TPS7A3901DSCT [TI]

150mA、33V、低噪声、高 PSRR、双通道、正负电压范围、低压降稳压器 | DSC | 10 | -40 to 125;
TPS7A3901DSCT
型号: TPS7A3901DSCT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

150mA、33V、低噪声、高 PSRR、双通道、正负电压范围、低压降稳压器 | DSC | 10 | -40 to 125

光电二极管 输出元件 稳压器 调节器
文件: 总51页 (文件大小:3999K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS7A39  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
TPS7A39 双路、150mA、宽输入电压正负 LDO 稳压器  
1 特性  
3 说明  
1
正负 LDO 包含在一个封装中  
TPS7A39 器件是双路、单片、高 PSRR、正负极低压  
(LDO) 稳压器,支持高达 150mA 的拉电流(和灌  
电流)。该器件的稳压输出可在外部独立调节为对称或  
不对称电压,因此是进行信号调节的理想型双路双极性  
电源。  
宽输入电压范围:±3.3V ±33V  
宽输出电压范围:  
正压范围:1.2V 30V  
负压范围:–30V 0V  
输出电流:每通道 150mA  
单调启动跟踪  
TPS7A39 的正负两种输出在启动期间相互进行比例跟  
踪,从而缓解双轨系统中常见的浮动状况和其他电源定  
序问题。负输出可调节至最高 0V,从而扩大单电源放  
大器的共模范围。TPS7A39 还 具有 高 PSRR,因此  
消除了可能影响信号完整性的电源噪声,例如开关噪  
声。  
高电源抑制比 (PSRR):  
69dB (120Hz)  
50dB10Hz 2MHz)  
输出电压噪声:21µVRMS (10Hz–100kHz)  
缓冲 1.2V 基准电压输出  
两个稳压器采用与标准数字逻辑对接的单个正逻辑使能  
引脚即可进行控制。可通过电容器编程的软启动功能将  
控制浪涌电流和启动时间。TPS7A39 的内部基准电压  
可用外部基准电压覆盖,从而实现精密输出、获得输出  
电压裕量或跟踪其他电源。此外,TPS7A39 具有缓冲  
基准输出,此输出可用作系统中其他组件的电压基准。  
10µF 或更大的输出电容器一起工作时保持稳定  
单个正逻辑使能引脚  
可调软启动浪涌控制  
3mm × 3mm 10 引脚 WSON 封装  
低热阻:RθJA = 44.4°C/W  
工作温度范围:–40 +125°C  
这些 特性 使得 TPS7A39 成为一种为运算放大器、数  
模转换器 (DAC) 以及其他精密模拟电路供电的强大而  
简化的解决方案。  
2 应用  
用于运算放大器、ADCDAC 和其他高精度模拟  
电路的电源轨  
后级直流/直流调节和滤波  
模拟 I/O 模块  
测试和测量  
器件信息(1)  
封装  
器件型号  
TPS7A39  
封装尺寸(标称值)  
WSON (10)  
3.00mm x 3.00mm  
(1) 要了解所有可用封装,请参阅数据表末尾的可订购产品附录。  
RxTx PA 电路  
工业仪表  
医疗成像  
为信号链供电  
单调启动跟踪  
+5 V  
25  
+15 V  
OUTP  
INP  
EN  
VINP  
VOUTP  
VOUTN  
VINN  
20  
15  
10  
5
Feedback  
Network  
FBP  
NR/SS  
VS+  
VS-  
œ
TPS7A39  
ADC  
BUF  
FBN  
+
Signal In  
0
+15 V  
-15 V  
EN  
-5  
-10  
-15  
-20  
-25  
INN  
OUTN  
GND  
-5 V  
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (ms)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBVS263  
 
 
 
 
TPS7A39  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Startup Characteristics.............................................. 7  
6.7 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 19  
7.1 Overview ................................................................. 19  
7.2 Functional Block Diagram ....................................... 19  
7.3 Feature Description................................................. 20  
7.4 Device Functional Modes........................................ 24  
8
9
Application and Implementation ........................ 25  
8.1 Application Information............................................ 25  
8.2 Typical Applications ................................................ 34  
Power-Supply Recommendations...................... 39  
10 Layout................................................................... 39  
10.1 Layout Guidelines ................................................. 39  
10.2 Layout Example .................................................... 40  
10.3 Package Mounting ................................................ 40  
11 器件和文档支持 ..................................................... 41  
11.1 器件支持................................................................ 41  
11.2 文档支持................................................................ 41  
11.3 接收文档更新通知 ................................................. 41  
11.4 社区资源................................................................ 41  
11.5 ....................................................................... 41  
11.6 静电放电警告......................................................... 41  
11.7 Glossary................................................................ 41  
12 机械、封装和可订购信息....................................... 42  
7
4 修订历史记录  
Changes from Original (July 2017) to Revision A  
Page  
产品投产 ................................................................................................................................................................................. 1  
2
Copyright © 2017, Texas Instruments Incorporated  
 
TPS7A39  
www.ti.com.cn  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
5 Pin Configuration and Functions  
DSC Package  
10-Pin WSON  
Top View  
INP  
EN  
1
2
3
4
5
10  
9
OUTP  
FBP  
Thermal Pad  
NR/SS  
GND  
INN  
8
BUF  
FBN  
OUTN  
7
6
Not to scale  
Pin Functions  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
Positive input. A 10-μF(1) or larger capacitor must be tied from this pin to ground to ensure stability.  
Place the input capacitor as close to the input as possible; see the Capacitor Recommendations section  
for more information.  
1
2
INP  
I
Enable pin. Driving this pin to logic high (VEN VIH(EN)) enables the device; driving this pin to logic low  
(VEN VIL(EN)) disables the device. If enable functionality is not required, this pin must be connected to  
INP; see the Application and Implementation section for more detail. The enable voltage cannot exceed  
the input voltage (VEN VINP).  
EN  
I
Noise-reduction, soft-start pin. Connecting an external capacitor between this pin and ground reduces  
reference voltage noise and enables soft-start and start-up tracking. A 10-nF or larger capacitor (CNR/SS  
is recommended to be connected from NR/SS to GND to maximize or optimize ac performance and to  
ensure start-up tracking. This pin can also be driven externally to provide greater output voltage  
accuracy and lower noise, see the User-Settable Buffered Reference section for more information.  
)
3
NR/SS  
Ground pin. This pin must be connected to ground and the thermal pad with a low-impedance  
connection.  
Negative input. A 10-μF(1) or larger capacitor must be tied from this pin to ground to ensure stability.  
Place the input capacitor as close to the input as possible; see the Capacitor Recommendations section  
for more information.  
4
5
GND  
INN  
I
Negative output. A 10-μF(1) or larger capacitor must be tied from this pin to ground to ensure stability.  
Place the output capacitor as close to the output as possible; see the Capacitor Recommendations  
section for more information.  
6
7
8
OUTN  
FBN  
O
I
Negative output feedback pin. This pin is used to set the negative output voltage. Although not required,  
a 10-nF feed-forward capacitor from FBN to OUTN (as close to the device as possible) is recommended  
to maximize ac performance. Nominally this pin is regulated to VFBN. Do not connect to ground.  
Buffered reference output. This pin is connected to FBN through R2 and the voltage at this node is  
inverted and scaled up by the negative feedback network to provide the desired output voltage. The  
buffered reference can be used to drive external circuits, and has a 1-mA maximum load.  
BUF  
O
Positive output feedback pin. This pin is used to set the positive output voltage. Although not required, a  
10-nF feed-forward capacitor from FBP to OUTP (as close to the device as possible) is recommended to  
maximize ac performance. Nominally this pin is regulated to VFBP. Do not connect this pin directly to  
ground.  
9
FBP  
I
Positive output. A 10-μF(1) or larger capacitor must be tied from this pin to ground to ensure stability.  
Place the output capacitor as close to the output as possible; see the Capacitor Recommendations  
section for more information.  
10  
OUTP  
O
Pad  
Thermal Pad  
Connect the thermal pad to a large-area ground plane. The thermal pad is internally connected to GND.  
(1) The nominal input and output capacitance must be greater than 2.2 µF; throughout this document the nominal derating on these  
capacitors is 80%. Take care to ensure that the effective capacitance at the pin is greater than 2.2 µF.  
Copyright © 2017, Texas Instruments Incorporated  
3
TPS7A39  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating junction temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
MAX  
36  
UNIT  
INP  
INN  
–36  
0.3  
OUTP  
OUTN  
–0.3  
VINN – 0.3(4)  
VINP + 0.3(3)  
0.3  
Voltage  
FBP  
BUF  
NR/SS  
FBN  
EN  
–0.3  
VINP + 0.3(5)  
VINP + 0.3(5)  
VINP + 0.3(6)  
0.3  
V
–1  
–0.3  
VINN – 0.3(7)  
–0.3  
VINP + 0.3(8)  
Internally  
limited  
Output current  
Current  
Buffer current  
2
mA  
°C  
Operating junction temperature, TJ  
Storage, Tstg  
–55  
–65  
150  
150  
Temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages with respect to the ground pin, unless otherwise noted.  
(3) The absolute maximum rating is VINP + 0.3 V or 33 V, whichever is smaller.  
(4) The absolute maximum rating is VINN – 0.3 V or –33 V, whichever is greater.  
(5) The absolute maximum rating is VINP + 0.3 V or 3 V, whichever is smaller.  
(6) The absolute maximum rating is VINP + 0.3 V or 2 V, whichever is smaller.  
(7) The absolute maximum rating is VINN – 0.3 V or –3 V, whichever is greater.  
(8) The absolute maximum rating is VINP + 0.3 V or 36 V, whichever is smaller.  
6.2 ESD Ratings  
VALUE  
±1000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
VESD  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
4
Copyright © 2017, Texas Instruments Incorporated  
TPS7A39  
www.ti.com.cn  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.3  
NOM  
MAX  
33  
UNIT  
V
|VINx  
|
Supply voltage magnitude for either regulator  
Enable supply voltage  
VEN  
0
VINP  
30  
V
VOUTP  
VOUTN  
IOUTx  
IBUF  
Positive regulated output voltage range  
Negative regulated output voltage range  
Output current for either regulator  
VFBP  
–30  
0.005(1)  
0
V
VFBN  
150  
1000  
V
mA  
µA  
µF  
µF  
nF  
nF  
nF  
kΩ  
kΩ  
°C  
Output current from the BUF pin  
120  
10(2)  
10(2)  
10  
CINx  
Input capacitor for either regulator  
4.7  
COUTx  
CNR/SS  
CFFP  
CFFN  
R2P  
Output capacitor for either regulator  
4.7  
0(3)  
Noise-reduction and soft-start capacitor  
Positive channel feed-forward capacitor; connect from VOUTP to FBP  
Negative channel feed-forward capacitor; connect from VOUTN to FBN  
Lower positive feedback resistor  
1000  
100  
100  
240  
240  
125  
0
10  
0
10  
10  
R2N  
Lower negative feedback resistor (from FBN to BUF)  
Operating junction temperature  
10  
TJ  
–40  
(1) Minimum load required when feedback resistors are not used. If feedback resistors are used, keeping R2x below 240 kΩ satisfies this  
requirement.  
(2) The nominal input and output capacitor value of 10-µF accounts for the derating factors that apply to X5R and X7R ceramic capacitors.  
The assumed overall derating is 80%.  
(3) For startup tracking to function correctly a minimum 4.7-nF CNR/SS capacitor must be used.  
6.4 Thermal Information  
TPS7A39  
THERMAL METRIC(1)  
DSC (WSON)  
10 PINS  
44.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
33.7  
19.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
0.4  
ψJB  
19.5  
RθJC(bot)  
2.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2017, Texas Instruments Incorporated  
5
TPS7A39  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
6.5 Electrical Characteristics  
at TJ = –40°C to +125°C, VINP(nom) = VOUTP(nom) + 1 V or VIN(nom) = 3.3 V (whichever is greater), VINN(nom) = VOUTN(nom) – 1 V or  
VINN(nom) = –3.3 V (whichever is less), VEN = VINP, IOUT = 1 mA, CINx = 2.2 μF, COUTx = 10 μF, CFFx = CNR/SS = open, R1N = R2N  
10 kΩ, and FBP tied to OUTP (unless otherwise noted); typical values are at TJ = 25°C  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VINP  
VINN  
Input voltage range, positive channel  
Input voltage range, negative channel  
3.3  
33  
V
–33  
–3.3  
V
Undervoltage lockout threshold,  
positive channel  
VUVLOP(rising)  
VUVLOP(hys)  
VINP rising, VINN = –3.3 V  
1.4  
3.1  
V
Undervoltage lockout threshold, positive  
channel hysteresis  
VINP falling, VINN = –3.3 V  
120  
70  
mV  
Undervoltage lockout threshold,  
negative channel  
VUVLON(falling)  
VUVLON(hys)  
VINN falling, VINP = 3.3 V  
VINN rising, VINP = 3.3 V  
–3.1  
–1.4  
V
Undervoltage lockout threshold, negative  
channel, hysteresis  
mV  
VNR/SS  
VFBP  
Internal reference voltage  
Positive feedback voltage  
Negative feedback voltage  
1.172  
1.170  
–10  
1.19  
1.188  
3.7  
1.208  
1.206  
10  
V
V
VFBN  
mV  
Positive channel  
Output voltage range(1)  
VFBP  
–30  
30  
V
(2)  
Negative channel  
VFBN  
V
INP(nom) VINP 33 V, 1 mA IOUTP 150 mA,  
VOUTP accuracy  
–1.5  
–3  
1.5 %VOUT  
1.2 V VOUTP(nom) 30 V  
–33 V VINN VINN(nom), –150 mA IOUTN  
–1 mA, –30 V VOUTN(nom) –1.2 V  
VOUTN accuracy(3)  
3
36  
12  
%VOUT  
mV  
VOUT  
–33 V VINN VINN(nom) , –150 mA IOUTN  
1 mA, –1.2 V < VOUTN(nom) < 0 V  
–36  
–12  
Negative VOUT channel accuracy  
–33 V VINN VINN(nom) , –150 mA IOUTN  
1 mA, VOUTN(nom) = 0 V  
Line regulation, positive channel  
Line regulation, negative channel  
Load regulation, positive channel  
Load regulation, negative channel  
V
INP(nom) VINP 33 V  
0.035  
0.125  
–0.09  
0.715  
ΔVOUT(ΔVIN) /  
VOUT(NOM)  
%VOUT  
%VOUT  
–33 V VINN VOUT(nom) + 1 V  
1 mA IOUTP 150 mA  
ΔVOUT(ΔIOUT) /  
VOUT(NOM)  
–150 mA IOUTN –1 mA  
IOUTP = 50 mA, 3.3 V VINP(nom) 33.0 V,  
VFBP = 1.070 V  
175  
300  
300  
500  
Positive channel  
IOUTP = 150 mA, 3.3 V VINP(nom) 33.0 V,  
VFBP = 1.070 V  
VDO  
Dropout voltage  
mV  
IOUTN = –50 mA, –3.3 V VINN(nom) –33.0 V,  
VFBN = 0.0695 V  
–250  
–400  
–145  
–275  
Negative channel  
IOUTN = –150 mA, –3.3 V VINN(nom) –33.0 V,  
VFBN = 0.0695 V  
VBUF  
Buffered reference output voltage  
Buffered reference load regulation  
Output buffer offset voltage  
VNR/SS  
V
VBUF/IBUF  
VBUF – VNR/SS  
IBUF = 100 µA to 1 mA  
VNR/SS = 0.25 V to 1.2 V  
1
3
mV/mA  
mV  
–4  
8
DC output voltage difference with a forced  
REF voltage  
VOUTP–VOUTN  
VNR/SS = 0.25 V to 1.2 V  
VOUTP = 90% VOUTP(nom)  
–10  
10 %VNR/SS  
500  
Positive channel  
Current limit  
200  
330  
–300  
75  
ILIM  
mA  
µA  
µA  
Negative channel VOUTN = 90% VOUTN(nom)  
–500  
–200  
150  
IOUTP = 0 mA, R2N = open, VINP = 33 V  
IOUTP = 150 mA, R2N = open, VINP = 33 V  
Positive channel  
904  
ISUPPLY  
Supply current  
IOUTN = 0 mA, VOUTN(nom)= 0 V, R2N = open, VINN  
–33 V  
=
–150  
–4.5  
–60  
Negative channel  
IOUTN = 150 mA, R2N = open, VINN = –33 V  
VEN = 0.4 V, VINP = 33 V  
–1053  
3.75  
Positive channel  
6.5  
ISHDN  
Shutdown supply current  
Negative channel VEN = 0.4 V, VINN = –33 V  
–2.25  
(1) To ensure VOUT does not drift up while the device is disabled, a minimum load current of 5 µA is required.  
(2) VOUT(target) = 0 V, R1N = 10 k, R2N = open.  
(3) The device is not tested under conditions where the power dissipated across the device, PD, exceeds 2 W.  
6
Copyright © 2017, Texas Instruments Incorporated  
 
TPS7A39  
www.ti.com.cn  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
Electrical Characteristics (continued)  
at TJ = –40°C to +125°C, VINP(nom) = VOUTP(nom) + 1 V or VIN(nom) = 3.3 V (whichever is greater), VINN(nom) = VOUTN(nom) – 1 V or  
VINN(nom) = –3.3 V (whichever is less), VEN = VINP, IOUT = 1 mA, CINx = 2.2 μF, COUTx = 10 μF, CFFx = CNR/SS = open, R1N = R2N  
10 kΩ, and FBP tied to OUTP (unless otherwise noted); typical values are at TJ = 25°C  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Positive channel  
Negative channel  
5.5  
100  
Feedback pin leakage  
current  
IFBx  
nA  
–100  
3
–9.7  
5.1  
INR/SS  
IEN  
VIH(EN)  
VIL(EN)  
Soft-start charging current  
Enable pin leakage current  
Enable high-level voltage  
Enable low-level voltage  
VNR/SS = 0.9 V  
6.7  
1
µA  
µA  
V
VEN = VINP = 33 V  
0.02  
2.2  
0
VINP  
0.4  
V
|VIN| = 6 V, |VOUT(nom)| = 5 V, COUT = 10 μF,  
CNR/SS = CFF= 10 nF, f = 120 Hz  
PSRR  
Power-supply rejection ratio  
69  
20.63  
26.86  
22.13  
28.68  
dB  
VINP = 3.3 V, VOUTP(nom) = VNR/SS, COUTP = 10 μF,  
CNR/SS = 10 nF, BW = 10 Hz to 100 kHz  
Positive channel  
Negative channel  
VINP = 6 V, VOUTP(nom) = 5 V, COUTP = 10 μF,  
CNR/SS = CFF = 10 nF, BW = 10 Hz to 100 kHz  
Vn  
Output noise voltage  
µVRMS  
VINN = –3 V, VOUTN(nom) = –VNR/SS, COUTP = 10 μF,  
CNR/SS = 10 nF, BW = 10 Hz to 100 kHz  
VINN = –6 V, VOUTN(nom) = –5 V, COUTP = 10 μF,  
CNR/SS = CFF= 10 nF, BW = 10 Hz to 100 kHz  
RNR/SS  
Tsd  
Filter resistor from band gap to NR pin  
Thermal shutdown temperature  
350  
175  
160  
kΩ  
Shutdown, temperature increasing  
Reset, temperature decreasing  
°C  
6.6 Startup Characteristics  
at TJ = –40°C to +125°C, VINP(nom) = VOUTP(nom) + 1 V or VIN(nom) = 3.3 V (whichever is greater), VINN(nom) = VOUTN(nom) – 1 V or  
VINN(nom) = –3.3 V (whichever is less), VEN = VINP, IOUT = 1 mA, CINx = 2.2 μF, COUTx = 10 μF, CFFx = CNR/SS = 4.7nF, R1N = R2N  
= 10 kΩ, and FBP tied to OUTP (unless otherwise noted); typical values are at TJ = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Delay time from EN low-to-high transition to 2.5%  
VOUTP  
From EN low-to-high transition to VOUTP = 2.5% ×  
VOUTP(nom)  
tEN(delay)  
tstart-up  
300  
µs  
Delay time from EN low-to-high transition to both  
outputs reaching 95% of final value  
From EN low-to-high transition to VOUTP  
=
1.1  
ms  
VOUTP(nom) × 95% and VOUTN = VOUTN(nom) × 95%  
Delay time from VOUTP leaving a high-impedance  
state to VOUTN leaving a high-impedance state  
From VOUTP = VOUTP(nom) × 2.5% to VOUTN  
VOUTN(nom) × 2.5%  
=
tPstart-Nstart  
–40  
–17  
75  
40  
µs  
Δ|VOUTP  
VOUTN  
Voltage difference between the positive and  
negative output  
During tPstart-Nstart  
300  
mV  
|
版权 © 2017, Texas Instruments Incorporated  
7
TPS7A39  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
VEN  
VIH(EN)  
Ttstart-up  
t
90%  
VOUTP  
tEN(delay)  
VOUTN  
tPstart-Nstart  
90%  
NOTE: Slow ramps (trise(VINx) > 10 ms typically) on VINx with EN tied to VINP does not meet the tracking specification. Use a  
resistor divider from VINP to EN for these applications.  
1. Start-Up Characteristics  
8
版权 © 2017, Texas Instruments Incorporated  
TPS7A39  
www.ti.com.cn  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
6.7 Typical Characteristics  
at TJ = 25°C, VINP = VOUTP(nom) + 1.0 V or VIN = 3.3 V (whichever is greater), VINN = VOUTN(nom) – 1 V or –3.3 V (whichever is  
less), VEN = VIN, IOUT = 1 mA, CIN = 10-μF ceramic, COUT = 10-μF ceramic, and CFFP = CFFN = CNR/SS = 10 nF (unless otherwise  
noted)  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VIN = 5.5 V  
VIN = 5.6 V  
VIN = 5.7 V  
VIN = 5.8 V  
VIN = 5.9 V  
VIN = 6.0 V  
VINN = -5.5 V  
VINN = -5.6 V  
VINN = -5.7 V  
VINN = -5.8 V  
VINN = -5.9 V  
VINN = -6.0 V  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
VOUTP = 5 V, IOUTP = 150 mA, VOUTN = –5 V, IOUTN = 0 mA,  
CNR/SS = CFFx = 10 nF  
VOUTP = 5 V, IOUTP = 0 mA, VOUTN = –5 V, IOUTN = 150 mA,  
CNR/SS = CFFx = 10 nF  
2. Positive PSRR vs Frequency and VINP  
3. Negative PSRR vs Frequency and VINN  
100  
100  
80  
60  
40  
80  
60  
40  
IOUT = 1 mA  
IOUT = 1 mA  
IOUT = 10 mA  
IOUT = 50 mA  
IOUT = 10 mA  
IOUT = 50 mA  
20  
20  
IOUT = 100 mA  
IOUT = 100 mA  
IOUT = 150 mA  
0
IOUT = 150 mA  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
VOUTP = 5 V, VINP = VEN = 6 V, VOUTN = –5 V, IOUTN = 0 mA,  
CNR/SS = CFFx = 10 nF  
VOUTP = 5 V, IOUTP = 0 mA, VINN = –6 V, VOUTN = –5 V,  
CNR/SS = CFFx = 10 nF  
4. Positive PSRR vs Frequency and IOUTP  
5. Negative PSRR vs Frequency and IOUTN  
100  
100  
80  
60  
80  
60  
40  
40  
COUT = 4.7 mF  
COUT = 4.7 mF  
20  
20  
COUT = 10 mF  
COUT = 10 mF  
COUT = 22 mF  
COUT = 47 mF  
COUT = 22 mF  
COUT = 47 mF  
0
0
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
VOUTP = 5 V, VINP = VEN = 6 V, VOUTN = –5 V, IOUTN = 0 mA,  
CNR/SS = CFFx = 10 nF  
VOUTP = 5 V, IOUTP = 0 mA, VINN = –6 V, VOUTN = –5 V,  
CNR/SS = CFFx = 10 nF, COUTP = 10 µF  
6. Positive PSRR vs Frequency and COUTP  
7. Negative PSRR vs Frequency and COUTN  
版权 © 2017, Texas Instruments Incorporated  
9
TPS7A39  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TJ = 25°C, VINP = VOUTP(nom) + 1.0 V or VIN = 3.3 V (whichever is greater), VINN = VOUTN(nom) – 1 V or –3.3 V (whichever is  
less), VEN = VIN, IOUT = 1 mA, CIN = 10-μF ceramic, COUT = 10-μF ceramic, and CFFP = CFFN = CNR/SS = 10 nF (unless otherwise  
noted)  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
CFF = 0 nF  
CFF = 10 nF  
CFF = 100 nF  
CFFN = 0 nF  
CFFN = 10 nF  
CFFN = 100 nF  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
VOUTP = 5 V, VINP = VEN = 6 V, VOUTN = –5 V, IOUTN = 0 mA,  
CNR/SS = 10 nF  
VOUTP = 5 V, IOUTP = 0 mA, VINN = –6 V, VOUTN = –5 V,  
CNR/SS = CFFP = 10 nF  
8. Positive PSRR vs Frequency and CFFP  
9. Negative PSRR vs Frequency and CFFN  
100  
100  
80  
60  
80  
60  
40  
40  
CNR/SS = 0 nF  
CNR/SS = 10 nF  
CNR/SS = 0 nF  
CNR/SS = 10 nF  
20  
20  
CNR/SS = 100 nF  
CNR/SS = 100 nF  
CNR/SS = 1000 nF  
0
CNR/SS = 1000 nF  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
VOUTP = 5 V, VINP = VEN = 6 V, VOUTN = –5 V, IOUTN = 0 mA,  
CFFx = 10 nF  
VOUTP = 5 V, IOUTP = 0 mA, VINN = –6 V, VOUTN = –5 V,  
CFFx = 10 nF  
10. Positive PSRR vs Frequency and CNR/SS  
11. Negative PSRR vs Frequency and CNR/SS  
100  
100  
80  
60  
40  
20  
80  
60  
40  
20  
IOUT = 150 mA  
0
IOUT = 150 mA  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
12. Crosstalk Positive to Negative  
13. Crosstalk Negative to Positive  
10  
版权 © 2017, Texas Instruments Incorporated  
TPS7A39  
www.ti.com.cn  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
Typical Characteristics (接下页)  
at TJ = 25°C, VINP = VOUTP(nom) + 1.0 V or VIN = 3.3 V (whichever is greater), VINN = VOUTN(nom) – 1 V or –3.3 V (whichever is  
less), VEN = VIN, IOUT = 1 mA, CIN = 10-μF ceramic, COUT = 10-μF ceramic, and CFFP = CFFN = CNR/SS = 10 nF (unless otherwise  
noted)  
10  
5
10  
5
VOUT  
VOUT  
1.188 V, 20.63 mVRMS  
5 V, 26.86 mVRMS  
15 V, 63.88 mVRMS  
-1.188 V, 22.13 mVRMS  
-5 V, 28.68 mVRMS  
-15 V, 47.10 mVRMS  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
IOUTP = 150 mA, VINP = VEN, VOUTN = –VOUTP, IOUTN = 0 mA,  
CNR/SS = CFFx = 10 nF  
IOUTN = –150 mA, VINP = VEN, VOUTN = –VOUTP, IOUTP = 0 mA,  
CNR/SS = CFFx = 10 nF  
14. Positive Spectral Noise Density vs Frequency and  
15. Negative Spectral Noise Density vs Frequency and  
VOUTP  
VOUTN  
10  
10  
CNR/SS  
CNR/SS  
5
5
0 nF, 68.08 mVRMS  
10 nF, 26.86 mVRMS  
100 nF, 21.74 mVRMS  
1000 nF, 21.56 mVRMS  
0 nF, 53.32 mVRMS  
10 nF, 26.68 mVRMS  
100 nF, 23.21 mVRMS  
1000 nF, 23.06 mVRMS  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
VOUTP = 5 V, IOUTP = 150 mA, VINP = VEN = 6 V, VOUTN = –5 V,  
IOUTN = 0 mA, CFFx = 10 nF  
VOUTN = –5 V, IOUTN = –150 mA, VINP = VEN = 6 V, VOUTN = –5 V,  
IOUTP = 0 mA, CFFx = 10 nF  
16. Positive Spectral Noise Density vs Frequency and  
17. Negative Spectral Noise Density vs Frequency and  
CNR/SS  
CNR/SS  
10  
10  
CFF  
CFF  
5
5
0 nF, 37.77 mVRMS  
10 nF, 26.86 mVRMS  
100 nF, 22.95 mVRMS  
0 nF, 45.08 mVRMS  
10 nF, 26.68 mVRMS  
100 nF, 23.53 mVRMS  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
VOUTP = 5 V, IOUTP = 150 mA, VINP = VEN = 6 V, VOUTN = –5 V,  
IOUTN = 0 mA, CNR/SS = 10 nF  
VOUTN = –5 V, IOUTN = –150 mA, VINP = VEN = 6 V, VOUTN = –5 V,  
IOUTP = 0 mA, CNR/SS = 10 nF  
18. Positive Spectral Noise Density vs Frequency and CFF  
19. Negative Spectral Noise Density vs Frequency and  
CFF  
版权 © 2017, Texas Instruments Incorporated  
11  
TPS7A39  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TJ = 25°C, VINP = VOUTP(nom) + 1.0 V or VIN = 3.3 V (whichever is greater), VINN = VOUTN(nom) – 1 V or –3.3 V (whichever is  
less), VEN = VIN, IOUT = 1 mA, CIN = 10-μF ceramic, COUT = 10-μF ceramic, and CFFP = CFFN = CNR/SS = 10 nF (unless otherwise  
noted)  
10  
5
10  
5
COUT  
COUT  
4.7 mF, 27.33 mVRMS  
10 mF, 26.86 mVRMS  
22 mF, 27.47 mVRMS  
47 mF, 27.64 mVRMS  
4.7 mF, 28.43 mVRMS  
10 mF, 26.68 mVRMS  
22 mF, 26.67 mVRMS  
47 mF, 28.70 mVRMS  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
VOUTP = 5 V, IOUTP = 150 mA, VINP = VEN = 6 V, VOUTN = –5 V,  
IOUTN = 0 mA, CNR/SS = CFFx = 10 nF  
VOUTN = –5 V, IOUTN = –150 mA, VINP = VEN = 6 V, VOUTN = –5 V,  
IOUTP = 0 mA, CNR/SS = CFFx = 10 nF  
20. Positive Spectral Noise Density vs Frequency and  
21. Negative Spectral Noise Density vs Frequency and  
COUT  
COUT  
10  
10  
IOUT  
IOUT  
5
5
1 mA, 29.88 mVRMS  
10 mA, 27.07 mVRMS  
50 mA, 26.66 mVRMS  
100 mA, 26.77 mVRMS  
150 mA, 26.86 mVRMS  
1 mA, 29.72 mVRMS  
10 mA, 28.42 mVRMS  
50 mA, 28.59 mVRMS  
100 mA, 28.47 mVRMS  
150 mA, 26.68 mVRMS  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
VOUTP = 5 V, VINP = VEN = 6 V, VOUTN = –5 V, IOUTN = 0 mA,  
CNR/SS = CFFx = 10 nF  
VOUTN = –5 V, VINP = VEN = 6 V, VOUTN = –5 V, IOUTP = 0 mA,  
CNR/SS = CFFx = 10 nF  
22. Positive Spectral Noise Density vs Frequency and  
23. Negative Spectral Noise Density vs Frequency and  
IOUT  
IOUT  
20  
25  
VINP  
VINN  
VOUTP  
VOUTN  
EN  
VINP  
VOUTP  
VOUTN  
VINN  
16  
12  
8
20  
15  
10  
5
4
0
0
-4  
-5  
-8  
-10  
-15  
-20  
-25  
-12  
-16  
-20  
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (ms)  
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (ms)  
VOUTP = –VOUTN = 5 V, VINP = –VINN = 12 V  
VOUTP = –VOUTN = 5 V, VINP = –VINN = 15 V  
24. Startup (VINP = VEN  
)
25. Startup With EN  
12  
版权 © 2017, Texas Instruments Incorporated  
 
TPS7A39  
www.ti.com.cn  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
Typical Characteristics (接下页)  
at TJ = 25°C, VINP = VOUTP(nom) + 1.0 V or VIN = 3.3 V (whichever is greater), VINN = VOUTN(nom) – 1 V or –3.3 V (whichever is  
less), VEN = VIN, IOUT = 1 mA, CIN = 10-μF ceramic, COUT = 10-μF ceramic, and CFFP = CFFN = CNR/SS = 10 nF (unless otherwise  
noted)  
12  
11  
10  
9
5.065  
5.06  
-4  
-5  
-4.9  
VINP  
VOUTP  
-4.925  
-4.95  
-4.975  
-5  
5.055  
5.05  
-6  
-7  
8
5.045  
5.04  
-8  
7
-9  
-5.025  
-5.05  
-5.075  
-5.1  
6
5.035  
5.03  
-10  
-11  
-12  
5
VINN  
VOUTN  
4
5.025  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (ms)  
Time (ms)  
VINP = 5.5 V to 10 V at 1 V/µs, VOUTP = –VOUTN = 5 V,  
IOUTN = 0 mA, IOUTP = 150 mA  
VINN = –5.5 V to –10 V at 1 V/µs, VOUTP = –VOUTN = 5 V,  
IOUTN = –150 mA, IOUTP = 0 mA  
26. Line Transient Positive Regulator  
27. Line Transient Negative Regulator  
12  
11  
10  
9
5.2  
-4  
-4.9  
VINP  
VOUTP  
5.15  
5.1  
-5  
-6  
-4.925  
-4.95  
-4.975  
-5  
5.05  
5
-7  
8
-8  
7
4.95  
4.9  
-9  
-5.025  
-5.05  
-5.075  
-5.1  
6
-10  
-11  
-12  
5
4.85  
4.8  
VINN  
VOUTN  
4
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (ms)  
Time (ms)  
VINP = 5.5 V to 10 V at 4 V/µs, VOUTP = –VOUTN = 5 V,  
IOUTN = 0 mA, IOUTP = 150 mA  
VINN = –5.5 V to –10 V at 4 V/µs, VOUTP = –VOUTN = 5 V,  
IOUTN = –150 mA, IOUTP = 0 mA  
28. Line Transient Positive Regulator  
29. Line Transient Negative Regulator  
5.1  
0.2  
-4.9  
0
VOUTP  
IOUTP  
VOUTP  
IOUTP  
-4.925  
-4.95  
-4.975  
-5  
-0.025  
-0.05  
-0.075  
-0.1  
5.075  
5.05  
5.025  
5
0.15  
0.1  
0.05  
0
-5.025  
-5.05  
-5.075  
-5.1  
-0.125  
-0.15  
-0.175  
-0.2  
0
20  
40  
60  
80 100 120 140 160 180 200  
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (ms)  
Time (ms)  
VINP = 6 V, VOUTP = –VOUTN = 5 V, IOUTN = 0 mA,  
IOUTP = 1 mA to 150 mA at 1 A/µs  
VINN = –6 V, VOUTP = –VOUTN = 5 V, IOUTN = 0 mA,  
IOUTN = –1 mA to –150 mA at 1 A/µs  
30. Load Transient Positive Regulator  
31. Load Transient Negative Regulator  
版权 © 2017, Texas Instruments Incorporated  
13  
TPS7A39  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TJ = 25°C, VINP = VOUTP(nom) + 1.0 V or VIN = 3.3 V (whichever is greater), VINN = VOUTN(nom) – 1 V or –3.3 V (whichever is  
less), VEN = VIN, IOUT = 1 mA, CIN = 10-μF ceramic, COUT = 10-μF ceramic, and CFFP = CFFN = CNR/SS = 10 nF (unless otherwise  
noted)  
0.0075  
0.006  
0.0045  
0.003  
0.0015  
0
0.01  
0.005  
0
-40èC  
0èC  
25èC  
85èC  
125èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
-0.005  
-0.01  
-33 -30 -27 -24 -21 -18 -15 -12  
Input Voltage (V)  
-9  
-6  
-3  
0
15  
30  
45  
60  
75  
90 105 120 135 150  
Output Current (mA)  
VOUTN = 0 V  
VOUTN = 0 V, VINN = –3.3 V  
32. Negative Line Regulation  
33. Negative Load Regulation  
2
1.5  
1
2
1.5  
1
-40èC  
0èC  
25èC  
85èC  
125èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
-1.5  
-2  
-1.5  
-2  
-33 -30 -27 -24 -21 -18 -15 -12  
-9  
-6  
-3  
-33  
-30  
-27  
-24  
-21  
-18  
-15  
Input Voltage (V)  
Input Voltage (V)  
VOUTN = –1.19 V  
VOUTN = –15 V  
34. Negative Line Regulation  
35. Negative Line Regulation  
2
1.5  
1
2
-40èC  
0èC  
25èC  
85èC  
125èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
1.5  
1
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
-1.5  
-2  
-1.5  
-2  
0
30  
60  
90  
120  
150  
-33  
-31  
-29  
-27  
-25  
-23  
Output Current (mA)  
Input Voltage (V)  
VOUTN = –1.2 V, VINN = –3.3 V  
37. Negative Load Regulation  
VOUTN = –24 V  
36. Negative Line Regulation  
14  
版权 © 2017, Texas Instruments Incorporated  
TPS7A39  
www.ti.com.cn  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
Typical Characteristics (接下页)  
at TJ = 25°C, VINP = VOUTP(nom) + 1.0 V or VIN = 3.3 V (whichever is greater), VINN = VOUTN(nom) – 1 V or –3.3 V (whichever is  
less), VEN = VIN, IOUT = 1 mA, CIN = 10-μF ceramic, COUT = 10-μF ceramic, and CFFP = CFFN = CNR/SS = 10 nF (unless otherwise  
noted)  
2
1.5  
1
2
1.5  
1
-40èC  
0èC  
25èC  
85èC  
125èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
-1.5  
-2  
-1.5  
-2  
0
0
0
30  
60  
90  
120  
150  
0
30  
60  
90  
120  
150  
Output Current (mA)  
Output Current (mA)  
VOUTN = –15 V, VINN = –16 V  
VOUTN = –30 V, VINN = –33 V  
38. Negative Load Regulation  
39. Negative Load Regulation  
2
1.5  
1
2
1.5  
1
-40èC  
0èC  
85èC  
-40èC  
0èC  
85èC  
125èC  
125èC  
25èC  
25èC  
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
-1.5  
-2  
-1.5  
-2  
30  
60  
90  
120  
150  
0
30  
60  
90  
120  
150  
Output Current (mA)  
Output Current (mA)  
VOUTP = 1.188 V, VINP = 3.3 V  
VOUTP = 15 V, VINP = 16 V  
41. Positive Load Regulation  
40. Positive Load Regulation  
2
1.5  
1
1
-40èC  
0èC  
25èC  
85èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
125èC  
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
-1.5  
-2  
3
6
9
12  
15  
18  
21  
24  
27  
30  
33  
30  
60  
90  
120  
150  
Input Voltage (V)  
Output Current (mA)  
VOUTP = 1.188 V  
43. Positive Line Regulation  
VOUTP = 30 V, VINP = 33 V  
42. Positive Load Regulation  
版权 © 2017, Texas Instruments Incorporated  
15  
TPS7A39  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TJ = 25°C, VINP = VOUTP(nom) + 1.0 V or VIN = 3.3 V (whichever is greater), VINN = VOUTN(nom) – 1 V or –3.3 V (whichever is  
less), VEN = VIN, IOUT = 1 mA, CIN = 10-μF ceramic, COUT = 10-μF ceramic, and CFFP = CFFN = CNR/SS = 10 nF (unless otherwise  
noted)  
1
0.5  
0
1
0.5  
0
-40èC  
0èC  
25èC  
85èC  
125èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
-0.5  
-0.5  
-1  
-1  
15  
18  
21  
24  
27  
30  
33  
23  
25.5  
28  
30.5  
33  
Input Voltage (V)  
Input Voltage (V)  
VOUTP = 15 V  
VOUTP = 24 V  
44. Positive Line Regulation  
45. Positive Line Regulation  
1.25  
1
0
-0.25  
-0.5  
-40èC  
0èC  
25èC  
85èC  
125èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
0.75  
0.5  
0.25  
0
-0.75  
-1  
-1.25  
0
50 100 150 200 250 300 350 400 450 500  
Output Current (mA)  
0
50 100 150 200 250 300 350 400 450 500  
Output Current (mA)  
VOUTN = –1.19 V  
VOUTP = 1.188 V  
47. Negative Regulator Current Limit  
46. Positive Regulator Current Limit  
500  
450  
400  
350  
300  
250  
200  
150  
100  
500  
450  
400  
350  
300  
250  
200  
150  
-40èC  
0èC  
25èC  
85èC  
125èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
100  
3
3
6
9
12  
15  
18  
21  
24  
27  
30  
33  
6
9
12  
15  
18  
21  
24  
27  
30  
33  
Input Voltage (V)  
Input Voltage (V)  
48. Positive Regulator Dropout Voltage vs  
49. Negative Regulator Dropout Voltage vs  
Input Voltage  
Input Voltage  
16  
版权 © 2017, Texas Instruments Incorporated  
TPS7A39  
www.ti.com.cn  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
Typical Characteristics (接下页)  
at TJ = 25°C, VINP = VOUTP(nom) + 1.0 V or VIN = 3.3 V (whichever is greater), VINN = VOUTN(nom) – 1 V or –3.3 V (whichever is  
less), VEN = VIN, IOUT = 1 mA, CIN = 10-μF ceramic, COUT = 10-μF ceramic, and CFFP = CFFN = CNR/SS = 10 nF (unless otherwise  
noted)  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
-40èC  
0èC  
25èC  
85èC  
125èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
0
0
0
30  
60  
90  
120  
150  
0
30  
60  
90  
120  
150  
Output Current (mA)  
Output Current (mA)  
VINP = 3.3 V  
VOUTN = –3.3 V  
50. Positive Regulator Dropout Voltage vs  
51. Negative Regulator Dropout Voltage vs  
Output Current  
Output Current  
2
1.75  
1.5  
10  
8
-40èC  
0èC  
25èC  
85èC  
125èC  
6
4
1.25  
2
Enable Falling  
-25  
Enable Rising  
50  
1
-50  
0
0
25  
75  
100  
125  
0
0.15 0.3 0.45 0.6 0.75 0.9 1.05 1.2 1.35 1.5  
NR/SS Voltage (V)  
Temperature (èC)  
52. Enable Threshold vs Temperature  
53. INR/SS vs VNR/SS  
6
5
4
3
2
1
0
0
-1  
-2  
-3  
-4  
-5  
-40èC  
0èC  
25èC  
85èC  
125èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
0
5
10  
15  
20  
25  
30  
35  
-35  
-30  
-25  
-20  
-15  
-10  
-5  
0
Output Voltage (V)  
Output Voltage (V)  
54. Positive Output Discharge Current vs  
55. Negative Output Discharge Current vs  
Output Voltage  
Output Voltage  
版权 © 2017, Texas Instruments Incorporated  
17  
TPS7A39  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TJ = 25°C, VINP = VOUTP(nom) + 1.0 V or VIN = 3.3 V (whichever is greater), VINN = VOUTN(nom) – 1 V or –3.3 V (whichever is  
less), VEN = VIN, IOUT = 1 mA, CIN = 10-μF ceramic, COUT = 10-μF ceramic, and CFFP = CFFN = CNR/SS = 10 nF (unless otherwise  
noted)  
2000  
1600  
1200  
800  
400  
0
0
-400  
-40èC  
0èC  
25èC  
85èC  
125èC  
-800  
-1200  
-1600  
-2000  
-40èC  
0èC  
25èC  
85èC  
125èC  
0
30  
60  
90  
120  
150  
0
15  
30  
45  
60  
75  
90 105 120 135 150  
Output Current (mA)  
Output Current (mA)  
VOUTP = 1.188 V  
VOUTN = –1.19 V  
56. Positive Supply Current vs Output Current  
57. Negative Supply Current vs Output Current  
2
-40èC  
0èC  
25èC  
85èC  
125èC  
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (mA)  
1
VOUTN = –1.19 V  
58. Buffer Accuracy vs Buffer Current  
18  
版权 © 2017, Texas Instruments Incorporated  
TPS7A39  
www.ti.com.cn  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
7 Detailed Description  
7.1 Overview  
The TPS7A39 is an innovative linear regulator (LDO) targeted at powering the signal chain, capable of up to  
±33 V on the inputs and regulating up to ±30 V on the outputs at up to 150 mA of load current. The device uses  
an LDO topology that, by design, delivers ratiometric start-up tracking in most applications. The TPS7A39 has  
several other features, as listed in 1, that simplify using the device in a variety of applications.  
Throughout this document, x is used to designate that the condition or component applies  
to both the positive and negative regulators (for example, CFFx means CFFP and CFFN).  
1. TPS7A39 Features  
VOLTAGE REGULATION  
Reference input/output  
High-PSRR output  
SYSTEM START-UP  
Ratiometric start-up tracking  
Programmable soft-start  
Sequencing controls  
INTERNAL PROTECTION  
Current limit  
Thermal shutdown  
Fast transient response  
7.2 Functional Block Diagram  
Positive LDO  
INP  
+
UVLO P  
+
œ
œ
2.6 V  
OUTP  
Internal  
Enable  
Current  
Limit  
FBP  
350 k  
Bandgap  
INP  
Reference  
NR/SS  
BUF  
x1  
UVLO P  
Internal Enable  
EN  
UVLO N  
FBN  
Current  
Limit  
Thermal  
Shutdown  
OUTN  
Internal  
Enable  
œ
+
UVLO N  
- 2.6 V  
+
œ
INN  
Negative LDO  
GND  
版权 © 2017, Texas Instruments Incorporated  
19  
 
TPS7A39  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Voltage Regulation  
7.3.1.1 DC Regulation  
An LDO functions as a buffered op-amp in which the input signal is the internal reference voltage (VNR/SS), as  
shown in 59, and in normal regulation VFBP = VNR/SS. Sharing a single reference ensures that both channels  
track each other during start-up.  
VNR/SS is designed to have a very low-bandwidth at the input to the error amplifier through the use of a low-pass  
filter. As such, the reference can be considered as a pure dc input signal.  
As 60 shows, the negative LDO on the device regulates with a VFBN = 0 V and inverts the positive reference  
(VBUF). This topology allows the negative regulator to regulate down to 0 V.  
VOUTP = VNR/SS × (1+R1P/R2P  
)
VINP  
To Load  
R1P  
NR/SS  
VFBP  
R2P  
CNR/SS  
GND  
Bandgap  
GND  
Reference  
GND  
59. Simplified Positive Regulation Circuit  
VOUTN = VBUF × (-R1N/R2N  
)
VINN  
To Load  
R1N  
VFBN  
GND  
R2N  
VBUF  
60. Simplified Negative Regulation Circuit  
7.3.1.2 AC and Transient Response  
Each LDO responds quickly to a transient on the input supply (line transient) or the output current (load  
transient). This LDO has a high power-supply rejection ratio (PSRR) and, when coupled with a low internal noise-  
floor (Vn), the LDO approximates an ideal power supply in ac and large-signal conditions.  
The performance and internal layout of the device minimizes the coupling of noise from one channel to the other  
channel (crosstalk). Good printed circuit board (PCB) layout minimizes the crosstalk.  
The noise-reduction and soft-start capacitor (CNR/SS) and feed-forward capacitor (CFFx) easily reduce the device  
noise floor and improve PSRR; see the Optimizing Noise and PSRR section for more information on optimizing  
the noise and PSRR performance.  
20  
版权 © 2017, Texas Instruments Incorporated  
 
 
TPS7A39  
www.ti.com.cn  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
Feature Description (接下页)  
7.3.2 User-Settable Buffered Reference  
As 61 shows, the device internally generated band-gap voltage outputs at the NR/SS pin. An internal resistor  
(RNR) and an external capacitor (CNR/SS) control the rise time of the voltage at the VNR/SS pin, setting the soft-start  
time. This network also filters out noise from the band gap, reducing the overall noise floor of the device.  
Driving the NR/SS pin with an external source can improve the device accuracy and can reduce the device noise  
floor, along with enabling the device to regulate the positive channel to voltages below the device internal  
reference.  
+
SW  
VFBN  
œ
x1  
R2N*  
VBUF  
INR/SS  
RNR/SS  
VNR/SS  
CNR/SS  
VBandgap  
+
*
œ
VFBP  
GND  
Note: * Denotes external components  
NOTE: * denotes external components.  
61. Simplified Reference Circuit  
7.3.3 Active Discharge  
When either EN or UVLOx are low, the device connects a resistance from VOUTx to GND, discharging the output  
capacitance. The active discharge circuit requires |VOUTx| 0.6 V (typ) to discharge the output because the NPN  
pulldown has a minimum VCE requirement.  
Do not rely on the active discharge circuit for discharging large output capacitors when the input voltage drops  
below the targeted output voltage. The TPS7A39 is a bipolar device, and as such, reverse voltage conditions  
(|VOUTx| |VINX| + 0.3 V) can breakdown the emitter to base diode and also cause a breakdown of the parasitic  
bipolar formed in the substrate; see the Reverse Current section for more details.  
When either EN or UVLOx are low, the device outputs a small amount of leakage current. The leakage current is  
typically handled by the maximum R2x resistor value of 240 kΩ. However, if the device is placed in unity gain (no  
R2x resistor) this leakage current causes the output to slowly rise until the discharge circuit (as shown in 62)  
has enough headroom to clamp the output voltage (typically ±0.6 V).  
UVLOP  
Internal Enable  
EN  
UVLON  
GND  
62. Simplified Active Discharge Circuit  
7.3.4 System Start-Up Controls  
In many different applications, the power-supply output must turn-on within a specific window of time because of  
sequencing requirements, ensuring proper operation of the load, or to minimize the loading on the input supply.  
Both LDOs start-up are well-controlled and user-adjustable through the CNR/SS capacitor, solving the demanding  
requirements faced by many power-supply design engineers in a simple fashion. For start-up tracking to work  
correctly. a minimum 4.7-nF CNR/SS capacitor is required. For more information on startup tracking, see the  
Noise-Reduction and Soft-Start Capacitor (CNR/SS) section.  
版权 © 2017, Texas Instruments Incorporated  
21  
 
 
TPS7A39  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
Feature Description (接下页)  
7.3.4.1 Start-Up Tracking  
63 shows how both regulators use a common reference, which enables start-up tracking. Using the same  
reference voltage for both the positive and negative regulators ensures that the regulators start-up together in a  
controlled fashion; see 24 and 25.  
Ramps on VINx with EN = VINP that are slower than the soft-start time do not have start-up tracking. If ramps  
slower than the soft-start time are used then enable should be used to start the device to ensure start-up  
tracking. A small mismatch between the positive and negative internal enable thresholds means that one channel  
turns on at a slightly lower input voltage than the other channel. This mismatch is typically not a problem in most  
applications and is easily solved by controlling the start-up with enable. The external signal can come from the  
input power supply power-good indicator, a voltage supervisor output such as the TPS3701, or from another  
source.  
VOUTN = VBUF × (-R1N/R2N  
)
VOUTP = VNR/SS × (1+R1P/R2P  
)
VINN  
VINP  
R1N  
R1P  
VNR/SS  
GND  
R2N  
R2P  
GND  
VBUF  
x1  
63. Simplified Regulation Circuit  
7.3.4.2 Sequencing  
64 and 2 describe how the turn-on and turn-off times of both LDOs (respectively) is controlled by setting  
the enable circuit (EN) and undervoltage lockout circuit (UVLOP and UVLON).  
UVLOP  
Internal  
Enable  
EN  
UVLON  
64. Simplified Turn-On Control  
2. Sequencing Functionality Table  
POSITIVE INPUT VOLTAGE NEGATIVE INPUT VOLTAGE  
(VINP (VINN  
LDO  
STATUS  
ACTIVE  
DISCHARGE  
ENABLE STATUS  
)
)
EN = 1  
On  
Off  
Off  
Off  
Off  
Off  
VINP VUVLOP  
VINN VUVLON  
EN = 0  
On(1)  
On(1)  
On(1)  
On(1)  
VINP VUVLOP  
VINP < VUVLOP  
VINN > VUVLON  
INN VUVLON  
VINN > VUVLON – VHYSN  
EN = don't care  
EN = don't care  
EN = don't care  
V
VINP < VUVLOP – VHYSP  
(1) The active discharge remains on as long as VINx and VOUTx provide enough headroom for the discharge circuit to function.  
22  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
TPS7A39  
www.ti.com.cn  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
7.3.4.2.1 Enable (EN)  
The enable signal (VEN) is an active-high digital control that enables the LDO when the enable voltage is past the  
rising threshold (VEN VIH(EN)) and disables the LDO when the enable voltage is below the falling threshold (VEN  
VIL(EN)). The exact enable threshold is between VIH(EN) and VIL(EN) because EN is a digital control. In  
applications that do not use the enable control, connect EN to VINP  
.
A slow VINx ramp directly connecting EN to VINP can cause the start-up tracking to move out of specification.  
Under slow ramp conditions, use a resistor divider from VINP to ensure start-up tracking.  
7.3.4.2.2 Undervoltage Lockout (UVLO) Control  
The UVLO circuit responds quickly to glitches on the input supplies and attempts to disable the output of the  
device if either of these rails collapse.  
As a result of the fast response time of the input supply UVLO circuit, fast and short line transients well below the  
input supply UVLO falling threshold (brownouts) can cause momentary glitches during the edges of the transient.  
These glitches are typical in most LDOs. The local input capacitance prevents severe brown-outs in most  
applications; see the Undervoltage Lockout (UVLOx) Control section for more details. Fast line transients can  
cause the outputs to momentarily shut off, and can be mitigated through using the recommended 10-µF input  
capacitor. If this becomes a problem in the system, increasing the input capacitance prevents these glitches from  
occurring.  
版权 © 2017, Texas Instruments Incorporated  
23  
TPS7A39  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Normal Operation  
The device regulates to the nominal output voltage under the following conditions:  
The input voltage is at least as high as |VINx(min)  
The input voltage is greater than the nominal output voltage added to the dropout voltage  
The enable voltage has previously exceeded the enable rising threshold voltage and has not decreased  
below the enable falling threshold  
|
The output current is less than the current limit  
The device junction temperature is less than TSD  
7.4.2 Dropout Operation  
If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other  
conditions are met for normal operation, the device operates in dropout mode. In this mode of operation, the  
output voltage is the same as the input voltage minus the dropout voltage. The transient performance of the  
device is significantly degraded because the pass device (as a bipolar junction transistor, or BJT) is in saturation  
and no longer controls the current through the LDO. Line or load transients in dropout can result in large output  
voltage deviations.  
7.4.3 Disabled  
The device is disabled under the following conditions:  
The enable voltage is less than the enable falling threshold voltage or has not yet exceeded the enable rising  
threshold  
The device junction temperature is greater than the thermal shutdown temperature  
3 shows the conditions that lead to the different modes of operation.  
3. Device Functional Mode Comparison  
PARAMETER  
OPERATING MODE  
VIN  
VEN  
IOUT  
TJ  
|VINx| > |VOUT(nom)| + |VDOx| and  
Normal mode  
Dropout mode  
VEN > VIH  
|IOUTx| < |ILIMx  
|
T J < 125°C  
|VINx| > |VINx(min)  
|
|VINx(min)| < |VINx| < |VOUTx(nom)| +  
VEN > VIH  
VEN < VIL  
TJ < 125°C  
TJ > TSD  
|VDOx  
|
Disabled mode  
(any true condition disables the device)  
24  
版权 © 2017, Texas Instruments Incorporated  
 
TPS7A39  
www.ti.com.cn  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
Successfully implementing an LDO in an application depends on the application requirements. This section  
discusses key device features and how to best implement the LDO to achieve a reliable design.  
8.1.1 Setting the Output Voltages on Adjustable Devices  
65 shows that each LDO resistor feedback network sets its output voltage. The positive LDO output voltage  
range is VNR/SS to 30 V and the negative LDO output voltage range is 0 V to –30 V.  
OUTP  
COUTP  
INP  
CINP  
CFFP  
R1P  
FBP  
R2P  
NR/SS  
CNR/SS  
TPS7A39  
BUF  
FBN  
3mm x 3mm  
R2N  
CFFN  
EN  
R1N  
OUTN  
INN  
CINN  
COUTN  
GND  
65. Adjustable Operation  
公式 1 relates the values of R1P and R2P to VOUTP(NOM) and VNR/SS to set the positive output voltage. 公式 2  
relates the values of R1N and R2N to VOUTN(NOM) and VNR/SS to set the negative output voltage.  
The positive LDO is configured as a noninverting op amp, whereas the negative LDO is an inverting op amp.  
VOUTP = VNR/SS × (1 + R1P / R2P  
)
(1)  
(2)  
VOUTN = VNR/SS × (–R1N / R2N  
)
Substituting VNR/SS with VFBP on the positive channel and VNR/SS with VBUF on the negative channel gives a more  
accurate relationship.  
公式 3 and 公式 2 are rearranged versions of 公式 1 and 公式 2, with the above substitutions made.  
R1P = (VOUTP / VFBP – 1) × R2P  
R1N = –(VOUTN × R2P) / VBUF  
(3)  
(4)  
The minimum bias current through both feedback networks is 5 µA to ensure accuracy.  
For even tighter accuracy, take into account the input bias current into the error amplifiers (IFBP and IFBN) and use  
0.1% resistors. Overriding the internal reference with a high accuracy external reference can also improve the  
accuracy of the device.  
版权 © 2017, Texas Instruments Incorporated  
25  
 
 
 
 
 
TPS7A39  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
Application Information (接下页)  
4 and 5 show the resistor combinations for several common output voltages using commercially available,  
1% tolerance resistors.  
4. Recommended Feedback-Resistor Values for the Positive LDO  
FEEDBACK RESISTOR VALUES(1)  
TARGETED OUTPUT  
VOLTAGE (V)  
CALCULATED OUTPUT  
VOLTAGE (V)  
R1P (kΩ)  
2.67  
5.23  
11.0  
15.4  
17.8  
32.4  
66.5  
90.9  
115  
R2P (kΩ)  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
1.5  
1.8  
1.50  
1.80  
2.49  
3.00  
3.29  
5.02  
9.07  
12.0  
14.8  
23.8  
29.8  
2.5  
3.0  
3.3  
5.0  
9.0  
12.0  
15.0  
24.0  
30.0  
191  
243  
(1) R1P is connected from OUTP to FBP, R2P is connected from FBP to GND; see the Setting the Output Voltages on Adjustable Devices  
section.  
5. Recommended Feedback-Resistor Values for the Negative LDO  
FEEDBACK RESISTOR VALUES(1)  
TARGETED OUTPUT  
VOLTAGE (V)  
CALCULATED OUTPUT  
VOLTAGE (V)  
R1N (kΩ)  
2.55  
12.7  
15.0  
21.0  
25.5  
28.0  
42.2  
75.0  
100  
R2N (kΩ)  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
-0.3  
-1.5  
-0.303  
-1.51  
-1.78  
-2.49  
-3.03  
-3.33  
-5.04  
-8.91  
-11.9  
-15.1  
-23.8  
-30.3  
-1.8  
-2.5  
-3.0  
-3.3  
-5.0  
-9.0  
-12.0  
-15.0  
-24.0  
-30.0  
127  
200  
255  
(1) R1N is connected from OUTN to FBN, R2N is connected from FBN to BUF; see the Setting the Output Voltages on Adjustable Devices  
section.  
8.1.2 Capacitor Recommendations  
The device is designed to be stable using low equivalent series resistance (ESR) ceramic capacitors at the input  
and output pins. The device is also designed to be stable with aluminum polymer and tantalum polymer  
capacitors with ESR < 75 mΩ.  
Electrolytic capacitors (along with higher ESR polymer capacitors) can also be used if capacitors (meeting the  
minimum capacitance and ESR requirements ) are used in parallel.  
Take the effective ESR for stability when the impedance of the capacitor is at its minimum. At the minimum level,  
the capacitance and parasitic inductance cancel each other and provides the DC ESR.  
Ceramic capacitors that employ X7R-, X5R-, and COG-rated dielectric materials provide relatively good  
capacitive stability across temperature, whereas the use of Y5V-rated capacitors is discouraged because of large  
variations in capacitance.  
26  
版权 © 2017, Texas Instruments Incorporated  
 
 
TPS7A39  
www.ti.com.cn  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
Regardless of the ceramic capacitor type selected, ceramic capacitance varies with operating voltage and  
temperature. As a rule of thumb, derate ceramic capacitors by at least 50%. The input and output capacitors  
recommended herein account for an effective capacitance derating of approximately 50%, but at higher VIN and  
VOUT conditions (that is, VIN = 5.5 V to VOUT = 5.0 V) the derating can be greater than 50% and must be taken  
into consideration.  
For high performance applications polymer capacitors are ideal as they do not experience the large deratings of  
ceramic capacitors.  
8.1.3 Input and Output Capacitor (CINx and COUTx  
)
The device is designed and characterized for operation with ceramic capacitors of 10 µF or greater (2.2 µF or  
greater of effective capacitance) at each input and output.  
Locate the input and output capacitors as near as practical to the respective input and output pins to minimize  
the trace inductance from the capacitor to the device. If the LDO is used to produce low output voltages (below  
5 V), a 4.7-µF output capacitor can be used. If a 4.7-µF output capacitor is used, be sure to account for the  
derating of the capacitors during design.  
Large, fast line transients on the input supplies can cause the device output to momentarily turn off. Typically  
these transients do not occur in most applications, but when these transients do occur use a larger input  
capacitor to slow down the line transient. If the system has input line transients that are faster than 0.5 V/µs,  
increase the input capacitance.  
8.1.4 Feed-Forward Capacitor (CFFx  
)
Although a feed-forward capacitor (CFFx) from the FBx pin to the OUTx pin is not required to achieve stability, a  
10-nF external CFFx capacitor optimizes the transient, noise, and PSRR performance. The maximum  
recommended value for CFFx is 100 nF.  
A larger CFFx can dominate the start-up time set by CNR/SS, for more information see the Pros and Cons of Using  
a Feed-Forward Capacitor with a Low Dropout Regulator application report.  
8.1.5 Noise-Reduction and Soft-Start Capacitor (CNR/SS  
)
Although a noise-reduction and soft-start capacitor (CNR/SS) from the NR/SS pin to GND is not required, CNR/SS is  
highly recommended to control the start-up time and reduce the noise-floor of the device. For start-up tracking to  
function correctly, a minimum 4.7-nF capacitor is required. As the time constant formed by the feedback resistors  
and feed-forward capacitors increases, the value of the CNR/SS capacitor must also be increased for startup  
tracking to work correctly. To figure out how to calculate the time constant of the feedback network see the Pros  
and Cons of Using a Feed-Forward Capacitor with a Low Dropout Regulator application report.  
8.1.6 Buffered Reference Voltage  
The voltage at the NR/SS pin, whether driven internally or externally, is buffered with a high-bandwidth, low-noise  
op amp. The BUF pin can be used as a voltage reference in many signal chain applications.  
8.1.7 Overriding Internal Reference  
The internal reference of the LDO can be overridden using an external source to increase the accuracy of the  
LDO and lower the output noise. To override the internal reference connect the external source to the NR/SS pin  
of the LDO. In order to overdrive the internal reference the external source must be able to source or sink 100 µA  
or greater.  
The internal reference achieves a 2% accuracy from –40°C to +125°C; using an external reference can help  
achieve better accuracy over temperature.  
版权 © 2017, Texas Instruments Incorporated  
27  
TPS7A39  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
8.1.8 Start-Up  
8.1.8.1 Soft-Start Control (NR/SS)  
Each output of the device features a user-adjustable, monotonic, voltage-controlled soft-start that is set with an  
external capacitor (CNR/SS). This soft-start eliminates power-up initialization problems.  
The output voltage (VOUTx) rises proportionally to VNR/SS during start-up. As such, the time required for VNR/SS to  
reach its nominal value determines the rise time of VOUTx (start-up time).  
The soft-start ramp time depends on the soft-start charging current (INR/SS), the soft-start capacitance (CNR/SS),  
and the internal reference (VNR/SS). 公式 5 calculates the approximate soft-start ramp time (tSS):  
tSS = RNR/SS × CNR/SS × ln [(VNR/SS + INR/SS × RNR/SS) / (INR/SS×RNR/SS)]  
(5)  
Values for the soft-start charging currents, RNR/SS, and the device internal CNR/SS are provided in the table.  
8.1.8.1.1 In-Rush Current  
In-rush current is defined as the current into the LDO at the INx pin during start-up. In-rush current then consists  
primarily of the sum of load current and the current used to charge the output capacitor. This current is difficult to  
measure because the input capacitor must be removed, which is not recommended. However, the in-rush current  
can be estimated by 公式 6:  
C
OUTx ´ dVOUTx(t)  
VOUTx(t)  
RLOAD  
IOUTx(t) =  
+
dt  
where:  
VOUTx(t) is the instantaneous output voltage of the turn-on ramp  
dVOUTx(t) / dt is the slope of the VOUTx ramp  
RLOAD is the resistive load impedance  
(6)  
8.1.8.2 Undervoltage Lockout (UVLOx) Control  
The UVLOx circuit ensures that the device stays disabled before its input or bias supplies reach the minimum  
operational voltage range, and ensures that the device properly shuts down when the input supply collapses.  
66 and 6 explain the UVLOx circuit response to various input voltage events, assuming VEN VIH(EN)  
.
The positive and negative UVLO circuits are internally ANDed together. As such, if either supply collapses, both  
outputs turn-off and VNR/SS is pulled low internally.  
UVLOx Rising Threshold  
UVLOx Hysteresis  
VINx  
C
VOUTx  
tAt  
tBt  
tDt  
tEt  
tFt  
tGt  
66. Typical UVLOx Operation  
28  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
TPS7A39  
www.ti.com.cn  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
6. Typical UVLOx Operation Description  
REGION  
EVENT  
VOUTx STATUS  
COMMENT  
A
B
Turn-on, |VINx| |VUVLOx  
Regulation  
|
0
1
Start-up  
Regulates to target VOUTx  
Brownout,|VINx| |VUVLOx  
C
D
1
1
The output can fall out of regulation but the device is still enabled  
Regulates to target VOUTx  
VHYSx  
|
Regulation  
The device is disabled and the output falls because of the load and  
active discharge circuit. The device is reenabled when the UVLOx  
rising threshold is reached by the input voltage and a normal start-  
up then follows.  
Brownout, |VINx| < |VUVLOx  
VHYSx  
E
0
|
F
Regulation  
1
0
Regulates to target VOUTx  
Turn-off, |VINx| < |VUVLOx  
G
The output falls because of the load and active discharge circuit  
VHYSx  
|
Similar to many other LDOs with this feature, the UVLOx circuit takes a few microseconds to fully assert. During  
this time, a downward line transient below approximately 0.8 V causes the UVLOx to assert for a short time;  
however, the UVLOx circuit does not have enough stored energy to fully discharge the internal circuits inside of  
the device. When the UVLOx circuit is not given enough time to fully discharge the internal nodes, the outputs  
are not fully disabled.  
The effect of the downward line transient can be mitigated by using a larger input capacitor to increase the fall  
time of the input supply when operating near the minimum VINx  
.
8.1.9 AC and Transient Performance  
LDO ac performance for a dual-channel device includes power-supply rejection ratio, channel-to-channel output  
isolation, output current transient response, and output noise. These metrics are primarily a function of open-loop  
gain, bandwidth, and phase margin that control the closed-loop input and output impedance of the LDO. The  
output noise is primarily a result of the band-gap reference and error amplifier noise.  
8.1.9.1 Power-Supply Rejection Ratio (PSRR)  
PSRR is a measure of how well the LDO control-loop rejects signals from VINx to VOUTx across the frequency  
spectrum (usually 10 Hz to 10 MHz). 公式 7 gives the PSRR calculation as a function of frequency for the input  
signal [VINx(f)] and output signal [VOUTx(f)].  
«
÷
V
INx(f)  
PSRR (dB) = 20 Log10  
VOUTx(f)  
(7)  
Even though PSRR is a loss in signal amplitude, PSRR is shown as positive values in decibels (dB) for  
convenience.  
版权 © 2017, Texas Instruments Incorporated  
29  
 
TPS7A39  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
67 shows a simplified diagram of PSRR versus frequency.  
Bandgap RC  
Filter  
Error Amplifier, Flat-Gain  
Region  
Error Amplifier,  
Gain Roll-off  
Output Capacitor  
|ZCOUT| Decreasing  
Output Capacitor  
|ZCOUT| Increasing  
Bandgap  
10 Hz œ 1 MHz  
Sub 10 Hz  
100 kHz +  
Frequency (Hz)  
67. Power-Supply Rejection Ratio Diagram  
An LDO is often employed not only as a dc-dc regulator, but also to provide exceptionally clean power-supply  
voltages that exhibit ultra-low noise and ripple to sensitive system components.  
8.1.9.2 Channel-to-Channel Output Isolation and Crosstalk  
Output isolation is a measure of how well the device prevents voltage disturbances on one output from affecting  
the other output. This attenuation appears in load transient tests on the other output; however, to numerically  
quantify the rejection, the output channel isolation is expressed in decibels (dB).  
Output isolation performance is a strong function of the PCB layout. See the Layout Guidelines section on how to  
best optimize the isolation performance.  
8.1.9.3 Output Voltage Noise  
The TPS7A39 is designed for system applications where minimizing noise on the power-supply rail is critical to  
system performance. For example, the TPS7A39 can be used in a phase-locked loop (PLL)-based clocking  
circuit that can be used for minimum phase noise, or in test and measurement systems where even small power-  
supply noise fluctuations reduce system dynamic range.  
LDO noise is defined as the internally-generated intrinsic noise created by the semiconductor circuits alone. This  
noise is the sum of various types of noise (such as shot noise associated with current-through-pin junctions,  
thermal noise caused by thermal agitation of charge carriers, flicker noise, or 1/f noise and dominates at lower  
frequencies as a function of 1/f). 68 shows a simplified output voltage noise density plot versus frequency.  
Wide-band Noise  
Integrated Noise  
From Bandgap and Error Amplifier  
Measurement Noise Floor  
Frequency (Hz)  
68. Output Voltage Noise Diagram  
30  
版权 © 2017, Texas Instruments Incorporated  
 
 
TPS7A39  
www.ti.com.cn  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
For further details, see the How to Measure LDO Noise white paper.  
8.1.9.4 Optimizing Noise and PSRR  
7 describes how the ultra-low noise floor and PSRR of the device can be improved in several ways.  
7. Effect of Various Parameters on AC Performance(1)(2)  
NOISE  
PSRR  
PARAMETER  
LOW-  
MID-  
HIGH-  
LOW-  
MID-  
HIGH-  
FREQUENCY  
FREQUENCY  
FREQUENCY  
FREQUENCY  
FREQUENCY  
FREQUENCY  
CNR/SS  
CFFx  
+++  
No effect  
No effect  
+++  
++  
+
No effect  
+
++  
No effect  
+
+++  
+
+
+++  
+
+++  
+
COUTx  
No effect  
+++  
+++  
++  
|VINx| – |VOUTx  
|
+
+++  
+++  
PCB layout  
++  
++  
+
+
+++  
(1) The number of +s indicates the improvement in noise or PSRR performance by increasing the parameter value.  
(2) Shaded cells indicate the easiest improvement to noise or PSRR performance.  
The noise-reduction capacitor, in conjunction with the noise-reduction resistor, forms a low-pass filter (LPF) that  
filters out the noise from the reference before being gained up with the error amplifier, thereby minimizing the  
output voltage noise floor. The LPF is a single-pole filter and the cutoff frequency can be calculated with 公式 8.  
The effect of the CNR/SS capacitor increases when VOUTx(NOM) increases because the noise from the reference is  
gained up when the output voltage increases. For low-noise applications, a 10-nF to 1-µF CNR/SS is  
recommended.  
fcutoff = 1 / (2 × π × RNR/SS × CNR/SS  
)
(8)  
The feed-forward capacitor reduces output voltage noise by filtering out the mid-band frequency noise. The feed-  
forward capacitor can be optimized by placing a pole-zero pair near the edge of the loop bandwidth and pushing  
out the loop bandwidth, thus improving mid-band PSRR.  
A larger COUTx or multiple output capacitors reduces high-frequency output voltage noise and PSRR by reducing  
the high-frequency output impedance of the power supply.  
Additionally, a higher input voltage improves the noise and PSRR because greater headroom is provided for the  
internal circuits. However, a high power dissipation across the die increases the output noise because of the  
increase in junction temperature.  
Good PCB layout improves the PSRR and noise performance by providing heatsinking at low frequencies and  
isolating VOUTx at high frequencies.  
8.1.9.5 Load Transient Response  
The load-step transient response is the output voltage response by the LDO to a step in load current, whereby  
output voltage regulation is maintained. There are two key transitions during a load transient response: the  
transition from a light to a heavy load and the transition from a heavy to a light load. The regions illustrated in 图  
69 are broken down in this section and are described in 8. Regions A, E, and H are where the output voltage  
is in steady-state. Increasing the output capacitance improves the transient response (less dip); however, the  
transient takes longer to recover when using a large output capacitor.  
版权 © 2017, Texas Instruments Incorporated  
31  
 
 
TPS7A39  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
VOUTx  
B
F
A
C
D
E
G
H
IOUTx  
69. Load Transient Waveform  
8. Load Transient Waveform Description  
REGION  
DESCRIPTION  
COMMENT  
A
B
Regulation  
Regulation  
Output current ramping  
Initial voltage dip is a result of the depletion of the output capacitor charge.  
Recovery from the dip results from the LDO increasing its sourcing current, and leads  
to output voltage regulation.  
C
LDO responding to transient  
At high load currents the LDO takes some time to heat up. During this time the output  
voltage changes slightly.  
D
E
F
Reaching thermal equilibrium  
Regulation  
Regulation  
Initial voltage rise results from the LDO sourcing a large current, and leads to the  
output capacitor charge to increase.  
Output current ramping  
Recovery from the rise results from the LDO decreasing its sourcing current in  
combination with the load discharging the output capacitor.  
G
H
LDO responding to transient  
Regulation  
Regulation  
8.1.10 DC Performance  
8.1.10.1 Output Voltage Accuracy (VOUTx  
)
The device features an output voltage accuracy that includes the errors introduced by the internal reference, load  
regulation, line regulation, process variation, and operating temperature as specified by the table. Output voltage  
accuracy specifies minimum and maximum output voltage error, relative to the expected nominal output voltage  
stated as a percent (for very low output voltages this specification is in mV).  
8.1.10.2 Dropout Voltage (VDO  
)
Generally speaking, the dropout voltage often refers to the minimum voltage difference between the input and  
output voltage (|VDO| = |VINx| – |VOUTx|) that is required for regulation. When VINx drops below the required VDOx  
for the given load current, the device functions as a resistive switch and does not regulate output voltage.  
Dropout voltage is proportional to the output current because the device is operating as a resistive switch.  
8.1.11 Reverse Current  
As with most LDOs, this device can be damaged by excessive reverse current.  
Reverse current is current that flows through the substrate of the device instead of the normal conducting  
channel of the pass element. This current flow, at high enough magnitudes, degrades long-term reliability of the  
device resulting from risks of electromigration and excess heat being dissipated across the device.  
32  
版权 © 2017, Texas Instruments Incorporated  
TPS7A39  
www.ti.com.cn  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
Conditions where excessive reverse current can occur are outlined in this section, all of which can exceed the  
absolute maximum rating of VOUTP > VINP + 0.3 V and VOUTN < VINN – 0.3 V:  
If the device has a large COUTx and the input supply collapses quickly with little or no load current  
The output is biased when the input supply is not established  
The output is biased above the input supply  
If excessive reverse current flow is expected in the application, then external protection must be used to protect  
the device. 70 shows one approach of protecting the device.  
Schottky Diode  
INP  
CINP  
OUTP  
Device  
COUTP  
GND  
70. Example Circuit for Reverse Current Protection Using a Schottky Diode On Positive Rail  
8.1.12 Power Dissipation (PD)  
Circuit reliability demands that proper consideration is given to device power dissipation, location of the circuit on  
the printed circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator must  
be as free as possible of other heat-generating devices that cause added thermal stresses.  
As a first-order approximation, power dissipation in the regulator depends on the input-to-output voltage  
difference and load conditions. Use 公式 9 to approximate PD:  
PD = (VINP – VOUTP) × IOUTP + (|VINN – VOUTN|) × |IOUTN  
|
(9)  
Careful selection of the system voltage rails minimizes power dissipation and improves system efficiency. Proper  
selection allows the minimum input-to-output voltage differential to be obtained. The low dropout of the device  
allows for maximum efficiency across a wide range of output voltages.  
The main heat conduction path for the device is through the thermal pad on the package. As such, the thermal  
pad must be soldered to a copper pad area under the device. This pad area contains an array of plated vias that  
conduct heat to any inner plane areas or to a bottom-side copper plane.  
The maximum power dissipation determines the maximum allowable junction temperature (TJ) for the device.  
According to 公式 10, power dissipation and junction temperature are most often related by the junction-to-  
ambient thermal resistance (θJA) of the combined PCB, device package, and the temperature of the ambient air  
(TA).  
TJ = TA + θJA × PD  
(10)  
Unfortunately, this thermal resistance (θJA) is highly dependent on the heat-spreading capability built into the  
particular PCB design, and therefore varies according to the total copper area, copper weight, and location of the  
planes. The θJA recorded in the Electrical Characteristics table is determined by the JEDEC standard, PCB, and  
copper-spreading area, and is only used as a relative measure of package thermal performance. For a well-  
designed thermal layout, θJA is actually the sum of the WSON package junction-to-case (bottom) thermal  
resistance (θJCbot) plus the thermal resistance contribution by the PCB copper.  
版权 © 2017, Texas Instruments Incorporated  
33  
 
 
 
TPS7A39  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
8.1.12.1 Estimating Junction Temperature  
The JEDEC standard recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures of  
the LDO when in-circuit on a typical PCB board application. These metrics are not strictly speaking thermal  
resistances, but rather offer practical and relative means of estimating junction temperatures. These psi metrics  
are determined to be significantly independent of the copper-spreading area. The key thermal metrics (ΨJT and  
ΨJB) are given in the Electrical Characteristics table and are used in accordance with 公式 11.  
YJT: TJ = TT + YJT ´ PD  
YJB: TJ = TB + YJB ´ PD  
where:  
PD is the power dissipated as explained in 公式 9  
TT is the temperature at the center-top of the device package  
TB is the PCB surface temperature measured 1 mm from the device package and centered on the package  
edge  
(11)  
8.2 Typical Applications  
8.2.1 Design 1: Single-Ended to Differential Isolated Supply  
TP1  
OUTP  
FBP  
GND  
EN  
D2  
INP  
Diode1  
Diode3  
Diode2  
Diode4  
10 nF  
COUTP  
+5V  
VINP  
SN6505B  
VCC  
10 F 0.1 F  
NR/SS  
CLK  
D1  
TPS7A39  
3mm x 3mm  
10 nF  
BUF  
FBN  
TP2  
10 F 0.1 F  
10 F 0.1 F  
To  
Signal  
EN  
10 nF  
OUTN  
INN  
COUTN  
GND  
71. Single-Ended to Differential Isolated Supply Schematic  
8.2.1.1 Design Requirements  
9. Design Requirements  
PARAMETER  
Input supply  
DESIGN REQUIREMENT  
DESIGN RESULT  
Must operate off of 5-V input  
5-V input supply  
Output supply  
Positive output  
Must have a 5-V and –5-V output  
±5-V output, ±2% accuracy  
Capable of sourcing 50 mA on positive output  
Capable of sinking 50 mA on negative output  
Must be isolated from input supply  
50 mA (sourcing)  
current  
Negative output  
current  
50 mA (sinking)  
Isolation from 5-V  
supply  
Isolated through center tapped transformer  
85% efficiency when IOUTN = –50 mA and IOUTP  
50 mA  
=
Efficiency  
Must have > 80% efficiency at 100 mA(1)  
(1) |IOUTN| = IOUTP = 50 mA.  
34  
版权 © 2017, Texas Instruments Incorporated  
 
TPS7A39  
www.ti.com.cn  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Switcher Choice  
This design incorporates a push-pull driver for center-tapped transformers that takes a single-ended supply and  
converts the supply to an isolated split rail design. The SN6505B provides a simple small-form factor isolated  
supply. The input voltage of the SN6505B can vary from 2.25 V to 5 V, which allows for use with a wide range of  
input supplies. The output voltage can be adjusted through the turns ratio of the transformer. Based on the  
choice of the transformer this design can be used to create output voltages from ±3.3 V to ±15 V. In this design  
the SN6505B was paired with the 750315371 center-tapped transformer from Wurth Electronics™. This  
transformer has a turns ratio of 1:1.1 and an isolation rating of 2500 VRMS (the total system isolation was never  
tested).  
8.2.1.2.2 Full Bridge Rectifier With Center-Tapped Transformer  
To create the isolated supply, the SN6505B uses a center-tapped transformer. A full bridge rectifier and  
capacitors are required to regulate the signal before reaching the LDO because of the alternating nature of the  
input signal. TI recommends having a fast switching and low forward voltage diode to improve efficiency because  
of how fast the SN6505 switches; Schottky diodes work well. 73 shows the switching nodes of the SN6505 D1  
and D2 and also shows where the transformer connects to the full bridge rectifier TP1 and TP2. 73 shows the  
switching waveforms across the rectifier diodes.  
n
V
OUT+  
= n·V  
IN  
V
IN  
V
OUT-  
= n·V  
IN  
72. Bridge Rectifier With Center-Tapped Secondary Enables Bipolar Outputs  
8.2.1.2.3 Total Solution Efficiency  
公式 12 shows how the efficiency of the system can be measured by taking the output power and dividing by the  
input power. IOUTP = |IOUTN| = IOUT / 2 because this system has two output rails to simplify the efficiency  
measurement. When the necessary parameters are measured, and by using 公式 12, the overall system  
efficiency can be plotted as in 74. 74 shows the overall system efficiency for this design, at the maximum  
output current of 100 mA (IOUTP = 50 mA, IOUTN = –50 mA) the efficiency of the system is 85%.  
η = (IOUTP × VOUTP + IOUTN × VOUTN) / (IIN × VIN)  
(12)  
8.2.1.2.4 Feedback Resistor Selection  
公式 13 and 公式 14 calculate the values of the feedback resistors.  
VOUTP = VFBP × (1 + R1P / R2P  
)
(13)  
(14)  
VOUTN = VBUF × (–R1N / R2N  
)
For this design the recommended 10-kΩ resistors are used for R2P and R2N. R1P and R1N can be calculated by  
substituting R2P and R2N into 公式 15 and 公式 16 because R2P and R2N are already selected  
R1P = [(VOUTP / VFBP) – 1] × R2P = [(5 V / 1.188 V) – 1] × 10 kΩ = 32.2 kΩ  
R1N = –VOUTN × R2N / VBUF = –(–5 V) × 10 kΩ / 1.19 V = 42 kΩ  
(15)  
(16)  
After solving for 公式 15 and 公式 16, the closest one percent resistors are selected, R1N = 42.2 kΩ and R1P  
32.4 kΩ.  
=
版权 © 2017, Texas Instruments Incorporated  
35  
 
 
 
 
 
TPS7A39  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
8.2.1.3 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
20  
D1  
D2  
TP1  
TP2  
16  
12  
8
4
0
-4  
-8  
-12  
-16  
-20  
0
5
10  
15  
20  
25  
Time (ms)  
30  
35  
40  
45  
50  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
IOUT (mA)  
IOUT = IOUTP + |IOUTN|, IOUTP = |IOUTN  
|
73. Switching Node of the SN6505B  
74. Efficiency vs Output Current  
10  
10  
5
VCC  
VINP  
VOUTP  
VINN  
VOUTN  
IOUT = 50 mA  
8
6
2
1
4
0.5  
2
0.2  
0.1  
0
0.05  
-2  
-4  
-6  
-8  
-10  
0.02  
0.01  
0.005  
0.002  
0.001  
10  
100  
1k  
10k  
100k  
1M  
10M  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Frequency (Hz)  
Time (ms)  
76. OUTP Noise  
75. System Startup  
10  
5
IOUT = 50 mA  
2
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.005  
0.002  
0.001  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
77. OUTN Noise  
36  
版权 © 2017, Texas Instruments Incorporated  
TPS7A39  
www.ti.com.cn  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
8.2.2 Design 2: Getting the Full Range of a SAR ADC  
OUTP  
FBP  
VOUTP = 5.2 V  
COUTP  
INP  
CINP  
CFFP  
R1P  
+
6 V  
œ
R2P  
NR/SS  
CNR/SS  
TPS7A39  
BUF  
FBN  
3mm x 3mm  
R1N  
+
3.3 V  
œ
CFFN  
EN  
R2N  
VOUTN = -0.2 V  
OUTN  
INN  
CINN  
COUTN  
GND  
1 nF  
1 k  
1 kΩ  
Positive  
Differential Input  
VOUTP  
œ
2.2 Ω  
AINP  
OPA625  
+
10 nF  
VOUTN  
+
Vin  
œ
OPA625_CM  
ADC  
10 nF  
10 nF  
VOUTP  
+
OPA625  
AINN  
Negative  
Differential Input  
2.2 Ω  
œ
VOUTN  
1 kΩ  
1 kΩ  
1 nF  
78. Creating Power Rails for an Analog Front-End of an ADC  
版权 © 2017, Texas Instruments Incorporated  
37  
TPS7A39  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
8.2.2.1 Design Requirements  
A common problem in analog-to-digital converters (ADCs) is that as the input signal approaches the edge of the  
range of the ADC, the signal begins to become distorted. Often times this is not because of a limitation of the  
ADC, but is a result of the analog front-end (AFE). In the AFE, the signal begins to approach the rails of the op  
amp and the signal begins to lose linearity and becomes distorted. This distortion is because when the rail-to-rail  
op amp begins to enter the nonlinear region of operation within 100 mV of the rail, the signal-to-noise ratio (SNR)  
starts to degrade and the total harmonic distortion (THD) of the ADC increases. To prevent the op amp from  
exiting the linear region of operation, the design must use a power supply that can generate rails 200 mV above  
and below the input range of the ADC.  
8.2.2.2 Detailed Design Procedure  
In this design, the ADS8900B is used as the ADC. This ADC features a differential input, so from a 5-V reference  
the ADC is able to encode values between ±5 V. In many applications, single-supply op amps are powered with  
rails from 0 V to 5 V, which causes the input signal to become distorted when the full range signal is applied. The  
FFT of a 10-VPP (peak-to-peak) sine wave using a single 5-V rail to bias the amplifiers is illustrated in 79. In  
this test the SNR was calculated to be 54.89 dB and the THD was calculated to be –40.68 dB.  
There is a simple solution to improve the SNR and THD of the ADC: bias the amplifiers in the analog front end  
with a 5.2-V rail and a –0.2-V rail. Using these rails allows the amplifier to operate in the linear region in the 0-V  
to 5-V range needed by the ADC. The FFT of a 10-VPP sine wave using a 5.2-V rail and a –0.2-V rail is illustrated  
in 80. In this test the SNR was calculated to be 102.535 dB and the THD was calculated to be –121.66 dB.  
Using –0.2-V and 5.2-V rail voltages still allows for common 5-V (5.5 V max) op amps to be used in the design.  
8.2.2.3 Detailed Design Description  
8.2.2.3.1 Regulation of –0.2 V  
The TPS7A39 has an innovative feature of regulating the negative rail down to zero volts. This regulation is  
achieved by using an inverting amplifier and using the positive-buffered reference as the input signal to the  
amplifier. Regulating to –0.2 V eliminates the nonlinearity and distortion present when using the full rail range of  
the amplifiers.  
8.2.2.3.2 Feedback Resistor Selection  
Use 公式 17 and 公式 18 to calculate the values of the feedback resistors:  
VOUTP = VFBP × (1 + R1P / R2P  
)
(17)  
(18)  
VOUTN = VBUF × (–R1N / R2N  
)
For this design the recommended 10-kΩ resistors are used for R2P and R2N. R1P and R1N can be calculated by  
substituting R2P and R2N into 公式 19 and 公式 20 because R2P and R2N are already selected.  
R1P = [(VOUTP / VFBP) – 1] × R2P = [(5.2 V / 1.188 V) – 1] × 10 kΩ = 33.8 kΩ  
R1N = –VOUTN × R2N / VBUF = –(–5 V) × 10 kΩ / 1.19 V = 1.68 kΩ  
(19)  
(20)  
After solving for 公式 19 and 公式 20, the closest one percent resistors are selected, R1N = 1.69 kΩ and R1P = 34  
kΩ.  
38  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
 
TPS7A39  
www.ti.com.cn  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
8.2.2.4 Application Curves  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
fIN = 1 kHz, VPP = 10.0 V  
fIN = 1 kHz, VPP = 10.0 V  
79. FFT Using 5-V and 0-V Supply Rails  
80. FFT Using 5.2-V and –0.2-V Supply Rails  
9 Power-Supply Recommendations  
The input supply for the LDO must be within the recommended operating conditions. The input voltage must  
provide adequate headroom in order for the device to have a regulated output. Place the 10-µF input capacitors  
as close to the device as possible. If the input supply is noisy, additional input capacitors can help improve the  
output noise performance.  
10 Layout  
10.1 Layout Guidelines  
Layout is a critical part of good power-supply design. There are several signal paths that conduct fast-changing  
currents or voltages that can interact with stray inductance or parasitic capacitance to generate noise or degrade  
the power-supply performance. To help eliminate these problems, bypass the IN pin to ground with capacitors.  
Tie the GND pin directly to the thermal pad under the device. The thermal pad must be connected to any internal  
PCB ground planes using multiple vias directly under the device.  
Every capacitor must be placed as close as possible to the device and on the same side of the PCB as the  
regulator itself.  
Do not place any of the capacitors on the opposite side of the PCB from where the regulator is installed. The use  
of vias and long traces is strongly discouraged because these circuits can impact system performance  
negatively, and even cause instability.  
10.1.1 Board Layout Recommendations to Improve PSRR and Noise Performance  
To improve ac performance (such as PSRR, output noise, and transient response), TI recommends that the  
board be designed with separate ground planes for VIN and VOUT, with each ground plane star connected only at  
the GND pin of the device. In addition, the ground connection for the bypass capacitor must connect directly to  
the GND pin of the device.  
版权 © 2017, Texas Instruments Incorporated  
39  
TPS7A39  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
10.2 Layout Example  
81. Layout Example for Adjustable Option  
10.3 Package Mounting  
Solder pad footprint recommendations for the TPS7A39 are available at the end of this document and at  
www.ti.com.  
40  
版权 © 2017, Texas Instruments Incorporated  
TPS7A39  
www.ti.com.cn  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 评估模块  
我们提供了一款评估模块 (EVM),可与 TPS7A39 配套使用,帮助评估初始电路性能。TPS7A39EVM-865 评估模  
(和相关的用户指南)可在德州仪器 (TI) 网站上的产品文件夹中获取,也可直接从 TI 网上商店购买。  
11.1.1.2 Spice 模型  
分析模拟电路和系统的性能时,使用 SPICE 模型对电路性能进行计算机仿真非常有用。您可以从产品文件夹中的  
工具和软件下获取 TPS7A39 SPICE 模型。  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
《用于过压和欠压检测且具有内部基准电压的 TPS3701 36V 窗口比较器》  
《适用于隔离式电源的 SN6505 低噪声 1A 变压器驱动器》  
《具有集成式基准缓冲器和增强性能特性的 ADS890xB 20 位、高速 SAR ADC》  
《使用前馈电容器和低压降稳压器的优缺点》  
《使用新的热指标》  
TPS7A39EVM-865 用户指南》  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
E2E is a trademark of Texas Instruments.  
Wurth Electronics is a trademark of Würth Elektronik GmbH and Co.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2017, Texas Instruments Incorporated  
41  
TPS7A39  
ZHCSGP0A JULY 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
42  
版权 © 2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7A3901DSCR  
TPS7A3901DSCT  
ACTIVE  
ACTIVE  
WSON  
WSON  
DSC  
DSC  
10  
10  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
A3901  
A3901  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7A3901DSCR  
TPS7A3901DSCT  
WSON  
WSON  
DSC  
DSC  
10  
10  
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.0  
1.0  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7A3901DSCR  
TPS7A3901DSCT  
WSON  
WSON  
DSC  
DSC  
10  
10  
3000  
250  
367.0  
213.0  
367.0  
191.0  
38.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DSC0010J  
WSON - 0.8 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
C
0.8  
0.7  
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.65 0.1  
2X (0.5)  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
4X (0.25)  
5
6
2X  
2
11  
SYMM  
2.4 0.1  
10  
1
8X 0.5  
0.30  
0.18  
10X  
SYMM  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
0.05  
0.5  
0.3  
10X  
4221826/D 08/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSC0010J  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
(0.5)  
10X (0.6)  
1
10  
10X (0.24)  
11  
(2.4)  
(3.4)  
SYMM  
(0.95)  
8X (0.5)  
6
5
(R0.05) TYP  
(
0.2) VIA  
TYP  
(0.25)  
(0.575)  
SYMM  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4221826/D 08/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSC0010J  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (1.5)  
(0.5)  
SYMM  
EXPOSED METAL  
TYP  
11  
10X (0.6)  
1
10  
(1.53)  
10X (0.24)  
2X  
(1.06)  
SYMM  
(0.63)  
8X (0.5)  
6
5
(R0.05) TYP  
4X (0.34)  
4X (0.25)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4221826/D 08/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS7A4001

100V Input Voltage, 50mA, Very High Voltage LINEAR REGULATOR
TI

TPS7A4001-DIE

超高电压线性稳压器
TI

TPS7A4001-EP

100V 输入电压、50mA 单输出低压降稳压器(增强型产品)
TI

TPS7A4001-EP_16

100-V Input Voltage, 50-mA, Very High Voltage Linear Regulator
TI

TPS7A4001DGNR

100V Input Voltage, 50mA, Very High Voltage LINEAR REGULATOR
TI

TPS7A4001DGNT

100V Input Voltage, 50mA, Very High Voltage LINEAR REGULATOR
TI

TPS7A4001MDGNREP

100V Input Voltage, 50mA Single Output Low Dropout Linear Regulator 8-HVSSOP -55 to 125
TI

TPS7A4001TDA1

超高电压线性稳压器 | TD | 0 | -40 to 125
TI

TPS7A4001TDA2

超高电压线性稳压器 | TD | 0 | -40 to 125
TI

TPS7A4101

50-V Input Voltage, 50-mA, Very High Voltage LINEAR REGULATOR
TI

TPS7A4101DGNR

50-V Input Voltage, 50-mA, Very High Voltage LINEAR REGULATOR
TI

TPS7A4101DGNT

50-V Input Voltage, 50-mA, Very High Voltage LINEAR REGULATOR
TI