  
R/O  
FA6  
R/W  
FA5  
R/W  
FA4  
R/W  
FA3  
R/W  
FA2  
R/W  
FA1  
R/W  
FA0  
R/W  
BIT  
NAME  
RESET  
FUNCTION  
60  
FA[6:0]  
0
These bits define the current device address assigned to the function. The MCU writes a value to this  
register because of the SET-ADDRESS host command.  
7
RSV  
0
Reserved = 0  
5.1.2 USBSTA: USB Status Register (Addr:FFFE)  
All bits in this register are set by the hardware and are cleared by the MCU when writing a 1 to the proper bit location  
(writing a 0 has no effect). In addition, each bit can generate an interrupt if its corresponding mask bit is set (R/C  
notation indicates read and clear only by the MCU).  
7
6
5
4
3
2
1
0
RSTR  
R/C  
SUSR  
R/C  
RESR  
R/C  
RSV  
R/O  
URRI  
R/C  
SETUP  
R/C  
WAKEUP  
R/C  
STPOW  
R/C  
BIT  
NAME  
RESET  
FUNCTION  
0
STPOW  
0
SETUP Overwrite bit. Set by hardware when setup packet is received while there is already a packet in  
the setup buffer.  
STPOW = 0  
STPOW = 1  
MCU can clear this bit by writing a 1 (writing 0 has no effect).  
SETUP overwrite  
1
2
WAKEUP  
SETUP  
0
0
Remote wakeup bit  
WAKEUP = 0 The MCU can clear this bit by writing a 1 (writing 0 has no effect).  
WAKEUP = 1 Remote wakeup request from WAKEUP pin  
SETUP transaction received bit. As long as SETUP is 1, IN and OUT on endpoint0 are NAKed,  
regardless of their real NAK bits value.  
SETUP = 0  
SETUP = 1  
MCU can clear this bit by writing a 1 (writing 0 has no effect).  
SETUP transaction received  
3
URRI  
0
UART RI status bit a rising edge causes this bit to be set.  
URRI = 0  
URRI = 1  
URRI = 0 The MCU can clear this bit by writing a 1 (writing 0 has no effect).  
URRI = 1 Ring detected, which is used to wake the chip up (bring it out of suspend).  
4
5
RSV  
0
0
Reserved  
RESR  
Function resume request bit  
RESR = 0  
RESR = 1  
The MCU can clear this bit by writing a 1 (writing 0 has no effect).  
Function resume is detected  
6
7
SUSR  
RSTR  
0
0
Function suspended request bit. This bit is set in response to a global or selective suspend condition.  
FSUSP = 0  
FSUSP = 1  
The MCU can clear this bit by writing a 1 (writing 0 has no effect).  
Function suspend is detected  
Function reset request bit. This bit is set in response to host initiating a port reset. This bit is not  
affected by the USB function reset.  
FRST = 0  
FRST = 1  
The MCU can clear this bit by writing a 1 (writing 0 has no effect).  
Function reset is detected  
51  
5.1.3 USBMSK: USB Interrupt Mask Register (Addr:FFFD)  
7
6
5
4
3
2
1
0
RSTR  
R/W  
SUSR  
R/W  
RESR  
R/W  
RSV  
R/O  
UR1RI  
R/W  
SETUP  
R/W  
WAKEUP  
R/W  
STPOW  
R/W  
BIT  
NAME  
RESET  
FUNCTION  
0
1
2
3
STPOW  
0
0
0
0
SETUP overwrite interrupt-enable bit  
STPOW = 0  
STPOW = 1  
STPOW interrupt disabled  
STPOW interrupt enabled  
WAKEUP  
SETUP  
UR1RI  
Remote wakeup interrupt enable bit  
WAKEUP = 0 WAKEUP interrupt disable  
WAKEUP = 1 WAKEUP interrupt enable  
SETUP interrupt enable bit  
SETUP = 0  
SETUP = 1  
SETUP interrupt disabled  
SETUP interrupt enabled  
UART 1 R1 interrupt enable bit  
URRI = 0  
URRI = 1  
UR1RI interrupt disable  
UR1RI interrupt enable  
4
5
RSV  
0
0
Reserved  
RESR  
Function resume interrupt enable bit  
RESR = 0  
RESR = 1  
Function resume interrupt disabled  
Function resume interrupt enabled  
6
7
SUSR  
RSTR  
0
0
Function suspend interrupt enable  
FSUSP = 0  
FSUSP = 1  
Function suspend interrupt disabled  
Function suspend interrupt enabled  
Function reset interrupt bit. This bit is not affected by USB function reset.  
FRST = 0  
FRST = 1  
Function reset interrupt disabled  
Function reset interrupt enabled  
52  
5.1.4 USBCTL: USB Control Register (Addr:FFFC)  
Unlike the rest of the registers, this register is cleared by the power-up reset signal only. The USB reset cannot reset  
this register (see Figure 51).  
7
6
5
4
3
2
1
0
R/W  
R/O  
R/W  
R/W  
R/W  
R/O  
R/W  
R/W  
BIT  
NAME  
DIR  
RESET  
0
0
As a response to a setup packet, the MCU decodes the request and sets/clears this bit to reflect the data transfer  
direction.  
DIR = 0  
DIR = 1  
USB data-OUT transaction (from host to TUSB3410)  
USB data-IN transaction (from TUSB3410 to host)  
1
SIR  
0
SETUPinterrupt-statusbit. ThisbitiscontrolledbytheMCUtoindicatetothehardwarewhentheSETUPinterrupt  
is being served.  
SIR = 0  
SIR = 1  
SETUP interrupt is not served. The MCU clears this bit before exiting the SETUP interrupt routine.  
SETUP interrupt is in progress. The MCU sets this bit when servicing the SETUP interrupt.  
2
3
4
RSV  
0
0
1
Reserved = 0  
Reserved = 0  
RSV  
FRSTE  
Function reset-connection bit. This bit connects/disconnects the USB function reset to/from the MCU reset.  
FRSTE = 0 Function reset is not connected to MCU reset  
FRSTE = 1 Function reset is connected to MCU reset  
5
6
7
RWUP  
IREN  
0
0
0
Device remote wakeup request. This bit is set by the MCU and is cleared automatically.  
RWUP = 0  
RWUP = 1  
Writing a 0 to this bit has no effect  
When MCU writes a 1, a remote-wakeup pulse is generated.  
IR mode enable. This bit is set and cleared by firmware.  
IREN = 0  
IREN = 1  
IR encoder/decoder is disabled, UART mode is selected  
IR encoder/decoder is enabled, UART mode is deselected  
CONT  
Connect/disconnect bit  
CONT = 0  
CONT = 1  
Upstream port is disconnected. Pullup disabled.  
Upstream port is connected. Pullup enabled.  
53  
5.1.5 MODECNFG: Mode Configuration Register (Addr:FFFB)  
This register is cleared by the power-up reset signal only. The USB reset cannot reset this register.  
7
6
5
4
3
2
1
0
RSV  
R/O  
RSV  
R/O  
RSV  
R/O  
RSV  
R/O  
CLKSLCT  
R/W  
CLKOUTEN  
R/W  
SOFTSW  
R/W  
TXCNTL  
R/W  
BIT  
NAME  
TXCNTL  
RESET  
FUNCTION  
Transmit output control: Hardware or firmware switching select for 3-state serial output buffer.  
0
1
2
3
0
TXCNTL = 0  
TXCNTL = 1  
Hardware automatic switching is selected  
Firmware toggle switching is selected  
SOFTSW  
0
0
0
Soft switch: Firmware controllable 3-state output buffer enable for serial output pin.  
SOFTSW = 0  
SOFTSW = 1  
Serial output buffer is enabled  
Serial output buffer is disabled  
CLKOUTEN  
CLKSLCT  
Clock output enable: Enable/disable the clock output at CLKOUT terminal.  
CLKOUTEN = 0 Clock output is disabled. Device drives low at CLKOUT terminal.  
CLKOUTEN = 1 Clock output is enabled  
Clock output source select: Select between 3.556-MHz fixed clock or UART baud out clock as output  
clock source.  
CLKSLCT = 0  
CLKSLCT = 1  
UART baud out clock is selected as clock output  
Fixed 3.556-MHz free running clock is selected as clock output  
47  
RSV  
0
Reserved  
Clock Output Control  
The CLKOUTEN bit in the Mode Configuration Register (MODECNFG) is used to enable or disable the clock output  
at the CLKOUT terminal of the TUSB3410. The power up default of CLKOUT is disabled to ensure the clock is not  
applied to the smart card until it is powered. Firmware can write a 1 to enable the clock output if needed.  
The CLKSLCT bit in the MODECNFG register is used to select the output clock source from either a fixed 3.556-MHz  
free-running clock or the UART BaudOut clock.  
5.1.6 Vendor ID/Product ID  
USBIF and Microsoft WHQL certification requires that end equipment makers use their own unique vendor ID and  
product ID for each product (model). OEMs cannot use silicon vendors (for instance, TIs default) VID/PID in their  
end products. A unique VID/PID combination will avoid potential driver conflicts and enable logo certification. See  
www.usb.org for more information.  
5.1.7 SERNUM7: Device Serial Number Register (Byte 7) (Addr:FFEF)  
Each TUSB3410 chip has a unique 64-bit serial die id number, which is generated during manufacturing. The die id  
is incremented sequentially, however there is no assurance without skip in the die id number. The device serial  
number register utilizes (mirrors) this unique 64-bit serial die id number.  
After power-up reset, this read-only register (SERNUM7) contains the most significant byte (byte 7) of the complete  
64-bit device serial number. The USB reset cannot reset this register.  
7
6
5
4
3
2
1
0
D63  
R/O  
D62  
R/O  
D61  
R/O  
D60  
R/O  
D59  
R/O  
D58  
R/O  
D57  
R/O  
D56  
R/O  
BIT  
70  
NAME  
D[7:0]  
RESET  
Device serial number byte 7 value  
FUNCTION  
Device serial number byte 7 value  
54  
Procedure to load device serial number value in shared RAM:  
After power-up reset, boot code copies the predefined USB descriptors to shared RAM. As a result, the  
default serial number hard-coded in the boot code (0x00 hex) is copied to the shared RAM data space.  
Once the boot code finishes copying descriptors, it performs a read to the SERNUM7 to SERNUM0  
registers and overwrites the device serial number value stored in the shared RAM with the one found in the  
SERNUM7 to SERNUM0 registers.  
Once the boot code finishes the read to SERNUM7 SERNUM0 registers, it then checks if EEPROM is  
present on the I C port. If the EEPROM is present and contains a valid device serial number as part of the  
USB device descriptor information stored in EEPROM, the boot code overwrites the serial number value  
stored in shared RAM with the one found in EEPROM. Otherwise, the device serial number value stored  
in shared RAM stays unchanged from previous step.  
2
In summary, the serial number value in external EEPROM has the highest priority to be loaded into shared  
RAM data space. The serial number value stored in shared RAM is used as part of the valid device  
descriptor information during normal operation.  
5.1.8 SERNUM6: Device Serial Number Register (Byte 6) (Addr:FFEE)  
The device serial number register utilizes (mirrors) this unique 64-bit serial die id number.  
After power-up reset, this read-only register (SERNUM6) contains byte 6 of the complete 64-bit device serial number.  
The USB reset cannot reset this register.  
7
6
5
4
3
2
1
0
D55  
R/O  
D54  
R/O  
D53  
R/O  
D52  
R/O  
D51  
R/O  
D50  
R/O  
D49  
R/O  
D48  
R/O  
BIT  
70  
NAME  
D[7:0]  
RESET  
Device serial number byte 6 value  
FUNCTION  
Device serial number byte 6 value  
NOTE: See the same procedure described in SERNUM7 register for procedure to load device serial number into the shared RAM.  
5.1.9 SERNUM5: Device Serial Number Register (Byte 5) (Addr:FFED)  
The device serial number register utilizes (mirrors) this unique 64-bit serial die id number.  
After power-up reset, this read-only register (SERNUM5) contains byte 5 of the complete 64-bit device serial number.  
The USB reset cannot reset this register.  
7
6
5
4
3
2
1
0
D47  
R/O  
D46  
R/O  
D45  
R/O  
D44  
R/O  
D43  
R/O  
D42  
R/O  
D41  
R/O  
D40  
R/O  
BIT  
70  
NOTE: See the same procedure described in SERNUM7 register for procedure to load device serial number into the shared RAM.  
NAME  
RESET  
FUNCTION  
D[7:0]  
Device serial number byte 5 value  
Device serial number byte 5 value  
55  
5.1.10 SERNUM4: Device Serial Number Register (Byte 4) (Addr:FFEC)  
The device serial number register utilizes (mirrors) this unique 64-bit serial die id number.  
After power-up reset, this read-only register (SERNUM4) contains byte 4 of the complete 64-bit device serial number.  
The USB reset cannot reset this register.  
7
6
5
4
3
2
1
0
D39  
R/O  
D38  
R/O  
D37  
R/O  
D36  
R/O  
D35  
R/O  
D34  
R/O  
D33  
R/O  
D32  
R/O  
BIT  
70  
NAME  
D[7:0]  
RESET  
Device serial number byte 4 value  
FUNCTION  
Device serial number byte 4 value  
NOTE: See the same procedure described in SERNUM7 register for procedure to load device serial number into the shared RAM.  
5.1.11 SERNUM3: Device Serial Number Register (Byte 3) (Addr:FFEB)  
The device serial number register utilizes (mirrors) this unique 64-bit serial die id number.  
After power-up reset, this read-only register (SERNUM3) contains byte 3 of the complete 64-bit device serial number.  
The USB reset cannot reset this register.  
7
6
5
4
3
2
1
0
D31  
R/O  
D30  
R/O  
D29  
R/O  
D28  
R/O  
D27  
R/O  
D26  
R/O  
D25  
R/O  
D24  
R/O  
BIT  
70  
NAME  
D[7:0]  
RESET  
Device serial number byte 3 value  
FUNCTION  
Device serial number byte 3 value  
NOTE: See the same procedure described in SERNUM7 register for procedure to load device serial number into the shared RAM.  
5.1.12 SERNUM2: Device Serial Number Register (Byte 2) (Addr:FFEA)  
The device serial number register utilizes (mirrors) this unique 64-bit serial die id number.  
After power-up reset, this read-only register (SERNUM2) contains byte 2 of the complete 64-bit device serial number.  
The USB reset cannot reset this register.  
7
6
5
4
3
2
1
0
D23  
R/O  
D22  
R/O  
D21  
R/O  
D20  
R/O  
D19  
R/O  
D18  
R/O  
D17  
R/O  
D16  
R/O  
BIT  
70  
NAME  
D[7:0]  
RESET  
FUNCTION  
Device serial number byte 2 value  
0
NOTE: See the same procedure described in SERNUM7 register for procedure to load device serial number into the shared RAM.  
5.1.13 SERNUM1: Device Serial Number Register (Byte 1) (Addr:FFE9)  
The device serial number register utilizes (mirrors) this unique 64-bit serial die id number.  
After power-up reset, this read-only register (SERNUM1) contains byte 1 of the complete 64-bit device serial number.  
The USB reset cannot reset this register.  
7
6
5
4
3
2
1
0
D15  
R/O  
D14  
R/O  
D13  
R/O  
D12  
R/O  
D11  
R/O  
D10  
R/O  
D9  
D8  
R/O  
R/O  
BIT  
70  
NOTE: See the same procedure described in SERNUM7 register for procedure to load device serial number into the shared RAM.  
NAME  
RESET  
FUNCTION  
D[7:0]  
Device serial number byte 1 value  
Device serial number byte 1 value  
56  
5.1.14 SERNUM0: Device Serial Number Register (Byte 0) (Addr:FFE8)  
The device serial number register utilizes (mirrors) this unique 64-bit serial die id number.  
After power-up reset, this read-only register (SERNUM0) contains byte 0 of the complete 64-bit device serial number.  
The USB reset cannot reset this register.  
7
6
5
4
3
2
1
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
BIT  
70  
NAME  
D[7:0]  
RESET  
Device serial number byte 0 value  
FUNCTION  
Device serial number byte 0 value  
NOTE: See the same procedure described in SERNUM7 register for procedure to load device serial number into the shared RAM.  
5.1.15 Function Reset And Power-Up Reset Interconnect  
Figure 51 represents the logical connection of the USB-function reset (USBR) and power-up reset (RESET) pins.  
The internal RESET signal is generated from the RESET pin (PURS signal) or from the USB reset (USBR signal).  
The USBR can be enabled or disabled by the FRSTE bit in the USBCTL register (on power up, FRSTE = 0). The  
internal RESET is used to reset all registers and logic, with the exception of the USBCTL and GLOBCTL registers  
which are cleared by the PURS signal only.  
USBCTL Register  
To Internal MMRs  
GLOBCTL Register  
MCU  
RESET  
PURS  
USBR  
RESET  
USB Function Reset  
G2  
FRSTE  
WDT Reset  
WDD[4:0]  
Figure 51. Reset Diagram  
57  
5.1.16 Pullup Resistor Connect/Disconnect  
The TUSB3410 enumeration can be activated by the MCU (there is no need to disconnect the cable physically).  
Figure 52 represents the implementation of the TUSB3410 connect and disconnect from a USB up-stream port.  
When CONT = 1 in the USBCTL register, the CMOS driver sources VDD to the pullup resistor (PUR pin) presenting  
a normal connect condition to the USB hub (high speed). When CONT = 0, the PUR pin is driven low. In this state,  
the 1.5-kresistor is connected to GND, resulting in the device disconnection state. The PUR driver is a CMOS driver  
that can provide (VDD 0.1 V) minimum at 8-mA source current.  
CMOS  
PUR  
CONT-Bit  
1.5 kΩ  
D+  
DP0  
DM0  
D–  
15 kΩ  
HUB  
TUSB3410  
Figure 52. Pullup Resistor Connect/Disconnect Circuit  
58  
6 DMA Controller  
Table 61 outlines the DMA channels and their associated transfer directions. Two channels are provided for data  
transfer between the host and the UART.  
Table 61. DMA Controller Registers  
DMA CHANNEL  
DMA1  
TRANSFER DIRECTION  
Host to UART  
COMMENTS  
DMA writes to UART TDR register  
DMA reads from UART RDR register  
DMA3  
UART to host  
6.1 DMA Controller Registers  
Each DMA channel can point to one of three EDBs (EDB[3:1]) and transfer data to/from the UART channel. The DMA  
can move data from a given out-point buffer (defined by EDB) to the destination port. Similarly, the DMA can move  
data from a port to a given input-endpoint buffer. Two modes of DMA transfers are supported: burst and continuous.  
Burst (CNT = 0) Mode  
The DMA stops at the end of a block-data transfer (or if an error condition occurred) and interrupts the MCU.  
It is the responsibility of the MCU to update the X/Y bit and the NAK bit in the EDB.  
Continuous (CNT = 1) Mode  
At the end of a block transfer the DMA updates the byte count and NAK bit in the EDB when receiving. In  
addition, it uses the X/Y bit to switch automatically, without interrupting the MCU (the X/Y bit toggle is  
performed by the UBM). The DMA stops only when a time-out or error condition occurs. When the DMA is  
transmitting (from the X/Y buffer) it continues alternating between X/Y buffers until it detects a byte count  
smallerthanthebuffersize(buffersizeistypically64bytes). Atthatpointitcompletesthetransferandstops.  
61  
6.1.1 DMACDR1: DMA Channel Definition Register (UART Transmit Channel) (Addr:FFE0)  
These registers are used to define the EDB number that the DMA uses for data transfer to the UARTS. In addition,  
these registers define the data transfer direction and selects X or Y as the transaction buffer.  
7
6
5
4
3
2
1
0
EN  
R/W  
INE  
R/W  
CNT  
R/W  
XY  
T/R  
R/O  
E2  
E1  
E0  
R/W  
R/W  
R/W  
R/W  
BIT NAME RESET  
FUNCTION  
20 E[2:0]  
0
0
Endpoint descriptor pointer. This field points to a set of EDB registers that is to be used for a given transfer.  
3
T/R  
This bit is always zero, indicating that the DMA data transfer is from SRAM to the UART TDR register. (The MCU  
cannot change this bit.)  
4
XY  
0
0
X/Y buffer select bit. Valid only when CNT = 0  
XY = 0  
XY = 1  
Next buffer to transmit/receive is the X buffer  
Next buffer to transmit/receive is the Y buffer  
5
CNT  
DMA continuous transfer control bit. This bit defines the mode of the DMA transfer.  
CNT = 0 Burst mode: The DMA stops the transfer when the byte count is zero or when a partial packet has been  
received (byte count < 64). At the end of transfer, the high-to-low transition of EN interrupts the MCU (if  
enabled). In this mode, the X/Y bit is set by the MCU to define the current buffer (X or Y).  
CNT = 1 Continuous mode: In this mode, the DMA and UBM alternate between the X- and Y-buffers. The DMA  
sets the X/Y bit and the UBM uses it for the transfer. The DMA alternates between the X-/Y-buffers and  
continues transmitting (from X-/Y-buffer) without MCU intervention. The DMA terminates, and interrupts  
the MCU, under the following conditions:  
1. When the UBM byte count < buffer size (in EDB), the DMA transfers the partial packet and interrupt  
the MCU on completion.  
2. Transaction timer expires. The DMA interrupts the MCU.  
6
7
INE  
EN  
0
0
DMA Interrupt enable/disable bit. This bit is used to enable/disable the interrupt on transfer completion.  
INE = 0  
INE = 1  
Interrupt is disabled. In addition, PPKT and TXFT do not clear the EN-bit and the DMAC is not disabled.  
Enables the EN interrupt. When this bit is set, the DMA interrupts the MCU on a 1 to 0 transition of the  
EN bit. (When transfer is completed, EN = 0)  
DMA channel enable bit. The MCU sets this bit to start the DMA transfer. When the transfer completes, or when it  
is terminated due to error, this bit is cleared. The 1 to 0 transition of this bit generates an interrupt (if interrupt is  
enabled).  
EN = 0  
DMAishalted. TheDMAishaltedwhenthebytecountreacheszeroortransactiontime-outoccurs. When  
halted, the DMA updates the byte count, sets NAK = 0 in OEDB, and interrupts the MCU (if INE = 1).  
EN = 1  
Setting this bit starts the DMA transfer.  
62  
6.1.2 DMACSR1: DMA Control And Status Register (UART Transmit Channel) (Addr:FFE1)  
This register is used to define the transaction time-out value. In addition, it contains a completion code that reports  
any errors or a time-out condition.  
7
6
5
4
3
2
1
0
TEN  
R/W  
C4  
C3  
C2  
C1  
C0  
TXFT  
R/C  
PPKT  
R/C  
R/W  
R/W  
R/W  
R/W  
R/W  
BIT  
NAME RESET  
FUNCTION  
Partial packet condition bit. This bit is set by the DMA and cleared by the MCU (see Table 62).  
0
PPKT  
TXFT  
C[4:0]  
0
0
0
PPKT = 0  
PPKT = 1  
No partial-packet condition  
Partial-packet condition detected. When IEN = 0, this bit does not clear the EN bit in DMACDR;  
therefore, the DMAC stays enabled, ready for the next transaction. Clears when MCU writes a 1.  
Writing a 0 has no effect.  
1
Transfer time-out condition (see Table 62)  
TXFT = 0  
TXFT = 1  
DMA stopped transfer without time-out  
DMA stopped due to transaction time-out. When IEN = 0, this bit does not clear the EN bit in  
DMACDR; therefore, the DMAC stays enabled, ready for the next transaction. DMA clears when  
the MCU writes a 1. Writing a 0 has no effect.  
62  
This field is used to define the transaction time-out value in 1-ms increments. This value is loaded to a down  
counter every time a byte transfer occurs. The down counter is decremented every SOF pulse (1 ms). If the  
counter decrements to zero it sets TXFT = 1 (in DMACSR register) and halts the DMA transfer. The counter starts  
counting only when TEN = 1 and EN = 1 (in DMACDR) and the first byte has been transmitted (see Figure 61).  
00000 = 0-ms time-out  
:
:
11111 = 31-ms time-out  
7
TEN  
0
Transaction time-out counter enable/disable bit.  
TEN = 0  
TEN = 1  
Counter is disabled (does not time-out)  
Counter is enabled  
Table 62. DMA OUT-Termination Condition  
OUT TERMINATION  
UART partial packet  
UART time-out  
TXFT  
PPKT  
COMMENTS  
0
1
1
0
This condition occurs when the host sends a partial packet.  
This condition occurs when X- and Y-output buffers are full and the UART transmitter cannot  
transmit (due to flow-control restriction) or if host has no data to transmit.  
C[4:0]  
SOF  
TEN  
EN  
Counter  
Load  
TXFT  
Figure 61. Transaction Time-Out Diagram  
63  
6.1.3 DMACDR3: DMA Channel Definition Register (UART Receive Channel) (Addr:FFE4)  
These registers are used to define the EDB number that the DMA uses for data transfer from the UARTS. In addition,  
these registers define the data transfer direction and selects X or Y as the transaction buffer.  
7
6
5
4
3
2
1
0
EN  
R/W  
INE  
R/W  
CNT  
R/W  
XY  
T/R  
R/O  
E2  
E1  
E0  
R/W  
R/W  
R/W  
R/W  
BIT  
NAME  
E[2:0]  
RESET  
FUNCTION  
20  
0
1
Endpoint descriptor pointer. This field points to a set of EDB registers that are used for a given transfer.  
3
T/R  
This bit is always 1. This indicates that the DMA data transfer is from UART RDR register to SRAM.  
(The MCU cannot change this bit.)  
4
5
XY  
0
0
XY Buffer select bit. Valid only when CNT = 0.  
XY = 0  
XY = 1  
Next buffer to transmit/receive is X  
Next buffer to transmit/receive is Y  
CNT  
DMA continuous transfer control bit. This bit defines the mode of the DMA transfer.  
CNT = 0 Burst mode: DMA stops the transfer when the byte count = 0 or when a receiver error occurs.  
At the end of transfer, the high-to-low transition of EN interrupts the MCU (if enabled). In this  
mode, the XY bit is set by the MCU to define the current buffer (X or Y).  
CNT = 1 Continuous mode: In this mode, the DMA and UBM alternate between the X- and Y-buffers.  
The UBM sets the XY bit and the DMA uses it for the transfer. The DMA alternates between  
the X-/Y-buffers and continues receiving (to X-/Y-buffer) without MCU intervention. The DMA  
terminates the transfer and interrupts the MCU, under the following conditions:  
1. Transaction time-out expired: DMA updates EDB and interrupts the MCU. UBM transfers  
the partial packet to the host.  
2. UART receiver error condition: DMA updates EDB and does not interrupt the MCU. UBM  
transfers the partial packet to the host.  
6
7
INE  
EN  
0
0
DMA interrupt enable/disable bit. This bit is used to enable/disable the interrupt on transfer completion.  
INE = 0  
Interrupt is disabled. In addition, OVRUN and TXFT do not clear the EN bit and the DMAX is  
not disabled.  
INE = 1  
Enables the EN interrupt. When this bit is set, the DMA interrupts the MCU on a 1 to 0 transition  
of the EN bit. (When transfer is completed, EN = 0).  
DMA channel enable bit. The MCU sets this bit to start the DMA transfer. When transfer completes, or  
when terminated due to error, this bit is cleared. The 1 to 0 transition of this bit generates an interrupt (if  
interrupt is enabled).  
EN = 0  
DMA is halted. The DMA is halted when transaction time-out occurs, or under a UART  
receiver-error condition. When halted, the DMA updates the byte count and sets NAK = 0 in  
IEDB. If the termination is due to transaction time-out, the DMA generates an interrupt.  
However, if the termination is due to a UART error condition, the DMA does not generate an  
interrupt. (The UART generates the interrupt.)  
EN = 1  
Setting this bit starts the DMA transfer.  
64  
6.1.4 DMACSR3: DMA Control And Status Register (UART Receive Channel) (Addr:FFE5)  
This register is used to define the transaction time-out value. In addition, it contains a completion code that reports  
any errors or a time-out condition.  
7
6
5
4
3
2
1
0
TEN  
R/W  
C4  
C3  
C2  
C1  
C0  
TXFT  
R/C  
OVRUN  
R/C  
R/W  
R/W  
R/W  
R/W  
R/W  
BIT  
NAME  
RESET  
FUNCTION  
0
OVRUN  
0
Overrun condition bit. This bit is set by DMA and cleared by the MCU (see Table 63)  
OVRUN = 0 No overrun condition  
OVRUN = 1 Overrun condition detected. When IEN = 0, this bit does not clear the EN bit in DMACDR;  
therefore, the DMAC stays enabled, ready for the next transaction. Clears when the MCU writes  
a 1. Writing a 0 has no effect.  
1
TXFT  
C[4:0]  
0
Transfer time-out condition bit (see Table 63)  
TXFT = 0  
TXFT =1  
DMA stopped transfer without time-out  
DMA stopped due to transaction time-out. When IEN = 0, this bit does not clear the EN bit in  
DMACDR; therefore, the DMAC stays enabled, ready for the next transaction. Clears when the  
MCU writes a 1. Writing a 0 has no effect.  
62  
00000b This field is used to define the transaction time-out value in 1-ms increments. This value is loaded to a down  
counter every time a byte transfer occurs. The down counter is decremented every SOF pulse (1 ms). If the  
counterdecrementstozeroitsetsTXFT=1(inDMACSRregister)andhaltstheDMAtransfer.Thecounterstarts  
counting only when TEN = 1 and EN = 1 (in DMACDR) and the first byte has been received (see Figure 61).  
00000 = 0-ms time-out  
:
:
11111 = 31-ms time-out  
7
TEN  
0
Transaction time-out counter enable/disable bit  
TEN = 0  
TEN = 1  
Counter is disabled (does not time-out)  
Counter is enabled  
Table 63. DMA IN-Termination Condition  
IN TERMINATION  
UART error  
TXFT  
OVRUN  
COMMENTS  
0
1
0
UART error condition detected  
UART partial packet  
0
This condition occurs when UART receiver has no more data for the host (data  
starvation).  
UART overrun  
1
1
This condition occurs when X- and Y-input buffers are full and the UART FIFO is full (host  
is busy).  
6.2 Bulk Data I/O Using the EDB  
The UBM (USB buffer manager) and the DMAC (DMA controller) access the EDB to fetch buffer parameters for IN  
and OUT transactions (IN and OUT are with respect to host). In this discussion, it is assumed that (a) the MCU  
initialized the EDBs, (b) DMA-continuous mode is being used, (c) double buffering is being used, and (d) the X/Y  
toggle is controlled by the UBM.  
NOTE: The IN and OUT transfers apply to UART.  
6.2.1 IN Transaction (TUSB3410 to Host)  
1. The MCU initializes the IEDB (64-byte packet, and double buffering is used) and the following DMA  
registers:  
DMACSR: Defines the transaction time-out value.  
DMACDR: Defines the IEDB being used and the DMA mode of operation (continuous mode). Once this  
register is set with EN = 1, the transfer starts.  
65  
2. The DMA transfers data from the UART to the X buffer. When a block of 64 bytes is transferred, the DMA  
updates the byte count and sets NAK = 0 in IEDB (indicating to the UBM that the X buffer is ready to be  
transferred to host). The UBM starts X-buffer transfer to host using the byte-count value in IEDB and toggles  
the X/Y bit. The DMA continues transferring data from a device to Y-buffer. At the end of the block transfer,  
the DMA updates the byte count and sets NAK = 0 in IEDB (indicating to the UBM that the Y-buffer is ready  
to be transferred to host). The DMA continues the transfer from the device to host, alternating between  
X-and Y-buffers without MCU intervention.  
3. Transfer termination: As mentioned, the DMA/UBM continues the data transfer, alternating between the X-  
and Y-buffers. Termination of the transfer can happen under the following conditions:  
Stop Transfer: The host notifies the MCU (via control-end-point) to stop the transfer. Under this  
condition, the MCU sets EN = 0 in the DMACDR register.  
Partial Packet: The device receiver has no data to be transferred to host. Under this condition, the  
byte-count value is less than 64 when the transaction timer time-out occurs. When the DMA detects this  
condition, it sets TXFT = 1 and OVRUN = 0, updates the byte count and NAK bit (partial packet) in the  
IEDB, and interrupts the MCU. UBM transfers the partial packet to host.  
Buffer Overrun: The host is busy, X- and Y-buffers are full (X NAK = 0 and YNAK = 0) and the DMA  
cannot write to these buffers. The transaction time-out stops the DMA transfer, the DMA sets TXFT = 1  
and OVRUN = 1, and interrupts the MCU.  
UART Error Condition: When receiving from a UART, a receiver-error condition stops the DMA and  
sets TXFT = 1 and OVRUN = 0, but the EN bit remains set at 1. Therefore, the DMA does not interrupt  
the MCU. However, the UART generates a status interrupt, notifying the MCU that an error condition  
has occurred.  
6.2.2 OUT Transaction (Host to TUSB3410)  
1. The MCU initializes the OEDB (64-byte packet, and double buffering is used) and the following DMA  
registers:  
DMACSR: Defines the transaction time-out value.  
DMACDR: Defines the OEDB being used, and the DMA mode of operation (continuous mode). Once  
the EN bit is set to 1 in this register, the transfer starts.  
2. The UBM transfers data from host to X-buffer. When a block of 64 bytes is transferred, the UBM updates  
the byte count and sets NAK = 1 in OEDB (indicating to DMA that the X-buffer is ready to be transferred  
to the UART). The DMA starts X-buffer transfer using the byte-count value in OEDB. The UBM continues  
transferring data from host to Y-buffer. At the end of the block transfer, the UBM updates the byte count and  
sets NAK = 1 in OEDB (indicating to DMA that the Y-buffer is ready to be transferred to device). The DMA  
continuesthetransferfromtheX-/Y-bufferstothedevice, alternatingbetweenX-andY-bufferswithoutMCU  
intervention.  
3. Transfer termination: The DMA/UBM continues the data transfer alternating between X- and Y-buffers. The  
termination of the transfer can happen under the following conditions:  
Stop Transfer: The host notifies the MCU (via control-end point) to stop the transfer. Under this  
condition, the MCU sets EN = 0 in the DMACDR register.  
Partial-Packet: UBM receives a partial packet from host. Under this condition, the byte-count value is  
less than 64 and the transaction timer does not time-out. When the DMA detects this condition, it  
transfers the partial packet to the device, sets TXFT = 0 and PPKT = 1, updates NAK = 0 in OEDB, and  
interrupts the MCU.  
Time-out: The device is busy, X- and Y-buffers are full (X-NAK = 1 and Y-NAK = 1) and the UBM cannot  
write to these buffers. Under this condition the transaction timer time-out stops the DMA transfer, sets  
TXFT = 1 and OVRUN = 0, and interrupts the MCU.  
66  
7 UART  
7.1 UART Registers  
Table 71 summarizes the UART registers. These registers are used for data I/O, control, and status information.  
UART setup is done by the MCU. Data transfer is typically performed by the DMAC. However, the MCU can perform  
data transfer without DMA; this is useful when debugging the firmware.  
Table 71. UART Registers Summary  
REGISTER NAME  
RDR  
ACCESS  
R/O  
FUNCTION  
UART receiver data register  
UART transmitter data register  
UART line control register  
UART flow control register  
UART modem control register  
UART line status register  
UART modem status register  
UART divisor register (low byte)  
UART divisor register (high byte)  
UART Xon register  
COMMENTS  
Can be accessed by MCU or DMA  
Can be accessed by MCU or DMA  
TDR  
W/O  
R/W  
R/W  
R/W  
R/O  
LCR  
FCRL  
MCR  
LSR  
Can generate an interrupt  
Can generate an interrupt  
MSR  
R/O  
DLL  
R/W  
R/W  
R/W  
R/W  
R/W  
DLH  
XON  
XOFF  
MASK  
UART Xoff register  
UART interrupt mask register  
Can control three interrupt sources  
7.1.1 RDR: Receiver Data Register (Addr:FFA0)  
The receiver data register consists of a 32-byte FIFO. Data received from the SIN pin are converted from  
serial-to-parallel format and stored in this FIFO. Data transfer from this register to the RAM buffer is the responsibility  
of the DMA controller.  
7
6
5
4
3
2
1
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
BIT  
70  
NAME  
D[7:0]  
RESET  
FUNCTION  
0
Receiver byte  
7.1.2 TDR: Transmitter Data Register (Addr:FFA1)  
The transmitter data register is double buffered. Data written to this register is loaded into the shift register, and shifted  
out on SOUT. Data transfer from the RAM buffer to this register is the responsibility of the DMA controller.  
7
6
5
4
3
2
1
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
W/O  
W/O  
W/O  
W/O  
W/O  
W/O  
W/O  
W/O  
BIT  
70  
NAME  
D[7:0]  
RESET  
FUNCTION  
0
Transmit byte  
71  
7.1.3 LCR: Line Control Register (Addr:FFA2)  
This register controls the data communication format. The word length, number of stop bits, and parity type are  
selected by writing the appropriate bits to the LCR.  
7
6
5
4
3
2
1
0
FEN  
R/W  
BRK  
R/W  
FPTY  
R/W  
EPRTY  
R/W  
PRTY  
R/W  
STP  
R/W  
WL1  
R/W  
WL0  
R/W  
BIT  
NAME  
RESET  
FUNCTION  
1:0  
WL{10]  
0
Specifies the word length for transmit and receive  
00b = 5 bits  
01b = 6 bits  
10b = 7 bits  
11b = 8 bits  
2
STP  
0
Specifies the number of stop bits for transmit and receive  
STP = 0  
STP = 1  
STP = 1  
1 stop bit (word length = 5, 6, 7, 8)  
1.5 stop bits (word length = 5)  
2 stop bits (word length = 6, 7, 8)  
3
4
5
6
7
PRTY  
EPRTY  
FPTY  
BRK  
0
0
0
0
0
Specifies whether parity is used  
PRTY = 0  
PRTY = 1  
No parity  
Parity is generated  
Specifies whether even or odd parity is generated  
EPRTY = 0 Odd parity is generated (if PRTY = 1)  
EPRTY = 1 Even parity is generated (if PRTY = 1)  
Selects the forced parity bit  
FPTY = 0  
FPTY = 1  
Parity is not forced  
Parity bit is forced. If [EPRTY = 0], the parity bit is forced to 1  
This bit is the break-control bit  
BRK = 0  
BRK = 1  
Normal operation  
Forces SOUT into break condition (logic 0)  
FEN  
FIFO enable. This bit is used to disable/enable the FIFO. To reset the FIFO, the MCU clears and then sets  
this bit.  
FEN = 0  
FEN = 1  
The FIFO is cleared and disabled. When disabled the selected receiver flow control is activated.  
The FIFO is enabled and it can receive data.  
72  
7.1.4 FCRL: UART Flow Control Register (Addr:FFA3)  
This register provides the flow-control modes of operation (see Table 73 for more details).  
7
6
5
4
3
2
1
0
485E  
R/W  
DTR  
R/W  
RTS  
R/W  
RXOF  
R/W  
DSR  
R/W  
CTS  
R/W  
TXOA  
R/W  
TXOF  
R/W  
BIT  
NAME RESET  
FUNCTION  
This bit controls the transmitter Xon/Xoff flow control.  
0
1
2
TXOF  
TXOA  
CTS  
0
0
0
TXOF = 0  
TXOF = 1  
Disable transmitter Xon/Xoff flow control  
Enable transmitter Xon/Xoff flow control  
This bit controls the transmitter Xon-on-any/Xoff flow control  
TXOA = 0  
TXOA = 1  
Disable the transmitter Xon-on-any/Xoff flow control  
Enable the transmitter Xon-on-any/Xoff flow control  
Transmitter CTS flow-control enable bit  
CTS = 0  
CTS = 1  
Disables transmitter CTS flow control  
CTS flow control is enabled, i.e., when CTS input pin is high, transmission is halted; when the CTS  
pin is low, transmission resumes.  
3
DSR  
0
Transmitter DSR flow-control enable bit  
DSR = 0  
DSR = 1  
Disables transmitter DSR flow control  
DSR flow control is enabled, i.e., when DSR input pin is high, transmission is halted; when the DSR  
pin is low, transmission resumes.  
4
5
RXOF  
RTS  
0
0
This bit controls the receiver Xon/Xoff flow control.  
RXOF = 0  
RXOF = 1  
Receiver does not attempt to match Xon/Xoff characters  
Receiver searches for Xon/Xoff characters  
Receiver RTS flow control enable bit  
RTS = 0  
RTS = 1  
Disables receiver RTS flow control  
Receiver RTS flow control is enabled. RTS output pin goes high when the receiver FIFO HALT  
trigger level is reached; it goes low, when the receiver FIFO RESUME receiving trigger level is  
reached.  
6
7
DTR  
0
0
Receiver DTR flow-control enable bit  
DTR = 0  
DTR = 1  
Disables receiver DTR flow control  
Receiver DTR flow control is enabled. DTR output pin goes high when the receiver FIFO HALT  
trigger level is reached; it goes low, when the receiver FIFO RESUME receiving trigger level is  
reached.  
485E  
RS485 enable bit. This bit is used to configure the UART to control external RS485 transceivers. When  
configured in half-duplex mode (485E=1), RTS or DTR can be used to enable the RS485 driver or receiver.  
See Figure 5.  
485E = 0  
485E = 1  
UART is in normal operation mode (full duplex)  
The UART is in half duplex RS485 mode. In this mode RTS and DTR are active with opposite  
polarity (when RTS = 0, DTR = 1). When the DMA is ready to transmit, it drives RTS = 1 (and  
DTR = 0) 2bittime before transmission starts. When DMA terminates the transmission, it drives  
RTS = 0 (and DTR = 1) after transmission stops. When 485E is set to 1, the DTR and RTS bits in  
the MCR register have no effect. Also, see the RCVE bit in MCR: modem-control register.  
73  
7.1.5 Transmitter Flow Control  
On reset (power up, USB or soft reset) the transmitter defaults to the Xon state and the flow control is set to mode0  
(flow control is disabled).  
Table 72. Transmitter Flow-Control Modes  
3
DSR  
0
2
CTS  
0
1
0
MODE  
TXOA  
TXOF  
0
1
All flow control is disabled  
Xon/Xoff flow control is enabled  
Xon on any/ Xoff flow control  
Not permissible (see Note 1)  
CTS flow control  
0
0
1
1
0
0
1
0
0
1
0
1
0
1
0
0
0
0
2
0
0
3
X
X
4
0
1
5
Combination flow control (see Note 2)  
Combination flow control  
DSR flow control  
0
1
6
0
1
7
1
0
9-E  
Combination flow control  
NOTES: 1. This is a nonpermissible combination. If used, TXOA and TXOF are cleared.  
2. Combination example: Transmitter stops when either CTS or Xoff is detected. Transmitter resumes when both CTS is negated and  
Xon is detected.  
Table 73. Receiver Flow-Control Possibilities  
6
DTR  
0
5
RTS  
0
4
MODE  
RXOF  
0
1
2
3
4
5
6
7
All flow control is disabled  
Xon/Xoff flow control is enabled  
RTS flow control  
0
1
0
1
0
1
0
1
0
0
0
1
Combination flow control (see Note 3)  
DTR flow control  
0
1
1
0
Combination flow control  
Combination flow control (see Note 4)  
Combination flow control  
1
0
1
1
1
1
NOTES: 3. Combination example: Both RTS is asserted and Xoff transmitted when FIFO is full. Both RTS is deasserted and Xon is transmitted  
when FIFO is empty.  
4. Combination example: Both DTR and RTS are asserted when FIFO is full. Both DTR and RTS are deasserted when FIFO is empty.  
74  
7.1.6 MCR: Modem-Control Register (Addr:FFA4)  
This register provides control for modem interface I/O and definition of the flow control mode.  
7
6
5
4
3
2
1
0
LCD  
R/W  
LRI  
R/W  
RTS  
R/W  
DTR  
R/W  
SEN  
R/W  
LOOP  
R/W  
RCVE  
R/W  
URST  
R/W  
BIT  
NAME  
URST  
RESET  
FUNCTION  
0
0
Uart soft reset. This bit can be used by the MCU to reset the UART.  
URST = 0 Normal operation. Writing a 0 by MCU has no effect.  
URST = 1 When the MCU writes a 1 to this bit, a UART reset is generated (ORed with hard reset). When  
the UART exits the reset state, URST is cleared. The MCU can monitor this bit to determine if the  
UART completed the reset cycle.  
1
RCVE  
0
Receiver enable bit. This bit is valid only when 485E in FCRL is 1 (RS485 mode). When 485E = 0, this bit has  
no effect on the receiver.  
RCVE = 0 When485E=1, theUARTreceiverisdisabledwhenRTS=1, i.e., whendataisbeingtransmitted,  
the UART receiver is disabled.  
RCVE = 1 When 485E = 1, the UART receiver is enabled regardless of the RTS state, i.e., UART receiver  
is enabled all the time. This mode can be used to detect collisions on the RS-485 bus when  
received data does not match transmitted data.  
2
LOOP  
0
This bit controls the normal-/loop-back mode of operation (see Figure 71).  
LOOP = 0 Normal operation  
LOOP = 1 Enable loop-back mode of operation. In this mode the following occur:  
S
SOUT is set high  
S
SIN is disconnected from the receiver input.  
S
The transmitter serial output is looped back into the receiver serial input.  
S
The four modem-control inputs: CTS, DSR, DCD, and RI are disconnected.  
S
DTR, RTS, LRI and LCD are internally connected to the four modem-control inputs, and read  
in the MSR register as follows:  
S DTR is reflected in MSR[4] bit  
S RTS is reflected in MSR[5] bit  
S LRI is reflected in MSR[6] bit  
S LCD is reflected in MSR[7] bit  
3
4
RSV  
DTR  
0
0
Reserved  
This bit controls the state of the DTR output pin (see Figure 71). This bit has no effect when auto-flow control  
is used or when 485E = 1 (in FCRL register).  
DTR = 0  
DTR = 1  
Forces the DTR output pin to inactive (high)  
Forces the DTR output pin to active (low)  
5
RTS  
0
This bit controls the state of the RTS output pin (see Figure 71). This bit has no effect when auto-flow control  
is used or when 485E = 1 (in FCRL register).  
RTS = 0  
RTS = 1  
Forces the RTS output pin to inactive (high)  
Forces the RTS output pin to active (low)  
75  
6
7
LRI  
0
0
This bit is used for loop-back mode only. When in loop-back mode, this bit is reflected in MSR[6]-bit (see  
Figure 71).  
LRI = 0  
LRI = 1  
Clears MSR[6] = 0  
Sets MSR[6] = 1  
LCD  
This bit is used for loop-back mode only. When in loop-back mode, this bit is reflected in MSR[7]-bit (see  
Figure 71).  
LCD = 0  
LCD = 1  
Clears MSR[7] = 0  
Sets MSR[7] = 1  
7.1.7 LSR: Line-status Register (Addr:FFA5)  
This register provides the status of the data transfer. DMA transfer is halted when any of OVR, PTE, FRE, BRK, or  
EXIT is 1.  
7
6
5
4
3
2
1
0
RSV  
R/O  
TEMT  
R/O  
TxE  
R/O  
RxF  
R/O  
BRK  
R/C  
FRE  
R/C  
PTE  
R/C  
OVR  
R/C  
BIT  
NAME  
OVR  
RESET  
FUNCTION  
0
1
2
3
0
0
0
0
This bit indicates the overrun condition of the receiver. If set, it halts the DMA transfer and generates a  
status interrupt (if enabled).  
OVR = 0  
OVR = 1  
No overrun error  
Overrun error has occurred. Clears when the MCU writes a 1. Writing a 0 has no effect.  
PTE  
FRE  
BRK  
This bit indicates the parity condition of the received byte. If set, it halts the DMA transfer and generates a  
status interrupt (if enabled).  
PTE = 0  
PTE = 1  
No parity error in data received  
Parity error in data received. Clears when the MCU writes a 1. Writing a 0 has no effect.  
This bit indicates the framing condition of the received byte. If set, it halts the DMA transfer and generates  
a status interrupt (if enabled).  
FRE = 0  
FRE = 1  
No framing error in data received  
Framing error in data received. Clears when MCU writes a 1. Writing a 0 has no effect.  
This bit indicates the break condition of the received byte. If set, it halts the DMA transfer and generates a  
status interrupt (if enabled).  
BRK = 0  
BRK = 1  
No break condition  
A break condition in data received was detected. Clears when the MCU writes a 1. Writing a 0  
has no effect.  
4
5
RxF  
TxE  
0
1
This bit indicates the condition of the receiver data register. Typically, the MCU does not monitor this bit  
since data transfer is done by the DMA controller.  
RxF = 0  
RxF = 1  
No data in the RDR  
RDR contains data. Generates Rx interrupt (if enabled).  
This bit indicates the condition of the transmitter data register. Typically, the MCU does not monitor this bit  
since data transfer is done by the DMA controller.  
TxE = 0  
TxE = 1  
TDR is not empty  
TDR is empty. Generates Tx interrupt (if enabled).  
6
7
TEMT  
RSV  
1
0
This bit indicates the condition of both transmitter data register and shift register is empty.  
TEMT = 0 Either TDR or TSR is not empty  
TEMT = 1 Both TDR and TSR are empty  
Reserved = 0  
76  
CTS  
DSR  
RI  
(4) LCTS  
(5) LDSR  
(6) LRI  
DCD  
MSR  
(7) LCD  
DTR  
RTS  
(4) DTR  
(5) RTS  
(6) LRI  
MCR  
(7) LCD  
(2) LOOP  
Figure 71. MSR and MCR Registers in Loop-Back Mode  
7.1.8 MSR: Modem-Status Register (Addr:FFA6)  
This register provides information about the current state of the control lines from the modem.  
7
6
5
4
3
2
1
0
LCD  
R/O  
LRI  
R/O  
LDSR  
R/O  
LCTS  
R/O  
CD  
R/C  
TRI  
R/C  
DSR  
R/C  
CTS  
R/C  
BIT  
NAME  
CTS  
RESET  
FUNCTION  
0
0
This bit indicates that the CTS input has changed state. Cleared when the MCU writes a 1 to this bit.  
Writing a 0 has no effect.  
CTS = 0 Indicates no change in the CTS input  
CTS = 1 Indicates that the CTS input has changed state since the last time it was read. Clears when the  
MCU writes a 1. Writing a 0 has no effect.  
1
DSR  
0
This bit indicates that the DSR input has changed state. Cleared when the MCU writes a 1 to this bit.  
Writing a 0 has no effect.  
DSR = 0 Indicates no change in the DSR input  
DSR = 1 Indicates that the DSR input has changed state since the last time it was read. Clears when the  
MCU writes a 1. Writing a 0 has no effect.  
2
3
TRI  
0
0
Trailing edge of the ring indicator. This bit indicates that the RI input has changed from low to high. This bit  
is cleared when the MCU writes a 1 to this bit. Writing a 0 has no effect.  
TRI = 0  
TRI = 1  
Indicates no applicable transition on the RI input  
Indicates that an applicable transition has occurred on the RI input.  
CD  
This bit indicates that the CD input has changed state. Cleared when the MCU writes a 1 to this bit. Writing  
a 0 has no effect.  
CD = 0  
CD = 1  
Indicates no change in the CD input  
Indicates that the CD input has changed state since the last time it was read.  
4
5
6
LCTS  
LDSR  
LRI  
0
0
0
During loopback, this bit reflects the status of MCR[1] (see Figure 71)  
LCTS = 0 CTS input is high  
LCTS = 1 CTS input is low  
During loop back, this bit reflects the status of MCR[0] (see Figure 71).  
LDSR = 0 DSR input is high  
LDSR= 1  
DSR input is low  
During loop back, this bit reflects the status of MCR[2] (see Figure 71).  
LRI = 0  
LRI = 1  
RI input is high  
RI input is low  
77  
BIT  
NAME  
LCD  
RESET  
FUNCTION  
7
0
During loopback, this bit reflects the status of MCR[3] (see Figure 71).  
LCD = 0  
LCD = 0  
CD input is high  
CD input is low  
7.1.9 DLL: Divisor Register Low Byte (Addr:FFA7)  
This register contains the low byte of the baud-rate divisor.  
7
6
5
4
3
2
1
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BIT  
70  
NAME  
D[7:0]  
RESET  
FUNCTION  
Low-byte value of the 16-bit divisor for generation of the baud clock in the baud-rate generator.  
08h  
7.1.10 DLH: Divisor Register High Byte (Addr:FFA8)  
This register contains the high byte of the baud-rate divisor.  
7
6
5
4
3
2
1
0
D15  
R/W  
D14  
R/W  
D13  
R/W  
D12  
R/W  
D11  
R/W  
D10  
R/W  
D9  
D8  
R/W  
R/W  
BIT  
70  
NAME  
RESET  
FUNCTION  
High-byte value of the 16-bit divisor for generation of the baud clock in the baud-rate generator.  
D[15:8]  
00h  
7.1.11 Baud-rate Calculation  
The following formulas are used to calculate the baud-rate clock and the divisors. The baud-rate clock is derived from  
the 96-MHz master clock (dividing by 6.5). The table below presents the divisors used to achieve the desired baud  
rates, together with the associate rounding errors.  
96 MHz  
Baud CLK +  
+ 14.76923077 MHz  
6.5  
6
14.76923077   10  
Baud Rate   16  
Divisor +  
78  
Table 74. DLL/DLH Values and Resulted Baud Rates  
DLL/DLH VALUE  
DESIRED BAUD  
ACTUAL BAUD  
ERROR %  
DEC.  
769  
385  
192  
128  
96  
64  
48  
24  
16  
8
HEX.  
0301  
0181  
00C0  
0080  
0060  
0040  
0030  
0018  
0010  
0008  
0004  
0002  
0001  
1 200  
2 400  
1 200.36  
2 397.60  
0.03  
0.01  
0.16  
0.16  
0.16  
0.16  
0.16  
0.16  
0.16  
0.16  
0.16  
0.16  
0.16  
4 800  
4 807.69  
7 200  
7 211.54  
9 600  
9 615.38  
14 400  
19 200  
38 400  
57 600  
115 200  
230 400  
460 800  
921 600  
14 423.08  
19 230.77  
38 461.54  
57 692.31  
115 384.62  
230 769.23  
461 538.46  
923 076.92  
4
2
1
NOTE: The TUSB3410 does support baud rates lower than 1200 bps, which are not  
listed due to less interest.  
7.1.12 XON: Xon Register (Addr:FFA9)  
This register contains a value that is compared to the received data stream. Detection of a match interrupts the MCU  
(only if the interrupt enable bit is set). This value is also used for Xon transmission.  
7
6
5
4
3
2
1
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BIT  
70  
NAME  
D[7:0]  
RESET  
FUNCTION  
Xon value to be compared to the incoming data stream  
0000  
7.1.13 XOFF: Xoff Register (Addr:FFAA)  
This register contains a value that is compared to the received data stream. Detection of a match halts the DMA  
transfer, and interrupts the MCU (only if the interrupt enable bit is set). This value is also used for Xoff transmission.  
7
6
5
4
3
2
1
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BIT  
70  
NAME  
D[7:0]  
RESET  
FUNCTION  
Xoff value to be compared to the incoming data stream  
0000  
79  
7.1.14 MASK: UART Interrupt-Mask Register (Addr:FFAB)  
This register controls the UARTs interrupt sources.  
7
6
5
4
3
2
1
0
RSV  
R/O  
RSV  
R/O  
RSV  
R/O  
RSV  
R/O  
RSV  
R/O  
RRIE  
R/W  
SIE  
R/W  
MIE  
R/W  
BIT  
NAME  
MIE  
RESET  
FUNCTION  
0
0
This bit controls the UART-modem interrupt.  
MIE = 0  
MIE = 1  
Modem interrupt is disabled  
Modem interrupt is enabled  
1
SIE  
TRI  
RSV  
0
0
0
This bit controls the UART-status interrupt.  
SIE = 0  
MIE = 1  
Status interrupt is disabled  
Status interrupt is enabled  
2
This bit controls the UART-TxE/RxF interrupts  
TRIE = 0 TxE/RxF interrupts are disabled  
TRIE = 1 TxE/RxF interrupts are enable  
73  
Reserved = 0  
7.2 UART Data Transfer  
Figure 72 illustrates the data transfer between the UART and the host using the DMA controller and the USB buffer  
manager (UBM). A buffer of 512 bytes is reserved for buffering the UART channel (transmit and receive buffers). The  
UART channel has 64 bytes of double-buffer space (X- and Y-buffer). When the DMA writes to the X-buffer, the UBM  
reads from the Y-buffer. Similarly, when the DMA reads from the X-buffer, the UBM writes to the Y-buffer. The DMA  
channel is configured to operate in the continuous mode (by setting DMACDR[CNT] = 1). Once the MCU enables  
the DMA, data transfer toggles between the UMB and the DMA without MCU intervention. See IN transaction  
(TUSB3410 to host) for DMA transfer-termination condition.  
7.2.1 Receiver Data Flow  
The UART receiver has a 32-byte FIFO. The receiver FIFO has two trigger levels. One is the high-level mark (HALT),  
which is set to 28 bytes, and the other is the low-level mark (RESUME), which is set to 4 bytes. When the HALT mark  
is reached, either the RTS pin goes high or Xoff is transmitted (depending on the auto setting). When the FIFO  
reaches the RESUME mark, then either the RTS pin goes low or Xon is transmitted.  
710  
Receiver  
Halt on Error or Time-Out  
64-Byte  
Y-Buffer  
RDR: 32-Byte FIFO  
DMA  
DMACDR  
SIN  
4
8
64-Byte  
X-Buffer  
RTS/DTR = 1  
X/Y  
or Xoff Transmitted  
RTS/DTR = 0  
or Xon Transmitted  
Host  
UBM  
Xoff/Xon  
CTS/DTR = 1/0  
Pause/Run  
64-Byte  
Y-Buffer  
DMA  
DMACDR  
SOUT  
64-Byte  
X-Buffer  
TDR  
Figure 72. Receiver/Transmitter Data Flow  
7.2.2 Hardware Flow Control  
Figure 73 illustrates the connection necessary to achieve hardware flow control. The CTS and RTS signals are  
provided for this purpose. Auto CTS and auto RTS (and Xon/Xoff) can be enabled/disabled independently by  
programming the FCRL register.  
TUSB3410  
SIN  
External Device  
SOUT  
RTS  
SOUT  
CTS  
CTS  
SIN  
RTS  
Figure 73. Auto Flow Control Interconnect  
7.2.3 Auto RTS (Receiver Control)  
In this mode, the RTS output pin signals the receiver-FIFO status to an external device. The RTS output signal is  
controlled by the high- and low-level marks of the FIFO. When the high-level mark is reached, RTS goes high,  
signaling to an external sending device to halt its transfer. Conversely, when the low-level mark is reached, RTS goes  
low, signaling to an external sending device to resume its transfer.  
Data transfer from the FIFO to the X-/Y-buffer is performed by the DMA controller. See OUT transaction (TUSB3410  
to host) for DMA transfer-termination condition.  
7.2.4 Auto CTS (Transmitter Control)  
In this mode, the CTS input pin controls the transfer from internal buffer (X or Y) to the TDR. When the DMA controller  
transfers data from the Y-buffer to the TDR and the CTS input pin goes high, the DMA controller is suspended until  
CTS goes low. Meanwhile, the UBM is transferring data from the host to the X-buffer. When CTS goes low, the DMA  
resumes the transfer. Data transfer continues alternating between the X- and Y-buffers, without MCU intervention.  
See OUT transaction (TUSB3410 to host) for DMA transfer-termination condition.  
711  
7.2.5 Xon/Xoff Receiver Flow Control  
To enable Xon/Xoff flow control, certain MCR bits must be set as follows: MCR[5] = 1 and MCR[7:6] = 0. In this mode,  
the Xon/Xoff bytes are transmitted to an external sending device to control the devices transmission. When the  
high-level mark (of the FIFO) is reached, the Xoff byte is transmitted, signaling to an external sending device to halt  
its transfer. Conversely, when the low-level mark is reached, the Xon byte is transmitted, signaling to an external  
sending device to resume its transfer. The data transfer from the FIFO to X-/Y-buffer is performed by the DMA  
controller.  
7.2.6 Xon/Xoff Transmit Flow Control  
To enable Xon/Xoff flow control, certain MCR bits must be set as follows: MCR[5] = 1 and MCR[7:6] = 0. In this mode,  
the incoming data are compared to the XON and XOFF registers. If a match to XOFF is detected, the DMA is paused.  
If a match to XON is detected, the DMA resumes. Meanwhile, the UBM is transferring data from the host to the  
X-buffer. The MCU does not switch the buffers unless the Y-buffer is empty and the X-buffer is full. When Xon is  
detected, the DMA resumes the transfer.  
712  
8 Expanded GPIO Port  
8.1 Input/Output and Control Registers  
The TUSB3410 has four general-purpose I/O pins (P3.0, P3.1, P3.3, P3.4) that are controlled by firmware running  
on the MCU. Each pin can be controlled individually and each is implemented with a 12-mA push/pull Cmos output  
with tristate control plus input. The MCU treats the outputs as open drain types in that the output can be driven low  
continuously, but a high output is driven for two clock cycles and then the output is tristated.  
An input pin can be read using the MOV instruction. For example, MOV C,P3.3 reads the input on P3.3. As a  
precaution, be certain the associated output is tristated before reading the input.  
An output can be set high (and then tristated) using the SETB instruction. For example, SETB P3.1 sets P3.1 high.  
An output can be set low using the CLR instruction, as in CLR P3.4, which sets P3.4 low (driven continuously until  
changed).  
Each GPIO pin has an associated internal pullup resistor. It is strongly recommended that the pullup resistor remain  
connected to the pin to prevent oscillations in the input buffer. The only exception is if an external source always drives  
the input.  
8.1.1 PUR_3: GPIO Pullup Register For Port 3 (Addr:FF9E)  
7
6
5
4
3
2
1
0
RSV  
R/O  
RSV  
R/O  
RSV  
R/O  
RSV  
R/W  
Pin3  
R/W  
RSV  
R/O  
Pin1  
R/W  
Pin0  
R/W  
BIT  
07  
NAME  
RESET  
FUNCTION  
Pin N  
(N = 0 to 7)  
0
The MCU may write to this register. If the MCU sets this bit to 1, the pullup resistor is disconnected from  
the pin. If the MCU clears this bit to 0, the pullup resistor is connected to the pin. The pullup resistor is  
connected to the V  
power supply.  
CC  
81  
82  
9 Interrupts  
9.1 8052 Interrupt and Status Registers  
All 8052 standard, five interrupt sources are preserved. SIE is the standard interrupt-enable register that controls the  
five interrupt sources. All the additional interrupt sources are ORed together to generate EX0. The XINTO signal is  
provided to interrupt an external MCU (see Figure 91).  
Table 91. 8052 Interrupt Location Map  
INTERRUPT SOURCE  
DESCRIPTION  
UART interrupt  
START ADDRESS  
0023H  
COMMENTS  
ES  
ET1  
EX1  
ET0  
EX0  
Reset  
Timer-1 interrupt  
External interrupt-1  
Timer-0 interrupt  
External interrupt-0  
001BH  
0013H  
000BH  
0003H  
Used for all internal peripherals  
0000H  
9.1.1 8052 Standard Interrupt Enable (SIE) Register  
7
6
X
5
X
4
3
2
1
0
EA  
R/W  
ES  
ET1  
R/W  
EX1  
R/W  
ET0  
R/W  
EX0  
R/W  
R/W  
R/W  
R/W  
BIT  
NAME  
EX0  
RESET  
FUNCTION  
0
1
2
3
4
0
Enable or disable external interrupt-0  
EX0 = 1 External interrupt-0 is disabled  
EX0 = 1 External interrupt-0 is enabled  
ET0  
EX1  
ET1  
ES  
0
0
0
0
Enable or disable timer-0 interrupt  
ET0 = 0  
ET0 = 1  
Timer-0 interrupt is disabled  
Timer-0 interrupt is enabled  
Enable or disable external interrupt-1  
EX1 = 0 External interrupt-1 is disabled  
EX1 = 1 External interrupt-1 is enabled  
Enable or disable timer-1 interrupt  
ET1 = 0  
Timer-1 interrupt is disabled  
EX1 = 1 Timer-1 interrupt is enabled  
Enable or disable serial port interrupts  
ES = 0  
ES = 1  
Serial-port interrupt is disabled  
Serial-port interrupt is enabled  
5, 6  
7
RSV  
EA  
0
0
Reserved  
Enable or disable all interrupts (global disable)  
EA = 0  
EA = 1  
Disable all interrupts  
Each interrupt source is individually controlled  
9.1.2 Additional Interrupt Sources  
2
All nonstandard 8052 interrupts (DMA, I C, etc.) are ORed to generate an internal INT0. Note, the external INT0 is  
not used. Furthermore, the INT0 must be programmed as an active low-level interrupt (not edge triggered). A vector  
interrupt register is provided to identify all interrupt sources (see VECINT: vector-interrupt register). Up to 64 interrupt  
vectors are provided. It is the responsibility of the MCU to read the vector and dispatch to the proper interrupt routine.  
91  
9.1.3 VECINT: Vector Interrupt Register (Addr:FF92)  
This register contains a vector value, which identifies the internal interrupt source that trapped to location 0003H.  
Writing (any value) to this register removes the vector and updates the next vector value (if another interrupt is  
pending). Note:thevectorvalueisoffset;therefore, itsvalueisinincrementsoftwo(bit0issetto0). Whennointerrupt  
is pending, the vector is set to 00h (see Table 92). As shown, the interrupt vector is divided to two fields: I[2:0] and  
G[3:0]. The I field defines the interrupt source within a group (on a first-come-first-served basis). In the G field, which  
defines the group number, group G0 is the lowest, and G15 is the highest priority.  
7
6
5
4
3
I2  
2
I1  
1
I0  
0
0
G3  
R/O  
G2  
R/O  
G1  
R/O  
G0  
R/O  
R/O  
R/O  
R/O  
R/O  
BIT  
NAME  
RESET  
FUNCTION  
31  
I[2:0]  
0H  
This field defines the interrupt source in a given group. See Table 92. Bit 0 = 0 always; therefore, vector values  
are offset by two.  
74  
G[3:0]  
0H  
This field defines the interrupt group. I[2:0] and G[3:0] combine to produce the actual interrupt vector.  
Table 92. Vector Interrupt Values  
G[3:0]  
I[2:0]  
(Hex)  
0
VECTOR  
(Hex)  
00  
INTERRUPT SOURCE  
(Hex)  
0
1
No interrupt  
0
10  
Not used  
1
1
1
1
2
3
12  
14  
16  
Output endpoint-1  
Output endpoint-2  
Output endpoint-3  
2
0
20  
Not used  
2
2
2
3
3
3
3
3
3
3
3
1
2
3
0
1
2
3
4
5
6
7
22  
24  
26  
30  
32  
34  
36  
38  
3A  
3C  
3E  
Input endpoint-1  
Input endpoint-2  
Input endpoint-3  
STPOW packet received  
SETUP packet received  
RESERVED  
RESERVED  
RESR interrupt  
SUSR interrupt  
RSTR interrupt  
Reserved  
2
4
4
4
4
0
1
2
3
40  
42  
44  
46  
I C TXE interrupt  
2
I C RXF interrupt  
Input endpoint-0  
Output endpoint-0  
4
47  
48 4E  
Not used  
5
5
5
0
1
47  
50  
52  
58 5E  
UART status interrupt  
UART modem interrupt  
Not used  
6
6
6
7
0
1
47  
57  
60  
62  
68 6E  
70 7E  
UART RXF interrupt  
UART TXE interrupt  
Not used  
Not used  
8
8
8
0
2
57  
80  
84  
888E  
DMA1 interrupt  
DMA3 interrupt  
Not used  
915  
X
90 FE  
Not used  
92  
9.1.4 Logical Interrupt Connection Diagram (Internal/External)  
Figure 91 shows the logical connection of the interrupt sources and its relation with XINTO. The priority encoder  
generates an 8-bit vector, corresponding to 64 interrupt sources (not all are used). The interrupt priorities are hard  
wired. Vector 0x88 is the highest and 0x12 is the lowest.  
Interrupts  
Priority  
Encoder  
IEO  
XINTO  
Vector  
IEO (INT0)  
Figure 91. Internal Vector Interrupt  
93  
94  
2
10 I C-Port  
2
10.1 I C Registers  
2
10.1.1 I2CSTA: I C Status and Control Register (Addr:FFF0)  
This register is used to control the stop condition for read and write operations. In addition, it provides transmitter and  
receiver handshake signals with their respective interrupt enable bits.  
7
6
5
4
3
2
1
0
RXF  
R/O  
RIE  
R/W  
ERR  
R/C  
1/4  
R/W  
TXE  
R/O  
TIE  
R/W  
SRD  
R/W  
SWR  
R/W  
BIT  
NAME  
RESET  
FUNCTION  
2
0
SWR  
0
Stop write condition. This bit determines if the I C controller generates a stop condition when data  
from the I2CDAO register is transmitted to an external device.  
SWR = 0  
Stop condition is not generated when data from the I2CDAO register is shifted out to an  
external device.  
SWR = 1  
Stop condition is generated when data from the I2CDAO register is shifted out to an  
external device.  
2
1
SRD  
0
Stop read condition. This bit determines if the I C controller generates a stop condition when data is  
received and loaded into the I2CDAI register.  
SRD = 0  
Stop condition is not generated when data from the SDA line is shifted into the I2CDAI  
register.  
SRD = 1  
Stop condition is generated when data from the SDA line are shifted into the I2CDAI  
register.  
2
I C transmitter empty interrupt enable  
2
3
TIE  
0
1
TIE = 0  
TIE = 1  
Interrupt disable  
Interrupt enable  
2
TXE  
I C transmitter empty. This bit indicates that data can be written to the transmitter. It can be used for  
polling or it can generate an interrupt.  
TXE = 0  
Transmitter is full. This bit is cleared when the MCU writes a byte to the II2CDAO  
register.  
2
TXE = 1  
Transmitter is empty. The I C controller sets this bit when the contents of the I2CDAO  
register are copied to the SDA shift register.  
4
5
1/4  
0
0
Bus speed selection  
1/4 = 0  
1/4 = 1  
100-kHz bus speed  
400-kHz bus speed  
ERR  
Bus error condition. This bit is set by the hardware when the device does not respond. It is cleared by  
the MCU.  
ERR = 0  
ERR = 1  
No bus error  
Bus error condition has been detected. Clears when the MCU writes a 1. Writing a 0 has  
no effect.  
2
I C receiver ready interrupt enable  
6
7
RIE  
0
0
RIE = 0  
RIE = 1  
Interrupt disable  
Interrupt enable  
2
RXF  
I C receiver full. This bit indicates that the receiver contains new data. It can be used for polling or it  
can generate an interrupt.  
RXF = 0  
RXF = 1  
Receiver is empty. This bit is cleared when the MCU reads the I2CDAI register.  
2
Receiver contains new data. This bit is set by the I C controller when the received serial  
data has been loaded into the I2CDAI register.  
101  
2
10.1.2 I2CADR: I C Address Register (Addr:FFF3)  
This register holds the device address and the read/write command bit.  
7
6
5
4
3
2
1
0
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BIT  
NAME  
R/W  
RESET  
FUNCTION  
0
0
Read/write command bit  
R/W = 0 Write operation  
R/W = 1 Read operation  
71  
A[6:0]  
0h  
Seven address bits for device addressing  
2
10.1.3 I2CDAI: I C Data-Input Register (Addr:FFF2)  
This register holds the received data from an external device.  
7
6
5
4
3
2
1
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
R/O  
BIT  
70  
NAME  
D[7:0]  
RESET  
FUNCTION  
8-bit input data from an I C device  
2
0
2
10.1.4 I2CDAO: I C Data-Output Register (Addr:FFF1)  
This register holds the data to be transmitted to an external device. Writing to this register starts the transfer on the  
SDA line.  
7
6
5
4
3
2
1
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
W/O  
W/O  
W/O  
W/O  
W/O  
W/O  
W/O  
W/O  
BIT  
70  
NAME  
D[7:0]  
RESET  
FUNCTION  
8-bit output data to an I C device  
2
0
10.2 Random-Read Operation  
A random read requires a dummy byte-write sequence to load in the data word address. Once the device-address  
word and the data-word address are clocked out and acknowledged by the device, the MCU starts a current-address  
sequence. The following describes the sequence of events to accomplish this transaction.  
Device Address + EPROM [High Byte]  
2
The MCU sets I2CSTA[SRD] = 0. This forces the I C controller not to generate a stop condition after the  
contents of the I2CDAI register are received.  
2
The MCU sets I2CSTA[SWR] = 0. This forces the I C controller not to generate a stop condition after the  
contents of the I2CDAO register are transmitted.  
The MCU writes the device address (R/W bit = 0) to the I2CADR register (write operation)  
The MCU writes the high byte of the E2PROM address into the I2CDAO register (this starts the transfer on  
the SDA line).  
The TXE bit in the I2CSTA register is cleared (indicates busy).  
The content of the I2CADR register is transmitted to E2PROM (preceded by start condition on SDA).  
102  
The contents of the I2CDAO register are transmitted to E2PROM. (EPROM address).  
The TXE bit in the I2CSTA register is set and interrupts the MCU, indicating that the I2CDAO register has  
been transmitted.  
A stop condition is not generated.  
EPROM [Low Byte]  
The MCU writes the low byte of the E2PROM address into the I2CDAO register.  
The TXE bit in the I2CSTA register is cleared (indicates busy).  
The contents of the I2CDAO register are transmitted to the device (E2PROM address).  
The TXE bit in the I2CSTA register is set and interrupts the MCU, indicating that the I2CDAO register has  
been transmitted.  
This completes the dummy write operation. At this point, the E2ROM address is set and the MCU can do  
either a single- or a sequential-read operation.  
10.3 Current-Address Read Operation  
2
Once the E PROM address is set, the MCU can read a single byte by executing the following steps:  
2
The MCU sets I2CSTA[SRD] = 1. This forces the I C controller to generate a stop condition after the  
I2CDAI-register contents are received.  
The MCU writes the device address (R/W bit = 1) to the I2CADR register (read operation).  
The MCU writes a dummy byte to the I2CDAO register (this starts the transfer on SDA line).  
The RXF bit in the I2CSTA register is cleared.  
The contents of the I2CADR register are transmitted to the device (preceded by start condition on SDA).  
The data from E2PROM are latched into the I2CDAI register (stop condition is transmitted).  
The RXF bit in the I2CSTA register is set and interrupts the MCU, indicating that the data are available.  
The MCU reads the I2CDAI register. This clears the RXF bit (I2CSTA[RXF] = 0).  
End  
10.4 Sequential-Read Operation  
2
Once the E PROM address is set, the MCU can execute a sequential read operation by executing the following (this  
example illustrates a 32-byte sequential read):  
Device Address  
2
The MCU sets I2CSTA[SRD] = 0. This forces the I C controller not to generate a stop condition after the  
I2CDAI register contents are received.  
The MCU writes the device address (R/W bit = 1) to the I2CADR register (read operation).  
The MCU writes a dummy byte to the I2CDAO register (this starts the transfer on the SDA line).  
The RXF bit in the I2CSTA register is cleared.  
ThecontentsoftheI2CADRregisteraretransmittedtothedevice(precededbystartconditiononSDA).  
N-Byte Read (31 Bytes)  
The data from the device are latched into the I2CDAI register (stop condition is not transmitted).  
The RXF bit in the I2CSTA register is set and interrupts the MCU, indicating that data are available.  
The MCU reads the I2CDAI register. This clears the RXF bit (I2CSTA[RXF] = 0).  
This operation repeats 31 times.  
Last-Byte Read (Byte 32)  
2
MCU sets I2CSTA[SRD] = 1. This forces the I C controller to generate a stop condition after the I2CDAI  
register contents are received.  
103  
The data from the device is latched into the I2CDAI register (stop condition is transmitted).  
The RXF bit in the I2CSTA register is set and interrupts the MCU, indicating that data are available.  
The MCU reads the I2CDAI register. This clears the RXF bit (I2CSTA[RXF] = 0)  
End  
10.5 Byte-Write Operation  
The byte-write operation involves three phases: device address + EPROM [high byte] phase, EPROM [low byte]  
phase, and EPROM [DATA] phase. The following describes the sequence of events to accomplish the byte-write  
transaction.  
Device Address + EPROM [High Byte]  
2
TheMCUsetsI2CSTA[SWR]=0. ThisforcestheI Ccontrollertonotgenerateastopconditionafterthe  
contents of the I2CDAO register are transmitted.  
The MCU writes the device address (R/W bit = 0) to the I2CADR register (write operation).  
The MCU writes the high byte of the E2PROM address into the I2CDAO register (this starts the transfer  
on the SDA line).  
The TXE bit in the I2CSTA register is cleared (indicates busy).  
ThecontentsoftheI2CADRregisteraretransmittedtothedevice(precededbystartconditiononSDA).  
The contents of the I2CDAO register are transmitted to the device (E2PROM high address).  
The TXE bit in the I2CSTA register is set and interrupts the MCU, indicating that the I2CDAO register  
contents have been transmitted.  
EPROM [Low Byte]  
The MCU writes the low byte of the E2PROM address into the I2CDAO register.  
The TXE bit in the I2CSTA register is cleared (indicating busy).  
The contents of the I2CDAO register are transmitted to the device (E2PROM address).  
The TXE bit in the I2CSTA register is set and interrupts the MCU, indicating that the I2CDAO register  
contents have been transmitted.  
EPROM [DATA]  
2
The MCU sets I2CSTA[SWR] = 1. This forces the I C controller to generate a stop condition after the  
contents of I2CDAO register are transmitted.  
The The data to be written to E2PROM is written by the MCU into the I2CDAO register.  
The TXE bit in the I2CSTA register is cleared (indicates busy).  
The contents of the I2CDAO register are transmitted to the device (E2PROM data).  
The TXE bit in the I2CSTA register is set and interrupts the MCU, indicating that the I2CDAO register  
contents have been transmitted.  
2
The I C controller generates a stop condition after the contents of the I2CDAO register are transmitted.  
End  
104  
10.6 Page-Write Operation  
The page-write operation is initiated in the same way as byte write, with the exception that a stop condition is not  
generated after the first EPROM [DATA] is transmitted. The following describes the sequence of writing 32 bytes in  
page mode.  
Device Address + EPROM [High Byte]  
2
TheMCUsetsI2CSTA[SWR]=0. ThisforcestheI Ccontrollernottogenerateastopconditionafterthe  
contents of the I2CDAO register are transmitted.  
The MCU writes the device address (R/W bit = 0) to the I2CADR register (write operation).  
The MCU writes the high byte of the E2PROM address into the I2CDAO register  
The TXE bit in the I2CSTA register is cleared (indicating busy).  
ThecontentsoftheI2CADRregisteraretransmittedtothedevice(precededbystartconditiononSDA).  
The contents of the I2CDAO register are transmitted to the device (E2PROM address).  
The TXE bit in the I2CSTA register is set and interrupts the MCU, indicating that the I2CDAO register  
contents have been transmitted.  
EPROM [Low Byte]  
The MCU writes the low byte of the E2PROM address into the I2CDAO register.  
The TXE bit in the I2CSTA register is cleared (indicates busy).  
The contents of the I2CDAO register are transmitted to the device (E2PROM address).  
The TXE bit in the I2CSTA register is set and interrupts the MCU, indicating that the I2CDAO register  
contents have been transmitted.  
EPROM [DATA]31 Bytes  
The data to be written to the E2PROM are written by the MCU into the I2CDAO register.  
The TXE bit in the I2CSTA register is cleared (indicates busy).  
The contents of the I2CDAO register are transmitted to the device (E2PROM data).  
The TXE bit in the I2CSTA register is set and interrupts the MCU, indicating that the I2CDAO register  
contents have been transmitted.  
This operation repeats 31 times.  
EPROM [DATA]Last Byte  
2
The MCU sets I2CSTA[SWR] = 1. This forces the I C controller to generate a stop condition after the  
contents of the I2CDAO register are transmitted.  
The MCU writes the last date byte to be written to the E2PROM, into the I2CDAO register.  
The TXE bit in the I2CSTA register is cleared (indicates busy).  
The contents of the I2CDAO register are transmitted to E2PROM (E2PROM data).  
The TXE bit in the I2CSTA register is set and interrupts the MCU, indicating that the I2CDAO register  
contents have been transmitted.  
2
The I C controller generates a stop condition after the contents of the I2CDAO register are transmitted.  
End of 32-byte page-write operation.  
105  
106  
11 TUSB3410 Bootcode Flow  
11.1 Introduction  
TUSB3410 bootcode is a program embedded within TUSB3410 device. This program is designed to load application  
firmware from either external memory device or USB host bootloader device driver. After finished downloading,  
bootcode releases its control to the application firmware.  
This document describes how the bootcode initializes the TUSB3410 device in detail. In addition, the default USB  
2
descriptor, I C device header format, USB host driver firmware downloading format, and supported built-in USB  
vendor specific requests are listed for reference. Users should carefully follow the appropriate format to interface with  
the bootcode. All unsupported formats might cause unexpected results.  
The bootcode source code is also provided for programming reference.  
11.2 Bootcode Programming Flow  
2
After power-on reset, the bootcode initializes the I C and USB registers along with internal variables. The bootcode  
2
2
then checks to see if the I C device contains a valid signature. If the I C device has a valid signature, the bootcode  
continues searching for descriptor blocks and then processes them if the checksum is correct. If application firmware  
was found, the bootcode downloads it and releases the control to the application firmware. Otherwise, the bootcode  
connects to the USB and waits for host driver to download application firmware. Once firmware downloading is  
finished, the bootcode releases the control to the firmware.  
The following is the bootcode step-by-step operation.  
Check if bootcode is in the application mode. If the bootcode is in the application mode, the bootcode  
releases the control to the application firmware. Otherwise, the bootcode continues.  
Initialize all the default settings.  
Call CopyDefaultSettings() routine.  
2
Set I C to 400-kHz speed.  
Call UsbDataInitialization() routine.  
Set bFUNADR = 0  
Disconnect from USB (bUSBCTL = 0x00)  
Bootcode handles USB reset  
Copy predefined device, configuration, and string descriptors to RAM  
Disable all endpoints and enable USB interrupt(SETUP, RSTR, SUSPR, and RESU)  
Search for product signature  
Check if valid signature is in I C. If not, skip I C process.  
2
2
Read 2 bytes from address 0x0000 with type III and device address 0. Stop searching if valid  
signature is found.  
Read 2 bytes from address 0x0000 with type II and device address 4. Stop searching if valid  
signature is found.  
2
Load customized device, configuration and string descriptors from I C EEPROM.  
2
Process each descriptor block from I C until end of header is found  
If descriptor block is device, configuration or string descriptors, the bootcode overwrites the default  
descriptors.  
If descriptor block is binary firmware, the bootcode makes a note and loads the firmware later on.  
111  
If descriptor block is auto-execution firmware, the bootcode loads it and releases the control to the  
firmware.  
If descriptor block is end of header, the bootcode stops searching.  
2
Set header pointer to the beginning of the binary firmware in I C EEPROM.  
Enable global and USB interrupts and set connection bit to 1.  
Set global interrupt bit. EA = 1.  
Set internal interrupt bit. EX0 = 1.  
Set connection bit. CONT = 1.  
Wait for any interrupt events until Get DEVICE DESCIPTOR setup packet arrives.  
Suspend interrupt  
Set IDLE = 1 to enter suspend mode. USB reset wakes up the microcontroller.  
Resume interrupt  
Bootcode wakes up and waits for new USB requests.  
Reset interrupt  
Call UsbReset() routine.  
Setup interrupt  
Bootcode process the request.  
Reboot  
If Reboot=1, disconnect from USB and restart at address 0x0000.  
2
Download firmware from I C EEPROM  
Disable global interrupt. Reset EA = 0.  
Load firmware to xdata space if available.  
Download firmware from USB.  
2
If no firmware in I C EEPROM, host downloads firmware via output endpoint 1.  
In the first data packet to output endpoint 1, host driver add 3 bytes before the application firmware in  
binary format. These three bytes are LSB and MSB of firmware size and then arithmetic checksum of  
binary firmware.  
Release control to firmware.  
Update USB configuration and interface number.  
Release control to application firmware.  
Application firmware  
Either disconnect from bus or continue responding to USB requests.  
11.3 Default Bootcode Settings  
The bootcode has its own predefined device, configuration, and string descriptors. These default descriptors should  
be used in evaluation only. They should not be used in end-user product.  
112  
11.3.1 Device Descriptor  
Device descriptor describes the USB version that the device supports, device class, protocol, vendor, product  
identifications, strings, and number of configuration. The OS (operation system like Windows, MAC, or Linux) reads  
this descriptor to decide which device driver should be used to communicate to this device.  
The bootcode uses 0x0451(Texas Instruments) as vendor ID and 0x3410(TUSB3410) as product ID. It also supports  
three different strings and one configuration. Table 111 lists the device descriptor.  
Table 111. Device Descriptor  
OFFSET  
FIELD  
bLength  
SIZE  
1
VALUE  
DESCRIPTION  
0
1
0x12  
Size of this descriptor in bytes  
Device Descriptor type  
USB spec 1.1  
bDescriptorType  
bcdUSB  
1
1
2
2
0x0110  
4
bDeviceClass  
bDeviceSubClass  
bDeviceProtocol  
bMaxPacketSize0  
idVendor  
1
0xFF  
Device class is vendorspecific  
We have no subclasses.  
We use no protocols.  
5
1
0
6
1
0
7
1
8
Max. packet size for endpoint zero  
8
2
0x0451  
USBassigned vendor ID = TI  
10  
12  
14  
15  
16  
17  
idProduct  
2
0x3410  
TI part number = TUSB3410  
bcdDevice  
2
0x100  
Device release number = 1.0  
iManufacturer  
iProducct  
1
1
2
3
1
Index of string descriptor describing manufacturer  
Index of string descriptor describing product  
Index of string descriptor describing devices serial number  
Number of possible configurations:  
1
iSerialNumber  
bNumConfigurations  
1
1
11.3.2 Configuration Descriptor  
The configuration descriptor describes the number of interfaces supported by this configuration, power configuration,  
and current consumption.  
The bootcode declares only one interface running in bus-powered mode. It consumes up to 100 mA at boot time.  
Table 112 lists the configuration descriptor.  
Table 112. Configuration Descriptor  
OFFSET  
FIELD  
bLength  
SIZE  
VALUE  
DESCRIPTION  
0
1
2
1
1
2
9
2
Size of this descriptor in bytes.  
Configuration descriptor type  
bDescriptor Type  
wTotalLength  
25 = 9 + 9 + 7 Total length of data returned for this configuration. Includes the combined length  
of all descriptors (configuration, interface, endpoint, and class- or  
vendor-specific) returned for this configuration.  
4
5
bNumInterfaces  
1
1
1
1
Number of interfaces supported by this configuration  
bConfigurationValue  
Value to use as an argument to the SetConfiguration() request to select this  
configuration.  
6
7
iConfiguration  
bmAttributes  
1
1
0
Index of string descriptor describing this configuration.  
Configuration characteristics  
0x80  
D7:  
D6:  
Reserved (set to one)  
Self-powered  
D5:  
D40:  
Remote wakeup is supported  
Reserved (reset to zero)  
8
bMaxPower  
1
0x32  
This device consumes 100 mA.  
113  
11.3.3 Interface Descriptor  
The interface descriptor describes the number of endpoints supported by this interface as well as interface class,  
subclass, and protocol.  
The bootcode supports only one endpoint and use its own class. Table 113 lists the interface descriptor.  
Table 113. Interface Descriptor  
OFFSET  
FIELD  
SIZE  
VALUE  
DESCRIPTION  
0
1
2
bLength  
1
1
1
9
4
0
Size of this descriptor in bytes  
Interface descriptor type  
bDescriptorType  
bInterfaceNumber  
Numberofinterface. Zero-basedvalueidentifyingtheindexinthearrayofconcurrent  
interfaces supported by this configuration.  
3
4
bAlternateSetting  
bNumEndpoints  
1
1
0
1
Value used to select alternate setting for the interface identified in the prior field  
Number of endpoints used by this interface (excluding endpoint zero). If this value is  
zero, this interface only uses the default control pipe.  
5
6
7
8
bInterfaceClass  
bInterfaceSubClass  
bInterfaceProtocol  
iInterface  
1
1
1
1
0xFF  
The interface class is vendor specific.  
0
0
0
Index of string descriptor describing this interface  
11.3.4 Endpoint Descriptor  
The endpoint descriptor describes the type and size of communication pipe supported by this endpoint.  
The bootcode supports only one output endpoint with the size of 64 bytes in addition to control endpoint 0 (required  
by all USB devices). Table 114 lists the endpoint descriptor.  
Table 114. Output Endpoint1 Descriptor  
OFFSET  
FIELD  
SIZE  
VALUE  
DESCRIPTION  
0
1
2
bLength  
1
1
1
7
5
Size of this descriptor in bytes  
Endpoint descriptor type  
bDescriptorType  
bEndpointAddress  
0x01  
Bit 30: The endpoint number  
Bit 7:  
Direction  
0 = OUT endpoint  
1 = IN endpoint  
3
bmAttributes  
1
2
Bit 10: Transfer type  
10 = Bulk  
11 = Interrupt  
4
6
wMaxPacketSize  
bInterval  
2
1
64  
0
Maximum packet size this endpoint is capable of sending or receiving when this  
configuration is selected.  
Interval for polling endpoint for data transfers. Expressed in milliseconds.  
114  
11.3.5 String Descriptor  
The string descriptor contains string in the unicode format. It is used to show the manufacturers name, product model,  
and serial number in human readable format.  
The bootcode supports three strings. The first string is the manufacturers name, the second string is the product  
name, and the last string is the serial number. Table 115 lists the string descriptor.  
Table 115. String Descriptor  
OFFSET  
0
FIELD  
bLength  
SIZE  
1
1
2
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
VALUE  
4
DESCRIPTION  
Size of string 0 descriptor in bytes  
String descriptor type  
English  
1
bDescriptorType  
wLANGID[0]  
bLength  
0x03  
2
0x0409  
36  
4
Size of string 1 descriptor in bytes  
String descriptor type  
Unicode, T is the first byte  
Texas Instruments  
5
bDescriptorType  
bString  
0x03  
6
T,0x00  
e,0x00  
x,0x00  
a,0x00  
s,0x00  
‘ ’,0x00  
I,0x00  
n,0x00  
s,0x00  
t,0x00  
r,0x00  
u,0x00  
m,0x00  
e,0x00  
n,0x00  
t,0x00  
s,0x00  
42  
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
41  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
64  
66  
68  
70  
bLength  
bDescriptorType  
bString  
Size of string 2 descriptor in bytes  
STRING descriptor type  
0x03  
T,0x00  
U,0x00  
S,0x00  
B,0x00  
3,0x00  
4,0x00  
1,0x00  
0,0x00  
‘ ‘,0x00  
B,0x00  
o,0x00  
o,0x00  
t,0x00  
‘ ’,0x00  
D,0x00  
UNICODE, T is first byte  
TUSB3410 boot device  
115  
Table 115. String Descriptor (Continued)  
OFFSET  
72  
FIELD  
SIZE  
2
VALUE  
e,0x00  
v,0x00  
I,0x00  
c,0x00  
e,0x00  
34  
DESCRIPTION  
74  
2
76  
2
78  
2
80  
2
82  
bLength  
bDescriptorType  
bString  
1
Size of string 3 descriptor in bytes  
STRING descriptor type  
84  
1
0x03  
86  
2
r0,0x00  
r1,0x00  
r2,0x00  
r3,0x00  
r4,0x00  
r5,0x00  
r6,0x00  
r7,0x00  
r8,0x00  
r9,0x00  
rA,0x00  
rB,0x00  
rC,0x00  
rD,0x00  
rE,0x00  
rF,0x00  
UNICODE  
88  
2
R0 to rF are BCD of SERNUM0 to  
SERNUM7 registers. 16 digit hex  
16 digit hex numbers are created from  
SERNUM0 to SERNUM7 registers  
90  
2
92  
2
94  
2
96  
2
98  
2
100  
102  
104  
106  
108  
110  
112  
114  
116  
2
2
2
2
2
2
2
2
2
11.4 External Device Header Format  
2
The header can be restored in various storage devices such as ROM, parallel/serial EEPROM, I C, or flash ROM.  
A valid header should contain a product signature and one or more descriptor blocks. The descriptor block contains  
the descriptor prefix and content. In the descriptor prefix, the data type, size, and checksum are specified to describe  
the content. The descriptor content contains the necessary information for the bootcode to process.  
The header processing routine always counts from the first descriptor block until the desired block number is reached.  
The header reads in descriptor prefix with the size of 4 bytes. This prefix contains the type of block, size, and  
checksum. For example, if the bootcode would like to find the position on third descriptor block, it reads in the first  
descriptor prefix, calculates the position on the second descriptor prefix based on the size specified in the prefix.  
bootcode, then repeats the same calculation to find out the position of the third descriptor block.  
2
Note that the header-processing routine of the TUSB3410 only supports the I C device. No other storage device  
should be used to store header information.  
11.4.1 Product Signature  
The product signature should be stored at the first 2 bytes of storage device. These 2 bytes should match the product  
number. The order of these 2 bytes should be the LSB first and then the MSB. For example, UMP (TUSB5152) is  
0x5152. Therefore, the first byte should be 0x52 and the second byte should be 0x51.  
2
The TUSB3410 bootcode searches the first 2 bytes of the I C device. If the first 2 bytes are not 0x10 and 0x34, the  
bootcode skips the header processing.  
116  
11.4.2 Descriptor Block  
Each descriptor block contains prefix and content. The size of the prefix is always 4 bytes. It contains the data type,  
size, and checksum for data integrity. The descriptor content contains the corresponding information specified in the  
prefix. It could be as small as 1 byte or as large as 65535 bytes. The next descriptor immediately follows the previous  
descriptor. If there are no more descriptors, an extra byte with a value of zero should be added to indicate the end  
of header.  
11.4.2.1 Descriptor Prefix  
The first byte of the descriptor prefix is the data type. This tells the bootcode how to process the data in the descriptor  
content. The second and third bytes are the size of descriptor content. The second byte is the low byte of the size  
and the third byte is the high byte. The last byte is the 8-bit arithmetic checksum of descriptor content.  
11.4.2.2 Descriptor Content  
Information stored in the descriptor content can be the USB information, firmware, or other type of data. The size of  
the content should be from 1 byte to 65535 bytes.  
11.5 Checksum in Descriptor Block  
Each descriptor prefix contains one checksum of the descriptor content. If the checksum is wrong, the bootcode  
simply ignores the descriptor block.  
11.6 Header Examples  
The header can be specified in different ways. The following descriptors show examples of the header format and  
the supported descriptor block.  
11.6.1 TUSB3410 Bootcode Supported Descriptor Block  
The TUSB3410 bootcode supports the following descriptor blocks.  
USB Device Descriptor  
USB Configuration Descriptor  
USB String Descriptor  
1
Binary Firmware  
2
Autoexec Binary Firmware  
1
2
Binary firmware is loaded when the bootcode receives the first get device descriptor request from host. Downloading the firmware should  
either continue that request in the data stage or disconnect from the USB and then reconnect to the USB as a new device.  
The bootcode loads this autoexec binary firmware before it connects to the USB. The firmware should connect to the USB once it is  
loaded.  
117  
11.6.2 USB Descriptor Header  
Table 116 contains the USB device, configuration, and string descriptors for the bootcode. The last byte is zero to  
indicate the end of header.  
Table 116. USB Descriptors Header  
OFFSET  
TYPE  
SIZE  
VALUE  
DESCRIPTION  
0
Signature0  
0x10  
FUNCTION_PID_L  
1
1
1
1
1
1
1
1
2
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
2
1
Signature1  
Data Type  
0x34  
0x03  
FUNCTION_PID_H  
2
USB device descriptor  
3
Data Size (low byte)  
Data Size (high byte)  
Check Sum  
0x12  
The device descriptor is 18 bytes.  
4
0x00  
5
0xCC  
0x12  
Checksum of data below  
6
bLength  
Size of device descriptor in bytes  
Device descriptor type  
7
bDescriptorType  
bcdUSB  
0x01  
8
0x0110  
0xFF  
0x00  
USB spec 1.1  
10  
11  
12  
13  
14  
16  
18  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
bDeviceClass  
bDeviceSubClass  
bDeviceProtocol  
bMaxPacketSize0  
idVendor  
Device class is vendor-specific  
We have no subclasses.  
0x00  
We use no protocols  
0x08  
Maximum packet size for endpoint zero  
USBassigned vendor ID = TI  
TI part number = TUSB3410  
Device release number = 1.0  
Index of string descriptor describing manufacturer  
Index of string descriptor describing product  
Index of string descriptor describing devices serial number  
Number of possible configurations:  
USB configuration descriptor  
25 bytes  
0x0451  
0x3410  
0x0100  
0x01  
idProduct  
bcdDevice  
iManufacturer  
iProducct  
0x02  
iSerialNumber  
bNumConfigurations  
Data Type  
0x03  
0x01  
0x04  
Data Size (low byte)  
Data Size (high byte)  
Check Sum  
0x19  
0x00  
0xC6  
0x09  
Checksum of data below  
bLength  
Size of this descriptor in bytes  
CONFIGURATION Descriptor type  
bDescriptorType  
wTotalLength  
0x02  
25(0x19) = Total length of data returned for this configuration. Includes the combined length of  
9 + 9 + 7  
all descriptors (configuration, interface, endpoint, and class- or vendor-specific)  
returned for this configuration.  
32  
33  
bNumInterfaces  
1
1
0x01  
0x01  
Number of interfaces supported by this configuration  
bConfigurationValue  
Value to use as an argument to the SetConfiguration() request to select this  
configuration  
34  
35  
iConfiguration  
bmAttributes  
1
1
0x00  
0xE0  
Index of string descriptor describing this configuration.  
Configuration characteristics  
D7:  
D6:  
Reserved (set to one)  
Selfpowered  
D5:  
D40:  
Remote Wakeup is supported  
Reserved (reset to zero)  
36  
37  
38  
39  
bMaxPower  
bLength  
1
1
1
1
0x64  
0x09  
0x04  
0x00  
This device consumes 100 mA.  
Size of this descriptor in bytes  
INTERFACE descriptor type  
bDescriptorType  
bInterfaceNumber  
Number of interface. Zero-based value identifying the index in the array of  
concurrent interfaces supported by this configuration.  
118  
Table 116. USB Descriptors Header (Continued)  
OFFSET  
40  
TYPE  
SIZE  
VALUE  
0x00  
DESCRIPTION  
bAlternateSetting  
bNumEndpoints  
1
1
Value used to select alternate setting for the interface identified in the prior field  
41  
0x01  
Number of endpoints used by this interface (excluding endpoint zero). If this value  
is zero, this interface only uses the default control pipe.  
42  
43  
44  
45  
46  
47  
48  
bInterfaceClass  
bInterfaceSubClass  
bInterfaceProtocol  
iInterface  
1
1
1
1
1
1
1
0xFF  
0x00  
0x00  
0x00  
0x07  
0x05  
0x01  
The interface class is vendor specific.  
Index of string descriptor describing this interface  
Size of this descriptor in bytes  
bLength  
bDescriptorType  
bEndpointAddress  
ENDPOINT descriptor type  
Bit 30: The endpoint number  
Bit 7:  
Direction  
0 = OUT endpoint  
1 = IN endpoint  
49  
50  
bmAttributes  
1
2
0x02  
Bit 10: Transfer Type  
10 = Bulk  
11 = Interrupt  
wMaxPacketSize  
0x0040  
Maximum packet size this endpoint is capable of sending or receiving when this  
configuration is selected.  
52  
53  
54  
55  
56  
57  
58  
59  
61  
62  
63  
65  
67  
68  
69  
71  
73  
74  
75  
77  
79  
81  
83  
bInterval  
Data Type  
1
1
1
1
1
1
1
2
1
1
2
2
1
1
2
2
1
1
2
2
2
2
1
0x00  
0x05  
Interval for polling endpoint for data transfers. Expressed in milliseconds.  
USB String descriptor  
Data Size (low byte)  
Data Size (high byte)  
Check Sum  
0x1A  
26(0x1A) = 4 + 6 + 6 + 10  
0x00  
0x50  
Checksum of data below  
Size of string 0 descriptor in bytes  
STRING descriptor type  
English  
bLength  
0x04  
bDescriptorType  
wLANGID[0]  
bLength  
0x03  
0x0409  
0x06  
Size of string 1 descriptor in bytes  
STRING descriptor type  
UNICODE, Tis the first byte.  
TI = 0x54, 0x49  
bDescriptorType  
bString  
0x03  
T,0x00  
I,0x00  
0x06  
bLength  
bDescriptorType  
bString  
Size of string 2 descriptor in bytes  
STRING descriptor type  
UNICODE, uis the first byte.  
uC= 0x75, 0x43  
0x03  
u,0x00  
C,0x00  
0x0A  
bLength  
bDescriptorType  
bString  
Size of string 3 descriptor in bytes  
STRING descriptor type  
UNICODE, Tis the first byte.  
3410= 0x33, 0x34, 0x31, 0x30  
0x03  
3,0x00  
4,0x00  
1,0x00  
0,0x00  
0x00  
Data Type  
End of header  
119  
11.6.3 Autoexec Binary Firmware  
If the application requires firmware loaded prior to USB connection, the following header can be used. The bootcode  
loads the firmware and release the control to the firmware directly without connecting to the USB. However, per the  
USB specification requirement, any USB device should connect to the bus and respond to the host within the first  
100 ms. Therefore, if downloading time is more than 100 ms, the USB and header speed descriptor blocks should  
be added before the autoexec binary firmware. Table 117 shows an example of autoexec binary firmware header.  
Table 117. Autoexec Binary Firmware  
OFFSET  
TYPE  
SIZE  
VALUE  
DESCRIPTION  
FUNCTION_PID_L  
0x0000  
Signature0  
0x10  
1
0x0001  
0x0002  
0x0003  
0x0004  
0x0005  
0x0006  
0x456d  
Signature1  
Data Type  
1
0x34  
0x07  
0x67  
0x45  
0xNN  
FUNCTION_PID_H  
1
Autoexec binary firmware  
0x4567 bytes of application code  
Data Size (low byte)  
Data Size (high byte)  
Check Sum  
1
1
1
0x4567  
1
Checksum of the following firmware  
Binary application code  
End of header  
Program  
Data Type  
0x00  
11.7 Host Driver Downloading Header Format  
If firmware downloading from the host driver is desired, the host driver should follow the format in Table 118. The  
Texas Instruments bootloader driver generates the proper format. Therefore, users only need to provide the binary  
image of the application firmware for the Bootloader. If the checksum is wrong, the bootcode disconnects from the  
USB and waits before it reconnects to the USB.  
Table 118. Host Driver Downloading Format  
OFFSET  
TYPE  
SIZE  
VALUE  
DESCRIPTION  
Application firmware size  
0x0000 Firmware size (low byte)  
0xXX  
1
0x0001 Firmware size (low byte)  
0x0002 Checksum  
1
1
0xYY  
0xZZ  
Checksum of binary application code  
Binary application code  
0x0003 Program  
0xYYXX  
1110  
11.8 Built-In Vendor Specific USB Requests  
The bootcode supports several vendor specific USB requests. These requests are primarily for internal testing only.  
These functions should not be used in normal operation.  
11.8.1 Reboot  
The reboot command forces the bootcode to reboot. The bootcode starts over.  
bmRequestType  
USB_REQ_TYPE_DEVICE |  
USB_REQ_TYPE_VENDOR |  
USB_REQ_TYPE_OUT  
01000000b  
bRequest  
wValue  
wIndex  
wLength  
Data  
BTC_REBOOT  
None  
0x85  
0x0000  
0x0000  
0x0000  
None  
None  
None  
11.8.2 Force Execute Firmware  
The force execute firmware command requests the bootcode to execute the downloaded firmware unconditionally.  
bmRequestType  
USB_REQ_TYPE_DEVICE |  
USB_REQ_TYPE_VENDOR |  
USB_REQ_TYPE_OUT  
01000000b  
bRequest  
wValue  
wIndex  
wLength  
Data  
BTC_FORCE_EXECUTE_FIRMWARE  
0x8F  
None  
None  
None  
None  
0x0000  
0x0000  
0x0000  
11.8.3 External Memory Read  
The bootcode returns the content of the specified address.  
bmRequestType  
USB_REQ_TYPE_DEVICE |  
USB_REQ_TYPE_VENDOR |  
USB_REQ_TYPE_IN  
11000000b  
bRequest  
wValue  
wIndex  
wLength  
Data  
BTC_EXETERNAL_MEMORY_READ  
0x90  
None  
0x0000  
Data address  
0xNNNN (From 0x0000 to 0xFFFF)  
1 byte  
0x0001  
0xNN  
Byte in the specified address  
11.8.4 External Memory Write  
The external memory write command tells the bootcode to write data to the specified address.  
bmRequestType  
USB_REQ_TYPE_DEVICE |  
USB_REQ_TYPE_VENDOR |  
USB_REQ_TYPE_OUT  
01000000b  
bRequest  
wValue  
BTC_EXETERNAL_MEMORY_WRITE  
0x91  
HI: 0x00  
LO: Data  
0x00NN  
wIndex  
wLength  
Data  
Data address  
None  
0xNNNN (From 0x0000 to 0xFFFF)  
0x0000  
None  
1111  
2
11.8.5 I C Memory Read  
2
The bootcode returns the content of the specified address in I C EEPROM.  
2
In the wValue field, the I C device number is from 0x00 to 0x07 in high filed. The memory type is from 0x01 to 0x03  
for CAT I to CAT III devices. If bit 7 of bValueL is set, then 400 kHz is used. Otherwise, 100 kHz is used. This request  
2
is also used to set the device number and speed before the I C write request.  
bmRequestType  
USB_REQ_TYPE_DEVICE |  
USB_REQ_TYPE_VENDOR |  
USB_REQ_TYPE_IN  
11000000b  
bRequest  
wValue  
BTC_I2C_MEMORY_READ  
0x92  
2
HI:  
I C device number  
0xXXYY  
LO:  
Memory type bit[1:0]  
Speed bit[7]  
wIndex  
wLength  
Data  
Data address  
0xNNNN (From 0x0000 to 0xFFFF)  
1 byte  
0x0001  
0xNN  
Byte in the specified address  
2
11.8.6 I C Memory Write  
2
The I C memory write command tells the bootcode to write data to the specified address. The SPI mode setting is  
done in the SPI read command.  
bmRequestType  
USB_REQ_TYPE_DEVICE |  
USB_REQ_TYPE_VENDOR |  
USB_REQ_TYPE_OUT  
01000000b  
bRequest  
wValue  
BTC_I2C_MEMORY_WRITE  
0x93  
HI: should be zero  
LO: Data  
0x00NN  
wIndex  
wLength  
Data  
Data address  
None  
0xNNNN (From 0x0000 to 0xFFFF)  
0x0000  
None  
11.8.7 Internal ROM Memory Read  
The bootcode returns the byte of the specified address in ROM. That is, the binary code of the bootcode.  
bmRequestType  
USB_REQ_TYPE_DEVICE |  
USB_REQ_TYPE_VENDOR |  
USB_REQ_TYPE_OUT  
01000000b  
bRequest  
wValue  
wIndex  
wLength  
Data  
BTC_INTERNAL_ROM_MEMORY_READ  
0x94  
None  
0x0000  
Data address  
0xNNNN (From 0x0000 to 0xFFFF)  
1 byte  
0x0001  
0xNN  
Byte in the specified address  
1112  
11.9 Bootcode Programming Consideration  
11.9.1 USB Requests  
For each USB request, the bootcode follows the steps below to ensure proper operation of the hardware.  
1. Determine the direction of the request by checking the MSB of the bmRequestType field and set the  
USBCTL_DIR bit accordingly.  
2. Decode the command  
3. If another setup is pending, then return. Otherwise, serve the request.  
4. Check again, if another setup is pending then go to step 2.  
5. Clear the interrupt source and then the VECINT register.  
6. Exit the interrupt routine.  
11.9.1.1 USB Requests  
The USB request consist of three types of transfers. They are control-read-with-data-stage, control-write-  
without-data-stage, and control-write-with-data-stage transfer. In each transfer, arrows indicate interrupts generated  
after receiving the setup packet, in or out token.  
Figure 111 and Figure 112 show the USB data flow and how the hardware and firmware respond to the USB  
requests. Table 119 and Table 1110 lists the bootcode reposes to the standard USB requests.  
Setup Stage  
Setup (0)  
Data Stage  
StatusStage  
OUT(1)  
More  
IN(1)  
IN(0)  
IN(0/1)  
INT  
Packets  
INT  
INT  
INT  
1.Hardware generates interrupt  
to MCU.  
1.Hardware generates interrupt to  
MCU.  
1.Hardware does NOT generate  
interrupt to MCU.  
2.Hardware sets NAK on both  
endpoints.  
2.Copy data to IN buffer.  
3.Clear the NAK bit.  
3.Set DIR bit in USBCTL to  
indicate the data directory.  
3.Decode the setup packet  
4.If another setup packet  
arrives, abandon this one.  
5.Executes appropriate routines.  
a) Clear NAK bit in OUT  
endpoint.  
4.If all data has been sent out,  
stall input endpoint.  
b) Copy data to IN endpoint  
buffer and set byte count.  
Figure 111. Control Read Transfer  
1113  
Table 119. Bootcode Response to Control Read Transfer  
CONTROL READ  
ACTION IN BOOTCODE  
Return power and remote wakeup settings  
Return 2 bytes of zeros  
Return endpoint status  
Return device descriptor  
Return configuration descriptor  
Return string descriptor  
Stall  
Get status of device  
Get status of interface  
Get status of endpoint  
Get descriptor of device  
Get descriptor of configuration  
Get descriptor of string  
Get descriptor of interface  
Get descriptor of endpoint  
Get configuration  
Stall  
Return bConfiguredNumber value  
Return bInterfaceNumber value  
Get interface  
Setup Stage  
Setup (0)  
Status Stage  
IN(1)  
INT  
1.Hardware generates interrupt  
to MCU.  
2.Hardware sets NAK on both  
endpoints.  
1.Hardware does NOT generates  
interrupt to MCU.  
3.Set DIR bit in USBCTL to  
indicate the data directory.  
3.Decode the setup packet  
4.If another setup packet  
arrives, abandon this one.  
5.Executes appropriate routines.  
a) Clear NAK bit in IN  
endpoint.  
b) Keep a note so IN interrupt  
routine can take proper  
action to the request.  
Figure 112. Control Write Transfer Without Data Stage  
Table 1110. Bootcode Response to Control Write Without Data Stage  
CONTROL WRITE WITHOUT DATA STAGE  
Clear feature of device  
Clear feature of interface  
Clear feature of endpoint  
Set feature of device  
Set feature of interface  
Set feature of endpoint  
Set address  
ACTION IN BOOTCODE  
Stall  
Stall  
Clear endpoint stall  
Stall  
Stall  
Stall endpoint  
Set device address  
Stall  
Set descriptor  
Set configuration  
Set bConfiguredNumber  
SetbInterfaceNumber  
Stall  
Set interface  
Sync. frame  
1114  
11.9.1.2 Interrupt Handling Routine  
The higher-vector number has a higher priority than the lower-vector number. Table 1111 lists all the interrupts and  
source of interrupts.  
Table 1111. Vector Interrupt Values and Sources  
G[3:0]  
(Hex)  
I[2:0]  
(Hex)  
VECTOR  
(Hex)  
INTERRUPT SOURCE SHOULD BE  
CLEARED  
INTERRUPT SOURCE  
0
1
0
1
00  
10  
No Interrupt  
No Source  
Outputendpoint1  
Outputendpoint2  
Outputendpoint3  
Outputendpoint4  
NOT USED  
VECINT register  
VECINT register  
VECINT register  
VECINT register  
1
2
12  
1
3
14  
1
4
16  
2
47  
1
181E  
20  
2
Inputendpoint1  
Inputendpoint2  
Inputendpoint3  
Inputendpoint4  
NOT USED  
VECINT register  
VECINT register  
VECINT register  
VECINT register  
2
2
22  
2
3
24  
2
4
26  
2
47  
0
282E  
30  
3
STPOW packet received  
SETUP packet received  
PSOF interrupt  
USBSTA/ VECINT registers  
USBSTA/ VECINT registers  
USBSTA/ VECINT registers  
USBSTA/ VECINT registers  
USBSTA/ VECINT registers  
USBSTA/ VECINT registers  
USBSTA/ VECINT registers  
3
1
32  
3
2
34  
3
3
36  
RESR interrupt  
FSPR interrupt  
3
4
38  
3
5
3A  
RTSR interrupt  
3
6
3C  
HSTL interrupt  
3
7
3E  
NOT USED  
4
0
40  
I2C TXE interrupt  
I2C TXE interrupt  
Inputendpoint0  
Outputendpoint0  
NOT USED  
VECINT register  
VECINT register  
VECINT register  
VECINT register  
4
1
42  
4
2
44  
4
3
46  
4
47  
0
484E  
50  
5
UART1 status interrupt  
UART1 modern interrupt  
NOT USED  
LSR/VECNT register  
LSR/VECINT register  
5
1
52  
5
37  
0
545E  
60  
6
UART1 RXF interrupt  
UART1 TXE interrupt  
NOT USED  
LSR/VECNT register  
LSR/VECINT register  
6
1
62  
6
27  
07  
0
646E  
707E  
80  
7
NOT USED  
8
DMA1 interrupt  
NOT USED  
DMACSR/VECNT register  
DMACSR/VECNT register  
8
1
82  
8
2
84  
DMA3 interrupt  
NOT USED  
8
37  
07  
867E  
90FE  
915  
NOT USED  
1115  
11.9.2 Hardware Reset Introduced by the Firmware  
This feature can be used in firmware upgrade. Once the upgrade is done, the application firmware disconnects from  
the USB for at least 200 ms to ensure OS has unloaded the device driver. The firmware then enables the watchdog  
timer (enabled by default after power-on reset) and enters an endless loop without resetting the watchdog timer. Once  
the watchdog timer times out, it resets the chip as if the chip gets the power-on reset. The bootcode takes over control  
and starts the power-on sequence again.  
11.10 File Listings  
ThebootloadcodecanbeobtainedfromtheTIwebsiteunderSLLS519.code.zip. Thelistshownbelowarethenames  
of the files that can be downloaded.  
Types.h  
USB.h  
TUSB3410.h  
Bootcode.h  
Watchdog.h  
Bootcode.c  
Bootlsr.c  
BootUSB.c  
Header.h  
Header.c  
I2c.h  
I2c.c  
1116  
12 Electrical Specifications  
12.1 Absolute Maximum Ratings  
Supply voltage, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 3.6 V  
CC  
Input voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to V  
+ 0.5 V  
+ 0.5 V  
I
CC  
CC  
Output voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to V  
O
Input clamp current, I  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
IK  
Output clamp current, I  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
OK  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
12.2 Commercial Operating Condition (3.3 V)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
V
V
V
Supply voltage  
Input voltage  
3
3.3  
3.6  
CC  
0
V
V
V
V
I
CC  
CC  
CC  
TTL  
2
V
High-level input voltage  
V
IH  
IL  
CMOS  
TTL  
0.7 × V  
CC  
0
0
0
0.8  
0.2 × V  
70  
V
Low-level input voltage  
Operating temperature  
V
CMOS  
CC  
T
A
°C  
12.3 Electrical Characteristics T = 25°C, V  
= 3.3 V ±5%, V = 0 V  
SS  
A
CC  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
TTL  
V
V
0.5  
CC  
V
V
V
V
V
High-level output voltage  
Low-level output voltage  
Positive threshold voltage  
Negative threshold voltage  
I
I
= 4 mA  
V
OH  
OL  
IT+  
IT–  
hys  
OH  
CMOS  
TTL  
0.5  
CC  
0.5  
0.5  
1.8  
= 4 mA  
V
V
OL  
CMOS  
TTL  
V = V  
I
IH  
IH  
IH  
IH  
CMOS  
TTL  
0.7 × V  
CC  
1.8  
0.8  
V = V  
I
V
CMOS  
TTL  
0.2 × V  
CC  
0.3  
0.7  
CC  
Hysteresis (VIT+ V  
)
V = V  
I
V
IT–  
CMOS  
TTL  
0.17 × V  
0.3 × V  
CC  
±20  
±1  
I
I
High-level input current  
Low-level input current  
V = V  
µA  
µA  
IH  
I
CMOS  
TTL  
±20  
±1  
V = V  
IL  
I
IL  
CMOS  
I
I
I
Output leakage current (Hi-Z)  
Output low drive current  
Output high drive current  
V = V  
I
or V  
SS  
±20  
µA  
mA  
mA  
OZ  
OL  
OH  
CC  
0.1  
0.1  
Clock duty cycle  
50%  
Jitter specification  
±100  
18  
ppm  
pF  
C
C
Input capacitance  
I
Output capacitance  
10  
pF  
O
Applies to all clock outputs  
121  
122  
13 Application Notes  
13.1 Crystal Selection  
The TUSB3410 requires a 12-MHz clock source to work properly. This clock source can be a crystal placed across  
the X1 and X2 terminals. A parallel resonant crystal is recommended. Most parallel resonant crystals are specified  
at a frequency with a load capacitance of 18 pF. This load can be realized by placing 33-pF capacitors from each end  
of the crystal to ground. Together with the input capacitance of the TUSB3410 and stray board capacitance, this  
provides close to two 36-pF capacitors in series to emulate the 18-pF load requirement. Note, that when using a  
crystal, it takes about 2 ms after power up for a stable clock to be produced.  
TUSB3410  
33 pF  
X2  
12 MHz  
33 pF  
X1  
Figure 131. Crystal Selection  
13.2 External Circuit Required for Reliable Bus Powered Suspend Operation  
TI has found a potential problem with the action of the SUSPEND output pin immediately after power on. In some  
cases the SUSPEND pin can power up asserted high. When used in a bus powered application this can cause a  
problem because the VREGEN# input is usually connected to the SUSPEND output. This in turn causes the internal  
1.8-V voltage regulator to shut down, which means an external crystal may not have time to begin oscillating, thus  
the device will not initialize itself correctly.  
TI has determined an on-chip fix for this problem, but has not determined a schedule on when the fix will be  
implemented. In the meantime, the components R2 and D1 (rated to 25 mA) in the circuit shown below can be used  
as a workaround. Note that R1 and C1 are required components for proper reset operation, unless the reset signal  
is provided by another means. R2 and D1 can be left in place or removed once the silicon is modified.  
Note that use of an external oscillator (1.8-V output) versus a crystal would avoid this situation, but it is not expected  
that many applications would use an oscillator. Also note that self-powered applications would probably not see this  
problem because the VREGEN# input would likely be tied low, enabling the internal 1.8-V regulator at all times.  
131  
3.3 V  
TUSB3410  
R1  
15 kΩ  
RESET  
R2  
32 kΩ  
VREGEN  
C1  
1 µF  
D1  
SUSPEND  
Figure 132. External Circuit  
13.3 Wakeup Timing From WAKEUP or RI Pin  
TheTUSB3410canbebroughtoutofthesuspendedstate, orwokenup, byacommandfromthehost. TheTUSB3410  
also supports remote wakeup and can be awakened by either of two input signals. A low pulse on the WAKEUP pin  
or a low-to-high transition on the RI pin wakes the device up. Note that for reliable operation, either condition must  
persist for approximately 3 ms minimum. This allows time for the crystal to power up since in the suspend mode the  
crystal interface is powered down. The state of the WAKEUP or RI pin is then sampled by the clock to verify there  
was a valid wakeup event.  
132  
14 Mechanical  
VF (S-PQFP-G32)  
PLASTIC QUAD FLATPACK  
0,45  
0,30  
M
0,22  
0,80  
24  
17  
25  
16  
32  
9
0,13 NOM  
1
8
5,60 TYP  
7,20  
SQ  
6,80  
Gage Plane  
9,20  
SQ  
8,80  
0,25  
0,05 MIN  
0°ā7°  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,10  
1,60 MAX  
4040172/C 10/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
141  
142  

相关型号:

TUSB3410-Q1

USB To Serial Port Controller
TI

TUSB3410IRHB

500mA, Low Quiescent Current, Ultra-Low Noise, High PSRR Low Dropout Linear Regulator
TI

TUSB3410IRHBG4

500mA, Low Quiescent Current, Ultra-Low Noise, High PSRR Low Dropout Linear Regulator
TI

TUSB3410IRHBR

500mA, Low Quiescent Current, Ultra-Low Noise, High PSRR Low Dropout Linear Regulator
TI

TUSB3410IRHBRG4

500mA, Low Quiescent Current, Ultra-Low Noise, High PSRR Low Dropout Linear Regulator
TI

TUSB3410IRHBT

500mA, Low Quiescent Current, Ultra-Low Noise, High PSRR Low Dropout Linear Regulator
TI

TUSB3410IVF

500mA, Low Quiescent Current, Ultra-Low Noise, High PSRR Low Dropout Linear Regulator
TI

TUSB3410IVFG4

500mA, Low Quiescent Current, Ultra-Low Noise, High PSRR Low Dropout Linear Regulator
TI

TUSB3410IVFQ1

USB To Serial Port Controller
TI

TUSB3410RHB

500mA, Low Quiescent Current, Ultra-Low Noise, High PSRR Low Dropout Linear Regulator
TI

TUSB3410RHBG4

500mA, Low Quiescent Current, Ultra-Low Noise, High PSRR Low Dropout Linear Regulator
TI

TUSB3410RHBR

500mA, Low Quiescent Current, Ultra-Low Noise, High PSRR Low Dropout Linear Regulator
TI