TPS65296 [TI]

4.5V 至 18V 输入电压、完整 LPDDR4 和 LPDDR4X 存储器电源解决方案;
TPS65296
型号: TPS65296
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4.5V 至 18V 输入电压、完整 LPDDR4 和 LPDDR4X 存储器电源解决方案

双倍数据速率 光电二极管 存储
文件: 总34页 (文件大小:1830K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS65296
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
TPS65296 - 完整 LPDDR4/LPDDR4X 存储器电源解决方案  
1 特性  
3 说明  
同步降压转换器 (VDD2)  
TPS65296 器件能够以最低的总成本和最小的空间为  
LPDDR4/LPDDR4X 存储器系统提供完整的电源解决  
方案。它符合 JEDEC 标准中的 LPDDR4/LPDDR4X  
加电和断电顺序要求。TPS65296 采用两个同步降压转  
换器VDD1 VDD2和一个 1.5A LDO (VDDQ)。  
– 输入电压范围4.5V 18V  
– 输出电压固定为 1.1V  
D-CAP3模式控制可实现快速瞬态响应  
– 持续输出电流8A  
– 高级 Eco-mode脉冲跳跃  
– 集成式 22mΩ/8.6mΩ RDS(on) 内部电源开关  
600kHz 开关频率  
TPS65296 采 用 D-CAP3模 式 开 关 频 率 为  
600kHz可实现快速瞬态响应、良好的负载/线路调  
并支持陶瓷输出电容器而无需外部补偿电路。  
– 内部软启动1.6ms  
– 逐周期过流保护  
TPS65296 利用内部的低 Rdson 电源 MOSFET 提供  
了丰富的功能和很高的效率。它支持灵活的电源状态控  
S3 态下将 VDDQ 于高阻抗状态在  
S4/S5 状态下对 VDD1VDD2 VDDQ 进行放电。  
全面的保护特性包括 OVPUVPOCPUVLO 和热  
关断保护。该器件采用热增强型 18 引脚 HotRod™  
VQFN 封装并且设计用于在 –40°C 125°C 的结  
温范围内工作。  
– 锁存输出 OV/UV 保护  
同步降压转换器 (VDD1)  
– 输入电压范围3V 5.5V  
– 输出电压固定为 1.8V  
D-CAP3模式控制可实现快速瞬态响应  
– 持续输出电流1A  
– 高级 Eco-mode脉冲跳跃  
– 集成式 150mΩ/120mΩ RDS(on) 内部电源开关  
580kHz 开关频率  
器件信息 (1)  
封装尺寸标称值)  
器件型号  
TPS65296  
封装  
VQFN (18)  
3.00mm × 3.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 内部软启动1ms  
– 逐周期过流保护  
L_VDD1  
VDD1  
– 锁存输出 OV/UV 保护  
PVIN  
PVIN  
SW_VDD1  
VDD1SNS  
Cout_VDD1  
Cout_VDD2  
PVIN_VDD1  
1.5A LDO (VDDQ)  
C-bst  
L_VDD2  
BST  
SW  
1.5A 持续输出电流  
VCC_5V  
5V  
VDD2  
TPS65296  
– 仅需 10μF 的陶瓷输出电容  
– 在 S3 状态下支持高阻态输出  
±30mV VDDQ 输出精度直流 + 交流)  
低静态电流150µA  
电源正常指示器  
VDD2SNS  
VDD2  
VLDOIN  
VDDQ  
Cout_VDDQ  
VDDQ  
PGOOD  
VDDQSNS  
VDD_EN  
VDDQREF  
VDDQ_REF  
Cout_VDDQREF  
VDDQ_EN  
AGND  
PGND_VDD1  
PGND  
输出放电功能  
加电和断电排序控制  
非锁存 OT UVLO 保护  
典型应用  
18 引脚 3.0mm × 3.0mm HotRodVQFN 封装  
2 应用  
笔记本电脑、台式机和服务器  
超极本、平板电脑  
单板计算机、工业计算机  
分布式电源系统  
本文档旨在为方便起见提供有关 TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSDU2  
 
 
 
TPS65296  
www.ti.com.cn  
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
Table of Contents  
8 Application and Implementation..................................18  
8.1 Application Information............................................. 18  
8.2 Typical Application.................................................... 18  
9 Power Supply Recommendations................................26  
10 Layout...........................................................................27  
10.1 Layout Guidelines................................................... 27  
10.2 Layout Example...................................................... 27  
11 Device and Documentation Support..........................28  
11.1 Device Support........................................................28  
11.2 Support Resources................................................. 28  
11.3 Receiving Notification of Documentation Updates..28  
11.4 Trademarks............................................................. 28  
11.5 Electrostatic Discharge Caution..............................28  
11.6 Glossary..................................................................28  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description......................................................12  
7.1 Overview...................................................................12  
7.2 Functional Block Diagram.........................................13  
7.3 Feature Description...................................................14  
7.4 Device Functional Modes..........................................16  
Information.................................................................... 29  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (September 2019) to Revision A (October 2020)  
Page  
更新了整个文档的表、图和交叉参考的编号格式。.............................................................................................1  
Updated Package Information - package outline for pin 16 and pin 18............................................................29  
Updated Package Information - example board layout for pin 16 and pin 18...................................................29  
Updated Package Information - example stencil design for pin 16 and pin 18.................................................29  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS65296  
 
TPS65296  
www.ti.com.cn  
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
5 Pin Configuration and Functions  
BST  
18  
SW PGND_VDD1  
1
16  
15  
SW_VDD1  
VLDOIN  
2
14  
13  
12  
11  
VDDQ  
PVIN_VDD1  
VCC_5V  
17  
3
AGND  
VDDQSNS  
VDD2SNS  
VDD1SNS  
4
5
7
9
VDD_EN  
8
6
10  
VDDQREF  
VDDQ_EN  
PVIN PGOOD PGND  
5-1. 18-Pin VQFN RJE Package (Top View)  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
VLDOIN  
VDDQ  
AGND  
NO.  
1
P
O
G
I
Power supply input for VDDQ LDO. Connect VDD2 in typical application.  
VDDQ 1.5-A LDO output. It is recommended to connect to 10-μF or larger capacitance for stability.  
Signal ground  
2
3
VDDQSNS  
VDD2SNS  
VDDQREF  
PVIN  
4
VDDQ output voltage feedback  
5
I
VDD2 output voltage feedback  
6
O
P
Internal reference for VDDQ. Recommend to connect to 0.22-μF or larger capacitance for stability.  
Input power supply for VDD2 buck  
7
Power good signal open-drain output. PGOOD goes high when VDD1 and VDD2 output voltage are within  
the target range.  
PGOOD  
8
O
PGND  
9
G
I
Power ground for VDD2 buck  
VDDQ_EN  
10  
VDDQ_EN signal input for VDDQ LDO enable control. For detail control setup, refer to 7-1.  
VDD_EN signal input for VDD1 buck and VDD2 buck enable control. For detail control setup, refer to 表  
7-1.  
VDD_EN  
11  
I
VDD1SNS  
VCC_5V  
12  
13  
14  
15  
16  
17  
I
VDD1 output voltage feedback  
P
P
O
G
O
Power supply for VDD1 and VDD2 buck converter control logic circuit  
Input power supply for VDD1 buck  
PVIN_VDD1  
SW_VDD1  
PGND_VDD1  
SW  
VDD1 switching node connection to the inductor and bootstrap capacitor  
Power ground for VDD1 buck  
VDD2 switching node connection to the inductor and bootstrap capacitor  
High-side MOSFET gate driver bootstrap voltage input for VDD2 buck. Connect a capacitor between the  
BST pin and the SW pin.  
BST  
18  
I
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS65296  
 
TPS65296  
www.ti.com.cn  
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
0.3  
0.3  
0.3  
MAX  
20  
UNIT  
PVIN  
V
V
V
VBST  
25  
VBST-SW  
6
Input voltage  
VDD_EN, VDDQ_EN, VCC_5V, PVIN_VDD1,  
6
V
0.3  
VLDOIN, VDD1SNS, VDD2SNS, VDDQSNS  
PGND, AGND, PGND_VDD1  
SW  
0.3  
20  
22  
7
V
V
0.3  
0.3  
3  
SW (10-ns transient)  
V
Output voltage  
SW_VDD1  
V
0.3  
3  
SW_VDD1 (10-ns transient)  
PGOOD, VDDQ, VDDQREF  
8
V
6
V
0.3  
40  
55  
TJ  
Operating junction temperature  
Storage temperature  
150  
150  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
V
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic  
discharge  
V(ESD)  
Charged-device model (CDM), per JEDEC specification JESD22- V C101(2)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
MAX  
UNIT  
PVIN  
18  
23  
V
V
V
VBST  
0.3  
0.3  
VBST-SW  
5.5  
Input voltage  
VDD_EN, VDDQ_EN, VCC_5V, PVIN_VDD1,  
VLDOIN, VDD1SNS, VDD2SNS, VDDQSNS  
5.5  
V
0.3  
PGND, AGND, PGND_VDD1  
SW  
0.3  
18  
20  
6
V
V
0.3  
0.3  
3  
SW (10-ns transient)  
SW_VDD1  
V
Output voltage  
V
0.3  
2  
SW_VDD1 (10-ns transient)  
PGOOD, VDDQ, VDDQREF  
7
V
5.5  
8
V
0.3  
IVDD2OUT  
TJ  
VDD2 Output current  
A
Operating junction temperature  
125  
°C  
40  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS65296  
 
 
 
 
 
 
 
TPS65296  
www.ti.com.cn  
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
6.4 Thermal Information  
TPS65296  
THERMAL METRIC(1)  
RJE (VQFN)  
18 PINS  
58.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
26.1  
17.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.5  
ψJT  
17.7  
ψJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report.  
6.5 Electrical Characteristics  
TJ=-40oC to 125oC, VPVIN=12V, VPVIN_VDD1=5V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT SUPPLY VOLTAGE  
VVDD_EN = VVDDQ_EN = 0 V  
5
µA  
µA  
µA  
V
IVCC_5V  
VCC_5V supply current  
PVIN input voltage range  
VVDD_EN = 5 V, VVDDQ_EN = 0 V, no load  
VVDD_EN = VVDDQ_EN = 5 V, no load  
110  
150  
VIN  
4.5  
3.3  
1.1  
18  
UVLO  
Wake up VCC_5V voltage  
Shut down VCC_5V voltage  
Hysteresis VCC_5V voltage  
4.1  
3.6  
500  
4.5  
V
V
UVLO  
VCC_5V under-voltage lockout  
mV  
VDD2  
VVDD2SNS  
IVDD2SNS  
IVDD2DIS  
tVDD2SS  
tVDD2DLY  
RDSONH  
RDSONL  
IVDD2OCL  
fsw  
VDD2 sense voltage  
1.115  
40  
1.13  
V
VDD2SNS input current  
VDD2 discharge current  
VDD2 soft-start time  
VVDD2SNS =1.1 V  
µA  
VVDD_EN = VVDDQ_EN = 0 V, VVDD2SNS = 0.5 V  
12  
mA  
ms  
ms  
mΩ  
mΩ  
A
1.6  
2
2.65  
3.5  
VDD2 ramp up delay time  
High-side switch resistance  
Low-side switch resistance  
Low-side valley current limited  
VDD2 switching freqency  
Minimum off time  
1.3  
8.2  
TJ = 25°C, VVCC_5V = 5V  
TJ = 25°C, VVCC_5V = 5V  
VOUT = 1.1 V, L = 0.68 µH  
22  
8.6  
9.8  
600  
198  
11.5  
kHz  
ns  
tOFF(MIN)  
PGOOD (VDD2, VDD1)  
VDD2SNS / VDD1SNS falling (Fault)  
VDD2SNS / VDD1SNS rising (Good)  
VDD2SNS / VDD1SNS rising (Fault)  
VDD2SNS / VDD1SNS falling (Good)  
87  
93  
%
%
%
%
VTHPG  
PGOOD threshold  
115  
110  
VPGOOD =0.5V, VVDD_EN =VVDDQ_EN = 5 V, no  
load  
IPGMAX  
PG sink current  
46  
1
mA  
ms  
tPGDLY  
PG start-up delay  
PG from low to high  
VDD1  
VVDD1SNS  
IVDD1SNS  
IVDD1DIS  
VDD1 sense voltage  
1.75  
1.8  
20  
12  
1.85  
V
VDD1SNS input current  
VDD1 discharge current  
VVDD1SNS =1.8 V  
µA  
mA  
VVDD_EN = VVDDQ_EN = 0 V, VVDD1SNS = 0.5 V  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS65296  
 
 
 
TPS65296  
www.ti.com.cn  
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
TJ=-40oC to 125oC, VPVIN=12V, VPVIN_VDD1=5V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1.0  
MAX  
UNIT  
ms  
tVDD1SS  
RDSONH  
RDSONL  
IVDD1OCL  
fsw  
VDD1 soft-start time  
2
High-side switch resistance  
Low-side switch resistance  
Low-side valley current limited  
VDD1 switching frequency  
Minimum off time  
TJ = 25°C, VPVIN_VDD1 = 5V, VVCC_5V = 5V  
TJ = 25°C, VPVIN_VDD1=5V, VVCC_5V = 5V  
VVDD1SNS = 1.8 V, L = 4.7 µH  
150  
120  
1.6  
mΩ  
mΩ  
A
1.05  
2.1  
580  
195  
31  
kHz  
ns  
tOFF(MIN)  
tOOA  
OOA mode operation period  
VVDD1SNS =1.8 V  
µs  
OVP AND UVP (VDD2, VDD1)  
VOVP  
OVP threshold voltage  
UVP threshold voltage  
OVP delay  
OVP detect voltage  
UVP detect voltage  
120  
125  
62.5  
20  
130  
%
%
VUVP1  
tOVPDLY  
tUVPDLY  
57.5  
67.5  
µs  
µs  
UVP delay  
250  
VDDQ OUTPUT  
VVDDQ  
Output voltage  
0.57  
1.7  
0.6  
2.2  
0.63  
V
A
TJ = 25°C, IVDDQ 1.5A  
IVDDQOCLSRC Source current limit  
VVDD2SNS = 1.1 V, VVDDQ= VVDDQSNS= 0.5 V  
TJ = 25°C, VVDD_EN = 5 V, VVDDQ_EN = 5 V  
IVDDQLK  
Leakage current  
5
0.5  
1
IVDDQSNSBIA  
VDDQSNS input bias current  
VVDD_EN = 5 V, VVDDQ_EN = 5 V  
VVDD_EN = 5 V, VVDDQ_EN = 0 V  
0
0
0.5  
1  
µA  
S
IVDDQSNSLK VDDQSNS leakage current  
VDDQ output delay relative to  
VDDQ_EN  
IVDDQDLY  
35  
us  
TJ = 25°C, VVDD_EN = VVDDQ_EN = 0 V,  
VVDD2SNS = 1.1 V, VVDDQ =0.5V  
IVDDQDIS  
VDDQ discharge current  
5.7  
mA  
VDD_EN, VDDQ_EN LOGIC THRESHOLD  
VDD_EN/VDDQ_EN high-level  
voltage  
VIH  
1.35  
V
V
VDD_EN/VDDQ_EN low-level  
voltage  
VIL  
0.5  
VDD_EN/VDDQ_EN resistance to  
RTOGND  
GND  
500  
kΩ  
THERMAL PROTECTION  
TOTP  
OTP trip threshold  
OTP hysteresis  
150  
20  
°C  
°C  
TOTPHSY  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS65296  
TPS65296  
www.ti.com.cn  
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
6.6 Typical Characteristics  
190  
180  
170  
160  
150  
140  
130  
5.5  
5.3  
5.1  
4.9  
4.7  
4.5  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D001  
D002  
VVDD_EN = 5 V  
VVDDQ_EN = 5 V  
VVDD_EN = 0 V  
VVDDQ_EN = 0 V  
6-1. VCC_5V Supply Current vs Junction  
6-2. VCC_5V Shutdown Current vs Temperature  
Temperature  
1.11  
1.106  
1.102  
1.098  
1.094  
1.09  
1.85  
1.83  
1.81  
1.79  
1.77  
1.75  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D003  
D004  
6-3. VDD2 Output Voltage vs Junction  
6-4. VDD1 Output Voltage vs Junction  
Temperature  
Temperature  
1.16  
1.05  
1
0.95  
0.9  
1.14  
1.12  
1.1  
0.85  
0.8  
1.08  
1.06  
1.04  
0.75  
0.7  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D005  
D007  
6-5. Enable On Voltage (VDD_EN) vs Junction  
6-6. Enable Off Voltage (VDD_EN) vs Junction  
Temperature  
Temperature  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS65296  
 
TPS65296  
www.ti.com.cn  
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
1.16  
1.14  
1.12  
1.1  
1
0.95  
0.9  
0.85  
0.8  
1.08  
1.06  
1.04  
0.75  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D006  
D008  
6-7. Enable On Voltage (VDDQ_EN) vs Junction 6-8. Enable Off Voltage (VDDQ_EN) vs Junction  
Temperature Temperature  
35  
30  
25  
20  
15  
10  
12  
11  
10  
9
8
7
6
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D009  
D010  
6-9. VDD2 High-Side RDS(on) vs Junction  
6-10. VDD2 Low-Side RDS(on) vs Junction  
Temperature  
Temperature  
200  
180  
160  
140  
120  
100  
150  
140  
130  
120  
110  
100  
90  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D011  
D012  
6-11. VDD1 High-Side RDS(on) vs Junction  
6-12. VDD1 Low-Side RDS(on) vs Junction  
Temperature  
Temperature  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS65296  
TPS65296  
www.ti.com.cn  
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
130  
62  
61  
60  
59  
58  
57  
56  
128  
126  
124  
122  
120  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D013  
D014  
6-13. VDD2 OVP Threshold vs Junction  
6-14. VDD2 UVP Threshold vs Junction  
Temperature  
Temperature  
127  
126  
125  
124  
123  
122  
121  
62  
61  
60  
59  
58  
57  
56  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D015  
D016  
6-15. VDD1 OVP Threshold vs Junction  
6-16. VDD1 UVP Threshold vs Junction  
Temperature  
Temperature  
15  
14  
13  
12  
11  
10  
15  
14  
13  
12  
11  
10  
9
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D017  
D018  
6-17. VDD2SNS Discharge Current vs Junction  
6-18. VDD1SNS Discharge Current vs Junction  
Temperature  
Temperature  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS65296  
TPS65296  
www.ti.com.cn  
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
8
7
6
5
4
3
11  
10.6  
10.2  
9.8  
9.4  
9
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D019  
D021  
6-19. VDDQSNS Discharge Current vs Junction  
6-20. VDD2 Valley Current Limit vs Junction  
Temperature  
Temperature  
1.65  
1.6  
1.7  
1.65  
1.6  
1.55  
1.5  
1.55  
1.5  
1.45  
1.4  
1.45  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D022  
D023  
6-21. VDD1 Valley Current Limit vs Junction  
6-22. VDD2 Soft-Start Time vs Junction  
Temperature  
Temperature  
1.2  
1.16  
1.12  
1.08  
1.04  
1
800  
700  
600  
500  
400  
300  
200  
-50  
-20  
10  
40  
70  
100  
130  
4
6
8
10  
12  
14  
PVIN (V)  
16  
18  
20  
22  
24  
Junction Temperature (èC)  
D024  
D027  
IOUT = 8 A  
6-23. VDD1 Soft-Start Time vs Junction  
Temperature  
6-24. VDD2 Switching Frequency vs Input  
Voltage  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS65296  
TPS65296  
www.ti.com.cn  
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
800  
800  
700  
600  
500  
400  
300  
200  
100  
0
700  
600  
500  
400  
300  
200  
VPVIN=7.4V  
VPVIN=12V  
VPVIN=19V  
3
3.25 3.5 3.75  
4 4.25 4.5 4.75  
PVIN_VDD1 (V)  
5
5.25 5.5  
0
1
2
3
4
I-Load (A)  
5
6
7
8
D026  
D028  
IOUT = 1 A  
6-26. VDD2 Switching Frequency vs Load  
Current  
6-25. VDD1 Switching Frequency vs Input  
Voltage  
800  
700  
600  
500  
400  
300  
200  
100  
VPVIN_VDD1=3.3V  
VPVIN_VDD1=5V  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
PVIN_VDD1 (V)  
1
D029  
6-27. VDD1 Switching Frequency vs Load Current  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS65296  
TPS65296  
www.ti.com.cn  
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
7 Detailed Description  
7.1 Overview  
The TPS65296 integrates two synchronous step-down buck converters and a LDO to support complete  
LPDDR4/LPDDR4X power solution. The VDD2 buck converter has fixed 1.1-V output and supports continuous  
8-A output current, and it can operate from 4.5-V to 18-V PVIN input voltage. The VDD1 buck converter has the  
fixed 1.8-V output and supports continuous 1-A output current, and can operate from 3-V to 5.5-V PVIN_VDD1  
input voltage. The VDDQ LDO has continuous 1.5-A output current capability.  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS65296  
 
 
TPS65296  
www.ti.com.cn  
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
7.2 Functional Block Diagram  
PG high threshold  
VDD1  
+
+
VDD1SNS  
PG low threshold  
VDD1  
PGOOD  
Logic  
PG high threshold  
VDD2  
PGOOD  
+
UV threshold  
VDD2  
+
UV  
OV  
+
PG low threshold  
VDD2  
+
OV threshold  
VDD2  
+
VCC_5V  
0.8V  
VCC5VOK  
4.1 V /  
3.6 V  
+
+
PWM  
VDD2SNS  
+
+
Control Logic  
BST  
Discharge  
control  
PVIN  
ñ
ñ
ñ
ñ
ñ
ñ
ñ
ñ
ñ
ñ
On/Off time  
Minimum On/Off  
Light load PSM  
OVP/UVP/OCP  
TSD  
VDD2  
Internal Ramp  
VDD2  
Ripple injection  
VDD2  
Softstart  
SW  
Soft-Start  
Discharge  
XCON  
SW  
PGOOD  
Disable/Enable  
Sequence Control  
PGND  
VDD2 One Shot  
+
OCL  
VDD_EN Threshold  
+
ZC  
+
VDD_EN  
THOK  
+
150°C /20°C  
VCC_5V  
PVIN_VDD1  
UV threshold  
VDD1  
UV  
OV  
AGND  
+
+
OV threshold  
VDD1  
SW_VDD1  
XCON  
0.8V  
+
PGND_VDD1  
+
PWM  
VDD1SNS  
+
+
+
OCL  
Discharge  
control  
VDD1  
Internal Ramp  
+
ZC  
VDD1  
Ripple injection  
VDD1  
Softstart  
SW_VDD1  
+
VDDQ_EN  
VDD1 One Shot  
VDDQ_EN  
threshold  
VDDQREF  
VLDOIN  
Discharge  
control  
0.6V  
+
+
+
VDDQ  
+
Discharge  
control  
VDDQSNS  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS65296  
 
TPS65296  
www.ti.com.cn  
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
7.3 Feature Description  
7.3.1 PWM Operation and D-CAP3 Control  
The main control loop of the two bucks is adaptive on-time pulse width modulation (PWM) controller that  
supports a proprietary DCAP3 mode control. The DCAP3 mode control combines adaptive on-time control with  
an internal compensation circuit for pseudo-fixed frequency and low external component count configuration with  
both low-ESR and ceramic output capacitors. It is stable even with virtually no ripple at the output. The  
TPS65296 also includes an error amplifier that makes the output voltage very accurate.  
At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal  
one-shot timer expires. This one-shot duration is set proportional to the converter input voltage, VIN, and is  
inversely proportional to the output voltage, VO, to maintain a pseudo-fixed frequency over the input voltage  
range, hence it is called adaptive on-time control. The one-shot timer is reset and the high-side MOSFET is  
turned on again when the feedback voltage falls below the reference voltage. An internal ripple generation circuit  
is added to reference voltage for emulating the output ripple, this enables the use of very low-ESR output  
capacitors such as multi-layered ceramic caps (MLCC). No external current sense network or loop compensation  
is required for DCAP3 control topology.  
Both VDD1 buck and VDD2 buck include an error amplifier that makes the output voltage very accurate. For any  
control topology that is compensated internally, there is a range of the output filter it can support. The output filter  
used with the TPS65296 is a low-pass L-C circuit. This L-C filter has a double-pole frequency described in 方程  
1.  
1
¦
=
P
2´ p´ LOUT ´ COUT  
(1)  
At low frequencies, the overall loop gain is set by the internal output set-point resistor divider network and the  
internal gain of the TPS65296. The low-frequency L-C double pole has a 180 degree in-phase. At the output  
filter frequency, the gain rolls off at a 40 dB per decade rate and the phase drops rapidly. The internal ripple  
generation network introduces a high-frequency zero that reduces the gain roll off from 40 dB to 20 dB per  
decade and increases the phase to 90 degree one decade above the zero frequency. The internal ripple injection  
high-frequency zero is related to the switching frequency. The inductor and capacitor selected for the output filter  
must be such that the double pole is placed close enough to the high-frequency zero, so that the phase boost  
provided by this high-frequency zero provides adequate phase margin for the stability requirement. The  
crossover frequency of the overall system should usually be targeted to be less than one-fifth of the switching  
frequency (FSW).  
7.3.2 Advanced Eco-mode Control  
The VDD1 buck and VDD2 buck are designed with advanced Eco-mode control schemes to maintain high light  
load efficiency. As the output current decreases from heavy load conditions, the inductor current is also reduced  
and eventually comes to a point where the rippled valley touches zero level, which is the boundary between  
continuous conduction and discontinuous conduction modes. The rectifying MOSFET is turned off when the zero  
inductor current is detected. As the load current further decreases, the converter runs into discontinuous  
conduction mode. The on-time is kept almost the same as it was in the continuous conduction mode, so that it  
takes longer time to discharge the output capacitor with smaller load current to the level of the reference voltage.  
This makes the switching frequency lower, proportional to the load current, and keeps the light load efficiency  
high. The light load current where the transition to Eco-mode operation happens (IOUT(LL)) can be calculated from  
方程式 2.  
(V -VOUT ) × VOUT  
1
IN  
IOUT(LL)  
=
×
2 × LOUT × FSW  
V
IN  
(2)  
After identifying the application requirements, design the output inductance (LOUT) so that the inductor peak-to-  
peak ripple current is approximately between 20% and 30% of the IOUT(max) (peak current in the application). It is  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS65296  
 
 
 
TPS65296  
www.ti.com.cn  
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
also important to size the inductor properly so that the valley current does not hit the negative low-side current  
limit.  
7.3.3 Soft Start and Prebiased Soft Start  
The VDD2 buck has an internal 1.6-ms soft start and VDD1 buck has an internal 1-ms soft start. Provide the  
voltage supply to PVIN, PVIN_VDD1, and VCC_5V before asserting VDD_EN to be high. When the VDD_EN pin  
becomes high, the internal soft-start function begins ramping up the reference voltage to the PWM comparator.  
If the output capacitor is prebiased at start-up, the devices initiate switching and start ramping up only after the  
internal reference voltage becomes greater than the feedback voltage. This scheme ensures that the converters  
ramp up smoothly into regulation point.  
7.3.4 Power Good  
The Power Good (PGOOD) pin is an open-drain output. Once the VDD1SNS and VDD2SNS pins voltage are  
between 90% and 110% of the target output voltage, the PGOOD is deasserted and floats after a 1-ms de-glitch  
time. A pullup resistor of 100 kΩ is recommended to pull the voltage up to VCC_5V. The PGOOD pin is pulled  
low when:  
the VDD1SNS pin voltage or VDD2SNS pin voltage is lower than 85% or greater than 115% of the target  
output voltage,  
in an OVP, UVP, or thermal shutdown event,  
or during the soft-start period.  
7.3.5 Overcurrent Protection and Undervoltage Protection  
Both VDD1 and VDD2 bucks have the overcurrent protection and undervoltage protection, and the  
implementation is same. The output overcurrent limit (OCL) is implemented using a cycle-by-cycle valley detect  
control circuit. The switch current is monitored during the OFF state by measuring the low-side FET drain-to-  
source voltage. This voltage is proportional to the switch current. To improve accuracy, the voltage sensing is  
temperature compensated.  
During the on-time of the high-side FET switch, the switch current increases at a linear rate determined by Vin,  
Vout, the on-time, and the output inductor value. During the on-time of the low-side FET switch, this current  
decreases linearly. The average value of the switch current is the load current IOUT. If the monitored current is  
above the OCL level, the converter maintains low-side FET on and delays the creation of a new set pulse, even  
the voltage feedback loop requires one, until the current level becomes OCL level or lower. In subsequent  
switching cycles, the on-time is set to a fixed value and the current is monitored in the same manner.  
There are some important considerations for this type of overcurrent protection. When the load current is higher  
than the overcurrent threshold by one half of the peak-to-peak inductor ripple current, the OCL is triggered and  
the current is being limited, the output voltage tends to drop because the load demand is higher than what the  
converter can support. When the output voltage falls below 60% of the target voltage, the UVP comparator  
detects it, the output will be discharged and latched after a wait time of 256 µs. When the overcurrent condition  
is removed, the output voltage is latched till the VDD_EN is toggled or repower the VCC_5V power input.  
7.3.6 Overvoltage Protection  
Both VDD1 and VDD2 bucks have the overvoltage protection feature and have the same implementation. When  
the output voltage becomes higher than 125% of the target voltage, the OVP comparator output goes high, and  
then the output will be discharged and latched after a wait time of 20 µs. When the over current condition is  
removed, the output voltage is latched till the VDD_EN is toggled or repower the VCC_5V power input.  
7.3.7 UVLO Protection  
Undervoltage Lockout protection (UVLO) monitors the VCC_5V power input. When the voltage is lower than  
UVLO threshold voltage, the device is shut off and outputs are discharged. This is a non-latch protection.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS65296  
TPS65296  
www.ti.com.cn  
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
7.3.8 Output Voltage Discharge  
The VDD1 buck, VDD2 buck, and VDDQ LDO block all have the discharge function by using internal MOSFETs,  
which are connected to the corresponding output terminals VDD1SNS, VDD2SNS, and VDDQ. The discharge is  
slow due to the lower current capability of these MOSFETs.  
7.3.9 Thermal Shutdown  
The TPS65296 monitors the internal die temperature. If the temperature exceeds the threshold value (typically  
150°C), the device is shut off and the output will be discharged. This is a non-latch protection. The device  
restarts switching when the temperature goes below the thermal shutdown recover threshold.  
7.4 Device Functional Modes  
7.4.1 Light Load Operation for VDD1 Buck and VDD2 Buck  
When the load is light on the VDD1 or VDD2 output, the buck enters pulse skip mode after the inductor current  
crosses zero. This is the Eco-mode which improves the efficiency at light load with a lower switching frequency.  
Each switching cycle is followed by a period of energy saving sleep time. The sleep time ends when the  
VDD1SNS or VDD2SNS voltage falls below the Eco-mode threshold voltage. As the output current decreases,  
the period time between switching pulses increases.  
7.4.2 Output State Control  
The TPS65296 has two enable input pins (VDD_EN and VDDQ_EN) to provide simple control scheme of output  
state. All of VDD1, VDD2, and VDDQ are turned on at S0 state (VDD_EN=VDDQ_EN=high). In S3 state  
(VDDQ_EN=low, VDD_EN=high), VDD1 and VDD2 voltages are kept on while VDDQ is turned off and left at  
high impedance state (high-Z). The VDDQ output floats and does not source current in this state. In S4/S5 states  
(VDD_EN=VDDQ_EN =low), all of the three outputs are turned off and discharged to GND. Each state code  
represents as follows: S0 = full ON, S3 = suspend to RAM (STR), S4 = suspend to disk (STD), S5 = soft OFF  
(see 7-1).  
7-1. VDDQ_EN and VDD_EN Control for Output State  
STATE  
S0  
VDDQ_EN  
VDD_EN  
VDD1  
VDD2  
VDDQ  
ON  
HI  
LO  
LO  
HI  
HI  
ON  
ON  
S3  
ON  
ON  
OFF (High-Z)  
OFF (discharge)  
S5/S4  
LO  
OFF (discharge)  
OFF (discharge)  
7.4.3 Output Sequence Control  
There are specific sequencing requirements for the LPDDR4/LPDDR4X VDD1 and VDD2 rails. The TPS65296  
follows the power rail sequence requirements as shown in 7-1 and 7-2. VDD1 is greater than VDD2 at all  
times during ramp up, operating, and ramp down. The VDDQ output ramp and stable within 35 µs after  
VDDQ_EN asserted.  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS65296  
 
 
TPS65296  
www.ti.com.cn  
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
VDD_EN  
VDD_EN  
T4  
VDDQ_EN  
VDDQ  
T1  
VDD1  
T2  
T
VDD2  
T3  
High-Z  
High-Z  
T1: 0.5ms to 2ms T3: 0.5ms to 2ms  
T2: 2.0ms
 
T4: 30ms to 60ms  
T<35us  
7-2. Power Sequence, VDDQ versus VDDQ_EN  
7-1. Power Sequence, VDD1 and VDD2 versus  
VDD_EN  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS65296  
 
TPS65296  
www.ti.com.cn  
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
The TPS65296 device provides a complete power solution for LPDDR4/LPDDR4X memory system. 8-1  
shows the power requirements for LPDDR4 and LPDDR4X.  
8-1. LPDDR4/LPDDR4X Application  
VDD1  
VDD2  
VDDQ  
NO(Leave this pin floating)  
YES  
LPDDR4  
YES  
YES  
LPDDR4X  
YES  
YES  
The schematic of 8-1 shows a typical application for LPDDR4X. For VDD2 buck, the PVIN supports 4.5-V to  
18-V input range with 1.1-V VDD2 output, the continuous current capability is 8 A. Usually the PVIN_VDD1 and  
VCC_5V can share one 5-V power input and supports 1.8-V VDD1 output with 1-A continuous current capability,  
and the PVIN_VDD1 can be lowered down to a 3.3-V power supply. The VLDOIN power input usually is  
connected to VDD2 output, while also it can be connected to external 1.1-V power supply input. The schematic  
of 8-2 shows a typical application for LPDDR4. The TPS65296 can be used for LPDDR4 when connecting  
VDDQ_EN pin to GND to disable the LDO and leave VDDQ/VDDQSNS pin floating. It doesn't need input cap for  
VLDOIN and output cap for VDDQ compare with the application in LPDDR4X. While it also need to connect  
VLDOIN to VDD2 or external 1.1-V power supply for internal power supply.  
8.2 Typical Application  
8-1. LPDDR4X Application Schematic  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS65296  
 
 
 
 
 
TPS65296  
www.ti.com.cn  
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
8-2. LPDDR4 Application Schematic  
8.2.1 Design Requirements  
8-2 lists the design parameters for this example.  
8-2. Design Parameters  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDD2 OUTPUT  
VOUT  
Output voltage  
1.115  
8
V
A
IOUT  
Output current  
Transient response  
Input voltage  
8-A load step  
±55  
12  
mV  
V
ΔVOUT  
VIN  
4.5  
18  
VOUT(ripple)  
FSW  
Output voltage ripple  
Switching frequency  
30  
mV(P-P)  
kHz  
600  
VDD1 OUTPUT  
VOUT  
Output voltage  
1.8  
1
V
A
IOUT  
Output current  
Transient response  
Input voltage  
1-A load step  
±90  
5
mV  
V
ΔVOUT  
VIN  
3
5.5  
VOUT(ripple)  
FSW  
Output voltage ripple  
Switching frequency  
30  
580  
mV(P-P)  
kHz  
OTHERS  
Internal  
UVLO  
Start VCC_5V input voltage  
VCC_5V Input voltage rising  
VCC_5V Input voltage falling  
V
V
VVCC_5V  
Internal  
UVLO  
Stop VCC_5V input voltage  
Light load operating mode  
ECO  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS65296  
 
 
TPS65296  
www.ti.com.cn  
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
8.2.2 Detailed Design Procedure  
8.2.2.1 External Component Selection  
8.2.2.1.1 Inductor Selection  
The inductor ripple current is filtered by the output capacitor. A higher inductor ripple current means the output  
capacitor should have a ripple current rating higher than the inductor ripple current. See 8-3 for recommended  
inductor values.  
The RMS and peak currents through the inductor can be calculated using 方程式 3 and 方程式 4. It is important  
that the inductor is rated to handle these currents.  
æ
2 ö  
÷
÷
÷
ø
æ
ç
ö
÷
VOUT × V  
- VOUT  
(
× LOUT × FSW  
IN(max)  
)
1
IN(max)  
ç 2  
I
IL(rms)=  
+
×
OUT  
ç
ç
è
÷
ø
12  
V
ç
è
(3)  
(4)  
IOUT(ripple)  
I
= IOUT  
+
L(peak)  
2
During transient and short-circuit conditions, the inductor current can increase up to the current limit of the  
device so it is safe to choose an inductor with a saturation current higher than the peak current under current  
limit condition.  
8.2.2.1.2 Output Capacitor Selection  
After selecting the inductor the output capacitor needs to be optimized. In DCAP3, the regulator reacts within  
one cycle to the change in the duty cycle so the good transient performance can be achieved without needing  
large amounts of output capacitance. The recommended output capacitance range is given in 8-3.  
Ceramic capacitors have very low ESR, otherwise the maximum ESR of the capacitor should be less than  
VOUT(ripple)/IOUT(ripple)  
.
8-3. Recommended Component Values  
VOUT (V)  
Fsw (kHz)  
LOUT (µH)  
0.68  
0.56  
0.47  
6.8  
COUT(min) (µF)  
COUT(max) (µF)  
600  
600  
600  
580  
580  
580  
88  
88  
88  
20  
20  
20  
142  
142  
142  
66  
1.1  
1.8  
4.7  
66  
3.3  
66  
For VDDQ output, high quality X5R or X7R 10-µF capacitor is recommended and a 0.47 µF is recommended for  
VDDQREF output.  
8.2.2.1.3 Input Capacitor Selection  
The TPS65296 requires input decoupling capacitors on both power supply input PVIN and PVIN_VDD1, and the  
bulk capacitors are needed depending on the application. The minimum input capacitance required is given in 方  
程式 5.  
IOUT×VOUT  
CIN(min)  
=
V
INripple×V ×FSW  
IN  
(5)  
TI recommends using a high-quality X5R or X7R input decoupling capacitors of 30 µF on the VDD2 buck input  
voltage pin PVIN, and 10 µF on the VDD1 buck input voltage pin PVIN_VDD1. The voltage rating on the input  
capacitor must be greater than the maximum input voltage. The capacitor must also have a ripple current rating  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS65296  
 
 
 
 
TPS65296  
www.ti.com.cn  
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
greater than the maximum input current ripple of the application. The input ripple current is calculated by 方程式  
6:  
VIN(min)-VOUT  
(
)
VOUT  
ICIN(rms) = IOUT ×  
×
VIN(min)  
VIN(min)  
(6)  
An additional 0.1-µF capacitor from PVIN to ground and from PVIN_VDD1 to ground is optional to provide  
additional high frequency filtering. One ceramic capacitor of 10 µF is recommended for the decoupling capacitor  
on VLDOIN pin for providing stable power on VDDQ LDO block. A 1-µF ceramic capacitor is needed for the  
decoupling capacitor on VCC_5V input.  
8.2.2.1.4 Bootstrap Capacitor and Resistor Selection  
A 0.1-µF ceramic capacitor serialized with a 5.1-resistor is recommended between the BST and SW pin for  
proper operation. TI recommends using a ceramic capacitor.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS65296  
 
TPS65296  
www.ti.com.cn  
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
8.2.3 Application Curves  
8-3 through 8-30 apply to the circuit of 8-1. VIN = 12 V. TA = 25°C unless otherwise specified.  
95  
90  
85  
80  
75  
70  
65  
60  
55  
100  
95  
90  
85  
80  
75  
70  
65  
60  
VPVIN=7.4V, VOUT=1.1V  
VPVIN=12V, VOUT=1.1V  
VPVIN=19V, VOUT=1.1V  
VPVIN_VDD1=3.3V, VOUT=1.8V  
VPVIN_VDD1=5V, VOUT=1.8V  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
0.001  
0.01  
0.1  
1
I-Load (A)  
D029  
D030  
8-3. VDD2 Efficiency Curve, VOUT = 1.1 V  
8-4. VDD1 Efficiency Curve, VOUT = 1.8 V  
1.16  
1.15  
1.14  
1.13  
1.12  
1.11  
1.1  
1.85  
1.84  
1.83  
1.82  
1.81  
1.8  
1.79  
1.78  
1.77  
1.09  
1.08  
VPVIN=7.4V  
VPVIN=12V  
VPVIN=19V  
VPVIN_VDD1=3.3V  
VPVIN_VDD1=5V  
1.07  
1.06  
1.76  
1.75  
0
1
2
3
4
I-Load (A)  
5
6
7
8
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
I-Load (A)  
1
D031  
D032  
8-5. VDD2 Load Regulation, VOUT = 1.1 V  
8-6. VDD1 Load Regulation, VOUT = 1.8 V  
0.65  
0.64  
0.63  
0.62  
0.61  
0.6  
1.2  
1.18  
1.16  
1.14  
1.12  
1.1  
0.59  
0.58  
0.57  
0.56  
0.55  
1.08  
1.06  
1.04  
IOUT=0A  
IOUT=8A  
1.02  
1
0
0.2  
0.4  
0.6  
0.8  
I-Load (A)  
1
1.2  
1.4  
1.6  
4
6
8
10  
12  
14  
PVIN (V)  
16  
18  
20  
22  
24  
D033  
D034  
8-7. VDDQ Load Regulation, VOUT = 0.6 V  
8-8. VDD2 Line Regulation,VOUT = 1.1 V  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS65296  
 
TPS65296  
www.ti.com.cn  
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
1.85  
1.84  
1.83  
1.82  
1.81  
1.8  
VDD2=50mV/div  
1.79  
1.78  
1.77  
1.76  
Io=500mA/div  
IOUT=0A  
IOUT=1A  
40ms/div  
1.75  
3
3.25 3.5 3.75  
4 4.25 4.5 4.75  
PVIN_VDD1 (V)  
5
5.25 5.5  
8-10. VDD2 Output Voltage Ripple, IOUT = 0 A  
D035  
8-9. VDD1 Line Regulation, VOUT = 1.8 V  
VDD2=10mV/div  
VDD1=50mV/div  
Io=5A/div  
Io=500mA/div  
10ms/div  
1us/div  
8-11. VDD1 Output Voltage Ripple, IOUT = 0 A  
8-12. VDD2 Output Voltage Ripple, IOUT = 8 A  
VDD_EN=2V/div  
VDD1=10mV/div  
Io=500mA/div  
VDD1=2V/div  
VDD2=1V/div  
PGOOD=5V/div  
1us/div  
2ms/div  
8-13. VDD1 Output Voltage Ripple, IOUT = 1 A  
8-14. Start-Up Through VDD_EN, IVDD1OUT = 0 A,  
IVDD2OUT = 0 A  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS65296  
TPS65296  
www.ti.com.cn  
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
VDD_EN=2V/div  
VDD1=2V/div  
VDD_EN=2V/div  
VDD1=2V/div  
VDD2=1V/div  
PGOOD=5V/div  
VDD2=1V/div  
PGOOD=5V/div  
2ms/div  
20ms/div  
8-15. Start-Up Through VDD_EN, IVDD1OUT = 1 A, 8-16. Shutdown Through VDD_EN, IVDD1OUT = 0  
IVDD2OUT = 8 A  
A, IVDD2OUT = 0 A  
VDD_EN=2V/div  
VDD1=2V/div  
VDD_EN=2V/div  
VDDQ_EN==2V/div  
VDD2=1V/div  
VDD2=1V/div  
VDDQ=1V/div  
PGOOD=5V/div  
20ms/div  
2ms/div  
8-17. Shutdown Through VDD_EN, IVDD1OUT = 1  
IVDD2OUT = 0 A  
IVDDQ = 0 A  
A, IVDD2OUT = 8 A  
8-18. VDDQ Start-Up Through VDDQ_EN  
VDD_EN=2V/div  
VDDQ_EN=2V/div  
VDD_EN=2V/div  
VDDQ_EN=2V/div  
VDD2=1V/div  
VDD2=1V/div  
VDDQ=1V/div  
VDDQ=500mV/div  
10ms/div  
2ms/div  
IVDD2OUT = 0 A  
IVDDQ = 0 A  
IVDD2OUT = 8 A  
IVDDQ = 1.5 A  
8-20. VDDQ Shutdown Through VDDQ_EN  
8-19. VDDQ Start-Up Through VDDQ_EN  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS65296  
TPS65296  
www.ti.com.cn  
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
VDD_EN=2V/div  
VDD_EN=2V/div  
VDDQ_EN=2V/div  
VDD2=1V/div  
VDD2=1V/div  
VDDQ=500mV/div  
VDDQ=500mV/div  
4ms/div  
4ms/div  
IVDD2OUT = 0 A  
IVDDQ = 0 A  
IVDD2OUT = 8 A  
IVDDQ = 1.5 A  
8-22. VDDQ Start-Up Through VDD_EN  
8-21. VDDQ Shutdown Through VDDQ_EN  
VDD_EN=2V/div  
VDD_EN=2V/div  
VDD2=1V/div  
VDD2=1V/div  
VDDQ=500mV/div  
VDDQ=500mV/div  
4ms/div  
10ms/div  
IVDD2OUT = 8 A  
IVDDQ = 1.5 A  
IVDD2OUT = 0 A  
IVDDQ = 0 A  
8-23. VDDQ Start-Up Through VDD_EN  
8-24. VDDQ Shutdown Through VDD_EN  
VDD_EN=2V/div  
VDD1=100mV/div  
VDD2=1V/div  
Io=1A/div  
VDDQ=500mV/div  
400us/div  
4ms/div  
Slew Rate=2.5A/us  
IVDD2OUT = 8 A  
IVDDQ = 1.5 A  
8-26. VDD1 Transient Response, 0 A to 1 A  
8-25. VDDQ Shutdown Through VDD_EN  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS65296  
TPS65296  
www.ti.com.cn  
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
VDD2=50mV/div  
VDD2=50mV/div  
Io=5A/div  
Io=5A/div  
400us/div  
400us/div  
Slew Rate=2.5A/us  
Slew Rate=2.5A/us  
8-27. VDD2 Transient Response, 1.6 A to 8 A  
8-28. VDD2 Transient Response, 0.1 A to 6.4 A  
SW=10V/div  
SW=5V/div  
VDD1=1V/div  
IL=1A/div  
VDD2=500mV/div  
IL=5A/div  
100us/div  
100us/div  
8-29. VDD1 Normal Operation to Output Hard  
8-30. VDD2 Normal Operation to Output Hard  
Short  
Short  
9 Power Supply Recommendations  
The TPS65296 is designed for LPDDR4/LPDDR4X complete power solution. PVIN is the power input for VDD2  
buck, PVIN_VDD1 is the power input for VDD1 buck, VLDOIN input is for VDDQ LDO power supply, VCC_5V is  
power supply for internal control logic. Below lists the power on sequence scenarios.  
VDD_EN is high before PVIN or PVIN_VDD1 has the power input, VCC_5V power supply must be provided  
after or same time with PVIN or PVIN_VDD1, otherwise the output will be latched. This latch can be  
recovered by toggling the VDD_EN pin or re-power the VCC_5V.  
VDD_EN is low before PVIN and PVIN_VDD1 has the power input, then there is no power supply input  
sequence requirement for VCC_5V, PVIN and PVIN_VDD1.  
Copyright © 2020 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS65296  
 
 
TPS65296  
www.ti.com.cn  
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
10 Layout  
10.1 Layout Guidelines  
A four-layer PCB is recommended for good thermal performance and with maximum ground plane. 3-inch ×  
3-inch, four-layer PCB with 2-oz. copper is used as example.  
Place the decoupling capacitors right across PVIN, PVIN_VDD1, and VLDOIN as close as possible.  
Place output inductors and capacitors with IC at the same layer, SW routing should be as short as possible to  
minimize EMI, and should be a width plane to carry big current, enough vias should be added to the PGND  
connection of output capacitor and also as close to the output pin as possible. Reserve some space between  
VDD1 choke and VDD2 choke, just minimize radiation crosstalk.  
Place BST resistor and capacitor with IC at the same layer, close to BST and SW plane, >15 mil width trace  
is recommended to reduce line parasitic inductance.  
VDD1SNS/VDD2SNS/VDDQSNS can be 10 mil and must be routed away from the switching node, BST  
node or other high efficiency signal.  
PVIN and PVIN_VDD1 trace must be wide to reduce the trace impedance and provide enough current  
capability.  
Output capacitors for VDDQ and VDDQREF should be put as close as output pin.  
10.2 Layout Example  
10-1 shows the recommended top-side layout. Component reference designators are the same as the circuit  
shown in 8-1.  
N
OI  
LD  
V
V
V
PVIN  
D
D
D
D
Q
Q
R
E
F
VDD2  
SW  
S
W
_
V
D
D
1
PGND_VDD1  
PGND  
VDD1  
10-1. Top-Side Layout  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS65296  
 
 
 
 
TPS65296  
www.ti.com.cn  
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.2 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
11.4 Trademarks  
D-CAP3, Eco-mode, HotRod, TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2020 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS65296  
 
 
 
 
 
 
 
TPS65296  
www.ti.com.cn  
ZHCSK81A SEPTEMBER 2019 REVISED OCTOBER 2020  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS65296  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Apr-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65296RJER  
ACTIVE  
VQFN-HR  
RJE  
18  
3000 RoHS & Green  
NIPDAU | SN  
Level-2-260C-1 YEAR  
-40 to 125  
65296  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RJE0018B  
3.1  
2.9  
A
B
3.1  
2.9  
PIN 1 INDEX AREA  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 0.45  
0.25  
0.5  
0.3  
4X  
4X  
0.6  
0.4  
(0.1) TYP  
0.48  
0.28  
0.15  
4X  
9
7
6
10  
6X 0.5  
2.14  
1.94  
3X  
PKG  
2X  
1.5  
2X  
2.5  
0.3  
0.2  
8X  
15  
0.1  
C A B  
C
1
0.3  
0.2  
16  
4X  
18  
0.5  
0.3  
0.05  
10X  
4X  
0.25  
0.15  
2X  
2X 0.65  
0.33  
0.23  
PKG  
0.1  
C A B  
C
2X 2.48  
0.05  
4223865 / C 03/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RJE0018B  
4X (1.24)  
18  
2X (0.65)  
6X (0.2)  
8X (0.6)  
4X (0.58)  
16  
15  
1
8X (0.25)  
4X  
(1.25)  
(2.243)  
6X (0.5)  
PKG  
(2.83)  
(0.58)  
2X  
(R0.05) TYP  
4X (0.25)  
(2.238)  
10  
6
(0.7)  
9
7
PKG  
(2.8)  
4X (0.28)  
4X (0.6)  
2X (0.45)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
SOLDER MASK  
OPENING  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
NON- SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223865 / C 03/2020  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RJE0018B  
4X (1.23)  
18  
2X (0.65)  
9X (0.2)  
8X (0.6)  
4X (0.58)  
16  
4X (0.225)  
15  
1
8X (0.25)  
4X  
(1.24)  
3X (1.19)  
6X (0.5)  
PKG  
2X  
(1.022)  
(2.83)  
2X (0.028)  
(0.034)  
(R0.05) TYP  
(1.35)  
3X  
EXPOSED METAL  
4X  
(1.019)  
6
10  
(0.7)  
9
7
PKG  
(2.8)  
4X (0.25)  
4X (0.6)  
2X (0.45)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
PADS 1, 6, 10 &15: 93% & PADS 7-9,17:89%  
SCALE: 20X  
4223865 / C 03/2020  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS65296RJER

4.5V 至 18V 输入电压、完整 LPDDR4 和 LPDDR4X 存储器电源解决方案 | RJE | 18 | -40 to 125
TI

TPS65300-Q1

3-MHz Step-Down Regulator and Triple Linear Regulators
TI

TPS65300QPWPRQ1

3-MHz Step-Down Regulator and Triple Linear Regulators
TI

TPS65300QRHFRQ1

3-MHz Step-Down Regulator and Triple Linear Regulators
TI

TPS65301-Q1

具有 3 个 LDO 和受保护传感器电源的汽车类 5.6V 至 40V、1.2A 降压转换器
TI

TPS65301QPWPRQ1

具有 3 个 LDO 和受保护传感器电源的汽车类 5.6V 至 40V、1.2A 降压转换器 | PWP | 24 | -40 to 125
TI

TPS65310A-Q1

适用于汽车安全应用的汽车类 4V 至 40V、5 稳压输出电源管理 IC
TI

TPS65310AQRVJQ1

IC POWER SUPPLY MANAGEMENT CKT, Power Management Circuit
TI

TPS65310AQRVJRQ1

适用于汽车安全应用的汽车类 4V 至 40V、5 稳压输出电源管理 IC | RVJ | 56 | -40 to 125
TI

TPS65311-Q1

适用于汽车安全应用的汽车类 4V 至 40V、5 稳压输出电源管理 IC
TI

TPS65311QRVJRQ1

适用于汽车安全应用的汽车类 4V 至 40V、5 稳压输出电源管理 IC | RVJ | 56 | -40 to 125
TI

TPS65313-Q1

适用于汽车应用的高压 PMIC
TI