TPS7A3501DRVT [TI]

具有使能功能的 1A、低噪声、可调节低压降稳压器 | DRV | 6 | -40 to 125;
TPS7A3501DRVT
型号: TPS7A3501DRVT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有使能功能的 1A、低噪声、可调节低压降稳压器 | DRV | 6 | -40 to 125

LTE 光电二极管 稳压器
文件: 总30页 (文件大小:1893K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS7A3501  
ZHCSBQ0B JULY 2013REVISED MARCH 2015  
TPS7A3501 PSRR、低噪声、1A 电源滤波器  
1 特性  
2 应用  
1
稳定输入到输出电压:  
后置 DC/DC 转换器纹波滤除  
基站和电信基础设施  
专业音频  
用户可编程输入至输出电压稳压范围:  
200mV 500mV  
电源抑制比:  
通信  
1MHz 时为 42dB  
成像  
32dB360kHz 3.9MHz)  
测试和测量  
低噪声输出:  
3.8μVRMS10Hz 100kHz)  
无源滤波器替代产品  
3 说明  
输出电流:高达 1A  
TPS7A3501 是一款正电压、低噪声  
输出电压范围:1.21V 4.5V  
出色的负载瞬态响应  
(3.8µVRMS) 电源滤波器,可为 1A 负载供电,非常适合  
无噪声电源解决方案。 诸如 TPS7A3501 的功率滤波  
器在输入和输出引脚上提供高效电压稳压(低插入损  
耗),以及电源抑制。 该器件非常适合用作最大电流  
1A、电压为 3.3V2.5V 1.8V 的电源噪声滤波  
器。  
陶瓷电容低至  
10µF 也可保持稳定  
电流限制和热关断故障保护  
采用低热阻封装:2mm × 2mm WSON-6  
工作温度范围:  
–40°C 125°C  
借助单独的外部电阻,用户可在 200mV 500mV 范  
围内编程输入至输出稳压值。 如果未使用电阻  
器,TPS7A3501 提供 330mV 的输入至输出电压稳  
压。 此器件与 10µF 输入和输出陶瓷电容器和一个  
10nF 减噪陶瓷电容器一同工作时保持稳定。  
TPS7A3501 的额定工作温度范围为 –40°C 至  
125°C。 该器件采用低热阻 2mm × 2mm WSON-6  
封装。 与无源滤波器不同,TPS7A3501 为自身和周围  
电路提供了过温保护和电流保护。  
器件信息(1)  
器件型号  
TPS7A3501  
封装  
WSON (6)  
封装尺寸(标称值)  
2.00mm x 2.00mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
典型应用电路  
(VIN – VOUT) = 300 mV  
VIN = 3.6 V  
VOUT = 3.3 V  
+
IN  
OUT  
COUT = 10 µF  
CIN = 10 µF  
TPS7A3501  
Load  
EN  
NR  
SENSE  
GND  
RNR  
CNR = 1 µF  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SBVS228  
 
 
 
 
 
 
 
 
 
 
 
 
 
TPS7A3501  
ZHCSBQ0B JULY 2013REVISED MARCH 2015  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 11  
7.1 Overview ................................................................. 11  
7.2 Functional Block Diagram ....................................... 11  
7.3 Feature Description................................................. 12  
7.4 Device Functional Modes........................................ 13  
8
9
Application and Implementation ........................ 15  
8.1 Application Information............................................ 15  
8.2 Typical Application ................................................. 15  
8.3 Do's and Don'ts....................................................... 18  
Power Supply Recommendations...................... 18  
10 Layout................................................................... 19  
10.1 Layout Guidelines ................................................. 19  
10.2 Layout Example .................................................... 19  
10.3 Power Dissipation ................................................. 19  
10.4 Estimating Junction Temperature ......................... 20  
11 器件和文档支持 ..................................................... 21  
11.1 器件支持................................................................ 21  
11.2 文档支持 ............................................................... 21  
11.3 ....................................................................... 21  
11.4 静电放电警告......................................................... 21  
11.5 术语表 ................................................................... 21  
12 机械封装和可订购信息 .......................................... 21  
7
4 修订历史记录  
Changes from Revision A (October 2013) to Revision B  
Page  
Changed "free-air temperature" to "junction temperature" in Absolute Maximum Ratings condition statement ................... 5  
Changed Figure 14 to Figure 18: collected new data ............................................................................................................ 8  
Changes from Original (July 2013) to Revision A  
Page  
已添加 ESD 额定值表,特性描述部分,器件功能模式应用和实施部分,电源相关建议部分,布局部分,器件和文档  
支持部分以及机械、封装和可订购信息部分 ........................................................................................................................... 1  
已更改 文档状态至量产数据.................................................................................................................................................... 1  
已更改 文档标题...................................................................................................................................................................... 1  
已删除 第一个特性着重号的第二个子着重号 .......................................................................................................................... 1  
已更改 电源抑制比内的子着重号低噪声输出特性着重号..................................................................................................... 1  
已更改 输出电流瞬态响应陶瓷电容器,和封装特性着重号.............................................................................................. 1  
已删除 输入电压范围特性着重号 ............................................................................................................................................ 1  
已添加 输出电压范围特性着重号 ............................................................................................................................................ 1  
已添加 第 4 个至第 7 个应用着重号........................................................................................................................................ 1  
已更改 说明部分的第 1 段和第 3 ........................................................................................................................................ 1  
已更改 说明第二段中的稳压................................................................................................................................................ 1  
已添加 更改为典型应用电路.................................................................................................................................................... 1  
Changed descriptions of IN, NR, OUT, and PowerPAD pins in Pin Functions table ............................................................. 4  
Added PowerPAD row to Pin Functions table........................................................................................................................ 4  
Changed associated pins of Voltage parameter in Absolute Maximum Ratings table........................................................... 5  
Changed TJ Temperature range parameter minimum specification in Absolute Maximum Ratings table............................. 5  
Changed conditions of Electrical Characteristics table .......................................................................................................... 6  
Changed VIN and VOUT parameter maximum specifications in Electrical Characteristics table.............................................. 6  
Added VUVLO(in) parameter to Electrical Characteristics table................................................................................................. 6  
Changed VIN – VOUT voltage range, Vn, and Tsd parameters in Electrical Characteristics table............................................. 6  
Changed ICL and IEN parameter specifications in Electrical Characteristics table .................................................................. 6  
2
Copyright © 2013–2015, Texas Instruments Incorporated  
 
TPS7A3501  
www.ti.com.cn  
ZHCSBQ0B JULY 2013REVISED MARCH 2015  
Changed IGND parameter typical specification in Electrical Characteristics table................................................................... 6  
Changed ISHDN test conditions and parameter specifications in Electrical Characteristics table............................................ 6  
Changed VEN(HI) parameter minimum specification in Electrical Characteristics table ........................................................... 6  
Changed Typical Characteristics section ............................................................................................................................... 7  
Added Functional Block Diagram ......................................................................................................................................... 11  
Changed Application Information section............................................................................................................................. 15  
Changed Board Layout Recommendations section ............................................................................................................. 19  
Copyright © 2013–2015, Texas Instruments Incorporated  
3
TPS7A3501  
ZHCSBQ0B JULY 2013REVISED MARCH 2015  
www.ti.com.cn  
5 Pin Configuration and Functions  
DRV Package  
6-Pin WSON  
Top View  
IN  
1
6
5
4
OUT  
SENSE  
NR  
EN  
2
3
GND  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
2
Enable pin. Driving EN high turns on the device (if driven low, EN turns off the device).  
EN must not be left floating and can be connected to IN if not used.  
EN  
I
GND  
3
Ground  
Input supply. A capacitor greater than or equal to 10 µF must be tied from this pin to ground  
to assure stability. This configuration is especially important when long input traces or high  
source impedances are encountered. TI recommends using X5R- or X7R-type dielectrics to  
minimize the temperature variations inherent to capacitors.  
IN  
1
I
Noise-reduction pin. When a capacitor is connected from this pin to GND, RMS noise can be  
reduced to very low levels. A capacitor greater than or equal to 10 nF must be tied from this  
pin to ground to assure stability. TI recommends connecting a 1-µF capacitor from NR to  
GND (as close to the device as possible) to maximize AC performance and minimize noise.  
TI recommends using X5R- or X7R-type dielectrics to minimize the temperature variations  
inherent to capacitors. In addition, when a resistor is connected from this pin to GND or IN,  
the device input-to-output voltage can be programmed; see Feature Description for details.  
NR  
4
6
O
O
Regulator output. A capacitor greater than or equal to 10 µF must be tied from this pin to  
ground to assure stability. TI recommends using a X5R- or X7R-type dielectrics to minimize  
the temperature variations inherent to capacitors.  
OUT  
PowerPAD™  
SENSE  
5
I
Connect the PowerPAD to the ground plane for improved thermal performance.  
Control-loop error amplifier input. This pin must be connected to OUT.  
TI recommends connecting SENSE at the point of load to maximize accuracy.  
4
Copyright © 2013–2015, Texas Instruments Incorporated  
TPS7A3501  
www.ti.com.cn  
ZHCSBQ0B JULY 2013REVISED MARCH 2015  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating junction temperature range (unless otherwise noted).(1)  
MIN  
–0.3  
–0.3  
MAX  
7
VIN + 0.3(2)  
UNIT  
IN, NR, EN  
Voltage  
V
OUT, SENSE  
Current  
OUT  
Internally limited  
Operating junction, TJ  
Storage, Tstg  
–40  
–55  
125  
150  
Temperature  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Absolute maximum rating is VIN + 0.3 V or + 7 V, whichever is smaller.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101,  
all pins(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted).  
MIN  
1.71  
0
NOM  
MAX  
5
UNIT  
V
VIN  
IOUT  
TJ  
Input voltage  
Output current  
1
A
Operating junction temperature  
–40  
125  
°C  
6.4 Thermal Information  
DRV (WSON)  
6 PINS  
66.9  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
86.5  
36.4  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.8  
ψJB  
36.6  
RθJC(bot)  
7.3  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2013–2015, Texas Instruments Incorporated  
5
TPS7A3501  
ZHCSBQ0B JULY 2013REVISED MARCH 2015  
www.ti.com.cn  
6.5 Electrical Characteristics  
At TJ = –40°C to 125°C, VIN = 3.6 V, RNR = (not connected), IOUT = 10 mA, VEN = VIN, and CIN = COUT = 10 µF, unless  
otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
1.71  
1.5  
TYP  
MAX  
5
UNIT  
V
VIN  
Input voltage range  
VIN increasing  
VIN hysteresis  
1.7  
V
VUVLO(in)  
VOUT  
Input supply UVLO  
200  
mV  
V
Output voltage range  
1.21  
200  
4.5  
500  
mV  
VOUT(nom) = VIN – 330 mV, IOUT 1 A,  
1.71 V VIN 4.83 V  
297  
330  
363  
mV  
VIN – VOUT voltage range  
(1)  
RNR_INTERNAL  
110  
1.4  
170  
1.8  
10  
210  
2.4  
kΩ  
µA  
(2)  
INR_INTERNAL  
VOUT(IOUT) Load regulation  
10 mA IOUT 1 A  
µV/mA  
A
ICL  
Output current limit  
GND pin current  
VOUT = 0.85 × VOUT(nom)  
1.1  
IGND  
2.25  
1
5
50  
3
mA  
nA  
IEN  
EN pin input current  
Shutdown current (IGND  
VEN = VIN  
ISHUTDOWN  
)
VEN 0.3 V  
0.01  
55  
µA  
f = 10 kHz, CNR = 1 µF, IOUT = 0.5 A  
PSRR  
Vn  
Power-supply rejection ratio f = 100 kHz, CNR = 1 µF, IOUT = 0.5 A  
f = 1 MHz, CNR = 1 µF, IOUT = 0.5 A  
40  
dB  
42  
BW = 10 Hz to 100 kHz, CNR = 1 µF, IOUT = 1 A  
3.8  
BW = 100 Hz to 100 kHz, CNR = 1 µF,  
Output noise voltage  
IOUT = 1 A  
3.62  
12.1  
µVRMS  
BW = 10 Hz to 1 MHz, CNR = 1 µF, IOUT = 1 A  
EN pin input low (disable)  
VEN(LO)  
VEN(HI)  
0.4  
V
V
EN pin input high (enable)  
1.1  
Shutdown, temperature increasing  
Shutdown, temperature hysteresis  
165  
20  
Thermal shutdown junction  
temperature  
Tsd  
°C  
(1) RNR_INTERNAL refers to the internal resistor used to set (VIN – VOUT) for the device when no external RNR is used. See Adjustable Voltage  
Drop and 典型应用电路 for details.  
(2) INR_INTERNAL refers to the internal current source used to set (VIN – VOUT) for the device when no external RNR is used. See Adjustable  
Voltage Drop and 典型应用电路 for details.  
6
Copyright © 2013–2015, Texas Instruments Incorporated  
TPS7A3501  
www.ti.com.cn  
ZHCSBQ0B JULY 2013REVISED MARCH 2015  
6.6 Typical Characteristics  
At VIN = 3.6 V, RNR = (not connected), IOUT = 10 mA, VEN = VIN, COUT = 10 µF, CIN = 10 µF, and CNR = 0.1 µF, unless  
otherwise noted.  
0.345  
0.34  
0.322  
0.321  
0.32  
-40ƒC  
+105ƒC  
0ƒC  
+125ƒC  
+25ƒC  
-40ƒC  
+105ƒC  
0ƒC  
+125ƒC  
+25ƒC  
0.335  
0.33  
0.319  
0.318  
0.317  
0.316  
0.325  
0.32  
IOUT = 1 A  
1.8  
2.2  
2.6  
3
3.4  
3.8  
4.2  
4.6  
5
1.8  
2.2  
2.6  
3
3.4  
3.8  
4.2  
4.6  
5
C001  
Input Voltage (V)  
C002  
Input Voltage (V)  
Figure 1. Line Regulation  
Figure 2. Line Regulation  
0.345  
0.34  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
-40ƒC  
+105ƒC  
0ƒC  
+125ƒC  
+25ƒC  
¨9ꢀ ꢀꢁꢂꢂꢀP9  
¨9ꢀ ꢀꢃꢃꢂꢀP9  
¨9ꢀ ꢀꢄꢂꢂꢀP9  
0.335  
0.33  
0.325  
0.32  
IOUT = 100 mA  
0.315  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
±40 ±25 ±10  
5
20 35 50 65 80 95 110 125  
C003  
C004  
Temperature (ƒC)  
Figure 3. Load Regulation  
Figure 4. VDELTA vs Temperature  
3.25  
3
4.5  
4
-40ƒC  
+105ƒC  
0ƒC  
+125ƒC  
+25ƒC  
-40ƒC  
+105ƒC  
0ƒC  
+125ƒC  
+25ƒC  
2.75  
2.5  
2.25  
2
3.5  
3
2.5  
2
1.75  
1.5  
1.5  
1.8  
2.2  
2.6  
3
3.4  
3.8  
4.2  
4.6  
5
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
C005  
C006  
Input Voltage (V)  
Figure 5. Ground Current vs Input Voltage  
Figure 6. Ground Current vs Output Current  
Copyright © 2013–2015, Texas Instruments Incorporated  
7
 
TPS7A3501  
ZHCSBQ0B JULY 2013REVISED MARCH 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
At VIN = 3.6 V, RNR = (not connected), IOUT = 10 mA, VEN = VIN, COUT = 10 µF, CIN = 10 µF, and CNR = 0.1 µF, unless  
otherwise noted.  
2
1.9  
1.8  
1.7  
1.6  
1.5  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
-40ƒC  
+105ƒC  
0ƒC  
+125ƒC  
+25ƒC  
-40ƒC  
+105ƒC  
0ƒC  
+125ƒC  
+25ƒC  
VEN = 0 V  
VOUT = 90% x VOUT(NOM)  
1.8  
2.1  
2.4  
2.7  
3
3.3  
3.6  
1.8  
2.1  
2.4  
2.7  
3
3.3  
3.6  
C008  
Input Voltage (V)  
C007  
Input Voltage (V)  
Figure 8. Current Limit vs Input Voltage  
Figure 7. Shutdown Current vs Input Voltage  
3.5  
3
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT= 100 mA  
IOUT= 500 mA  
IOUT= 1 A  
2.5  
2
1.5  
1
0.5  
0
CIN = 1 F, CNR = 1 µF  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
10  
100  
1k  
10k  
100k  
1M  
10M  
C009  
C010  
Iout (A)  
Frequency (Hz)  
Figure 9. Foldback Current Limit  
Figure 10. Power-Supply Rejection Ratio vs Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
¨9ꢀ ꢀꢁꢂꢂꢀP9  
¨9ꢀ ꢀꢃꢃꢂꢀP9  
¨9ꢀ ꢀꢄꢂꢂꢀP9  
CNR= 10 nF  
CNR= 100 nF  
CNR= 1 uF  
CIN = 1 F, Iout = 500 mA  
CIN = 1 F, Iout = 500 mA  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
C010  
C010  
Frequency (Hz)  
Frequency (Hz)  
Figure 11. Power-Supply Rejection Ratio vs Frequency  
Figure 12. Power-Supply Rejection Ratio vs Frequency  
8
Copyright © 2013–2015, Texas Instruments Incorporated  
 
TPS7A3501  
www.ti.com.cn  
ZHCSBQ0B JULY 2013REVISED MARCH 2015  
Typical Characteristics (continued)  
At VIN = 3.6 V, RNR = (not connected), IOUT = 10 mA, VEN = VIN, COUT = 10 µF, CIN = 10 µF, and CNR = 0.1 µF, unless  
otherwise noted.  
10  
RMS Noise  
(BW 100Hz-100kHz)  
VIN = 3.6 V, IOUT = 10 mA 1 A → 10 mA  
CIN = COUT = 10 mF, CNR = 10 nF  
Cnr  
1 uF  
Vrms  
3.6  
Slew Rate = 1 A/ms  
1
0.1  
100 nF  
10 nF  
4.2  
20.7  
IOUT (1 A/div)  
V
OUT (50 mV/div)  
0.01  
0.001  
C= 10 nF  
NR  
C= 100 nF  
NR  
IOUT = 1 A  
C= 1 uF  
NR  
Time (50 ms/div)  
10  
100  
1k  
10k  
100k  
1M  
10M  
C010  
Frequency (Hz)  
Figure 14. Load Transient Response  
Figure 13. Spectral Noise Density vs Frequency  
VIN = 1.7 V 4.8 V → 1.7 V, IOUT = 500 mA  
VIN = 3.6 V, IOUT = 10 mA 1 A → 10 mA  
CIN = COUT = 10 mF, CNR = 1 mF  
Slew Rate = 1 A/ms  
CIN = COUT = 10 mF, CNR = 10 mF, Slew Rate = 1 A/ms  
VIN (2 V/div)  
IOUT (1 A/div)  
V
OUT (50 mV/div)  
V
OUT (2 V/div)  
Time (50 ms/div)  
Time (10 ms/div)  
Figure 15. Load Transient Response  
Figure 16. Line Transient Response  
VIN = 1.7 V 4.8 V → 1.7 V, IOUT = 500 mA  
CIN = COUT = 10 mF, CNR = 1 mF, Slew Rate = 1 A/ms  
VIN (2 V/div)  
VIN (2 V/div)  
VIN = VEN = 0 V 3.6 V  
IOUT = 1 A  
V
V
OUT (2 V/div)  
OUT (2 V/div)  
CIN = COUT = 10 mF  
CNR = 10 nF  
Time (10 ms/div)  
Time (1 ms/div)  
Figure 17. Line Transient Response  
Figure 18. Start-up  
Copyright © 2013–2015, Texas Instruments Incorporated  
9
TPS7A3501  
ZHCSBQ0B JULY 2013REVISED MARCH 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
At VIN = 3.6 V, RNR = (not connected), IOUT = 10 mA, VEN = VIN, COUT = 10 µF, CIN = 10 µF, and CNR = 0.1 µF, unless  
otherwise noted.  
VIN = VEN = 0 V 3.6 V  
IOUT = 1 A  
VIN (2 V/div)  
CIN = COUT = 10 mF  
CNR = 1 mF  
V
OUT (2 V/div)  
Time (1 ms/div)  
Figure 19. Start-up  
10  
Copyright © 2013–2015, Texas Instruments Incorporated  
TPS7A3501  
www.ti.com.cn  
ZHCSBQ0B JULY 2013REVISED MARCH 2015  
7 Detailed Description  
7.1 Overview  
The TPS7A3501 is a positive-voltage, low-noise (3.8-µVRMS) power filter capable of sourcing a 1-A load. Power  
filters such as the TPS7A3501 provide voltage regulation across the input and output terminals with high  
accuracy and power-supply rejection ratio. The device is ideally suited as a noise filter for 4.5-V, 3.3-V, and 1.8-V  
supplies up to 1-A loads.  
The input-to-output voltage drop is also user-programmable, from 200 mV up to 500 mV, with an external  
resistor. If no resistor is used, the TPS7A3501 provides 330 mV of input-to-output voltage regulation.  
The TPS7A3501 is stable with 10-µF ceramic input and output capacitors and a 10-nF ceramic noise-reduction  
capacitor. The device is fully specified over a wide temperature range of –40°C to 125°C and is offered in a low  
thermal resistance, 2-mm × 2-mm, 6-pin WSON package.  
7.2 Functional Block Diagram  
IN  
VIN = 3.6 V  
CIN = 10 µF  
Charge Pump  
VEN = 3.6 V  
EN  
NR  
+
VOUT = VIN – 300 mV = 3.3 V  
OUT  
RNR  
CNR  
1 mF  
SENSE  
COUT = 10 µF  
GND  
Copyright © 2013–2015, Texas Instruments Incorporated  
11  
TPS7A3501  
ZHCSBQ0B JULY 2013REVISED MARCH 2015  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Power Filter Operation  
A power filter is very similar to a low-dropout (LDO) regulator, except that instead of regulating output voltage  
relative to ground, the power filter regulates output voltage relative to VIN. In other words, a power filter maintains  
a fixed ΔV from input to output. The device is optimized for high PSRR with a low VIN-to-VOUT delta, leading to a  
lower power dissipation than standard LDOs. Unlike a standard LDO, the bandgap and noise associated with the  
device are never gained up, resulting in low output noise regardless of VOUT. The external noise capacitor on the  
power filter lets the user set the frequency at which the power filter starts to reject noise from the input. Table 1  
summarizes the differences between a power filter and a high-performance LDO.  
Table 1. Power Filter vs LDO Characteristics  
PARAMETER  
POWER FILTER  
LDO  
Regulates input-to-output delta. Voltage delta can be  
Regulates the output voltage referenced to ground.  
Voltage regulation  
set from 0.2 V to 0.5 V. Relies on the upstream power Outputs any output voltage within the output voltage  
rail to set the output voltage. range (limited by power dissipation).  
High PSRR at typical switching frequencies of DC-DC High PSRR over broad bandwidth. Effective rejection  
converters with lower power dissipation. Lower PSRR of low-frequency noise and switching noise from DC-  
PSRR  
at low frequencies.  
DC.  
Lower noise, 3.8 µV. Noise is not gained up when  
VOUT increases.  
Low noise (typically in the range of 5 µVRMS to  
20 µVRMS). Noise is gained up when VOUT increases.  
Noise  
High PSRR can be achieved with only 330 mV from  
Typically requires 750 mV to 1 V of VIN-to-VOUT delta  
to achieve high PSRR.  
Power dissipation  
VIN to VOUT  
.
7.3.2 Minimum Load  
The device is stable without an output load.  
7.3.3 Shutdown  
The enable pin (EN) is active high and compatible with standard and low-voltage TTL-CMOS levels. The enable  
pin voltage level is independent of input voltage and can be biased to a higher value than VIN as long as EN is  
within the maximum specification. When shutdown capability is not required, EN can be connected to IN.  
7.3.4 Internal Current Limit  
The device has an internal foldback current limit that helps protect the power filter during fault conditions. The  
current supplied by the device is gradually reduced when the output voltage decreases. When the output is  
shorted to GND, the LDO supplies a typical current of 550 mA. When in current limit, the output voltage is not  
regulated and VOUT = IOUT × RLOAD. For reliable operation, do not operate the device in current limit for extended  
periods of time.  
Because of the nature of the foldback current limit circuitry, if OUT is forced below 0 V before EN goes high, the  
device may not start up. To ensure proper start-up in applications that have both a positive and negative voltage  
rail, extra care must be taken to ensure that OUT is greater than or equal to 0 V. There are several ways to help  
ensure proper start-up for dual-rail applications:  
Enable the device before the negative rail and disable the device after the negative rail.  
Delaying the EN voltage with respect to IN voltage allows the internal pulldown resistor to discharge any  
residual voltage at OUT.  
If a faster discharge rate is required, or if EN is tied directly to IN, an external resistor from OUT to GND can  
be used.  
7.3.5 Reverse Current  
The TPS7A3501 has a built-in body diode that conducts current when the voltage at OUT exceeds the voltage at  
IN. This current is not internally limited, so if reverse voltage conditions are anticipated, external limiting is  
required.  
If there are potential situations where reverse current is expected, place a diode from OUT to IN, as shown in  
Figure 20.  
12  
Copyright © 2013–2015, Texas Instruments Incorporated  
 
TPS7A3501  
www.ti.com.cn  
ZHCSBQ0B JULY 2013REVISED MARCH 2015  
VIN  
VOUT  
IN  
OUT  
Device  
Load  
EN  
NR  
SENSE  
GND  
Figure 20. Reverse Current Protection Schematic  
7.3.6 Undervoltage Lockout (UVLO)  
The device uses an undervoltage lockout circuit to keep the output shut off until the internal circuitry is operating  
properly, ensuring a well-controlled start-up.  
7.3.7 Thermal Protection  
Thermal protection disables the output when the junction temperature rises to approximately 160°C, allowing the  
device to cool. When the junction temperature cools to approximately 140°C, the output circuitry is again  
enabled. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection  
circuit may cycle on and off. This cycling limits device power dissipation, thus protecting the device from damage  
resulting from overheating.  
Any activation of the thermal protection circuit indicates excessive power dissipation or inadequate thermal  
dissipation on the PCB. For reliable operation, limit junction temperature to 125°C (maximum). To estimate the  
margin of safety in a complete design, increase the ambient temperature until the thermal protection is triggered  
using worst-case loads and signal conditions. For good reliability, thermal protection should trigger at least 35°C  
above the maximum expected ambient condition of the application. This configuration produces a worst-case  
junction temperature of 125°C at the highest-expected ambient temperature and worst-case load.  
The device internal protection circuitry is designed to protect against overload conditions. This circuitry is not  
intended to replace proper heat-sinking or thermal dissipation on the PCB. Continuously running the device into  
thermal shutdown degrades device reliability.  
7.4 Device Functional Modes  
Table 2 provides a quick comparison between the normal, dropout, and disabled modes of operation.  
Table 2. Device Functional Mode Comparison  
PARAMETER  
OPERATING  
MODE  
VIN  
1.71 VIN 5  
EN  
IOUT  
IOUT < ICL  
TJ  
Normal  
VEN > VEN(HI)  
VEN < VEN(LO)  
TJ < Tsd  
TJ > Tsd  
Disabled  
7.4.1 Normal Operation  
The device functions as a fixed voltage drop filter under the following conditions:  
The input voltage is within the specified operating range of 1.71 V to 5 V.  
The enable voltage has previously exceeded the enable rising threshold voltage and not yet decreased below  
the enable falling threshold.  
The output current is less than the current limit (IOUT < ICL).  
The device junction temperature is less than the thermal shutdown temperature (TJ < Tsd).  
Copyright © 2013–2015, Texas Instruments Incorporated  
13  
 
TPS7A3501  
ZHCSBQ0B JULY 2013REVISED MARCH 2015  
www.ti.com.cn  
7.4.2 Disabled  
The device is disabled under the following conditions:  
The enable voltage is less than the enable falling threshold voltage or has not yet exceeded the enable rising  
threshold.  
The device junction temperature is greater than the thermal shutdown temperature (TJ > Tsd).  
14  
Copyright © 2013–2015, Texas Instruments Incorporated  
TPS7A3501  
www.ti.com.cn  
ZHCSBQ0B JULY 2013REVISED MARCH 2015  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS7A3501 is well-suited for use as a filter for switching power supplies. The high PSRR of the device  
significantly reduces the ripple caused by the switching frequency as well as the subsequent harmonic  
frequencies. Figure 21 shows the basic circuit connections for the TPS7A3501. The IN pin should be connected  
to a well-regulated power source, typically a switching power supply.  
VIN  
VOUT  
±
+
IN  
OUT  
Device  
Load  
Decreases  
EN  
NR  
SENSE  
GND  
'V  
Increases  
'V  
(1) Refer to Table 4.  
Figure 21. Basic Circuit Connections  
8.2 Typical Application  
Figure 22 shows a schematic for filtering the output of a switching regulator using the TPS7A3501 to power an  
analog-to-digital converter (ADC).  
PVIN  
VIN  
TPS54620  
BOOT  
EN  
IN  
PH  
OUT  
CIN  
COUT  
PWRGD  
Device  
ADC  
VSENSE  
GND  
EN  
NR  
SENSE  
GND  
SS/TR  
RT/CLK  
COMP  
CNR  
Exposed  
Thermal  
Pad  
Figure 22. Typical Application Schematic  
Copyright © 2013–2015, Texas Instruments Incorporated  
15  
 
 
TPS7A3501  
ZHCSBQ0B JULY 2013REVISED MARCH 2015  
www.ti.com.cn  
Typical Application (continued)  
8.2.1 Design Requirements  
Table 3 shows the design requirements.  
Table 3. Design Requirements  
PARAMETER  
DESIGN REQUIREMENT  
Input voltage  
Output voltage  
3.63 V  
3.3 V  
100-Hz to 100-kHz RMS noise  
Maximum output current  
< 4 µVRMS  
700 mA  
8.2.2 Detailed Design Procedure  
Select the input and output capacitors to be at least 10 µF for stability. Select a value for RNR to give the desired  
voltage drop. For this example of a 330-mV voltage drop, no external resistor on the NR pin is required. Pick a  
value for CNR greater than 10 nF, but large enough to provide the required noise performance. Refer to Table 5  
for guidelines on selecting CNR for a desired RMS noise target. For this example, to achieve an RMS noise (100  
Hz to 100 kHz) less than 4 µVRMS, the noise reduction capacitor must be at least 1 µF.  
8.2.2.1 Adjustable Voltage Drop  
In the TPS7A3501, the nominal voltage drop (ΔV) from IN to OUT is 330 mV. ΔV can be adjusted from this  
nominal setting with an external resistor. By connecting a resistor from the NR pin to IN, ΔV can be decreased to  
as low as 200 mV. By connecting a resistor from the NR pin to GND, ΔV can be increased to as high as 500 mV.  
The ability to change ΔV allows for the creation of standard voltage rails from higher voltage rails (for example,  
2.5 V from 3 V, 1.5 V from 1.8 V, and so forth).  
By connecting a resistor from the NR pin to IN, ΔV can be decreased to as low as 200 mV. Use Equation 1 to  
determine the size of the resistor required to set ΔV.  
R = ΔV / (0.33 – ΔV) × 150,000 Ω  
(1)  
By connecting a resistor from the NR pin to GND, ΔV can be increased to as high as 500 mV. Use Equation 2 to  
determine the size of the resistor required to set ΔV.  
R = VOUT / (ΔV – 0.33) × 150,000 Ω  
(2)  
Table 4 lists the standard external resistor values required for different input-to-output voltage drops.  
Table 4. Common Input-to-Output Voltage Drops  
ΔV (mV)  
200  
VOUT  
Any  
R TO VIN  
240 kΩ  
R TO GND  
Do not install  
Do not install  
6.8 MΩ  
330  
Any  
Do not install  
Do not install  
Do not install  
Do not install  
Do not install  
Do not install  
Do not install  
3.3 V  
2.5 V  
1.8 V  
3.3 V  
2.5 V  
1.8 V  
400  
500  
5.1 MΩ  
3.9 MΩ  
3 MΩ  
2.2 MΩ  
1.6 MΩ  
8.2.2.2 Input and Output Capacitor Requirements  
Ceramic 10-µF or larger input and output capacitors are required to assure proper device operation. This  
capacitor counteracts reactive source impedances, improving supply transient response and decreasing input  
ripple. Higher-value capacitors may be used if large, fast slew rate load transients are anticipated, or if the device  
is located several inches away from the power source. To assure correct device operation, there should be no  
more than 100 µF of capacitance on the output of the device, including capacitance from downstream bypass  
capacitors.  
16  
Copyright © 2013–2015, Texas Instruments Incorporated  
 
 
 
 
TPS7A3501  
www.ti.com.cn  
ZHCSBQ0B JULY 2013REVISED MARCH 2015  
TI recommends X5R- and X7R-type ceramic capacitors because these types of capacitors have minimal  
variation in value and equivalent series resistance (ESR) overtemperature. Other types of capacitors, such as  
electrolytic or tantalum, can make the device unstable.  
8.2.2.3 Output Noise  
A 10-nF, or higher, noise-reduction capacitor is required to assure stability. Using a 1-μF ceramic capacitor  
minimizes output noise (see Figure 13). To assure correct device operation, a maximum capacitor of 2.2 µF can  
be connected to NR.  
8.2.2.4 Power-Supply Rejection Ratio (PSRR)  
Unlike standard LDOs, the TPS7A3501 PSRR is significantly affected by the noise-reduction capacitor. The  
larger the noise-reduction capacitor, the higher the PSRR is for frequencies below 10 kHz. Using a 1-μF ceramic  
capacitor maximizes PSRR.  
One of the most compelling features of the TPS7A3501 is its high PSRR capabilities. The rejection ratio for this  
device is lower than standard LDOs at frequencies below 1 kHz but becomes higher at higher frequencies. For  
better low-frequency PSRR performance, a larger noise-reduction capacitor can be used. TI recommends  
connecting a 1-µF ceramic capacitor to NR to maximize PSRR (see Figure 12). A higher input-to-output voltage  
difference also increases the device rejection ratio. Although the device maximizes rejection ratio at 500 mV,  
high rejection ratio can still be achieved with as little as a 330-mV input-to-output voltage differential, unlike most  
standard LDOs.  
8.2.2.5 Start-up  
Because adding a noise-reduction capacitor leads to the formation of an RC filter, start-up time and the rate at  
which the device tracks VIN are increased. Thus, consider the tradeoff between start-up time, noise, and PSRR  
when selecting a noise-reduction capacitor to use with the TPS7A3501. Use Equation 3 to calculate the typical  
start-up time.  
T_startup = 250,000 × CNR (s)  
(3)  
Table 5 shows the effect of various noise-reduction capacitors on RMS noise (with a 100-Hz to 100-kHz  
bandwidth), PSRR (at 1 kHz), and start-up time.  
Table 5. Effect of Various Filter Capacitors  
RMS NOISE  
PSRR  
START-UP TIME  
FILTER CAPACITOR  
(BW 100 Hz to 100 kHz)  
(at 1 kHz)  
(EN to 90% of VOUT)  
1 µF  
100 nF  
10 nF  
3.62 µV  
4.21 µV  
20.70 µV  
60 dB  
40 dB  
20 dB  
250 ms  
25 ms  
3 ms  
8.2.2.6 Transient Response  
Increasing the size of the output capacitor reduces overshoot and undershoot magnitude during transients;  
however this size increase also slows the recovery from these transients.  
Copyright © 2013–2015, Texas Instruments Incorporated  
17  
 
 
TPS7A3501  
ZHCSBQ0B JULY 2013REVISED MARCH 2015  
www.ti.com.cn  
8.2.3 Application Curves  
10  
1
100  
RMS Noise  
(BW 100Hz-100kHz)  
¨9ꢀ ꢀꢁꢂꢂꢀP9  
¨9ꢀ ꢀꢃꢃꢂꢀP9  
¨9ꢀ ꢀꢄꢂꢂꢀP9  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Cnr  
1 uF  
Vrms  
3.6  
100 nF  
10 nF  
4.2  
20.7  
0.1  
0.01  
0.001  
C= 10 nF  
NR  
C= 100 nF  
NR  
IOUT = 1 A  
CIN = 1 F, Iout = 500 mA  
C= 1 uF  
NR  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
C010  
Frequency (Hz)  
C010  
Frequency (Hz)  
Figure 24. Spectral Noise Density vs Frequency  
Figure 23. Power-Supply Rejection Ratio vs Frequency  
8.3 Do's and Don'ts  
Place at least 10-μF ceramic capacitors on both the IN and OUT pins of the device, as close as possible to the  
pins of the regulator.  
Do not place the input or output capacitor more than 10 mm away from the regulator.  
Connect a 10-nF or greater, low-equivalent series resistance (ESR) capacitor across the NR pin and GND of the  
regulator. Larger capacitors provide lower noise performance.  
Do not use a capacitor larger than 2.2 µF on the NR pin.  
Do not exceed the absolute maximum ratings.  
9 Power Supply Recommendations  
For best performance, connect a low-output impedance power supply directly to the IN pin of the device.  
Inductive impedances between the input supply and the IN pin create significant voltage excursions at the IN pin.  
18  
Copyright © 2013–2015, Texas Instruments Incorporated  
TPS7A3501  
www.ti.com.cn  
ZHCSBQ0B JULY 2013REVISED MARCH 2015  
10 Layout  
10.1 Layout Guidelines  
Input and output capacitors should be placed as close to the device pins as possible. TI recommends that all  
components be on the same side of the printed-circuit-board (PCB) as the device. Using long, thin traces or vias  
to connect the device to external components is highly discouraged because this practice leads to parasitic  
inductances, which in turn degrade noise, PSRR, and transient response. For an example layout, refer to the  
TPS7A3501EVM-547 Evaluation Module User Guide ( SLVU921).  
10.2 Layout Example  
GND PLANE  
COUT  
CIN  
TPS7A3501  
VOUT  
VIN  
1
2
3
IN  
EN  
6
5
4
OUT  
SENSE  
NR  
GND  
GND PLANE  
CNR  
Figure 25. PCB Layout Example (DRV Package)  
10.3 Power Dissipation  
Knowing the device power dissipation and proper sizing of the thermal plane connected to the tab or pad is  
critical to avoiding thermal shutdown and ensuring reliable operation. Device power dissipation depends on input  
voltage and load conditions and can be calculated with Equation 4:  
PD = (VIN – VOUT) × IOUT  
(4)  
Power dissipation can be minimized and greater efficiency can be achieved by using the lowest available voltage  
drop option of 200 mV. However, keep in mind that higher voltage drops result in better PSRR performance.  
On the WSON (DRV) package, the primary conduction path for heat is through the exposed power pad to the  
PCB. To ensure the device does not overheat, connect the pad to ground with an appropriate amount of copper  
PCB area through vias.  
The maximum power dissipation determines the maximum allowable junction temperature (TJ) for the device.  
Power dissipation and junction temperature are most often related by the junction-to-ambient thermal resistance  
(θJA) of the combined PCB and device package and the temperature of the ambient air (TA), according to  
Equation 5:  
TJ = TA + (θJA × PD)  
(5)  
Unfortunately, this thermal resistance (θJA) is highly dependent on the heat-spreading capability of the particular  
PCB design, and therefore varies according to the total copper area, copper weight, and location of the planes.  
The θJA recorded in the table is determined by the JEDEC standard for PCB and copper-spreading area and is to  
be used only as a relative measure of package thermal performance. For a well-designed thermal layout, θJA is  
actually the sum of the package junction-to-case (bottom) thermal resistance (θJCbot) plus the thermal resistance  
contribution by the PCB copper.  
版权 © 2013–2015, Texas Instruments Incorporated  
19  
 
 
TPS7A3501  
ZHCSBQ0B JULY 2013REVISED MARCH 2015  
www.ti.com.cn  
10.4 Estimating Junction Temperature  
The JEDEC standard now recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures  
of the power filter on a typical PCB board application. These metrics are not strictly speaking thermal  
resistances, but rather offer practical and relative means of estimating junction temperatures. These psi metrics  
are determined to be significantly independent of copper-spreading area. The key thermal metrics (ΨJT and ΨJB)  
are given in the table and are used in accordance with Equation 6.  
YJT: TJ = TT + YJT ´ PD  
YJB: TJ = TB + YJB ´ PD  
where:  
PD is the power dissipated as explained in Equation 4,  
TT is the temperature at the center-top of the device package, and  
TB is the PCB surface temperature measured 1 mm from the device package and centered on the package  
edge.  
(6)  
20  
版权 © 2013–2015, Texas Instruments Incorporated  
 
TPS7A3501  
www.ti.com.cn  
ZHCSBQ0B JULY 2013REVISED MARCH 2015  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 评估模块  
评估模块 (EVM) 可与 TPS7A3501 配套使用,帮助评估初始电路性能。 TPS7A3501EVM-547 评估模块(和相关  
的用户指南)可在德州仪器 (TI) 网站上的产品文件夹中获取,也可直接从 TI 网上商店购买。  
11.1.1.2 Spice 模型  
分析模拟电路和系统的性能时,使用 SPICE 模型对电路性能进行计算机仿真非常有用。 您可以从产品文件夹中的  
工具和软件下获取 TPS7A3501 SPICE 模型。  
11.2 文档支持  
11.2.1 相关文档  
TPS7A3501EVM-547 用户指南》SLVU921。  
11.3 商标  
PowerPAD is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 ,  
可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
12 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2013–2015, Texas Instruments Incorporated  
21  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Aug-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7A3501DRVR  
TPS7A3501DRVT  
ACTIVE  
ACTIVE  
WSON  
WSON  
DRV  
DRV  
6
6
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
SIQ  
SIQ  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Aug-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7A3501DRVR  
TPS7A3501DRVT  
WSON  
WSON  
DRV  
DRV  
6
6
3000  
250  
180.0  
180.0  
8.4  
8.4  
2.3  
2.3  
2.3  
2.3  
1.15  
1.15  
4.0  
4.0  
8.0  
8.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7A3501DRVR  
TPS7A3501DRVT  
WSON  
WSON  
DRV  
DRV  
6
6
3000  
250  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DRV 6  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4206925/F  
PACKAGE OUTLINE  
DRV0006A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
0.05  
0.00  
1
0.1  
EXPOSED  
THERMAL PAD  
3
4
6
2X  
7
1.3  
1.6 0.1  
1
4X 0.65  
0.35  
0.25  
6X  
PIN 1 ID  
(OPTIONAL)  
0.3  
0.2  
6X  
0.1  
C A  
C
B
0.05  
4222173/B 04/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
6X (0.45)  
6X (0.3)  
(1)  
1
7
6
SYMM  
(1.6)  
(1.1)  
4X (0.65)  
4
3
SYMM  
(1.95)  
(R0.05) TYP  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222173/B 04/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
7
6X (0.45)  
METAL  
1
6
6X (0.3)  
(0.45)  
SYMM  
4X (0.65)  
(0.7)  
4
3
(R0.05) TYP  
(1)  
(1.95)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD #7  
88% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:30X  
4222173/B 04/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS7A37

1% High-Accuracy, 1-A, Low-Dropout Regulator with Reverse Current Protection
TI

TPS7A3701DRVR

具有反向电流保护和使能功能的 1A、高精度、超低压降稳压器 | DRV | 6 | -40 to 125
TI

TPS7A3701DRVT

具有反向电流保护和使能功能的 1A、高精度、超低压降稳压器 | DRV | 6 | -40 to 125
TI

TPS7A3721DRVR

具有反向电流保护和使能功能的 1A、高精度、超低压降稳压器 | DRV | 6 | -40 to 125
TI

TPS7A3721DRVT

具有反向电流保护和使能功能的 1A、高精度、超低压降稳压器 | DRV | 6 | -40 to 125
TI

TPS7A3725DRVR

具有反向电流保护和使能功能的 1A、高精度、超低压降稳压器 | DRV | 6 | -40 to 125
TI

TPS7A3725DRVT

具有反向电流保护和使能功能的 1A、高精度、超低压降稳压器 | DRV | 6 | -40 to 125
TI

TPS7A39

150mA、33V、低噪声、高 PSRR、双通道、正负电压范围、低压降稳压器
TI

TPS7A3901DSCR

150mA、33V、低噪声、高 PSRR、双通道、正负电压范围、低压降稳压器 | DSC | 10 | -40 to 125
TI

TPS7A3901DSCT

150mA、33V、低噪声、高 PSRR、双通道、正负电压范围、低压降稳压器 | DSC | 10 | -40 to 125
TI

TPS7A4001

100V Input Voltage, 50mA, Very High Voltage LINEAR REGULATOR
TI

TPS7A4001-DIE

超高电压线性稳压器
TI