TPS63901 [TI]

具有纳安级 Iq 的 400mA 降压/升压转换器;
TPS63901
型号: TPS63901
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有纳安级 Iq 的 400mA 降压/升压转换器

升压转换器
文件: 总33页 (文件大小:3912K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS63901  
ZHCSNV8A DECEMBER 2021 REVISED JUNE 2022  
TPS63901 WCSP 封装、具有输入电流限制DVS 1.8V 5.5V75nA IQ  
降压/升压转换器  
1 特性  
3 说明  
• 输入电压范围1.8V 5.5V  
1.8V 5V 输出电压范围100mV 阶跃)  
– 可使用外部电阻器进行编程  
TPS63901 器件是一款具有超低静态电流典型值为  
75nA的高效同步降压/升压转换器。该器件具有 32  
个用户可编程的输出电压设置范围1.8V 5V。  
SEL 引脚用于在两个输出电压预设之间切换  
VI 2.0VVO = 3.3V 输出电流大400mA  
– 可堆叠并联多个器件以获得更高的输出电流  
• 负载电流10µA > 90%  
– 静态电流75nA  
60nA 关断电流  
• 单模式运行  
动态电压调节特性使各项应用可于运行期间在两个输出  
电压之间进行切换例如在待机运行期间可通过降  
低系统电源电压来降低功耗。  
凭借其宽电源电压范围和可编程的输入电流限制  
1mA 100mA 和无限制),该器件非常适合与 3  
芯串联碱性电池、1 芯锂二氧化锰 (Li-MnO2) 1 芯锂  
亚硫酰氯 (Li-SOCl2) 等各种一次电池以及二次电池搭  
配使用。  
– 无需在降压、降压/升压和升压模式之间转换  
– 低输出波纹  
– 出色的瞬态性能  
高输出电流功能支持 sub-1GHzBLELoRawM-  
Bus NB-IoT 等常用射频标准。  
• 可靠运行的特性  
– 集成软启动  
器件信息  
– 可编程输入电流限制具有八个设置1mA 至  
100mA 和无限制)  
– 输出短路和过热保护  
器件型号(1)  
封装尺寸标称值)  
封装  
TPS63901  
WCSP (12)  
1.50 mm × 1.15 mm  
• 微型解决方案尺寸  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 小2.2µH 电感器22µF 输出电容器  
12 焊球、1.5mm × 1.15mm0.35mm 间距  
WCSP 封装  
L1  
LX1  
LX2  
2 应用  
VO  
3.3 V, 400 mA  
1.8 V to 5.5 V  
VIN  
VOUT  
智能手表  
智能追踪器  
可穿戴电子产品  
10 µF  
22 µF  
医疗传感器贴片患者监护仪  
智能仪表和传感器节点  
电子智能锁  
CFG1  
CFG2  
CFG3  
36.5 kΩ  
To/from  
system  
EN  
SEL  
GND  
工业物联网智能传感器和窄带物联网  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSGC1  
 
 
 
 
TPS63901  
www.ti.com.cn  
ZHCSNV8A DECEMBER 2021 REVISED JUNE 2022  
Table of Contents  
8 Application and Implementation..................................19  
8.1 Application Information............................................. 19  
8.2 Typical Application.................................................... 19  
9 Power Supply Recommendations................................27  
10 Layout...........................................................................27  
10.1 Layout Guidelines................................................... 27  
10.2 Layout Example...................................................... 27  
11 Device and Documentation Support..........................28  
11.1 Device Support........................................................28  
11.2 Documentation Support.......................................... 28  
11.3 接收文档更新通知................................................... 28  
11.4 支持资源..................................................................28  
11.5 Trademarks............................................................. 28  
11.6 Electrostatic Discharge Caution..............................28  
11.7 术语表..................................................................... 28  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description........................................................8  
7.1 Overview.....................................................................8  
7.2 Functional Block Diagram...........................................8  
7.3 Feature Description.....................................................8  
7.4 Device Functional Modes..........................................17  
Information.................................................................... 28  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (December 2021) to Revision A (June 2022)  
Page  
• 将文档状态从“预告信息”更改为“量产数据”................................................................................................ 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS63901  
 
TPS63901  
www.ti.com.cn  
ZHCSNV8A DECEMBER 2021 REVISED JUNE 2022  
5 Pin Configuration and Functions  
LX1  
GND  
GND  
LX2  
EN  
A1  
B1  
C1  
D1  
A3  
B3  
C3  
D3  
VIN  
A2  
B2  
C2  
D2  
CFG1  
VOUT  
VOUT  
SEL  
CFG2  
CFG3  
5-1. 12-Ball WCSP Package (Top View)  
5-1. Pin Functions  
Pin  
Type Description  
Name  
No.  
LX1  
A1  
Switching node of the buck stage  
Supply voltage  
VIN  
EN  
A2  
A3  
Device enable. A high level applied to this pin enables the device and a low level disables it. It  
must not be left open.  
I
GND  
CFG1  
B1,C1  
B2  
Ground  
Configuration pin 1. Connect a resistor between this pin and ground to set VO(2) and input current  
limit. Must not be left open.  
I
Output voltage select. Selects VO(2) when a high level is applied to this pin. Selects VO(1) when a  
low level is applied to this pin. It must not be left open.  
SEL  
VOUT  
CFG2  
LX2  
B3  
C2,D2  
C3  
I
Output voltage. The C2 and D2 pins must be connected together.  
Configuration pin 2. Connect a resistor between this pin and ground to set VO(2) and input current  
limit. Must not be left open.  
I
D1  
Switching node of the boost stage  
Configuration pin 3. Connect a resistor between this pin and ground to set VO(1). Must not be left  
open.  
CFG3  
D3  
I
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS63901  
 
TPS63901  
www.ti.com.cn  
ZHCSNV8A DECEMBER 2021 REVISED JUNE 2022  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating junction temperature range (unless otherwise noted)(1)  
MIN  
0.3  
40  
65  
MAX  
UNIT  
V
VI  
Input voltage (VIN, LX1, LX2, VOUT, EN, CFG1, CFG2, CFG3, SEL)(2)  
Operating junction temperature  
5.9  
150  
150  
TJ  
°C  
Tstg  
Storage temperature  
°C  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to network ground terminal, unless otherwise noted.  
6.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.8  
1.8  
5
NOM  
MAX  
5.5  
UNIT  
V
VI  
Supply voltage  
VO  
CI  
Output voltage  
5.0  
V
Input capacitance (VI = 2.5 V to 5 V, VO = 3.3 V, IO = 0.4 A)(1)  
Output capacitance (VI = 2.5 V to 5 V, VO = 3.3 V, IO = 0.4 A)(1)  
Capacitance (CFG1, CFG2, CFG3)  
Inductance  
µF  
µF  
pF  
µH  
CO  
C(CFG)  
L
10  
10  
2.2  
Unlimited current setting  
Inductor saturation current rating  
2
1
ISAT  
A
100-mA current settings  
TA  
TJ  
Operating ambient temperature  
Operating junction temperature  
85  
°C  
°C  
40  
40  
125  
(1) Effective capacitance after DC bias effects have been considered.  
6.4 Thermal Information  
YCJ (WCSP)  
12 PINS  
102.4  
0.6  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
26.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.3  
26.1  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS63901  
 
 
 
 
 
 
 
 
 
 
 
 
TPS63901  
www.ti.com.cn  
ZHCSNV8A DECEMBER 2021 REVISED JUNE 2022  
6.5 Electrical Characteristics  
TJ = 40°C to 125°C, VI = 3.0 V, VO = 2.5 V . Typical values are at TJ = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
V(EN) = 3 V, no load, not switching,  
"unlimited" current setting; TJ = 40°C to  
85°C  
IQ  
Quiescent current into VIN  
0.075  
1
µA  
ISD  
Shutdown current into VIN  
60  
1.75  
100  
nA  
V
V(EN) = 0 V ; TJ = 40°C to 85°C  
VIT+(UVLO)  
Vhys(UVLO)  
VIT+(POR)  
I/O SIGNALS  
VIH  
Positive-going UVLO threshold voltage  
UVLO threshold voltage hysteresis  
Positive-going POR threshold voltage  
1.73  
90  
1.77  
110  
mV  
V
1.37  
1.74  
High-level input voltage (EN, SEL)  
Low-level input voltage (EN, SEL)  
Input current (EN, SEL)  
1.2  
V
V
VIL  
0.4  
V(EN), V(SEL) = 1.8 V or 0 V  
±1  
±10  
nA  
POWER SWITCH  
Q1  
VI = 3 V, VO = 5 V, test current = 1 A  
VI = 3 V, VO = 3 V, test current = 1 A  
VI = 3 V, VO = 3 V, test current = 1 A  
VI = 5 V, VO = 3 V, test current = 1 A  
140  
95  
Q2  
rDS(on)  
On-state resistance  
Q3  
m  
95  
Q4  
140  
CURRENT LIMIT  
VI = 3.6 V,  
unlimited current limit setting  
Peak current limit during start-up (Q1)  
0.35  
1.33  
0.15  
0.83  
1.6  
A
A
VI = 1.8 V, VO = 3.6 V,  
unlimited current limit setting  
1.45  
0.29  
Peak current limit (Q1)  
VI = 3.6 V, VO = 3.3 V,  
100-mA current limit setting  
0.51  
1-mA setting  
2.5-mA setting  
5-mA setting  
1
2.5  
5
Average input current limit  
10-mA settting  
25-mA setting  
50-mA setting  
100-mA setting  
10  
mA  
TJ = 40°C to 85°C  
25  
50  
100  
OUTPUT  
Output voltage DC accuracy  
Internal reference resistor  
IO = 1 mA, CO(eff) = 10 µF, L(eff) = 2.2 µH  
±1.5%  
CONTROL  
33  
kΩ  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS63901  
 
TPS63901  
www.ti.com.cn  
ZHCSNV8A DECEMBER 2021 REVISED JUNE 2022  
6.5 Electrical Characteristics (continued)  
TJ = 40°C to 125°C, VI = 3.0 V, VO = 2.5 V . Typical values are at TJ = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.1  
UNIT  
R2D setting #0  
0
R2D setting #1  
R2D setting #2  
R2D setting #3  
R2D setting #4  
R2D setting #5  
R2D setting #6  
R2D setting #7  
R2D setting #8  
R2D setting #9  
R2D setting #10  
R2D setting #11  
R2D setting #12  
R2D setting #13  
R2D setting #14  
R2D setting #15  
0.511  
1.15  
1.87  
2.74  
3.83  
5.11  
6.49  
8.25  
10.5  
13.3  
16.2  
20.5  
24.9  
30.1  
36.5  
+3%  
+3%  
+3%  
+3%  
+3%  
+3%  
+3%  
+3%  
+3%  
+3%  
+3%  
+3%  
+3%  
+3%  
+3%  
3%  
3%  
3%  
3%  
3%  
3%  
3%  
3%  
3%  
3%  
3%  
3%  
3%  
3%  
3%  
RCFG  
kΩ  
PROTECTION FEATURES  
Thermal shutdown threshold temperature  
Thermal shutdown hysteresis  
TIMING PARAMETERS  
140  
15  
150  
20  
160  
25  
°C  
°C  
POR signal delay after reaching POR  
threshold  
td(POR)  
3.8  
ms  
Delay between a rising edge on the EN pin  
and the start of the output voltage ramp  
Supply voltage stable before EN pin goes  
high  
td(EN)  
tw(SS)  
1.5  
ms  
µs  
Soft-start step duration  
VO > 1.8 V  
100  
100  
125  
30  
150  
Delay between a change in the state of the  
SEL pin and the first step change in the  
output voltage  
td(SEL)  
40  
µs  
tw(DVS)  
Dynamic voltage scaling step duration  
Restart delay after protection  
125  
10  
150  
11  
µs  
td(RESTART)  
ms  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS63901  
TPS63901  
www.ti.com.cn  
ZHCSNV8A DECEMBER 2021 REVISED JUNE 2022  
6.6 Typical Characteristics  
VO = 5.1 V  
EN = HIGH  
IO = 0 mA, device  
not switching  
VO = 5.1 V  
EN = HIGH  
IO = 0 mA, device  
not switching  
6-2. Quiescent Current into VOUT vs Input  
6-1. Quiescent Current into VIN vs Input Voltage  
Voltage  
0.375  
-40 C  
25 C  
85 C  
0.325  
0.275  
0.225  
0.175  
0.125  
0.075  
0.025  
1.8  
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
VIN (V)  
VO = 5.1 V  
EN = LOW  
6-3. Shutdown Current vs Input Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS63901  
 
TPS63901  
www.ti.com.cn  
ZHCSNV8A DECEMBER 2021 REVISED JUNE 2022  
7 Detailed Description  
7.1 Overview  
The TPS63901 device is a four-switch synchronous buck-boost converter with a maximum output current of 400  
mA. The device has a single-mode operation that allows the device to regulate the output voltage to a level  
above, below, or equal to the input voltage without displaying the mode-switching transients and unpredictable  
inductor current ripple from which many other buck-boost devices suffer.  
The switching frequency of the TPS63901 device varies with the operating conditions: it is lowest when IO is low  
and increases smoothly as IO increases.  
7.2 Functional Block Diagram  
EN  
Enable  
&
(to all blocks)  
UVLO  
tIL(PEAK)  
t
State  
Machine  
Power  
Stage  
VOUT  
Reference  
Voltage  
Control  
Block  
tVref  
t
tIL(VALLEY)  
t
tk‡VOt  
Attenuator  
Input  
Current  
Limit  
Output  
Voltage  
VIN  
R2D Interface  
GND  
7.3 Feature Description  
7.3.1 Trapezoidal Current Control  
7-1 shows a simplified block diagram of the power stage of the device. Inductor current is sensed in series  
with Q1 (the peak current) and Q4 (the valley current).  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS63901  
 
 
 
 
TPS63901  
www.ti.com.cn  
ZHCSNV8A DECEMBER 2021 REVISED JUNE 2022  
IL(PEAK)  
IL(VALLEY)  
Q1  
L
Q4  
CI  
Q2  
Q3  
CO  
7-1. Power Stage Simplified Block Diagram  
The device uses a trapezoidal inductor current to regulate its output under all operating conditions. Thus, the  
device only has one operating mode and does not display any of the mode-change transients or unpredictable  
switching displayed by many other buck-boost devices.  
There are four phases of operation:  
Phase A Q1 and Q3 are on and Q2 and Q4 are off.  
Phase B Q1 and Q4 are on and Q2 and Q3 are off.  
Phase C Q2 and Q4 are on and Q1 and Q3 are off.  
Phase D Q2 and Q3 are on and Q1 and Q4 are off.  
7-2 shows the inductor current waveform when VI > VO, 7-3 shows the current waveform when VI = VO,  
and 7-4 shows the current waveform when VI < VO.  
7-2 through 7-4 show the typical waveforms during continuous conduction mode (CCM) switching for three  
operating conditions. During discontinuous conduction mode (DCM), the typical inductor current waveforms look  
similar to CCM with Phase D at 0-A inductor current. In deep boost mode, where VI << VO, Phase C length  
gradually decreases to zero until the switching waveform becomes triangular.  
IL(PEAK)  
IL(VALLEY)  
0
Time  
7-2. Inductor Current Waveform when VI > VO (CCM)  
IL(PEAK)  
IL(VALLEY)  
0
Time  
7-3. Inductor Current Waveform when VI = VO (CCM)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS63901  
 
 
 
TPS63901  
www.ti.com.cn  
ZHCSNV8A DECEMBER 2021 REVISED JUNE 2022  
IL(PEAK)  
IL(VALLEY)  
0
Time  
7-4. Inductor Current Waveform when VI < VO (CCM)  
The ideal relationship between VI and VO (that is, assuming no losses) is:  
tw A; + t  
:
VO = VI F  
w(B)G  
tw(B) + tw(C)  
(1)  
where  
VI is the input voltage.  
VO is the output voltage.  
tw(A) is the duration of phase A.  
tw(B) is the duration of phase B.  
tw(C) is the duration of phase C.  
By varying relative duration of each phase, the device can regulate VO to be less than, equal to, or greater than  
VI.  
7.3.2 Device Enable and Disable  
The device turns on when all of the following conditions are true:  
The supply voltage is greater than the positive-going undervoltage lockout (UVLO) threshold.  
The EN pin is high.  
The device turns off when at least one of the following conditions is true:  
The supply voltage is less than the negative-going UVLO threshold.  
The EN pin is low.  
7-13 shows a complete state diagram.  
After the device turns on, the internal reference system starts, then the trimming information and the CFG pins  
are read out. The device ignores any further changes to the CFG pins during device operation.  
7-5 shows the internal start-up sequence.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS63901  
 
TPS63901  
www.ti.com.cn  
ZHCSNV8A DECEMBER 2021 REVISED JUNE 2022  
VI  
VIT+(POR)  
EN  
ttr(SS)  
t
td(POR)  
ttd(EN)  
t
ttlim(SS)  
t
ttramp(SS)t  
Internal  
Sequence  
Power-on  
reset  
Start internal  
reference system  
Read trim bits  
Read CFG pins  
VO  
1.2 V  
7-5. Internal Start-Up Sequence  
7.3.3 Soft Start  
The device has a soft-start feature that starts the device typically with 500-mA peak current limit until VO = 1.8 V  
and 500 µs elapsed when the input current limit is set to unlimited (see 7.3.4). Afterward, the output voltage  
ramps in a series of discrete steps (see 7-6).  
When VO 1.8 V, peak current is limited to 500 mA typical for 500 µs.  
When VO > 1.8 V, each step is 100 mV high and has a duration of 125 µs.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS63901  
 
 
TPS63901  
www.ti.com.cn  
ZHCSNV8A DECEMBER 2021 REVISED JUNE 2022  
The total soft-start ramp-up time can be calculated with Equation 2.  
ms  
> ?  
C - 1.75 ms  
tr(SS)= VO × 1.25 B  
W
V
(2)  
where  
tr(SS) is the rise time of the output voltage in milliseconds.  
VO is the output voltage in volts.  
7-6 shows a typical start-up case.  
EN  
VIH  
ttd(EN)  
t
Internal ramp  
ttr(SS)t  
Target voltage  
0 V  
Output  
Voltage  
7-6. Start-Up Behavior  
7-7 illustrates the start-up step size behavior.  
t125 µst  
1.8 V  
t100 mVt  
t500 µst  
Output  
Voltage  
7-7. Typical Soft-Start Ramp Step Size  
7-1 shows the typical start-up time for a number of standard output voltages.  
7-1. Typical Start-Up Times  
Soft-Start Ramp-Up Start-Up Time (td(EN)  
Output Voltage  
Time (tr(SS)  
)
+ tr(SS))  
1.8 V  
2.5 V  
3.3 V  
5 V  
0.5 ms  
2 ms  
1.375 ms  
2.375 ms  
4.5 ms  
2.875 ms  
3.875 ms  
6 ms  
If the output is prebiased that is, the initial output voltage is not zero the start-up behavior is as follows:  
If the prebias voltage is lower than the target voltage, the device does not start switching until the ramping  
output voltage is greater than the prebias voltage (see 7-8).  
If the prebias voltage is higher than the target voltage, the device does not start to switch until the output  
voltage has decreased to the target voltage (see 7-9). The device cannot actively discharge the output to  
the target voltage and relies on the load current to discharge the output capacitor and decrease the output  
voltage to the target value.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS63901  
 
 
 
 
TPS63901  
www.ti.com.cn  
ZHCSNV8A DECEMBER 2021 REVISED JUNE 2022  
EN  
VIH  
ttd(EN)  
t
Internal ramp  
ttr(SS)t  
Target voltage  
Prebias voltage  
Output  
Voltage  
Device not switching  
Device switching  
7-8. Start-Up Behavior into Prebiased (Low) Output  
EN  
VIH  
ttd(EN)  
t
Internal ramp  
ttr(SS)t  
Prebias voltage  
Target voltage  
Output  
Voltage  
Device not switching  
Device switching  
7-9. Start-Up Behavior into Prebiased (High) Output  
7.3.4 Input Current Limit  
The device can limit the current drawn from its supply, so that it can be used with batteries that do not support  
high peak currents. The input current limit is active during normal operation and at start-up to avoid high inrush  
current. The device has eight current limit settings:  
1 mA  
2.5 mA  
5 mA  
10 mA  
25 mA  
50 mA  
100 mA  
Unlimited  
CFG1 and CFG2 pins select which setting is active (see 7.3.6).  
7.3.5 Dynamic Voltage Scaling  
The device has a dynamic voltage scaling function to switch between the two output voltage settings. When the  
SEL pin changes state, the output voltage ramps to the new value in 100-mV steps. The duration of each step is  
125 µs (see 7-10).  
The device does not actively discharge the output capacitor when the output voltage ramps to a lower level. This  
leads to a longer output voltage settling time when light load is applied (see 7-11). The settling time can be  
calculated with Equation 3.  
VO(HIGH) F VO(LOW)  
tsettle= CO ×  
IO  
(3)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS63901  
 
 
 
 
TPS63901  
www.ti.com.cn  
ZHCSNV8A DECEMBER 2021 REVISED JUNE 2022  
SEL  
SEL  
ttd(SEL)  
t
ttd(SEL)t  
VO(1)  
VO(1)  
Output  
Voltage  
Output  
Voltage  
VO(2)  
VO(2)  
ttw(DVS)  
t
ttw(DVS)t  
t100 mVt  
7-11. Dynamic Voltage Scaling with Light Load  
7-10. Dynamic Voltage Scaling with High Load  
7.3.6 Device Configuration (Resistor-to-Digital Interface)  
The device has three configuration pins (CFG1, CFG2, and CFG3) that control its operation. When the device  
starts up, a resistor-to-digital (R2D) interface reads the values of the configuration resistors on the CFG pins and  
transfers the setting to an internal configuration register (see 7-12).  
CFG1 and CFG2 set VO(2) level and the input current limit.  
CFG3 sets VO(1) level.  
To reduce power consumption, the device reads the value of the resistors connected to the configuration pins  
during start-up and then disables these pins. Once the device has started to operate, changes to the  
configuration pins have no effect.  
VIN  
CFG[4:0]  
RCFG1  
RCFG2  
RCFG3  
CFG1  
CFG2  
CFG3  
33 kΩ  
To DVS  
CFG[11:8]  
12-Bit  
Configuration  
Register  
4
MUX  
ADC  
To input  
current  
limit  
CFG[7:5]  
2
7-12. Resistor-to-Digital Interface Block Diagram  
7-2 summarizes the resistor values needed to configure the device for different input current limit and output  
voltage (SEL = high) settings. For correct operation, use resistors with a tolerance of ±1% or better and a  
temperature coefficient of ±200 ppm or better.  
备注  
For correct operation, TI recommends that the total RMS error of the configuration resistors –  
including initial tolerance, temperature drift, and aging is less than ±3%.  
7-2. Input Current Limit and Output Voltage (SEL = High) Settings  
Input Current Limit  
Output Voltage VO(2)  
(SEL = HIGH)  
UNLIMITED  
0 Ω  
100 mA  
511 Ω  
511 Ω  
50 mA  
1.15 kΩ  
1.15 kΩ  
25 mA  
10 mA  
5 mA  
2.5 mA  
5.11 kΩ  
5.11 kΩ  
1 mA  
RCFG1  
0 Ω  
1.8 V  
1.9 V  
RCFG2  
RCFG1  
RCFG2  
1.87 kΩ  
2.74 kΩ  
3.83 kΩ  
3.83 kΩ  
6.49 kΩ  
6.49 kΩ  
511 Ω  
1.87 kΩ 2.74 kΩ  
0 Ω  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS63901  
 
 
 
 
TPS63901  
www.ti.com.cn  
ZHCSNV8A DECEMBER 2021 REVISED JUNE 2022  
7-2. Input Current Limit and Output Voltage (SEL = High) Settings (continued)  
Input Current Limit  
Output Voltage VO(2)  
(SEL = HIGH)  
UNLIMITED  
0 Ω  
100 mA  
511 Ω  
50 mA  
25 mA  
10 mA  
5 mA  
2.5 mA  
5.11 kΩ  
5.11 kΩ  
5.11 kΩ  
5.11 kΩ  
5.11 kΩ  
5.11 kΩ  
5.11 kΩ  
5.11 kΩ  
5.11 kΩ  
5.11 kΩ  
5.11 kΩ  
5.11 kΩ  
5.11 kΩ  
5.11 kΩ  
30.1 kΩ  
30.1 kΩ  
30.1 kΩ  
30.1 kΩ  
30.1 kΩ  
30.1 kΩ  
30.1 kΩ  
1 mA  
RCFG1  
1.15 kΩ  
2.0 V  
RCFG2  
1.15 kΩ  
1.15 kΩ  
1.15 kΩ  
1.15 kΩ  
1.15 kΩ  
1.15 kΩ  
1.15 kΩ  
1.15 kΩ  
1.15 kΩ  
1.15 kΩ  
1.15 kΩ  
1.15 kΩ  
1.15 kΩ  
1.15 kΩ  
13.3 kΩ  
13.3 kΩ  
13.3 kΩ  
13.3 kΩ  
13.3 kΩ  
13.3 kΩ  
13.3 kΩ  
1.87 kΩ  
2.74 kΩ  
3.83 kΩ  
3.83 kΩ  
3.83 kΩ  
3.83 kΩ  
3.83 kΩ  
3.83 kΩ  
3.83 kΩ  
3.83 kΩ  
3.83 kΩ  
3.83 kΩ  
3.83 kΩ  
3.83 kΩ  
3.83 kΩ  
3.83 kΩ  
24.9 kΩ  
24.9 kΩ  
24.9 kΩ  
24.9 kΩ  
24.9 kΩ  
24.9 kΩ  
24.9 kΩ  
6.49 kΩ  
6.49 kΩ  
6.49 kΩ  
6.49 kΩ  
6.49 kΩ  
6.49 kΩ  
6.49 kΩ  
6.49 kΩ  
6.49 kΩ  
6.49 kΩ  
6.49 kΩ  
6.49 kΩ  
6.49 kΩ  
6.49 kΩ  
36.5 kΩ  
36.5 kΩ  
36.5 kΩ  
36.5 kΩ  
36.5 kΩ  
36.5 kΩ  
36.5 kΩ  
RCFG1  
1.87 kΩ  
2.1 V  
RCFG2  
0 Ω  
511 Ω  
1.87 kΩ  
2.74 kΩ  
RCFG1  
2.74 kΩ  
2.2 V  
RCFG2  
0 Ω  
511 Ω  
1.87 kΩ  
2.74 kΩ  
RCFG1  
3.83 kΩ  
2.3 V  
RCFG2  
0 Ω  
511 Ω  
1.87 kΩ  
2.74 kΩ  
RCFG1  
5.11 kΩ  
2.4 V  
RCFG2  
0 Ω  
511 Ω  
1.87 kΩ  
2.74 kΩ  
RCFG1  
6.49 kΩ  
2.5 V  
RCFG2  
0 Ω  
511 Ω  
1.87 kΩ  
2.74 kΩ  
RCFG1  
8.25 kΩ  
2.6 V  
RCFG2  
0 Ω  
511 Ω  
1.87 kΩ  
2.74 kΩ  
RCFG1  
10.5 kΩ  
2.7 V  
RCFG2  
0 Ω  
511 Ω  
1.87 kΩ  
2.74 kΩ  
RCFG1  
13.3 kΩ  
2.8 V  
RCFG2  
0 Ω  
511 Ω  
1.87 kΩ  
2.74 kΩ  
RCFG1  
16.2 kΩ  
2.9 V  
RCFG2  
0 Ω  
511 Ω  
1.87 kΩ  
2.74 kΩ  
RCFG1  
20.5 kΩ  
3.0 V  
RCFG2  
0 Ω  
511 Ω  
1.87 kΩ  
2.74 kΩ  
RCFG1  
24.9 kΩ  
3.1 V  
RCFG2  
0 Ω  
511 Ω  
1.87 kΩ  
2.74 kΩ  
RCFG1  
30.1 kΩ  
3.2 V  
RCFG2  
0 Ω  
511 Ω  
1.87 kΩ  
1.87 kΩ  
16.2 kΩ  
2.74 kΩ  
RCFG1  
36.5 kΩ  
3.3 V  
RCFG2  
0 Ω  
511 Ω  
2.74 kΩ  
RCFG1  
0 Ω  
3.4 V  
RCFG2  
8.25 kΩ  
8.25 kΩ  
8.25 kΩ  
8.25 kΩ  
8.25 kΩ  
8.25 kΩ  
8.25 kΩ  
10.5 kΩ  
10.5 kΩ  
10.5 kΩ  
10.5 kΩ  
10.5 kΩ  
10.5 kΩ  
10.5 kΩ  
20.5 kΩ  
RCFG1  
511 Ω  
16.2 kΩ 20.5 kΩ  
1.15 kΩ  
16.2 kΩ 20.5 kΩ  
1.87 kΩ  
16.2 kΩ 20.5 kΩ  
2.74 kΩ  
16.2 kΩ 20.5 kΩ  
3.83 kΩ  
16.2 kΩ 20.5 kΩ  
5.11 kΩ  
16.2 kΩ 20.5 kΩ  
3.5 V  
RCFG2  
RCFG1  
3.6 V  
RCFG2  
RCFG1  
3.7 V  
RCFG2  
RCFG1  
3.8 V  
RCFG2  
RCFG1  
3.9 V  
RCFG2  
RCFG1  
4.0 V  
RCFG2  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS63901  
TPS63901  
www.ti.com.cn  
ZHCSNV8A DECEMBER 2021 REVISED JUNE 2022  
7-2. Input Current Limit and Output Voltage (SEL = High) Settings (continued)  
Input Current Limit  
Output Voltage VO(2)  
(SEL = HIGH)  
UNLIMITED  
8.25 kΩ  
8.25 kΩ  
8.25 kΩ  
8.25 kΩ  
8.25 kΩ  
8.25 kΩ  
8.25 kΩ  
8.25 kΩ  
8.25 kΩ  
100 mA  
10.5 kΩ  
10.5 kΩ  
10.5 kΩ  
10.5 kΩ  
10.5 kΩ  
10.5 kΩ  
10.5 kΩ  
10.5 kΩ  
10.5 kΩ  
50 mA  
13.3 kΩ  
13.3 kΩ  
13.3 kΩ  
13.3 kΩ  
13.3 kΩ  
13.3 kΩ  
13.3 kΩ  
13.3 kΩ  
13.3 kΩ  
25 mA  
10 mA  
5 mA  
2.5 mA  
30.1 kΩ  
30.1 kΩ  
30.1 kΩ  
30.1 kΩ  
30.1 kΩ  
30.1 kΩ  
30.1 kΩ  
30.1 kΩ  
30.1 kΩ  
1 mA  
RCFG1  
6.49 kΩ  
4.1 V  
RCFG2  
16.2 kΩ  
20.5 kΩ  
24.9 kΩ  
24.9 kΩ  
24.9 kΩ  
24.9 kΩ  
24.9 kΩ  
24.9 kΩ  
24.9 kΩ  
24.9 kΩ  
24.9 kΩ  
36.5 kΩ  
36.5 kΩ  
36.5 kΩ  
36.5 kΩ  
36.5 kΩ  
36.5 kΩ  
36.5 kΩ  
36.5 kΩ  
36.5 kΩ  
RCFG1  
8.25 kΩ  
4.2 V  
RCFG2  
16.2 kΩ  
20.5 kΩ  
RCFG1  
10.5 kΩ  
4.3 V  
RCFG2  
16.2 kΩ  
20.5 kΩ  
RCFG1  
13.3 kΩ  
4.4 V  
RCFG2  
16.2 kΩ  
20.5 kΩ  
RCFG1  
16.2 kΩ  
4.5 V  
RCFG2  
16.2 kΩ  
20.5 kΩ  
RCFG1  
20.5 kΩ  
4.6 V  
RCFG2  
16.2 kΩ  
20.5 kΩ  
RCFG1  
24.9 kΩ  
4.7 V  
RCFG2  
16.2 kΩ  
20.5 kΩ  
RCFG1  
30.1 kΩ  
4.8 V  
RCFG2  
16.2 kΩ  
20.5 kΩ  
RCFG1  
36.5 kΩ  
5.0 V  
RCFG2  
16.2 kΩ  
20.5 kΩ  
7-3 summarizes the resistor values needed to configure the device for different output voltage (SEL = low)  
settings. For correct operation, use resistors with a tolerance of ±1% or better and a temperature coefficient of  
better than ±200 ppm.  
7-3. Output Voltage (SEL Pin = Low) Settings  
Output Voltage VO(1)  
RCFG3  
(SEL = LOW)  
1.8 V  
2.0 V  
2.1 V  
2.2 V  
2.3 V  
2.4 V  
2.5 V  
2.6 V  
2.7 V  
2.8 V  
3.0 V  
3.3 V  
3.6 V  
4.0 V  
4.5 V  
5.0 V  
0 Ω  
511 Ω  
1.15 kΩ  
1.87 kΩ  
2.74 kΩ  
3.83 kΩ  
5.11 kΩ  
6.49 kΩ  
8.25 kΩ  
10.5 kΩ  
13.3 kΩ  
16.2 kΩ  
20.5 kΩ  
24.9 kΩ  
30.1 kΩ  
36.5 kΩ  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS63901  
 
TPS63901  
www.ti.com.cn  
ZHCSNV8A DECEMBER 2021 REVISED JUNE 2022  
7.3.7 SEL Pin  
The SEL pin selects which configuration bits control the output voltage.  
When SEL = high, the output voltage VO(2) is set.  
When SEL = low, the output voltage VO(1) is set.  
7.3.8 Short-Circuit Protection  
7.3.8.1 Current Limit Setting = 'Unlimited'  
The device has a built-in short circuit protection function to limit the current through Q1. The maximum current  
that flows is limited by the peak current limit. The output voltage decreases if the load is higher than the peak  
current limit. If the output voltage falls below 1.25 typically, the short circuit protection is activated. With short  
circuit protection activated, the input current is limited to 26 mA on average.  
The device automatically restarts to normal operation after the short condition is removed.  
7.3.8.2 Current Limit Setting = 1 mA to 100 mA  
The input current limiting function automatically limits current during a short-circuit condition. The device  
regulates the average input current for as long as the short-circuit condition exists. If the output voltage falls  
below 1.25 V typically, the short circuit protection is activated. For input current limit settings of 100 mA, 50 mA,  
and 25 mA, the short circuit protection limits the input current to 26 mA on average. For input current limit setting  
of 10 mA, 5 mA, 2.5 mA, and 1 mA, the short circuit protection limits the input current to slightly above the typical  
values for each setting. 7-4 shows the typical short circuit currents for each input current limit setting.  
The device automatically restarts to previous operation after the short condition is removed.  
7-4. Typical Input Current During Short Circuit Condition (VO < 1.25 V Typically) for All Input Current  
Limit Settings  
Input Current Limit Setting  
Typical Short Circuit Input Current  
1 mA  
2.5 mA  
5 mA  
1.2 mA  
2.8 mA  
5.2 mA  
12 mA  
26 mA  
26 mA  
26 mA  
26 mA  
10 mA  
25 mA  
50 mA  
100 mA  
Unlimited  
7.3.9 Thermal Shutdown  
The device has a thermal shutdown function that disables the device if it gets too hot for correct operation. When  
the device cools down, it automatically restarts operation after a typical delay of td(RESTART) = 10 ms. The device  
starts with the soft-start feature (see 7.3.3) and keeps the previously read CFG pin setting.  
7.4 Device Functional Modes  
The device has two functional modes: on and off. The device enters on mode when the voltage on the VIN pin is  
higher than the UVLO threshold and a high logic level is applied to the EN pin. The device enters off mode when  
the voltage on the VIN pin is lower than the UVLO threshold or a low logic level is applied to the EN pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS63901  
 
 
TPS63901  
www.ti.com.cn  
ZHCSNV8A DECEMBER 2021 REVISED JUNE 2022  
on  
EN pin = high &&  
VI > VIT+  
EN pin = low ||  
VI < VITœ  
off  
7-13. Device Functional Modes  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS63901  
 
TPS63901  
www.ti.com.cn  
ZHCSNV8A DECEMBER 2021 REVISED JUNE 2022  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The TPS63901 is a high-efficiency, non-inverting buck-boost converter with an extremely low quiescent current,  
suitable for applications that need a regulated output voltage from an input supply that can be higher or lower  
than the output voltage. The input current limit and output voltage are set through resistors connected to the  
three CFGx pins.  
8.2 Typical Application  
L1  
LX1  
LX2  
VO  
3.3 V, 400 mA  
1.8 V to 5.5 V  
VIN  
VOUT  
10 µF  
22 µF  
CFG1  
CFG2  
CFG3  
36.5 kΩ  
To/from  
system  
EN  
SEL  
GND  
8-1. 3.3-VOUT Typical Application  
8.2.1 Design Requirements  
The design guideline provides a component selection to operate the device within the Recommended Operating  
Conditions.  
8-1. Matrix of Output Capacitor and Inductor Combinations  
Nominal Output Capacitor Value [µF](2)  
Nominal Inductor  
Value [µH](1)  
10  
22  
47  
100  
300  
(3)  
(4)  
(5)  
2.2  
+
+
+
+
+
(1) Inductor tolerance and current derating is anticipated. The effective inductance can vary by 20% and 30%.  
(2) Capacitance tolerance and DC bias voltage derating is anticipated. The effective capacitance can vary by 20% and 50%.  
(3) Output voltage ripple increases versus typical application.  
(4) Typical application. Other check marks indicate possible filter combinations.  
(5) Start-up time increased  
8.2.2 Detailed Design Procedure  
The first step is the selection of the output filter components. To simplify this process, the Recommended  
Operating Conditions outlines minimum and maximum values for inductance and capacitance. Tolerance and  
derating must be taken into account when selecting nominal inductance and capacitance.  
8.2.2.1 Inductor Selection  
The inductor selection is affected by several parameters such as inductor ripple current, output voltage ripple,  
transition point into power save mode, and efficiency. See 8-2 for typical inductors.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS63901  
 
 
 
 
 
 
 
 
 
TPS63901  
www.ti.com.cn  
ZHCSNV8A DECEMBER 2021 REVISED JUNE 2022  
For high efficiencies, the inductor must have a low DC resistance to minimize conduction losses. Especially at  
high-switching frequencies, the core material has a high impact on efficiency. When using small chip inductors,  
the efficiency is reduced mainly due to higher inductor core losses, which needs to be considered when selecting  
the appropriate inductor. The inductor value determines the inductor ripple current. The larger the inductor value,  
the smaller the inductor ripple current and the lower the core and conduction losses of the converter. Conversely,  
larger inductor values cause a slower load transient response. To avoid saturation of the inductor, the peak  
current for the inductor in steady state operation is calculated using 方程式 5. Only the equation that defines the  
switch current in boost mode is shown because this provides the highest value of current and represents the  
critical current value for selecting the right inductor.  
V
- V  
IN  
OUT  
V
Duty Cycle Boost  
D =  
OUT  
(4)  
(5)  
Iout  
η ´ (1 - D)  
Vin ´ D  
IPEAK  
=
+
2 ´ f ´ L  
where  
D is duty cycle in boost mode.  
f is the converter switching frequency.  
L is the inductor value.  
ηis the estimated converter efficiency (use the number from the efficiency curves or 0.9 as an assumption).  
备注  
The calculation must be done for the minimum input voltage in boost mode.  
Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation  
current of the inductor needed. TI recommends choosing an inductor with a saturation current 20% higher than  
the value calculated using 方程5. Possible inductors are listed in 8-2.  
8-2. List of Recommended Inductors  
Inductor  
Size (L × W ×  
H mm)  
Saturation Current [A]  
Part Number  
Manufacturer  
DCR [mΩ]  
Value [µH](1)  
2.2  
2.2  
2.2  
2.2  
2.2  
3.5  
1.7  
3.3  
2.4  
2.0  
21  
72  
XFL4020-222ME  
SRN3015TA-2R2M  
DFE252012F-2R2M  
DFE201612E-2R2M  
DFE201210U-2R2M  
Coilcraft  
Bourns  
Murata  
Murata  
Murata  
4 × 4 × 2  
3 × 3 × 1.5  
82  
2.5 × 2 × 1.2  
2.0 × 1.6 × 1.2  
2.0 × 1.2 × 1.0  
116  
190  
(1) See the Third-party Products Disclaimer.  
8.2.2.2 Output Capacitor Selection  
For the output capacitor, use of small ceramic capacitors placed as close as possible to the VOUT and GND pins  
of the IC is recommended. The recommended nominal output capacitor value is a single 22 µF. If, for any  
reason, the application requires the use of large capacitors, which cannot be placed close to the IC, use a  
smaller ceramic capacitor in parallel to the large capacitor. The small capacitor must be placed as close as  
possible to the VOUT and GND pins of the IC.  
It is important that the effective capacitance is given according to the recommended value in the Recommended  
Operating Conditions. In general, consider DC bias effects resulting in less effective capacitance. The choice of  
the output capacitance is mainly a trade-off between size and transient behavior as higher capacitance reduces  
transient response overshoot and undershoot and increases transient response time. Possible output capacitors  
are listed in 8-3.  
There is no upper limit for the output capacitance value.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS63901  
 
 
 
TPS63901  
www.ti.com.cn  
ZHCSNV8A DECEMBER 2021 REVISED JUNE 2022  
At light load currents, the output voltage ripple is dependent on the output capacitor value. Larger output  
capacitors reduce the output voltage ripple. The leakage current of the output capacitor adds to the overall  
quiescent current.  
8-3. List of Recommended Capacitors  
Capacitor Value  
Voltage Rating [V]  
Part Number  
Manufacturer  
Size (Metric)  
[µF](1)  
22  
6.3  
6.3  
6.3  
GRM187R60J226ME15  
GRM219R60J476ME44  
GRM188R60J476ME15  
Murata  
Murata  
Murata  
0603 (1608)  
0805 (3210)  
0603 (1608)  
22  
47  
(1) See the Third-party Products Disclaimer.  
8.2.2.3 Input Capacitor Selection  
A 10-µF input capacitor is recommended to improve line transient behavior of the regulator and EMI behavior of  
the total power supply circuit. An X5R or X7R ceramic capacitor placed as close as possible to the VIN and GND  
pins of the IC is recommended. This capacitance can be increased without limit. If the input supply is located  
more than a few inches from the TPS63901 converter, additional bulk capacitance can be required in addition to  
the ceramic bypass capacitors. An electrolytic or tantalum capacitor with a value of 47 µF is a typical choice.  
When operating from a high impedance source, a larger input buffer capacitor is recommended to avoid voltage  
drops during start-up and load transients.  
The input capacitor can be increased without any limit for better input voltage filtering. The leakage current of the  
input capacitor adds to the overall quiescent current.  
8-4. List of Recommended Capacitors  
Capacitor Value  
Voltage Rating [V]  
Part Number  
Manufacturer  
Size (Metric)  
[µF](1)  
10  
6.3  
10  
GRM188R60J106ME47  
GRM188R61A106ME69  
GRM187R60J226ME15  
Murata  
Murata  
Murata  
0603 (1608)  
0603 (1608)  
0603 (1608)  
10  
22  
6.3  
(1) See the Third-party Products Disclaimer.  
8.2.2.4 Setting The Output Voltage  
The output voltage is set with the CFGx pins (see 7.3.6).  
8.2.3 Application Curves  
8-5. Components for Application Characteristic Curves for VOUT = 3.3 V  
Reference(1)  
Description(2)  
Part Number  
Manufacturer  
400-mA ultra low IQ buck-boost converter (1.5  
mm × 1.15 mm)  
U1  
TPS63901YCJ  
Texas Instruments  
L1  
C1  
DFE252012F-2R2M  
GRM188R60J106ME47  
GRM187R60J226ME15  
Standard  
Murata  
Murata  
2.2 µH, 2.5 mm × 2 mm 3.3 A, 82 mΩ  
10 µF, 0603, ceramic capacitor, ±20%, 6.3 V  
22 µF, 0603, ceramic capacitor, ±20%, 6.3 V  
36.5 k, 0603 resistor, 1%, 100 mW  
0 , 0603 resistor, 1%, 100 mW  
C2  
Murata  
CFG1  
CFG2  
CFG3  
Standard  
Standard  
Standard  
Standard  
Standard  
0 , 0603 resistor, 1%, 100 mW  
(1) See the Third-Party Products Discalimer  
(2) For other output voltages, refer to 8-1 for resistor values.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS63901  
 
 
 
 
 
TPS63901  
www.ti.com.cn  
ZHCSNV8A DECEMBER 2021 REVISED JUNE 2022  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
VI = 1.8 V  
VI = 2.5 V  
VI = 3.0 V  
VI = 3.3 V  
VI = 3.6 V  
VI = 5.0 V  
VI = 1.8 V  
VI = 2.5 V  
VI = 3.0 V  
VI = 3.3 V  
VI = 3.6 V  
VI = 5.0 V  
1 µ  
10 µ  
100 µ  
1 m  
10 m  
0.1  
1
1 µ  
10 µ  
100 µ  
1 m  
10 m  
0.1  
1
Output Current (A)  
Output Current (A)  
VO = 1.8 V  
TA = 25°C  
VO = 3.3 V  
TA = 25°C  
8-2. Efficiency vs Output Current  
8-3. Efficiency vs Output Current  
1.2  
1.1  
1
100  
90  
80  
70  
60  
50  
40  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
VI = 1.8 V  
VI = 2.5 V  
VI = 3.0 V  
VI = 3.3 V  
VI = 3.6 V  
VI = 5.0 V  
Vo=1.8V  
Vo=2.5V  
Vo=3.3V  
Vo=3.6V  
Vo=5.0V  
1.8  
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
1 µ  
10 µ  
100 µ  
1 m  
10 m  
0.1  
1
Input Voltage(V)  
Output Current (A)  
TA = 25°C  
VO = 5.0 V  
TA = 25°C  
8-5. Typical Output Current Capability vs Input  
8-4. Efficiency vs Output Current  
Voltage  
2000000  
1000000  
2000000  
1000000  
100000  
10000  
1000  
VO = 1.8 V  
VO = 2.5 V  
VO = 3.3 V  
VO = 3.6 V  
VO = 5.0 V  
VO = 1.8 V  
VO = 2.5 V  
VO = 3.3 V  
VO = 3.6 V  
VO = 5.0 V  
100000  
10000  
1000  
100  
100  
10  
2
10  
2
1E-6  
1E-5  
0.0001  
0.001  
IO (A)  
0.01  
0.10.2 0.5  
1E-6  
1E-5  
0.0001  
0.001  
IO (A)  
0.01  
0.10.2 0.5  
VI = 3.3 V  
TA = 25°C  
VI = 2.0 V  
TA = 25°C  
8-6. Typical Burst Switching Frequency vs  
8-7. Typical Burst Switching Frequency vs  
Output Current  
Output Current  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS63901  
TPS63901  
www.ti.com.cn  
ZHCSNV8A DECEMBER 2021 REVISED JUNE 2022  
2000000  
1000000  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
VO = 1.8 V  
VO = 2.5 V  
VO = 3.3 V  
VO = 3.6 V  
VO = 5.0 V  
VO = 1.8 V  
VO = 2.5 V  
VO = 3.3 V  
VO = 3.6 V  
VO = 5.0 V  
100000  
10000  
1000  
100  
10  
2
1E-6  
1E-5  
0.0001  
0.001  
IO (A)  
0.01  
0.10.2 0.5  
1  
10   
100   
1 m  
10 m  
0.1  
Output Current (A)  
VI = 5.2 V  
TA = 25°C  
VI = 3.3 V  
TA = 25°C  
8-8. Typical Burst Switching Frequency vs  
8-9. Output Voltage Ripple  
Output Current  
0.08  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
VO = 1.8 V  
VO = 2.5 V  
VO = 3.3 V  
VO = 3.6 V  
VO = 5.0 V  
VO = 1.8 V  
VO = 2.5 V  
VO = 3.3 V  
VO = 3.6 V  
VO = 5.0 V  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
1   
10   
100   
1 m  
10 m  
TA = 25°C  
0.1  
1   
10   
100   
1 m  
10 m  
TA = 25°C  
0.1  
Output Current (A)  
Output Current (A)  
VI = 4.4 V  
VI = 5.2 V  
8-10. Output Voltage Ripple  
8-11. Output Voltage Ripple  
0.3  
0.1  
1.6  
1.2  
0.8  
0.4  
0
VO= 1.8V  
VO= 2.5V  
VO= 3.3V  
VO= 3.6V  
VO= 5.0V  
VO= 1.8V  
VO= 2.5V  
VO= 3.3V  
VO= 3.6V  
VO= 5.0V  
-0.1  
-0.3  
-0.5  
-0.7  
-0.9  
-1.1  
-0.4  
-0.8  
0
0.1  
0.2  
0.3  
TA = 25°C  
0.4  
1.8  
2.2  
2.6  
3
3.4  
3.8  
4.2  
4.6  
5
Output Current (A)  
Input Voltage (V)  
VI = 3.3 V  
VI = 1.8 V to 5.0 V  
Load = 1 mA, TA = 25°C  
8-12. Load Regulation  
8-13. Line Regulation  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS63901  
TPS63901  
www.ti.com.cn  
ZHCSNV8A DECEMBER 2021 REVISED JUNE 2022  
LX2  
1.0V/div  
Vout  
1.0V/div  
Vout  
1.0V/div  
LX1  
1.0V/div  
LX2  
LX1  
1.0V/div  
1.0V/div  
IL  
IL  
100mA/div  
100mA/div  
Time Scale 200ns/div  
Time Scale 200ns/div  
VI = 3.3 V, VO = 3.3 V  
No load  
VI = 1.8 V, VO = 3.3 V  
No load  
8-15. Switching Waveforms, Buck-Boost  
8-14. Switching Waveforms, Boost Operation  
Operation  
Vout  
1.0V/div  
LX2  
LX1  
1.0V/div  
1.0V/div  
VIN  
1V/div  
VOUT 3.3V o set  
50mV/div  
IL  
100mA/div  
Time Scale 1ms/div  
Time Scale 200ns/div  
VI = 2.5 V to 4.2 V, VO = 3.3 V Load = 200-mA resistive load  
8-17. Line Transient, 200-mA Load  
VI = 4.0 V, VO = 3.3 V  
No load  
8-16. Switching Waveforms, Buck Operation  
Iout  
100mA/div  
VIN  
1V/div  
Vout 3.3V o set  
100mV/div  
VOUT 3.3V o set  
50mV/div  
Time Scale 1ms/div  
Time Scale 100μs/div  
VI = 2.5 V to 4.2 V, VO = 3.3 V Load = 400-mA resistive load  
8-18. Line Transient, 400-mA Load  
VI = 2.7 V, VO = 3.3 V  
Load = 0 mA to 300 mA, tr/tf =  
2 μs  
8-19. Load Transient, 300-mA Step  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS63901  
TPS63901  
www.ti.com.cn  
ZHCSNV8A DECEMBER 2021 REVISED JUNE 2022  
Iout  
100mA/div  
Iout  
100mA/div  
Vout 3.3V o set  
100mV/div  
Vout 3.3V o set  
100mV/div  
Time Scale 100μs/div  
Time Scale 100μs/div  
VI = 3.3 V, VO = 3.3 V  
Load = 0 mA to 300 mA, tr/tf =  
2 μs  
VI = 4.2 V, VO = 3.3 V  
Load = 0 mA to 300 mA, tr/tf =  
2 μs  
8-20. Load Transient, 300-mA Step  
8-21. Load Transient, 300-mA Step  
VIN  
1V/div  
Iout  
100mA/div  
EN  
2V/div  
VOUT  
1V/div  
Vout 3.3V o set  
100mV/div  
IL  
400mA/div  
Time Scale 100μs/div  
Time Scale 500 s/div  
VI = 3.3 V, VO = 3.3 V  
10-μA resistive load  
VI = 5.5 V, VO = 3.3 V  
Load = 0 mA to 300 mA, tr/tf =  
2 μs  
8-23. Start-Up Behavior from Rising Enable  
8-22. Load Transient, 300-mA Step  
VIN  
1V/div  
VIN  
1V/div  
EN  
2V/div  
EN  
2V/div  
VOUT  
1V/div  
VOUT  
1V/div  
IL  
400mA/div  
Iin  
100mA/div  
Time Scale 2ms/div  
Time Scale 500 s/div  
VI = 3.3 V, VO = 3.3 V  
100-mA resistive load  
VI = 3.3 V, VO = 3.3 V  
CI = 32 μF, CO = 300 μF  
8-24. Start-Up Behavior from Rising Enable  
8-25. Start-Up with 100-mA ICL  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS63901  
TPS63901  
www.ti.com.cn  
ZHCSNV8A DECEMBER 2021 REVISED JUNE 2022  
VIN  
1V/div  
EN  
VOUT  
2V/div  
1V/div  
VIN  
1V/div  
VOUT  
1V/div  
IL  
400mA/div  
Iin  
50mA/div  
Time Scale 20 s/div  
VI = 1.8 V, VO = 3.3 V  
Time Scale 2ms/div  
TA = 25°C  
VI = 3.3 V, VO = 3.3 V  
CI = 32 μF, CO = 300 μF  
8-27. Short Circuit Behavior  
8-26. Start-Up with 50-mA ICL  
VIN  
1V/div  
VIN  
1V/div  
VOUT  
1V/div  
VOUT  
1V/div  
IL  
400mA/div  
IL  
400mA/div  
Time Scale 20 s/div  
VI = 3.3 V, VO = 3.3 V  
Time Scale 20 s/div  
VI = 5.0 V, VO = 3.3 V  
TA = 25°C  
TA = 25°C  
8-28. Short Circuit Behavior  
8-29. Short Circuit Behavior  
VIN  
1V/div  
VIN  
1V/div  
SEL  
2V/div  
SEL  
2V/div  
VOUT 2.0V o set  
400mV/div  
VOUT 2.0V o set  
400mV/div  
Time Scale 2ms/div  
Time Scale 2ms/div  
VI = 3.3 V, VO(1) = 2.2 V, VO(2)  
3.6 V  
=
VI = 3.3 V, VO(1) = 2.2 V, VO(2)  
3.6 V  
=
0.1-mA resistive load  
400-mA resistive load  
8-30. DVS Behavior at Light Load  
8-31. DVS Behavior at High Load  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS63901  
TPS63901  
www.ti.com.cn  
ZHCSNV8A DECEMBER 2021 REVISED JUNE 2022  
9 Power Supply Recommendations  
The TPS63901 device is designed to operate with input supplies from 1.8 V to 5.5 V. The input supply must be  
stable and free of noise to achieve the full performance of the device. If the input supply is located more than a  
few centimeters away from the device, additional bulk capacitance can be required. The input capacitance  
shown in the application schematics in this data sheet is sufficient for typical applications.  
10 Layout  
10.1 Layout Guidelines  
PCB layout is an important part of any switching power supply design. A poor layout can cause unstable  
operation, load regulation problems, increased ripple and noise, and EMI issues.  
The following PCB layout design guidelines are recommended:  
Place the input and output capacitors close to the device.  
Minimize the area of the input loop, and use short, wide traces on the top layer to connect the input capacitor  
to the VIN and GND pins.  
Minimize the area of the output loop, and use short, wide traces on the top layer to connect the output  
capacitor to the VOUT and GND pins.  
The location of the inductor on the PCB is less important than the location of the input and output capacitors.  
Place the inductor after the input and output capacitors have been placed close to the device. Route the  
traces to the inductor on an inner layer if necessary.  
10.2 Layout Example  
10-1 shows an example of a PCB layout that follows the recommendations of the previous section.  
VIN  
VOUT  
GND  
GND  
L
10-1. PCB Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS63901  
 
 
 
 
 
TPS63901  
www.ti.com.cn  
ZHCSNV8A DECEMBER 2021 REVISED JUNE 2022  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, TPS63901 EVM User Guide  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS63901  
 
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Jul-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS63901YCJR  
ACTIVE  
DSBGA  
YCJ  
12  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
-40 to 125  
3901  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
YCJ0012  
DSBGA - 0.35 mm max height  
SCALE 12.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
CORNER  
D
0.35 MAX  
C
SEATING PLANE  
0.05 C  
BALL TYP  
0.125  
0.075  
0.7 TYP  
SYMM  
D
C
1.05  
TYP  
SYMM  
D: Max = 1.49 mm, Min = 1.43 mm  
E: Max = 1.14 mm, Min = 1.08 mm  
B
A
0.35  
TYP  
1
2
3
0.195  
0.155  
12X  
0.35 TYP  
0.015  
C A B  
4224964/A 04/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YCJ0012  
DSBGA - 0.35 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35) TYP  
12X ( 0.18)  
1
2
3
A
(0.35) TYP  
B
C
SYMM  
D
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 50X  
0.0325 MIN  
0.0325 MAX  
METAL UNDER  
SOLDER MASK  
(
0.18)  
METAL  
EXPOSED  
METAL  
(
0.18)  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
(PREFERRED)  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4224964/A 04/2019  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YCJ0012  
DSBGA - 0.35 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35) TYP  
(R0.05) TYP  
3
12X ( 0.21)  
1
2
A
(0.35) TYP  
B
C
SYMM  
METAL  
TYP  
D
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 mm THICK STENCIL  
SCALE: 50X  
4224964/A 04/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS63901YCJR

具有纳安级 Iq 的 400mA 降压/升压转换器 | YCJ | 12 | -40 to 125
TI

TPS64200

SOT23 STEP DOWN CONTROLLER
TI

TPS64200DBVR

SOT23 STEP DOWN CONTROLLER
TI

TPS64200DBVRG4

SOT23 STEP-DOWN CONTROLLER
TI

TPS64200DBVT

SOT23 STEP-DOWN CONTROLLER
TI

TPS64200DBVTG4

SOT23 STEP-DOWN CONTROLLER
TI

TPS64201

SOT23 STEP DOWN CONTROLLER
TI

TPS64201DBVR

SOT23 STEP DOWN CONTROLLER
TI

TPS64201DBVRG4

SOT23 STEP-DOWN CONTROLLER
TI

TPS64201DBVT

SOT23 STEP-DOWN CONTROLLER
TI

TPS64201DBVTG4

SOT23 STEP-DOWN CONTROLLER
TI

TPS64202

SOT23 STEP DOWN CONTROLLER
TI