TPS62315YZ [TI]

500-mA, 3-MHz SYNCHRONOUS STEP-DOWN CONVERTER IN CHIP SCALE PACKAGING; 500毫安, 3 MHz的同步降压转换器芯片级封装
TPS62315YZ
型号: TPS62315YZ
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

500-mA, 3-MHz SYNCHRONOUS STEP-DOWN CONVERTER IN CHIP SCALE PACKAGING
500毫安, 3 MHz的同步降压转换器芯片级封装

转换器 稳压器 开关式稳压器或控制器 电源电路 开关式控制器
文件: 总37页 (文件大小:1393K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS62300, TPS62301, TPS62302  
TPS62303, TPS62304, TPS62305,  
CSP-8  
QFN-10  
TPS62311, TPS62313, TPS62315, TPS62320, TPS62321  
www.ti.com  
SLVS528EJULY 2004REVISED NOVEMBER 2007  
500-mA, 3-MHz SYNCHRONOUS STEP-DOWN CONVERTER  
IN CHIP SCALE PACKAGING  
1
FEATURES  
234  
Up to 93% Efficiency at 3-MHz Operation  
DESCRIPTION  
Up to 500-mA Output Current at VI = 2.7 V  
3-MHz Fixed Frequency Operation  
The TPS623xx device is  
a
high-frequency  
synchronous step-down dc-dc converter optimized for  
battery-powered portable applications. Intended for  
low-power applications, the TPS623xx supports up to  
500-mA load current and allows the use of tiny, low  
cost chip inductor and capacitors.  
Best in Class Load and Line Transient  
Complete 1-mm Component Profile Solution  
-0.5% / +1.3% PWM DC Voltage Accuracy Over  
Temperature  
The device is ideal for mobile phones and similar  
portable applications powered by a single-cell Li-Ion  
battery or by 3-cell NiMH/NiCd batteries. With an  
output voltage range from 5.4 V down to 0.6 V, the  
device supports the low-voltage TMS320™ DSP  
family, processors in smart-phones, PDAs as well as  
notebooks, and handheld computers.  
35-ns Minimum On-Time  
Power-Save Mode Operation at Light Load  
Currents  
Fixed and Adjustable Output Voltage  
Only 86-µA Quiescent Current  
100% Duty Cycle for Lowest Dropout  
The TPS62300 operates at 3-MHz fixed switching  
frequency and enters the power-save mode operation  
at light load currents to maintain high efficiency over  
the entire load current range. For low noise  
applications, the device can be forced into fixed  
frequency PWM mode by pulling the MODE/SYNC  
pin high. The device can also be synchronized to an  
external clock signal in the range of 3 MHz. In the  
shutdown mode, the current consumption is reduced  
to less than 1 µA.  
Synchronizable On the Fly to External  
Clock Signal  
Integrated Active Power-Down Sequencing  
(TPS6232x only)  
Available in a 10-Pin QFN (3 x 3 mm), 8-Pin  
NanoFree™, and NanoStar™ (CSP) Packaging  
APPLICATIONS  
Cell Phones, Smart-Phones  
WLAN and Bluetooth™ Applications  
Micro DC-DC Converter Modules  
PDAs, Pocket PCs  
USB-Based DSL Modems  
Digital Cameras  
The TPS623xx is available in a 10-pin leadless  
package (3 x 3 mm QFN) and an 8-pin chip-scale  
package (CSP).  
100  
V = 3.6 V,  
I
90  
80  
70  
60  
50  
40  
30  
20  
V
= 1.8 V  
O
TPS62303YZD  
L1  
2.7 V . . 6 V  
V
A2  
B2  
B1  
D1  
C2  
D2  
O
VIN  
EN  
SW  
1.8 V/500 mA  
V
C2  
1 µH  
I
C1  
VOUT  
4.7 µF  
C1  
A1  
4.7 µF  
MODE/SYNC  
GND  
ADJ  
FB  
L = 2.2 µH,  
Figure 1. Smallest Solution Size Application  
(Fixed Output Voltage)  
10  
0
C
O
= 4.7 µF  
0.1  
1
10  
100  
1 k  
I
− Load Current − mA  
O
Figure 2. Efficiency vs Load Current  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
4
NanoFree, NanoStar, TMS320 are trademarks of Texas Instruments.  
Bluetooth is a trademark of Bluetooth SIG, Inc.  
PowerPAD is a trademark of Texas Instsruments.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2004–2007, Texas Instruments Incorporated  
TPS62300, TPS62301, TPS62302  
TPS62303, TPS62304, TPS62305,  
TPS62311, TPS62313, TPS62315, TPS62320, TPS62321  
www.ti.com  
SLVS528EJULY 2004REVISED NOVEMBER 2007  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
ORDERING INFORMATION  
PART  
NUMBER  
OUTPUT  
VOLTAGE  
UNDERVOLTAGE  
LOCKOUT  
PACKAGE  
MARKING  
TA  
PACKAGE  
ORDERING(1)(2)  
2.4 V  
2.4 V  
2.4 V  
2.4 V  
2.4 V  
2.4 V  
2.4 V  
2.4 V  
2.4 V  
2.4 V  
2.4 V  
2.4 V  
2 V  
QFN-10  
CSP-8  
QFN-10  
CSP-8  
QFN-10  
CSP-8  
QFN-10  
CSP-8  
QFN-10  
CSP-8  
QFN-10  
CSP-8  
CSP-8  
CSP-8  
CSP-8  
QFN-10  
CSP-8  
CSP-8  
QFN-10  
CSP-8  
CSP-8  
TPS62300DRC  
TPS62300YZD  
TPS62301DRC  
TPS62301YZD  
TPS62302DRC  
TPS62302YZD  
TPS62303DRC  
TPS62303YZD  
TPS62304DRC  
TPS62304YZD  
TPS62305DRC  
TPS62305YZD  
TPS62311YZD  
TPS62313YZD  
TPS62315YZ  
AMN  
N/A  
TPS62300  
TPS62301  
TPS62302  
TPS62303  
TPS62304  
TPS62305  
Adjustable  
1.5 V  
AMO  
N/A  
AMQ  
N/A  
1.6 V  
AMR  
N/A  
1.8 V  
AMS  
N/A  
1.2 V  
-40°C to 85°C  
ANU  
N/A  
1.875 V  
TPS62311  
TPS62313  
TPS62315  
1.5 V  
1.8 V  
N/A  
2 V  
N/A  
1.875 V  
2 V  
N/A  
2.4 V  
2.4 V  
2.4 V  
2.4 V  
2.4 V  
2.4 V  
TPS62320DRC  
TPS62320YZD  
TPS62320YED  
TPS62321DRC  
TPS62321YZD  
TPS62321YED  
AMX  
N/A  
TPS62320  
TPS62321  
Adjustable  
1.5 V  
N/A  
AMY  
N/A  
N/A  
(1) The YZD, YED and YZ packages are available in tape and reel. Add a R suffix (e.g. TPS62300YxDR) to order quantities of 3000 parts.  
Add a T suffix (e.g. TPS62300YxDT) to order quantities of 250 parts. The DRC package is available in tape and reel. Add a R suffix  
(e.g. TPS62300DRCR) to order quantities of 3000 parts.  
(2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
2
Submit Documentation Feedback  
Copyright © 2004–2007, Texas Instruments Incorporated  
Product Folder Link(s): TPS62300, TPS62301, TPS62302 TPS62303, TPS62304, TPS62305, TPS62311, TPS62313,  
TPS62315, TPS62320, TPS62321  
TPS62300, TPS62301, TPS62302  
TPS62303, TPS62304, TPS62305,  
TPS62311, TPS62313, TPS62315, TPS62320, TPS62321  
www.ti.com  
SLVS528EJULY 2004REVISED NOVEMBER 2007  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
UNIT  
-0.3 V to 7 V  
-0.3 V to 7 V  
-0.3 V to 3.6 V  
-0.3 V to VI + 0.3 V  
0.3 V to 5.4 V  
500 mA  
Voltage at VIN, AVIN(2)  
(2)  
Voltage at SW  
VI  
Voltage at FB, ADJ  
(2)  
Voltage at EN, MODE/SYNC  
Voltage at VOUT(2)  
IO  
Continuous output current  
Power dissipation  
Internally limited  
-40°C to 85°C  
150°C  
TA  
Operating temperature range  
TJ (max) Maximum operating junction temperature  
Tstg  
Storage temperature range  
-65°C to 150°C  
2 kV  
Human body model at AVIN, FB, ADJ, EN, MODE_SYNC, VOUT  
Human body model at VIN, SW  
ESD  
rating(3)  
1 kV  
Charge device model  
1.5 kV  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
(3) The human body model is a 100-pF capacitor discharged through a 1.5-kresistor into each pin.  
Copyright © 2004–2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): TPS62300, TPS62301, TPS62302 TPS62303, TPS62304, TPS62305, TPS62311, TPS62313,  
TPS62315, TPS62320, TPS62321  
TPS62300, TPS62301, TPS62302  
TPS62303, TPS62304, TPS62305,  
TPS62311, TPS62313, TPS62315, TPS62320, TPS62321  
www.ti.com  
SLVS528EJULY 2004REVISED NOVEMBER 2007  
DISSIPATION RATINGS(1)  
POWER RATING  
DERATING FACTOR  
(2)  
PACKAGE  
RθJA  
FOR TA25°C  
2050 mW  
400 mW  
ABOVE TA = 25°C  
21 mW/°C  
4 mW/°C  
DRC  
YZD  
YED  
YZ  
49°C/W  
250°C/W  
250°C/W  
250°C/W  
400 mW  
4 mW/°C  
400 mW  
4 mW/°C  
(1) Maximum power dissipation is a function of TJ(max), θJA and TA. The maximum allowable power dissipation at any allowable ambient  
temperature is PD = [TJ(max)-TA] / θJA  
(2) This thermal data is measured with low-K board (1 layer board according to JESD51-7 JEDEC standard).  
ELECTRICAL CHARACTERISTICS  
VI = 3.6 V, VO = 1.6 V, EN = VI, MODE/SYNC = GND, L = 1 µH, CO = 10 µF, TA = -40°C to 85°C, typical values are at  
TA = 25°C (unless otherwise noted)  
PARAMETER  
SUPPLY CURRENT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VI  
Input voltage range  
2.7  
6
105  
120  
V
TPS6230x  
TPS6232x  
IO = 0 mA. PFM mode enabled, device not switching  
IO = 0 mA. PFM mode enabled, device not switching  
86  
86  
µA  
µA  
Operating  
quiescent  
current  
TPS6231x  
IQ  
TPS6230x  
TPS6231x  
TPS6232x  
IO = 0 mA. Switching with no load  
(MODE/SYNC = VIN)  
3.6  
mA  
I(SD)  
Shutdown current  
EN = GND  
0.1  
2.40  
2.00  
1
2.55  
2.20  
µA  
V
TPS6230x  
TPS6232x  
Undervoltage  
lockout threshold  
UVLO  
TPS6231x  
V
ENABLE, MODE/SYNC  
V(EN)  
EN high-level input voltage  
1.2  
1.3  
V
V
V(MODE/SYNC)  
MODE/SYNC high-level input voltage  
V(EN)  
V(MODE/SYNC)  
,
EN, MODE/SYNC low-level input  
voltage  
0.4  
1
V
I(EN)  
,
EN, MODE/SYNC input leakage  
current  
EN, MODE/SYNC = GND or VIN  
0.01  
µA  
I(MODE/SYNC)  
POWER SWITCH  
TPS6230x  
TPS6231x  
TPS6232x  
VI = V(GS) = 3.6 V  
VI = V(GS) = 2.8 V  
420  
520  
750  
m  
mΩ  
P-channel MOSFET  
on resistance  
rDS(on)  
1000  
Ilkg  
P-channel leakage current, PMOS  
N-channel MOSFET on resistance  
V(DS) = 6 V  
1
750  
µA  
mΩ  
mΩ  
VI = V(GS) = 3.6 V  
VI = V(GS) = 2.8 V  
330  
400  
rDS(on)  
1000  
Discharge resistor for power-down  
sequence (TPS6232x only)  
R(DIS)  
Ilkg  
30  
50  
N-channel leakage current, NMOS  
P-MOS current limit  
V(DS) = 6 V  
1
890  
µA  
mA  
mA  
mA  
2.7 V VI 6 V  
2.7 V VI 6 V  
2.7 V VI 6 V  
670  
550  
780  
720  
N-MOS current limit - sourcing  
N-MOS current limit - sinking  
890  
–460  
–600  
–740  
Input current limit under short-circuit  
conditions  
VO = 0 V  
390  
mA  
Thermal shutdown  
150  
20  
°C  
°C  
Thermal shutdown hysteresis  
4
Submit Documentation Feedback  
Copyright © 2004–2007, Texas Instruments Incorporated  
Product Folder Link(s): TPS62300, TPS62301, TPS62302 TPS62303, TPS62304, TPS62305, TPS62311, TPS62313,  
TPS62315, TPS62320, TPS62321  
TPS62300, TPS62301, TPS62302  
TPS62303, TPS62304, TPS62305,  
TPS62311, TPS62313, TPS62315, TPS62320, TPS62321  
www.ti.com  
SLVS528EJULY 2004REVISED NOVEMBER 2007  
ELECTRICAL CHARACTERISTICS (continued)  
VI = 3.6 V, VO = 1.6 V, EN = VI, MODE/SYNC = GND, L = 1 µH, CO = 10 µF, TA = -40°C to 85°C, typical values are at  
TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OSCILLATOR  
fSW  
Oscillator frequency  
2.65  
2.65  
20%  
3
3.35  
3.35  
80%  
MHz  
MHz  
f(SYNC)  
Synchronization range  
Duty cycle of external clock signal  
OUTPUT  
Adjustable output  
voltage range  
TPS62300  
TPS62320  
VO  
0.6  
5.4  
V
V
Regulated feedback  
voltage  
TPS62300  
TPS62320  
V(FB)  
0.4  
1.5  
35  
DC power train amplification  
(VO/V(ADJ)  
A(PT)  
1.496  
1.504  
)
Minimum on-time (P-channel  
MOSFET)  
ton(MIN)  
ns  
Resistance into VOUT sense pin  
Resistance into ADJ pin  
700  
700  
1000  
1000  
kΩ  
kΩ  
V(FB) > 0.4 V  
V(FB) = 0.4 V  
1300  
Feedback input bias  
current  
TPS62300  
TPS62320  
I(FB)  
1
nA  
Adjustable output  
voltage(1)  
TPS62300  
TPS62320  
–2%  
–2%  
+2%  
+2%  
TPS6230x  
TPS62311  
TPS62313  
TPS6232x  
2.7 V VI 6 V, 0 mA IO(DC) 500 mA  
PFM/PWM mode operation  
Fixed output voltage  
TPS62304  
-2%  
+2.5%  
+2.7%  
TPS62305  
TPS62315  
–2%  
TA = 25°C  
–0.5%  
–0.5%  
–0.5%  
+1.3%  
+1.3%  
+1.3%  
Adjustable output  
TPS62300  
VO  
voltage dc accuracy(1) TPS62320  
–40°C TA 85°C  
TPS6230x  
TPS62311  
TA = 25°C  
TPS62313  
TPS6232x  
–40°C TA 85°C  
–0.5%  
+1.3%  
PWM mode operation,  
VI = 3.6 V, No Load  
Fixed output voltage  
dc accuracy  
TA = 25°C  
-0.5%  
-0.5%  
–0.3%  
–0.5%  
+1.8%  
+1.8%  
+1.7%  
+2%  
TPS62304  
–40°C TA 85°C  
TA = 25°C  
TPS62305  
TPS62315  
–40°C TA 85°C  
DC output voltage load regulation  
IO = 0 mA to 500 mA, MODE/SYNC = VI  
–0.001  
–0.002  
%/mA  
%/mA  
DC output voltage load regulation  
(power train in direct drive mode)  
V(ADJ) externally forced to 1.067 V,  
IO = 0 mA to 500 mA, MODE/SYNC = VI  
–0.0003 –0.0006  
VI = VO + 0.5 V (min 2.7 V) to  
6 V, IO = 100 mA, MODE/SYNC = VI  
DC output voltage line regulation  
0.11  
0.2  
%/V  
%/V  
V(ADJ) externally forced to 1.067 V,  
VI = VO + 0.5 V (min 2.7 V) to 6 V  
IO = 100 mA, MODE/SYNC = VI  
DC output voltage line regulation  
(power train in direct drive mode)  
0.035  
0.1  
Integrator slew rate  
100  
150  
0.025 VO  
250  
200  
µV/µs  
VP-P  
µs  
ΔVO  
Power-save mode ripple voltage  
Start-up time  
IO = 1 mA, MODE/SYNC = GND  
IO = 200 mA, Time from active EN to VO  
VI > VO, 0 V V(SW) VIN, EN = GND  
VI = open, V(SW) = 6 V, EN = GND  
Leakage current into SW pin  
Reverse leakage current into SW pin  
0.1  
1
1
Ilkg  
µA  
0.1  
(1) Output voltage specification for the adjustable version does not include tolerance of external voltage programming resistors.  
Copyright © 2004–2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): TPS62300, TPS62301, TPS62302 TPS62303, TPS62304, TPS62305, TPS62311, TPS62313,  
TPS62315, TPS62320, TPS62321  
TPS62300, TPS62301, TPS62302  
TPS62303, TPS62304, TPS62305,  
TPS62311, TPS62313, TPS62315, TPS62320, TPS62321  
www.ti.com  
SLVS528EJULY 2004REVISED NOVEMBER 2007  
PIN ASSIGNMENTS  
TPS62300, TPS62320  
QFN-10  
(TOP VIEW)  
TPS6230x, TPS6232x  
FIXED OUTPUT VOLTAGE (QFN-10)  
(TOP VIEW)  
VIN  
SW  
VIN  
AVIN  
EN  
SW  
AVIN  
EN  
ADJ  
FB  
PGND  
PGND  
MODE/SYNC  
AGND  
VOUT  
MODE/SYNC  
AGND  
VOUT  
NC  
NC  
TPS6230x, TPS6231x, TPS6232x  
CSP-8  
(TOP VIEW)  
TPS6230x, TPS6231x, TPS6232x  
CSP-8  
(BOTTOM VIEW)  
A2  
B2  
C2  
D2  
A1  
B1  
C1  
D1  
A1  
A2  
GND  
SW  
VIN  
EN  
GND  
VIN  
EN  
B1  
C1  
D1  
B2  
C2  
D2  
SW  
MODE/SYNC  
VOUT  
ADJ  
FB  
MODE/SYNC  
VOUT  
ADJ  
FB  
TERMINAL FUNCTIONS  
TERMINAL  
I/O  
DESCRIPTION  
NO.  
QFN  
NO.  
CSP  
NAME  
VIN  
1
2
A2  
I
I
Supply voltage for output power stage.  
AVIN  
This is the input voltage pin of the device. Connect directly to the input bypass capacitor.  
This is the enable pin of the device. Connecting this pin to ground forces the device into shutdown  
mode. Pulling this pin to VI enables the device. This pin must not be left floating and must be  
terminated.  
EN  
3
B2  
I
This is the internal reference voltage used to regulate VO. This pin is not connected on fixed output  
voltage version of TPS6230xDRC and TPS6232xDRC. Do not connect ADJ pin on fixed output  
voltage version of TPS6230xYZD, TPS6231xYZD, TPS6231xYZ and TPS6232xYxD.  
ADJ  
4
C2  
I/O  
On TPS62300 and TPS62320, this pin can also be used as an external control input. The output  
voltage is 1.5x the applied voltage at ADJ.  
This is the feedback pin of the device. For the adjustable version, an external resistor divider is  
connected to this pin. The internal voltage divider is disabled for the adjustable version. This pin is  
not connected on fixed output voltage version of TPS6230xDRC and TPS6232xDRC. Do not  
connect the FB pin on the fixed output voltage version of TPS6230xYZD, TPS6231xYZD,  
TPS6231xYZ and TPS6232xYxD.  
FB  
5
D2  
D1  
I
I
VOUT  
AGND  
6
7
Output feedback sense input. Connect VOUT to the converter’s output.  
Analog ground. Connect to PGND via the PowerPAD™ underneath IC.  
Input for synchronization to external clock signal. This pin must not be left floating and must be  
terminated. Synchronizes the converter switching frequency to an external clock signal  
MODE/SYNC = LOW (GND): The device is operating in fixed frequency pulse width modulation  
mode (PWM) at high-load currents and in pulse frequency modulation mode (PFM) at light load  
currents.  
MODE/SYNC  
8
C1  
I
MODE/SYNC = HIGH (VIN): Low-noise mode enabled, fixed frequency PWM operation forced.  
Power ground.  
PGND  
9
A1  
B1  
This is the switch pin of the converter and is connected to the drain of the internal Power  
MOSFETs.  
SW  
10  
I/O  
PowerPAD™  
N/A Internally connected to PGND.  
6
Submit Documentation Feedback  
Copyright © 2004–2007, Texas Instruments Incorporated  
Product Folder Link(s): TPS62300, TPS62301, TPS62302 TPS62303, TPS62304, TPS62305, TPS62311, TPS62313,  
TPS62315, TPS62320, TPS62321  
TPS62300, TPS62301, TPS62302  
TPS62303, TPS62304, TPS62305,  
TPS62311, TPS62313, TPS62315, TPS62320, TPS62321  
www.ti.com  
SLVS528EJULY 2004REVISED NOVEMBER 2007  
FUNCTIONAL BLOCK DIAGRAM  
MODE/SYNC  
EN  
VIN  
N-MOS Current Limit  
Compator  
Undervoltage  
Lockout  
Bias Supply  
AVIN  
_
Soft-Start  
V
= 0.4 V  
REF  
Band Gap  
REF  
+
Power-Save  
Mode  
3-MHz  
Oscillator + PLL  
Sawtooth  
Thermal  
+
Comp Low  
Shutdown  
Generator  
Switching  
Logic  
REF  
_
P-MOS Current Limit  
Compator  
RAMP HEIGHT  
:
0.1 V  
IN  
2R  
R
C
-
-
+
-
VOUT  
-
+
+
-
SW  
Gate Driver  
Anti  
2C  
R
(DIS)  
+
+
+
+
V
REF  
Shoot-Through  
+
EN  
Summing  
Comparator  
_
A
= 3  
FB  
(DC)  
P
TPS6232x  
Only  
Mid-, High-Frequency  
Zero-Pole Pair  
P
R2  
See note A  
R1  
A
VOUT  
Comparator Low  
ADJ  
+
_
A
-1.5% V  
OUT(NOMINAL)  
AGND  
PGND  
NOTE A:  
PARAMETER MEASUREMENT INFORMATION  
U1  
L1  
V
1
10  
O
1.6 V/500 mA  
VIN  
SW  
C2  
2.7 V . . 6 V  
2
6
AVIN  
VOUT  
10 mF  
R1  
C1  
3
8
7
4
V
EN  
ADJ  
I
5
MODE/SYNC  
FB  
9
AGND  
PGND  
R2  
A
A
A
List of Components:  
U1 = TPS6230x  
L1 = FDK MIPW3226 Series  
C1, C2 = X5R/X7R  
Copyright © 2004–2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): TPS62300, TPS62301, TPS62302 TPS62303, TPS62304, TPS62305, TPS62311, TPS62313,  
TPS62315, TPS62320, TPS62321  
TPS62300, TPS62301, TPS62302  
TPS62303, TPS62304, TPS62305,  
TPS62311, TPS62313, TPS62315, TPS62320, TPS62321  
www.ti.com  
SLVS528EJULY 2004REVISED NOVEMBER 2007  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
vs Load current  
3, 4, 5, 6  
η
Efficiency  
vs Input voltage  
7
8
Line transient response  
Load transient response  
9, 10, 11, 12,  
13, 14, 15, 16  
VO  
VFB  
IQ  
DC output voltage  
vs Load current  
vs Temperature  
vs Input voltage  
vs Temperature  
17  
18  
Regulated feedback voltage  
No load quiescent current  
Switching frequency  
19  
fs  
20  
Duty cycle jitter  
21  
P-channel MOSFET rDS(on)  
N-channel MOSFET rDS(on)  
PWM operation  
vs Input voltage  
vs Input voltage  
22  
rDS(on)  
23  
24  
Power-save mode operation  
Dynamic voltage management  
Start-up  
25  
26, 27  
28, 29  
30  
Power down (TPS6232x)  
EFFICIENCY  
vs  
LOAD CURRENT  
EFFICIENCY  
vs  
LOAD CURRENT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PFM/PWM Operation  
L = 2.2 mH  
V = 3.6 V,  
PFM/PWM Operation  
L = 2.2 mH  
V = 3.6 V,  
I
I
V
O
= 1.6 V  
V
O
= 1.8 V  
PFM/PWM Operation  
L = 0.9 mH  
PWM Operation  
L = 0.9 mH  
PWM Operation  
L = 2.2 mH  
10  
0
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
I
O
− Load Current − mA  
I
O
− Load Current − mA  
Figure 3.  
Figure 4.  
8
Submit Documentation Feedback  
Copyright © 2004–2007, Texas Instruments Incorporated  
Product Folder Link(s): TPS62300, TPS62301, TPS62302 TPS62303, TPS62304, TPS62305, TPS62311, TPS62313,  
TPS62315, TPS62320, TPS62321  
TPS62300, TPS62301, TPS62302  
TPS62303, TPS62304, TPS62305,  
TPS62311, TPS62313, TPS62315, TPS62320, TPS62321  
www.ti.com  
SLVS528EJULY 2004REVISED NOVEMBER 2007  
EFFICIENCY  
vs  
LOAD CURRENT  
EFFICIENCY  
vs  
LOAD CURRENT  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
PFM/PWM Operation  
PFM/PWM Operation  
L = 2.2 mH  
L = 2.2 mH  
90  
80  
70  
60  
PWM Operation  
L = 2.2 mH  
PWM Operation  
L = 0.9 mH  
50  
40  
30  
20  
10  
0
V = 3.6 V,  
I
V = 5 V,  
I
V
O
= 1.2 V  
V
O
= 3.3 V  
0
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
I
O
− Load Current − mA  
I
O
− Load Current − mA  
Figure 5.  
Figure 6.  
EFFICIENCY  
vs  
INPUT VOLTAGE  
LINE TRANSIENT RESPONSE  
100  
I
= 100 mA  
V
O
= 1.6 V  
O
L = 0.9 mH, C = 10 mF  
O
I
O
= 400 mA  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
= 1 mA  
O
I
= 10 mA  
O
PFM/PWM Operation  
= 1.8 V  
V
O
2.7 3  
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6  
t − Time − 100 ms/div  
V − Input Voltage − V  
I
Figure 7.  
Figure 8.  
Copyright © 2004–2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): TPS62300, TPS62301, TPS62302 TPS62303, TPS62304, TPS62305, TPS62311, TPS62313,  
TPS62315, TPS62320, TPS62321  
TPS62300, TPS62301, TPS62302  
TPS62303, TPS62304, TPS62305,  
TPS62311, TPS62313, TPS62315, TPS62320, TPS62321  
www.ti.com  
SLVS528EJULY 2004REVISED NOVEMBER 2007  
LOAD TRANSIENT RESPONSE IN  
PWM OPERATION  
LOAD TRANSIENT RESPONSE IN  
PWM OPERATION  
V = 3.6 V,  
MODE/SYNC = HIGH  
L = 0.9 mH, C = 10 mF  
V = 3.6 V,  
I
V = 1.6 V  
O
I
V
O
= 1.6 V  
O
MODE/SYNC = HIGH  
L = 0.9 mH, C = 10 mF  
O
I
O
= 10 to 100 mA Load Step  
I
O
= 10 to 100 mA Load Step  
I
O
= 10 to 400 mA Load Step  
I
O
= 10 to 400 mA Load Step  
t − Time − 2 ms/div  
t − Time − 50 ms/div  
Figure 9.  
Figure 10.  
LOAD TRANSIENT RESPONSE IN  
PWM OPERATION  
LOAD TRANSIENT RESPONSE  
IN PFM MODE  
V = 3.6 V,  
V = 3.6 V,  
I
V = 1.6 V  
O
L = 0.9 mH, C = 10 mF  
I
MODE/SYNC = HIGH  
L = 0.9 mH, C = 10 mF  
O
V
O
= 1.6 V  
O
I
O
= 400 to 10 mA Load Step  
I
O
= 100 to 10 mA Load Step  
PFM Operation  
t - Time - 2 ms/div  
t − Time − 50 ms/div  
Figure 11.  
Figure 12.  
10  
Submit Documentation Feedback  
Copyright © 2004–2007, Texas Instruments Incorporated  
Product Folder Link(s): TPS62300, TPS62301, TPS62302 TPS62303, TPS62304, TPS62305, TPS62311, TPS62313,  
TPS62315, TPS62320, TPS62321  
TPS62300, TPS62301, TPS62302  
TPS62303, TPS62304, TPS62305,  
TPS62311, TPS62313, TPS62315, TPS62320, TPS62321  
www.ti.com  
SLVS528EJULY 2004REVISED NOVEMBER 2007  
LOAD TRANSIENT RESPONSE IN  
PWM OPERATION  
LOAD TRANSIENT RESPONSE IN  
PWM OPERATION  
V = 3.6 V,  
O
V = 3.6 V,  
O
I
I
MODE/SYNC = HIGH  
V
= 1.6 V  
V
= 1.6 V  
L = 0.9 mH, C = 4.7 mF  
O
MODE/SYNC = HIGH  
L = 0.9 mH, C = 4.7 mF  
O
I
O
= 10 to 100 mA Load Step  
I
O
= 10 to 100 mA Load Step  
I
O
= 10 to 400 mA Load Step  
I
O
= 10 to 400 mA Load Step  
t - Time - 2 ms/div  
t - Time - 50 ms/div  
Figure 13.  
Figure 14.  
LOAD TRANSIENT RESPONSE IN  
PFM OPERATION  
LOAD TRANSIENT RESPONSE IN  
PFM OPERATION  
V = 3.6 V,  
O
V = 3.6 V,  
O
I
I
MODE/SYNC = HIGH  
L = 0.9 mH, C = 4.7 mF  
L = 0.9 mH, C = 4.7 mF  
O
V
= 1.6 V  
V
= 1.6 V  
O
I
O
= 400 to 10 mA Load Step  
I
O
= 100 to 10 mA Load Step  
PFM Operation  
t - Time - 2 ms/div  
t - Time - 50 ms/div  
Figure 15.  
Figure 16.  
Copyright © 2004–2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): TPS62300, TPS62301, TPS62302 TPS62303, TPS62304, TPS62305, TPS62311, TPS62313,  
TPS62315, TPS62320, TPS62321  
TPS62300, TPS62301, TPS62302  
TPS62303, TPS62304, TPS62305,  
TPS62311, TPS62313, TPS62315, TPS62320, TPS62321  
www.ti.com  
SLVS528EJULY 2004REVISED NOVEMBER 2007  
OUTPUT VOLTAGE  
vs  
LOAD CURRENT  
REGULATED FEEDBACK VOLTAGE  
vs  
TEMPERATURE  
1.628  
1.618  
406  
405.5  
405  
V = 3.6 V, V = 1.6 V,  
L = 2.2 mH  
I
O
TPS62300  
1.608  
PWM Operation  
404.5  
404  
V = 3.6 V  
I
V = 4.2 V  
I
1.598  
1.588  
403.5  
403  
PFM/PWM Operation  
V = 2.7 V  
I
1.578  
1.568  
402.5  
402  
0.1  
1
10  
100  
1000  
-40 -30 -20 -10  
0 10 20 30 40 50 60 70 80 85  
I
O
− Load Current − mA  
T
A
- Ambient Temperature - 5C  
Figure 17.  
Figure 18.  
QUIESCENT CURRENT  
vs  
OSCILLATOR FREQUENCY  
vs  
INPUT VOLTAGE  
INPUT VOLTAGE  
3.3  
3.25  
3.2  
96  
94  
92  
90  
88  
86  
84  
82  
80  
T
= −405C  
A
T
= 255C  
A
T
= 855C  
A
3.15  
3.1  
T
A
= 255C  
= 855C  
T
A
3.05  
3
T
= −405C  
A
MODE/SYNC = HIGH  
2.95  
2.9  
2.7  
3
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7  
6
2.7  
3
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7  
6
V − Input Voltage − V  
I
V − Input Voltage − V  
I
Figure 19.  
Figure 20.  
12  
Submit Documentation Feedback  
Copyright © 2004–2007, Texas Instruments Incorporated  
Product Folder Link(s): TPS62300, TPS62301, TPS62302 TPS62303, TPS62304, TPS62305, TPS62311, TPS62313,  
TPS62315, TPS62320, TPS62321  
TPS62300, TPS62301, TPS62302  
TPS62303, TPS62304, TPS62305,  
TPS62311, TPS62313, TPS62315, TPS62320, TPS62321  
www.ti.com  
SLVS528EJULY 2004REVISED NOVEMBER 2007  
P-CHANNEL rDS(ON)  
vs  
DUTY CYCLE JITTER  
V = 3.6 V, V = 1.6 V,  
INPUT VOLTAGE  
700  
650  
600  
I
O
L = 0.9 mH, C = 10 mF  
O
I
O
= 320 mA  
TRIGGER ON RISING EDGE  
T
A
= 855C  
550  
500  
450  
400  
350  
300  
250  
200  
150  
T
= 255C  
A
T
A
= −405C  
MODE/SYNC = HIGH  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
t - Time - 25 ns/div  
V − Input Voltage − V  
I
Figure 21.  
Figure 22.  
N-CHANNEL rDS(ON)  
vs  
INPUT VOLTAGE  
PWM OPERATION  
550  
500  
450  
400  
350  
300  
250  
200  
150  
I
= 200 mA  
O
L = 0.9 mH, C = 10 mF  
O
T
= 855C  
A
T
= 255C  
A
T
A
= −405C  
V = 3.6 V, V = 1.6 V  
I
O
2.5  
3
3.5  
4
4.5  
5
5.5  
6
t − Time − 200 ns/div  
V − Input Voltage − V  
I
Figure 23.  
Figure 24.  
Copyright © 2004–2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): TPS62300, TPS62301, TPS62302 TPS62303, TPS62304, TPS62305, TPS62311, TPS62313,  
TPS62315, TPS62320, TPS62321  
TPS62300, TPS62301, TPS62302  
TPS62303, TPS62304, TPS62305,  
TPS62311, TPS62313, TPS62315, TPS62320, TPS62321  
www.ti.com  
SLVS528EJULY 2004REVISED NOVEMBER 2007  
POWER-SAVE MODE OPERATION  
DYNAMIC VOLTAGE MANAGEMENT  
V = 3.6 V,  
I
O
V
= 1 V / 1.5 V  
V = 1.5 V  
O
V
O
= 1 V  
V
(ADJ)  
= 1 V  
V
(ADJ)  
= 0.67 V  
L = 0.9 mH, C = 10 mF,  
V = 3.6 V, V = 1.6 V  
O
I
O
MODE/SYNC = LOW  
L = 0.9 mH, C = 10 mF  
O
I
O
= 40 mA  
R
L
= 270 W  
t − Time − 20 ms/div  
t − Time − 2 ms/div  
Figure 25.  
Figure 26.  
DYNAMIC VOLTAGE MANAGEMENT  
V = 3.6 V,  
START-UP  
I
V
V = 3.6 V,  
I
= 1 V / 1.5 V  
O
V = 1.5 V  
O
V
= 1.6 V,  
O
I
= 0 mA  
O
V
O
= 1 V  
V
(ADJ)  
= 0.67 V  
V
(ADJ)  
= 1 V  
R
L
= 5 W  
L = 0.9 mH, C = 10 mF,  
O
MODE/SYNC = HIGH  
L = 2.2 mH, C = 4.7 mF,  
O
t − Time − 20 ms/div  
t − Time − 50 ms/div  
Figure 27.  
Figure 28.  
14  
Submit Documentation Feedback  
Copyright © 2004–2007, Texas Instruments Incorporated  
Product Folder Link(s): TPS62300, TPS62301, TPS62302 TPS62303, TPS62304, TPS62305, TPS62311, TPS62313,  
TPS62315, TPS62320, TPS62321  
TPS62300, TPS62301, TPS62302  
TPS62303, TPS62304, TPS62305,  
TPS62311, TPS62313, TPS62315, TPS62320, TPS62321  
www.ti.com  
SLVS528EJULY 2004REVISED NOVEMBER 2007  
START-UP  
POWER DOWN (TPS62321)  
V = 3.6 V,  
I
V = 3.6 V,  
V
I
= 1.5 V,  
I
O
V
= 1.6 V,  
= 0 mA  
O
O
I
= 320 mA  
O
L = 0.9 mH, C = 10 mF  
O
L = 2.2 mH, C = 4.7 mF,  
O
t − Time − 400 ms/div  
Figure 30.  
t − Time − 50 ms/div  
Figure 29.  
DETAILED DESCRIPTION  
OPERATION  
The TPS6230x, TPS6231x, and TPS6232x are synchronous step-down converters typically operating with a  
3-MHz fixed frequency pulse width modulation (PWM) at moderate to heavy load currents. At light load currents,  
the converter operates in power-save mode with pulse frequency modulation (PFM). The operating frequency is  
set to 3 MHz and can be synchronized on-the-fly to an external oscillator.  
During PWM operation, the converter uses a unique fast response, voltage mode, controller scheme with input  
voltage feed-forward. This achieves best-in-class load and line response and allows the use of tiny inductors and  
small ceramic input and output capacitors. At the beginning of each switching cycle, the P-channel MOSFET  
switch is turned on and the inductor current ramps up until the comparator trips and the control logic turns off the  
switch.  
The device integrates two current limits, one in the P-channel MOSFET and another one in the N-channel  
MOSFET. When the current in the P-channel MOSFET reaches its current limit, the P-channel MOSFET is  
turned off and the N-channel MOSFET is turned on. When the current in the N-channel MOSFET is above the  
N-MOS current limit threshold, the N-channel MOSFET remains on until the current drops below its current limit.  
The current limit in the N-channel MOSFET is important for small duty-cycle operation when the current in the  
inductor does not decrease because of the P-channel MOSFET current limit delay, or because of start-up  
conditions where the output voltage is low.  
Copyright © 2004–2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): TPS62300, TPS62301, TPS62302 TPS62303, TPS62304, TPS62305, TPS62311, TPS62313,  
TPS62315, TPS62320, TPS62321  
TPS62300, TPS62301, TPS62302  
TPS62303, TPS62304, TPS62305,  
TPS62311, TPS62313, TPS62315, TPS62320, TPS62321  
www.ti.com  
SLVS528EJULY 2004REVISED NOVEMBER 2007  
POWER-SAVE MODE  
With decreasing load current, the device automatically switches into pulse skipping operation in which the power  
stage operates intermittently based on load demand. By running cycles periodically, the switching losses are  
minimized, and the device runs with a minimum quiescent current and maintaining high efficiency.  
In power-save mode, the converter only operates when the output voltage trips below a set threshold voltage  
(-1.5% VO(NOMINAL)). It ramps up the output voltage with several pulses and goes into power-save mode once the  
output voltage exceeds the nominal output voltage. As a consequence, the average output voltage is slightly  
lower than its nominal value in the power-save mode operation.  
The output current at which the PFM/PWM transition occurs is approximated by Equation 1:  
V
V * V  
O
I
O
I
+
 
PFMńPWM  
V
2   L   f  
sw  
I
(1)  
IPFM/PWM : output current at which PFM/PWM transition occurs  
fSW : switching frequency (3-MHz typical)  
L : inductor value  
V
O(NOMINAL)  
3-MHz Operation  
Comp Low Thershold  
−1.5% V  
O(NOMIAL)  
Figure 31. Power-Save Mode Threshold  
MODE SELECTION AND FREQUENCY SYNCHRONIZATION  
The MODE/SYNC pin is a multipurpose pin which allows mode selection and frequency synchronization.  
Connecting this pin to GND enables the automatic PWM and power-save mode operation. The converter  
operates in fixed frequency PWM mode at moderate to heavy loads and in the PFM mode during light loads,  
which maintains high efficiency over a wide load current range.  
Pulling the MODE/SYNC pin high forces the converter to operate in the PWM mode even at light load currents.  
The advantage is that the converter operates with a fixed frequency that allows simple filtering of the switching  
frequency for noise-sensitive applications. In this mode, the efficiency is lower compared to the power-save  
mode during light loads. For additional flexibility, it is possible to switch from power-save mode to forced PWM  
mode during operation. This allows efficient power management by adjusting the operation of the converter to  
the specific system requirements.  
The TPS6230x, TPS6231x, and TPS6232x can also be synchronized to an external 3-MHz clock signal by the  
MODE/SYNC pin. During synchronization, the mode is set to fixed-frequency operation and the P-channel  
MOSFET turnon is synchronized to the falling edge of the external clock. This creates the ability for multiple  
converters to be connected together in a master-slave configuration for frequency matching of the converters  
(see the application section for more details, Figure 37).  
SOFT START  
The TPS6230x, TPS6231x, and TPS6232x have an internal soft-start circuit that limits the inrush current during  
start-up. This prevents possible input voltage drops when a battery or a high-impedance power source is  
connected to the input of the converter. The soft start is implemented as a digital circuit increasing the switch  
current in steps of typically 195 mA, 390 mA, 585 mA, and the typical switch current limit of 780 mA.  
The current limit transitions to the next step every 256 clocks (88µs). To be able to switch from 390 mA to 585  
mA current limit step, the output voltage needs to be higher than 0.5 x VO(NOM), otherwise, the parts continues to  
operate at the 390-mA current limit. This mechanism is used to limit the output current under short-circuit  
conditions. Therefore, the start-up time mainly depends on the output capacitor and load current.  
16  
Submit Documentation Feedback  
Copyright © 2004–2007, Texas Instruments Incorporated  
Product Folder Link(s): TPS62300, TPS62301, TPS62302 TPS62303, TPS62304, TPS62305, TPS62311, TPS62313,  
TPS62315, TPS62320, TPS62321  
 
TPS62300, TPS62301, TPS62302  
TPS62303, TPS62304, TPS62305,  
TPS62311, TPS62313, TPS62315, TPS62320, TPS62321  
www.ti.com  
SLVS528EJULY 2004REVISED NOVEMBER 2007  
LOW-DROPOUT OPERATION 100% DUTY CYCLE  
In 100% duty cycle mode, the TPS6230x, TPS6231x, and TPS6232x offer a low input-to-output voltage  
difference. In this mode, the P-channel MOSFET is constantly turned on. This is particularly useful in  
battery-powered applications to achieve the longest operation time by taking full advantage of the whole battery  
voltage range. The minimum input voltage to maintain regulation, depending on the load current and output  
voltage, can be calculated as:  
VI(MIN) = VO(MAX) + IO(MAX) x (rDS(on) MAX + RL)  
IO(MAX) : Maximum output current  
rDS(on) MAX : Maximum P-channel switch rDS(on)  
RL : DC resistance of the inductor  
VO(MAX) : nominal output voltage plus maximum output voltage tolerance  
ENABLE  
The device starts operation when EN is set high and starts up with the soft start as previously described.  
Pulling the EN pin low forces the device into shutdown, with a shutdown quiescent current of typically 0.1 µA. In  
this mode, the P and N-channel MOSFETs are turned off, the internal resistor feedback divider is disconnected,  
and the entire internal-control circuitry is switched off. When an output voltage is present during shutdown mode,  
which can be caused by an external voltage source or super capacitor, the reverse leakage is specified under  
electrical characteristics. For proper operation, the EN pin must be terminated and must not be left floating.  
In addition, the TPS6232x devices integrate a resistor, typically 35 , to actively discharge the output capacitor  
when the device turns off. The required time to discharge the output capacitor at VO depends on load current.  
UNDERVOLTAGE LOCKOUT  
The undervoltage lockout circuit prevents the device from misoperation at low input voltages. It prevents the  
converter from turning on the switch or rectifier MOSFET under undefined conditions.  
The TPS6231x devices have a UVLO threshold set to 2 V (typical). Fully functional operation is permitted down  
to 2.4 V input voltage. EN is set low for input voltages lower than 2.4 V to avoid the possibility of misoperation.  
TPS6231x devices are to be considered where the user requires direct control of the turn-off sequence as part of  
a larger power management system.  
SHORT-CIRCUIT PROTECTION  
As soon as the output voltage falls below 50% of the nominal output voltage, the converter current limit is  
reduced by 50% of the nominal value. Because the short-circuit protection is enabled during start-up, the device  
does not deliver more than half of its nominal current limit until the output voltage exceeds 50% of the nominal  
output voltage. This needs to be considered when a load acting as a current sink is connected to the output of  
the converter.  
THERMAL SHUTDOWN  
As soon as the junction temperature, TJ, exceeds typically 150°C, the device goes into thermal shutdown. In this  
mode, the P- and N-channel MOSFETs are turned off. The device continues its operation when the junction  
temperature falls below typically 130°C again.  
Copyright © 2004–2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): TPS62300, TPS62301, TPS62302 TPS62303, TPS62304, TPS62305, TPS62311, TPS62313,  
TPS62315, TPS62320, TPS62321  
TPS62300, TPS62301, TPS62302  
TPS62303, TPS62304, TPS62305,  
TPS62311, TPS62313, TPS62315, TPS62320, TPS62321  
www.ti.com  
SLVS528EJULY 2004REVISED NOVEMBER 2007  
APPLICATION INFORMATION  
ADJUSTABLE OUTPUT VOLTAGE  
When the adjustable output voltage versions, TPS62300 or TPS62320, are used, the output voltage is set by the  
external resistor divider (see Figure 32).  
The output voltage is calculated as:  
R1  
R2  
  ǒ1 ) Ǔwith an internal reference voltage V  
V
+ 1.5   V  
typical + 0.4 V  
O
ref  
ref  
(2)  
To keep the operating quiescent current to a minimum, it is recommended that R2 be set in the range of 75 kto  
130 k. Route the FB line away from noise sources, such as the inductor or the SW line.  
TPS62300  
L1  
1
2
3
8
7
10  
V
O
VIN  
AVIN  
EN  
SW  
2.7 V . . 6 V  
C2 1.6 V/500 mA  
6
VOUT  
R1  
4.7 mF  
C1  
4
V
I
ADJ  
5
4.7 mF  
MODE/SYNC  
FB  
9
AGND  
PGND  
R2  
A
A
A
Figure 32. Adjustable Output Voltage Version  
OUTPUT FILTER DESIGN (INDUCTOR AND OUTPUT CAPACITOR)  
The TPS6230x, TPS6231x, and TPS6232x series of step-down converters have internal loop compensation.  
Therefore, the external L-C filter must be selected to work with the internal compensation.  
The device has been designed to operate with inductance values between a minimum of 0.7 µH and maximum of  
6.2 µH. The internal compensation is optimized to operate with an output filter of L = 1 µH and CO = 10 µF. Such  
an output filter has its corner frequency at:  
1
1
ƒ +  
+
+ 50.3 kHz  
c
Ǹ
2p ǸL   C  
2p 1 mH   10 mF  
O
(3)  
Operation with a higher corner frequency (e.g., L = 1 µH, CO = 4.7 µF) is possible. However, it is recommended  
the loop stability be checked in detail. Selecting a larger output capacitor value (e.g., 22 µF) is less critical  
because the corner frequency moves to lower frequencies with fewer stability problems. The possible output filter  
combinations are listed in Table 1.  
Regardless of the inductance value, operation is recommended with 10-µF output capacitor in applications with  
high-load transients (e.g., 1600 mA/µs).  
Table 1. Output Filter Combinations  
INDUCTANCE (L)  
1 µH  
OUTPUT CAPACITANCE (CO)  
4.7 µF (ceramic capacitor)  
2.2 µF (ceramic capacitor)  
2.2 µH  
The inductor value also has an impact on the pulse skipping operation. The transition into power-save mode  
begins when the valley inductor current goes below a level set internally. Lower inductor values result in higher  
ripple current which occurs at lower load currents. This results in a dip in efficiency at light load operations.  
18  
Submit Documentation Feedback  
Copyright © 2004–2007, Texas Instruments Incorporated  
Product Folder Link(s): TPS62300, TPS62301, TPS62302 TPS62303, TPS62304, TPS62305, TPS62311, TPS62313,  
TPS62315, TPS62320, TPS62321  
 
 
TPS62300, TPS62301, TPS62302  
TPS62303, TPS62304, TPS62305,  
TPS62311, TPS62313, TPS62315, TPS62320, TPS62321  
www.ti.com  
SLVS528EJULY 2004REVISED NOVEMBER 2007  
INDUCTOR SELECTION  
Even though the inductor does not influence the operating frequency, the inductor value has a direct effect on the  
ripple current. The selected inductor has to be rated for its dc resistance and saturation current. The inductor  
ripple current (ΔIL) decreases with higher inductance and increases with higher VI or VO.  
V
V * V  
DI  
O
I
O
L
DI +  
 
DI  
+ I  
)
L
L(MAX)  
O(MAX)  
2
V
L   ƒ  
sw  
I
(4)  
with: fSW = switching frequency (3 MHz typical)  
L = inductor value  
ΔIL = peak-to-peak inductor ripple current  
IL(MAX) = maximum inductor current  
Normally, it is advisable to operate with a ripple of less than 30% of the average output current. Accepting larger  
values of ripple current allows the use of low inductances, but results in higher output voltage ripple, greater core  
losses, and lower output current capability.  
The total losses of the coil consist of both the losses in the DC resistance (R(DC)) and the following  
frequency-dependent components:  
The losses in the core material (magnetic hysteresis loss, especially at high switching frequencies)  
Additional losses in the conductor from the skin effect (current displacement at high frequencies)  
Magnetic field losses of the neighboring windings (proximity effect)  
Radiation losses  
The following inductor series from different suppliers have been used with the TPS6230x, TPS6231x, and  
TPS6232x converters.  
Table 2. List of Inductors  
MANUFACTURER  
SERIES  
MIPW3226  
MIPSA2520  
LQM2HP  
DIMENSIONS  
FDK  
3.2 x 2.6 x 1 = 8.32 mm3  
2.5 x 2.0 x 1.2 = 6 mm3  
2.5 x 2.0 x 1.2 = 6 mm3  
2 x 1.6 x 1.6 = 5.12 mm3  
2 x 1.2 x 1.2 = 2.88 mm3  
2 x 1.2 x 1 = 2.40 mm3  
2.8 x 2.6 x 1 = 7.28 mm3  
3.3 x 3.3 x 1 = 10.89 mm3  
3.2 x 2.5 x 0.6 = 4.8 mm3  
Murata  
LQ CB2016  
LQ CB2012  
LQ CBL2012  
VLF3010AT  
LPS3010  
Taiyo Yuden  
TDK  
Coilcraft  
JFE  
32R1560  
OUTPUT CAPACITOR SELECTION  
The advanced fast-response voltage mode control scheme of the TPS6230x, TPS6231x, and TPS6232x allows  
the use of tiny ceramic capacitors. Ceramic capacitors with low ESR values have the lowest output voltage ripple  
and are recommended. The output capacitor requires either an X7R or X5R dielectric. Y5V and Z5U dielectric  
capacitors, aside from their wide variation in capacitance over temperature, become resistive at high frequencies.  
At nominal load current, the device operates in PWM mode and the overall output voltage ripple is the sum of the  
voltage spike caused by the output capacitor ESR plus the voltage ripple caused by charging and discharging the  
output capacitor:  
V
V * V  
O
I
O
1
DV  
+
 
 
) ESR , maximum for high V  
ǒ
Ǔ
O
I
V
L   ƒ  
8   C   ƒ  
sw  
sw  
I
O
(5)  
At light loads, the device operates in power-save mode and the output voltage ripple is independent of the output  
capacitor value. The output voltage ripple is set by the internal comparator thresholds and propagation delays.  
The typical output voltage ripple is 1.5% of the nominal output voltage VO.  
Copyright © 2004–2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): TPS62300, TPS62301, TPS62302 TPS62303, TPS62304, TPS62305, TPS62311, TPS62313,  
TPS62315, TPS62320, TPS62321  
TPS62300, TPS62301, TPS62302  
TPS62303, TPS62304, TPS62305,  
TPS62311, TPS62313, TPS62315, TPS62320, TPS62321  
www.ti.com  
SLVS528EJULY 2004REVISED NOVEMBER 2007  
INPUT CAPACITOR SELECTION  
Because of the nature of the buck converter having a pulsating input current, a low ESR input capacitor is  
required to prevent large voltage transients that can cause misbehavior of the device or interferences with other  
circuits in the system. For most applications, a 2.2-µF or 4.7-µF capacitor is sufficient.  
Take care when using only ceramic input capacitors. When a ceramic capacitor is used at the input and the  
power is being supplied through long wires, such as from a wall adapter, a load step at the output can induce  
ringing at the VIN pin. This ringing can couple to the output and be mistaken as loop instability or could even  
damage the part.  
CHECKING LOOP STABILITY  
The first step of circuit and stability evaluation is to look from a steady-state perspective at the following signals:  
Switching node, SW  
Inductor current, IL  
Output ripple voltage, VO(AC)  
These are the basic signals that need to be measured when evaluating a switching converter. When the  
switching waveform shows large duty cycle jitter or the output voltage or inductor current shows oscillations, the  
regulation loop may be unstable. This is often a result of board layout and/or L-C combination.  
As a next step in the evaluation of the regulation loop, the load transient response is tested. The time between  
the application of the load transient and the turn on of the P-channel MOSFET, the output capacitor must supply  
all of the current required by the load. VO immediately shifts by an amount equal to ΔI(LOAD) x ESR, where ESR  
is the effective series resistance of CO. ΔI(LOAD) begins to charge or discharge CO generating a feedback error  
signal used by the regulator to return VO to its steady-state value.  
During this recovery time, VO can be monitored for settling time, overshoot or ringing that helps judge the  
converter’s stability. Without any ringing, the loop has usually more than 45° of phase margin.  
Because the damping factor of the circuitry is directly related to several resistive parameters (e.g., MOSFET  
rDS(on)) that are temperature dependant, the loop stability analysis has to be done over the input voltage range,  
load current range, and temperature range.  
PROGRAMMING THE OUTPUT VOLTAGE WITH A DAC  
On TPS62300 and TPS62320 devices, the output voltage can be dynamically programmed to any voltage  
between 0.6 V and VI (or 5.4 V whichever is lower) with an external DAC driving the ADJ and FB pins (see  
Figure 33). The output voltage is then equal to A(PT) x V(DAC) with a Power Train amplification A(PT) typical = 1.5.  
When the output voltage is driven low, the converter reduces its output quickly in forced PWM mode, boosting  
the output energy back to the input. If the input is not connected to a low-impedance source capable of absorbing  
the energy, the input voltage can rise above the absolute maximum voltage of the part and get damaged. The  
faster VO is commanded low, the higher is the voltage spike at the input.  
For best results, ramp the ADJ/FB signal as slow as the application allows. To avoid over-slew of the regulation  
loop of the converter, avoid abrupt changes in output voltage of > 300 mV/µs (depending on VI , output voltage  
step size and L/C combination). If ramp control is unavailable, an RC filter can be inserted between the DAC  
output and ADJ/FB pins to slow down the control signal.  
V
= 1.5 x V  
(DAC)  
TPS62300  
VIN  
O
L
1
2
3
8
7
10  
6
SW  
VOUT  
ADJ  
C
O
AVIN  
EN  
C
I
4
V
I
V
(DAC)  
R
F
5
MODE/SYNC FB  
10 kW  
9
AGND  
PGND  
C
F
A
A
A
Figure 33. Filtering the DAC Voltage  
20  
Submit Documentation Feedback  
Copyright © 2004–2007, Texas Instruments Incorporated  
Product Folder Link(s): TPS62300, TPS62301, TPS62302 TPS62303, TPS62304, TPS62305, TPS62311, TPS62313,  
TPS62315, TPS62320, TPS62321  
 
TPS62300, TPS62301, TPS62302  
TPS62303, TPS62304, TPS62305,  
TPS62311, TPS62313, TPS62315, TPS62320, TPS62321  
www.ti.com  
SLVS528EJULY 2004REVISED NOVEMBER 2007  
LAYOUT CONSIDERATIONS  
As for all switching power supplies, the layout is an important step in the design. High-speed operation of the  
TPS6230x, TPS6231x, and TPS6232x devices demand careful attention to PCB layout. Care must be taken in  
board layout to get the specified performance. If the layout is not carefully done, the regulator could show poor  
line and/or load regulation, stability issues as well as EMI problems. It is critical to provide a low inductance,  
impedance ground path. Therefore, use wide and short traces for the main current paths as indicated in bold on  
Figure 34.  
The input capacitor should be placed as close as possible to the IC pins as well as the inductor and output  
capacitor. Use a common ground node for power ground and a different one for control ground (AGND) to  
minimize the effects of ground noise. Connect these ground nodes together (star point) underneath the IC and  
make sure that small signal components returning to the AGND pin do not share the high current path of C1 and  
C2.  
The output voltage sense line (VOUT) should be connected right to the output capacitor and routed away from  
noisy components and traces (e.g., SW line). Its trace should be minimized and shielded by a guard-ring  
connected to the reference ground. The voltage setting resistive divider should be placed as close as possible to  
the AGND pin of the IC.  
TPS62300  
L1  
V
O
1
2
3
8
7
10  
6
VIN  
AVIN  
EN  
SW  
VOUT  
ADJ  
V
I
C2  
R1  
4
C1  
5
MODE/SYNC  
FB  
9
AGND  
R2  
PGND  
Figure 34. Layout Diagram  
VO  
GND  
VI  
VO sense signal  
EN  
MODE / SYNC  
GND  
Figure 36. Suggested QFN Layout (Bottom)  
Figure 35. Suggested QFN Layout (Top)  
Copyright © 2004–2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): TPS62300, TPS62301, TPS62302 TPS62303, TPS62304, TPS62305, TPS62311, TPS62313,  
TPS62315, TPS62320, TPS62321  
 
TPS62300, TPS62301, TPS62302  
TPS62303, TPS62304, TPS62305,  
TPS62311, TPS62313, TPS62315, TPS62320, TPS62321  
www.ti.com  
SLVS528EJULY 2004REVISED NOVEMBER 2007  
THERMAL INFORMATION  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependant issues such as thermal coupling, airflow, added  
heat sinks, and convection surfaces, and the presence of other heat-generating components, affect the  
power-dissipation limits of a given component  
Three basic approaches for enhancing thermal performance are listed below:  
Improving the power dissipation capability of the PCB design  
Improving the thermal coupling of the component to the PCB  
Introducing airflow in the system  
The maximum recommended junction temperature (TJ) of the TPS6230x, TPS6231x, and TPS6232x devices is  
125°C. The thermal resistance of the 8-pin CSP package (YZD, YZ and YED) is RθJA = 250°C/W. Specified  
regulator operation is specified to a maximum ambient temperature TA of 85°C. Therefore, the maximum power  
dissipation is about 160 mW. More power can be dissipated if the maximum ambient temperature of the  
application is lower, or if the PowerPAD™ package (DRC) is used.  
T
* T  
J(MAX)  
R
A
125°C * 85°C  
250°CńW  
P
+
+
+ 160 mW  
D(MAX)  
qJA  
(6)  
CHIP SCALE PACKAGE DIMENSIONS  
The TPS6230x, TPS6231x, and TPS6232x are also available in an 8-bump chip scale package (YZD, YZ  
NanoFree™ and YED, NanoStar™). The package dimensions are given as:  
D = 1.970 ±0.05 mm  
E = 0.970 ±0.05 mm  
22  
Submit Documentation Feedback  
Copyright © 2004–2007, Texas Instruments Incorporated  
Product Folder Link(s): TPS62300, TPS62301, TPS62302 TPS62303, TPS62304, TPS62305, TPS62311, TPS62313,  
TPS62315, TPS62320, TPS62321  
TPS62300, TPS62301, TPS62302  
TPS62303, TPS62304, TPS62305,  
TPS62311, TPS62313, TPS62315, TPS62320, TPS62321  
www.ti.com  
SLVS528EJULY 2004REVISED NOVEMBER 2007  
APPLICATION EXAMPLES  
TPS62303YZD  
A2  
B2  
D1  
2.7 V − 6 V  
VIN  
EN  
VOUT  
SW  
L
Ch1  
Ch2  
1
V
C
B1  
C2  
OUT  
IN  
V
IN  
1.8 V / 500 mA  
C
10 µF  
1
C1  
A1  
MODE/SYNC ADJ  
10 µF  
D2  
FB  
GND  
Ch4  
TPS62304YZD  
L
2
V
A2  
B2  
B1  
D1  
C2  
OUT  
VIN  
EN  
SW  
1.2 V / 500 mA  
C
2
Ch3  
VOUT  
10 µF  
C1  
A1  
MODE/SYNC ADJ  
1G08  
Ch1: SW (1.8-V Output), Ch2: I  
Ch3: SW (1.2-V Output), Ch4: I  
D2  
L1  
L2  
FB  
GND  
Low: None Synchronized Operation  
PFM/PWM Automatic Switch  
High: Synchronized Operation  
Forced 3 MHz Fixed Frequency Operation  
List of Components:  
L1, L2 = Taiyo Yuden LQ CB2016  
, C1, C2, = X5R/X7R Ceramic Capacitor  
C
IN  
Figure 37. Dual, Out-of-Phase, 3-MHz, 500-mA Step-Down Regulator  
Features Less Than 50-mm2 Total Solution Size  
EN  
Fast Start−Up LDO  
22 nF  
10 k  
V
= 0.98 x V  
OUT(NOM)  
OUT(LDO)  
EN  
EN  
VOUT  
VIN  
GND  
2.2 MΩ  
TPS62300YZD  
2.7 V . . 6 V  
V
O
A2  
B2  
D1  
VIN  
EN  
VOUT  
SW  
V
OUT  
C
B1  
C2  
IN  
10 µF  
V
L1  
1 µH  
IN  
C1  
1.8 V / 500 mA  
I
L1  
C1  
A1  
V = 2.8 V,  
I
MODE/SYNC ADJ  
FB  
10 µF  
R
L
= 10 W  
D2  
GND  
Ch1: V  
Ch3: Inductor Current: I  
Ch3: EN − External Control Signal  
O
List of Components:  
L1 = Taiyo Yuden LQ CB2016  
, C1 = X5R/X7R Ceramic Capacitor  
L1  
C
IN  
Figure 38. Speed-Up Circuitry for Fast Turnon Time  
Copyright © 2004–2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): TPS62300, TPS62301, TPS62302 TPS62303, TPS62304, TPS62305, TPS62311, TPS62313,  
TPS62315, TPS62320, TPS62321  
TPS62300, TPS62301, TPS62302  
TPS62303, TPS62304, TPS62305,  
TPS62311, TPS62313, TPS62315, TPS62320, TPS62321  
www.ti.com  
SLVS528EJULY 2004REVISED NOVEMBER 2007  
TPS62300  
1.8  
1.6  
1.4  
1.2  
1
VIN  
EN  
VOUT  
SW  
Default Voltage =  
R1  
2.7 V − 6 V  
L1  
C
I
1.5 x V x 1+  
ref ( R2)  
V
OUT  
V
IN  
2.2 µH  
R1  
C1  
10 µF  
MODE/SYNC ADJ  
4.7 µF  
9.5 kΩ  
FB  
GND  
R2  
8.2 kΩ  
0.8  
0.6  
0.4  
DAC6571  
2.85 V  
VDD  
SDA  
SCL  
A0  
DAC Control Range  
= 1.5 x 0.98 x V  
2
I C I/F  
VDAC  
0.2  
0
V
O
(DAC)  
GND  
0
0.2  
0.4 0.6  
0.8  
1
1.2  
1.4  
V
− Control Voltage − V  
(DAC)  
List of Components:  
L1 = Wuerth Elektronik WE-TPC XS  
C , C1, = X5R/X7R Ceramic Capacitor  
I
Figure 39. Dynamic Voltage Management Using I2C I/F  
24  
Submit Documentation Feedback  
Copyright © 2004–2007, Texas Instruments Incorporated  
Product Folder Link(s): TPS62300, TPS62301, TPS62302 TPS62303, TPS62304, TPS62305, TPS62311, TPS62313,  
TPS62315, TPS62320, TPS62321  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Nov-2007  
PACKAGING INFORMATION  
Orderable Device  
TPS62300DRCR  
TPS62300DRCRG4  
TPS62300YZDR  
TPS62300YZDT  
TPS62301DRCR  
TPS62301DRCRG4  
TPS62301YZDR  
TPS62301YZDT  
TPS62302DRCR  
TPS62302DRCRG4  
TPS62302YZDR  
TPS62302YZDT  
TPS62303DRCR  
TPS62303DRCRG4  
TPS62303YZDR  
TPS62303YZDT  
TPS62304DRCR  
TPS62304DRCRG4  
TPS62304YZDR  
TPS62304YZDT  
TPS62305DRCR  
TPS62305DRCRG4  
TPS62305YZDR  
TPS62305YZDT  
TPS62311YZDR  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SON  
DRC  
10  
10  
8
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SON  
DSBGA  
DSBGA  
SON  
DRC  
YZD  
YZD  
DRC  
DRC  
YZD  
YZD  
DRC  
DRC  
YZD  
YZD  
DRC  
DRC  
YZD  
YZD  
DRC  
DRC  
YZD  
YZD  
DRC  
DRC  
YZD  
YZD  
YZD  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
3000 Green (RoHS &  
no Sb/Br)  
SNAGCU  
Level-1-260C-UNLIM  
8
250 Green (RoHS &  
no Sb/Br)  
SNAGCU  
Level-1-260C-UNLIM  
10  
10  
8
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SON  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
DSBGA  
DSBGA  
SON  
3000 Green (RoHS &  
no Sb/Br)  
SNAGCU  
Level-1-260C-UNLIM  
8
250 Green (RoHS &  
no Sb/Br)  
SNAGCU  
Level-1-260C-UNLIM  
10  
10  
8
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SON  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
DSBGA  
DSBGA  
SON  
3000 Green (RoHS &  
no Sb/Br)  
SNAGCU  
Level-1-260C-UNLIM  
8
250 Green (RoHS &  
no Sb/Br)  
SNAGCU  
Level-1-260C-UNLIM  
10  
10  
8
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SON  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
DSBGA  
DSBGA  
SON  
3000 Green (RoHS &  
no Sb/Br)  
SNAGCU  
Level-1-260C-UNLIM  
8
250 Green (RoHS &  
no Sb/Br)  
SNAGCU  
Level-1-260C-UNLIM  
10  
10  
8
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SON  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
DSBGA  
DSBGA  
SON  
3000 Green (RoHS &  
no Sb/Br)  
SNAGCU  
Level-1-260C-UNLIM  
8
250 Green (RoHS &  
no Sb/Br)  
SNAGCU  
Level-1-260C-UNLIM  
10  
10  
8
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SON  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
DSBGA  
DSBGA  
DSBGA  
3000 Green (RoHS &  
no Sb/Br)  
SNAGCU  
SNAGCU  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
8
250 Green (RoHS &  
no Sb/Br)  
8
3000 Green (RoHS &  
no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Nov-2007  
Orderable Device  
TPS62311YZDT  
TPS62313YZDR  
TPS62313YZDT  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
DSBGA  
YZD  
8
8
8
250 Green (RoHS &  
no Sb/Br)  
SNAGCU  
SNAGCU  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
DSBGA  
DSBGA  
YZD  
YZD  
3000 Green (RoHS &  
no Sb/Br)  
250 Green (RoHS &  
no Sb/Br)  
TPS62315YZR  
TPS62315YZT  
TPS62320DRCR  
PREVIEW DIESALE  
PREVIEW DIESALE  
YZ  
YZ  
8
8
3000  
250  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
ACTIVE  
SON  
DRC  
10  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TPS62320DRCRG4  
ACTIVE  
SON  
DRC  
10  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TPS62320YEDR  
TPS62320YEDT  
TPS62320YZDR  
ACTIVE  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
DSBGA  
YED  
YED  
YZD  
8
8
8
3000  
250  
TBD  
TBD  
SNPB  
SNPB  
Level-1-240C-UNLIM  
Level-1-240C-UNLIM  
Level-1-260C-UNLIM  
3000 Green (RoHS &  
no Sb/Br)  
SNAGCU  
TPS62320YZDT  
TPS62321DRCR  
TPS62321DRCRG4  
ACTIVE  
ACTIVE  
ACTIVE  
DSBGA  
SON  
YZD  
DRC  
DRC  
8
250 Green (RoHS &  
no Sb/Br)  
SNAGCU  
Level-1-260C-UNLIM  
10  
10  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SON  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TPS62321YEDR  
TPS62321YEDT  
TPS62321YZDR  
ACTIVE  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
DSBGA  
YED  
YED  
YZD  
8
8
8
3000  
250  
TBD  
TBD  
SNPB  
SNPB  
Level-1-240C-UNLIM  
Level-1-240C-UNLIM  
Level-1-260C-UNLIM  
3000 Green (RoHS &  
no Sb/Br)  
SNAGCU  
TPS62321YZDT  
ACTIVE  
DSBGA  
YZD  
8
250 Green (RoHS &  
no Sb/Br)  
SNAGCU  
Level-1-260C-UNLIM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Nov-2007  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Oct-2007  
TAPE AND REEL BOX INFORMATION  
Device  
Package Pins  
Site  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) (mm) Quadrant  
(mm)  
330  
178  
178  
330  
178  
178  
330  
178  
178  
330  
178  
178  
330  
178  
178  
330  
178  
178  
178  
(mm)  
12  
8
TPS62300DRCR  
TPS62300YZDR  
TPS62300YZDT  
TPS62301DRCR  
TPS62301YZDR  
TPS62301YZDT  
TPS62302DRCR  
TPS62302YZDR  
TPS62302YZDT  
TPS62303DRCR  
TPS62303YZDR  
TPS62303YZDT  
TPS62304DRCR  
TPS62304YZDR  
TPS62304YZDT  
TPS62305DRCR  
TPS62305YZDR  
TPS62305YZDT  
TPS62311YZDR  
DRC  
YZD  
YZD  
DRC  
YZD  
YZD  
DRC  
YZD  
YZD  
DRC  
YZD  
YZD  
DRC  
YZD  
YZD  
DRC  
YZD  
YZD  
YZD  
10  
8
SITE 60  
SITE 68  
SITE 68  
SITE 60  
SITE 68  
SITE 68  
SITE 60  
SITE 68  
SITE 68  
SITE 60  
SITE 68  
SITE 68  
SITE 60  
SITE 68  
SITE 68  
SITE 60  
SITE 68  
SITE 68  
SITE 68  
3.3  
1.12  
1.12  
3.3  
3.3  
2.13  
2.13  
3.3  
1.1  
0.71  
0.71  
1.1  
8
4
4
8
4
4
8
4
4
8
4
4
8
4
4
8
4
4
4
12  
8
Q2  
Q1  
Q1  
Q2  
Q1  
Q1  
Q2  
Q1  
Q1  
Q2  
Q1  
Q1  
Q2  
Q1  
Q1  
Q2  
Q1  
Q1  
Q1  
8
8
8
10  
8
12  
8
12  
8
1.12  
1.12  
3.3  
2.13  
2.13  
3.3  
0.71  
0.71  
1.1  
8
8
8
10  
8
12  
8
12  
8
1.12  
1.12  
3.3  
2.13  
2.13  
3.3  
0.71  
0.71  
1.1  
8
8
8
10  
8
12  
8
12  
8
1.12  
1.12  
3.3  
2.13  
2.13  
3.3  
0.71  
0.71  
1.1  
8
8
8
10  
8
12  
8
12  
8
1.12  
1.12  
3.3  
2.13  
2.13  
3.3  
0.71  
0.71  
1.1  
8
8
8
10  
8
12  
8
12  
8
1.12  
1.12  
1.12  
2.13  
2.13  
2.13  
0.71  
0.71  
0.71  
8
8
8
8
8
8
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Oct-2007  
Device  
Package Pins  
Site  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) (mm) Quadrant  
(mm)  
180  
178  
178  
178  
330  
178  
178  
178  
178  
330  
178  
178  
178  
178  
(mm)  
8
TPS62311YZDR  
TPS62311YZDT  
TPS62313YZDR  
TPS62313YZDT  
TPS62320DRCR  
TPS62320YEDR  
TPS62320YEDT  
TPS62320YZDR  
TPS62320YZDT  
TPS62321DRCR  
TPS62321YEDR  
TPS62321YEDT  
TPS62321YZDR  
TPS62321YZDT  
YZD  
YZD  
YZD  
YZD  
DRC  
YED  
YED  
YZD  
YZD  
DRC  
YED  
YED  
YZD  
YZD  
8
8
SITE 12  
SITE 68  
SITE 68  
SITE 68  
SITE 60  
SITE 68  
SITE 68  
SITE 68  
SITE 68  
SITE 60  
SITE 68  
SITE 68  
SITE 68  
SITE 68  
1.11  
1.12  
1.12  
1.12  
3.3  
2.11  
2.13  
2.13  
2.13  
3.3  
0.81  
0.71  
0.71  
0.71  
1.1  
4
4
4
4
8
4
4
4
4
8
4
4
4
4
8
8
Q1  
Q1  
Q1  
Q1  
Q2  
Q1  
Q1  
Q1  
Q1  
Q2  
Q1  
Q1  
Q1  
Q1  
8
8
8
8
8
8
8
10  
8
12  
8
12  
8
1.12  
1.12  
1.12  
1.12  
3.3  
2.13  
2.13  
2.13  
2.13  
3.3  
0.71  
0.71  
0.71  
0.71  
1.1  
8
8
8
8
8
8
8
8
8
10  
8
12  
8
12  
8
1.12  
1.12  
1.12  
1.12  
2.13  
2.13  
2.13  
2.13  
0.71  
0.71  
0.71  
0.71  
8
8
8
8
8
8
8
8
8
Device  
Package  
Pins  
Site  
Length (mm) Width (mm) Height (mm)  
TPS62300DRCR  
TPS62300YZDR  
TPS62300YZDT  
DRC  
YZD  
YZD  
10  
8
SITE 60  
SITE 68  
SITE 68  
342.9  
195.2  
195.2  
336.6  
193.7  
193.7  
20.64  
34.9  
34.9  
8
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Oct-2007  
Device  
Package  
Pins  
Site  
Length (mm) Width (mm) Height (mm)  
TPS62301DRCR  
TPS62301YZDR  
TPS62301YZDT  
TPS62302DRCR  
TPS62302YZDR  
TPS62302YZDT  
TPS62303DRCR  
TPS62303YZDR  
TPS62303YZDT  
TPS62304DRCR  
TPS62304YZDR  
TPS62304YZDT  
TPS62305DRCR  
TPS62305YZDR  
TPS62305YZDT  
TPS62311YZDR  
TPS62311YZDR  
TPS62311YZDT  
TPS62313YZDR  
TPS62313YZDT  
TPS62320DRCR  
TPS62320YEDR  
TPS62320YEDT  
TPS62320YZDR  
TPS62320YZDT  
TPS62321DRCR  
TPS62321YEDR  
TPS62321YEDT  
TPS62321YZDR  
TPS62321YZDT  
DRC  
YZD  
YZD  
DRC  
YZD  
YZD  
DRC  
YZD  
YZD  
DRC  
YZD  
YZD  
DRC  
YZD  
YZD  
YZD  
YZD  
YZD  
YZD  
YZD  
DRC  
YED  
YED  
YZD  
YZD  
DRC  
YED  
YED  
YZD  
YZD  
10  
8
SITE 60  
SITE 68  
SITE 68  
SITE 60  
SITE 68  
SITE 68  
SITE 60  
SITE 68  
SITE 68  
SITE 60  
SITE 68  
SITE 68  
SITE 60  
SITE 68  
SITE 68  
SITE 68  
SITE 12  
SITE 68  
SITE 68  
SITE 68  
SITE 60  
SITE 68  
SITE 68  
SITE 68  
SITE 68  
SITE 60  
SITE 68  
SITE 68  
SITE 68  
SITE 68  
342.9  
195.2  
195.2  
342.9  
195.2  
195.2  
342.9  
195.2  
195.2  
342.9  
195.2  
195.2  
342.9  
195.2  
195.2  
195.2  
220.0  
195.2  
195.2  
195.2  
342.9  
195.2  
195.2  
195.2  
195.2  
342.9  
195.2  
195.2  
195.2  
195.2  
336.6  
193.7  
193.7  
336.6  
193.7  
193.7  
336.6  
193.7  
193.7  
336.6  
193.7  
193.7  
336.6  
193.7  
193.7  
193.7  
220.0  
193.7  
193.7  
193.7  
336.6  
193.7  
193.7  
193.7  
193.7  
336.6  
193.7  
193.7  
193.7  
193.7  
20.64  
34.9  
34.9  
20.64  
34.9  
34.9  
20.64  
34.9  
34.9  
20.64  
34.9  
34.9  
20.64  
34.9  
34.9  
34.9  
34.0  
34.9  
34.9  
34.9  
20.64  
34.9  
34.9  
34.9  
34.9  
20.64  
34.9  
34.9  
34.9  
34.9  
8
10  
8
8
10  
8
8
10  
8
8
10  
8
8
8
8
8
8
8
10  
8
8
8
8
10  
8
8
8
8
Pack Materials-Page 3  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,  
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.  
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s  
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should  
provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask  
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services  
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such  
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under  
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an  
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties  
may be subject to additional restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service  
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business  
practice. TI is not responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would  
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement  
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications  
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related  
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any  
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its  
representatives against any damages arising out of the use of TI products in such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is  
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in  
connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products  
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any  
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Applications  
Audio  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/audio  
Automotive  
Broadband  
Digital Control  
Military  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
interface.ti.com  
logic.ti.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/lpw  
Telephony  
Low Power  
Wireless  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

TPS62315YZR

500-mA, 3-MHz SYNCHRONOUS STEP-DOWN CONVERTER IN CHIP SCALE PACKAGING
TI

TPS62315YZT

500-mA, 3-MHz SYNCHRONOUS STEP-DOWN CONVERTER IN CHIP SCALE PACKAGING
TI

TPS62320

500-mA, 3-MHz SYNCHRONOUS STEP-DOWN CONVERTER IN CHIP SCALE PACKAGING
TI

TPS62320DRC

500-mA, 3-MHz SYNCHRONOUS STEP-DOWN CONVERTER IN CHIP SCALE PACKAGING
TI

TPS62320DRCR

500-mA, 3-MHz SYNCHRONOUS STEP-DOWN CONVERTER IN CHIP SCALE PACKAGING
TI

TPS62320DRCRG4

500-mA, 3-MHz SYNCHRONOUS STEP-DOWN CONVERTER IN CHIP SCALE PACKAGING
TI

TPS62320DRCT

IC,SMPS CONTROLLER,VOLTAGE-MODE,CMOS,LLCC,10PIN,PLASTIC
TI

TPS62320YED

500-mA, 3-MHz SYNCHRONOUS STEP-DOWN CONVERTER IN CHIP SCALE PACKAGING
TI

TPS62320YEDR

500-mA, 3-MHz SYNCHRONOUS STEP-DOWN CONVERTER IN CHIP SCALE PACKAGING
TI

TPS62320YEDT

500-mA, 3-MHz SYNCHRONOUS STEP-DOWN CONVERTER IN CHIP SCALE PACKAGING
TI

TPS62320YZD

500-mA, 3-MHz SYNCHRONOUS STEP-DOWN CONVERTER IN CHIP SCALE PACKAGING
TI

TPS62320YZDR

500-mA, 3-MHz SYNCHRONOUS STEP-DOWN CONVERTER IN CHIP SCALE PACKAGING
TI