TPS61230A [TI]

采用 2.0mm x 2.0mm QFN 封装的 5V/6A 高效率升压转换器;
TPS61230A
型号: TPS61230A
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 2.0mm x 2.0mm QFN 封装的 5V/6A 高效率升压转换器

升压转换器
文件: 总29页 (文件大小:1646K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS61230A  
ZHCSFD9B JULY 2016REVISED OCTOBER 2018  
TPS61230A 采用 2.0mm x 2.0mm VQFN 封装的 5V/6A 高效升压转换器  
1 特性  
典型运行频率为 1.15MHZ,因此可使用小型电感和电  
容实现小型封装尺寸。TPS61230A 通过一个外部电阻  
分压器提供可调节输出电压。  
1
输入电压范围:2.5V 4.5V  
输出电压范围:2.5V 5.5V  
两个 21mΩ (LS)/18mΩ (HS) 金属氧化物半导体场  
效应晶体管 (MOSFET)  
在轻载条件下,TPS61230A 自动进入 PFM 操作模  
式,从而在最低静态电流下实现效率最大化。在关断期  
间,通过将 EN 引脚拉至逻辑低电平,负载可与输入完  
全断开,输入流耗同时降至 1.0µA 以下。  
20µA 静态电流  
6A 谷值开关电流限值  
1.15MHz 准恒定开关频率  
轻负载条件下以脉频调制 (PFM) 模式运行  
1.05ms 软启动时间  
真正实现负载断开连接  
不支持在 Vin > Vout 时运行  
输出短路保护  
该器件在输出短路时进入断续保护模式并在短路结束后  
自动恢复正常。集成了其他 特性, 如输出过压保护和  
热关断保护。  
该器件采用 2.00mm x 2.00mm x 0.9mm VQFN 封  
装,所需外部组件最少。  
过压保护  
器件信息(1)  
热关断  
器件号  
封装  
VQFN (7)  
封装尺寸(标称值)  
采用 2.0mm x 2.0mm 7 引脚超薄四方扁平无引线  
(VQFN) 封装  
TPS61230A  
2.00mm x 2.00mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
2 应用  
移动电源、备用电池  
器件比较表  
USB 电源  
器件型号  
输出电压  
可调节  
平板电脑  
TPS61230A  
音频功率放大器  
电池供电类产品  
固定输出电压 3.74.34.54.85.0、  
5.15.4  
(1) 产品预览:请联系 TI 工厂获取更多信息。  
TPS61230xA(1)  
3 说明  
TPS61230A 器件是一款高效全集成同步升压转换器。  
该器件集成了 6A21mΩ 18mΩ 电源开关。当以  
2.5V 输入电源供电时,该开关能够在 5V 输出下提供  
高达 2.4A 的输出电流。凭借低 RDS_ON 开关,该器件  
的功率转换效率高达 96%,最大限度降低了紧凑型封  
装中的热应力。  
典型应用  
效率  
L
1uH  
100  
VOUT  
5V/2.4A  
SW  
VOUT  
90  
80  
70  
60  
50  
40  
C3  
10nF  
R1  
316kΩ  
TPS61230A  
C2  
2x22 uF  
VIN  
CBST  
VIN  
FB  
R2  
100kΩ  
C1  
10 uF  
GND  
ON  
EN  
OFF  
Copyright © 2016, Texas Instruments Incorporated  
VIN = 3.0 V  
VIN = 3.6 V  
VIN = 4.3 V  
0.0001  
0.001  
0.01  
Load (A)  
0.1  
1
3
D001  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSCZ5  
 
 
 
 
TPS61230A  
ZHCSFD9B JULY 2016REVISED OCTOBER 2018  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 8  
7.1 Overview ................................................................... 8  
7.2 Functional Block Diagram ......................................... 8  
7.3 Feature Description................................................... 9  
7.4 Device Functional Modes........................................ 11  
8
9
Application and Implementation ........................ 12  
8.1 Application Information............................................ 12  
8.2 Typical Applications ................................................ 12  
Power Supply Recommendations...................... 17  
10 Layout................................................................... 18  
10.1 Layout Guidelines ................................................. 18  
10.2 Layout Example .................................................... 18  
10.3 Thermal Considerations........................................ 19  
11 器件和文档支持 ..................................................... 19  
11.1 器件支持 ............................................................... 19  
11.2 文档支持................................................................ 19  
11.3 接收文档更新通知 ................................................. 19  
11.4 社区资源................................................................ 19  
11.5 ....................................................................... 19  
11.6 静电放电警告......................................................... 19  
11.7 术语表 ................................................................... 19  
12 机械、封装和可订购信息....................................... 20  
7
4 修订历史记录  
Changes from Revision A (July 2016) to Revision B  
Page  
Added thermal information for EVM configuration ................................................................................................................. 4  
Changes from Original (July 2016) to Revision A  
Page  
已更改 从产品预览改为生产数据” ....................................................................................................................................... 1  
2
Copyright © 2016–2018, Texas Instruments Incorporated  
 
TPS61230A  
www.ti.com.cn  
ZHCSFD9B JULY 2016REVISED OCTOBER 2018  
5 Pin Configuration and Functions  
RNS Package  
7-Pin VQFN  
Top View  
SW  
5
7
VOUT  
6
GND  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NUMBER  
Boot strap capacitor for the supply of high-side MOSFET driver. An external capacitor is required  
between the SW and CBST pins to provide supply voltage to the high-side MOSFET gate driver.  
CBST  
1
I
I
This is the enable pin of the device. Connecting this pin to ground ( < 0.4 V ) forces the device into  
shutdown mode. Pulling this pin to high ( > 1.2 V ) enables the device. This pin must be terminated but  
not floating.  
EN  
2
Voltage feedback of adjustable output voltage. Connecting a resistor divider network from the output of  
the converter to the FB pin. Must be connected to VOUT on fixed output voltage version.  
FB  
VIN  
SW  
3
4
5
I
I
Supply voltage for the internal circuitry.  
Switching node of the boost regulator. It is connected to the drain of the internal low side power FET  
and the source of the internal high-side power FET.  
I/O  
Ground pin. Return for the internal voltage reference and analog circuits, also the source terminal of  
the low-side FET switch.  
GND  
6
7
VOUT  
O
Boost converter output.  
Copyright © 2016–2018, Texas Instruments Incorporated  
3
TPS61230A  
ZHCSFD9B JULY 2016REVISED OCTOBER 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
-0.3  
-0.3  
-0.3  
-40  
MAX  
6
UNIT  
V
VIN, EN, VOUT, FB  
(2)  
Voltage range at terminals  
SW  
7
V
CBST  
12  
V
Operating junction temperature range, TJ  
Storage temperature range, Tstg  
150  
150  
°C  
°C  
-65  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.  
(2) All voltages are with respect to network ground terminal.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
6.3 Recommended Operating Conditions  
MIN  
TYP  
MAX  
4.5  
UNIT  
V
VIN  
VOUT  
L
Input voltage range  
2.5  
Output voltage range  
5.5  
V
Effective inductance range  
Effective input capacitance range  
Effective output capacitance range  
Operating junction temperature  
0.47  
1
1
10  
22  
1.3  
µH  
µF  
µF  
°C  
CI  
CO  
TJ  
15  
80  
-40  
125  
6.4 Thermal Information  
TPS61230A  
TPS61230A  
THERMAL METRIC(1)  
RNS 7 PINS (VQFN)  
RNS 7 PINS (VQFN)  
EVM(2)  
UNIT  
Standard  
93  
RθJA  
RθJA  
RθJB  
RθJC  
ψJT  
Junction-to-ambient thermal resistance (no vias)  
Junction-to-ambient thermal resistance (with vias underneath)  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
60.0  
56  
28.4  
57.8  
2.0  
N/A(3)  
N/A(3)  
1.9  
Junction-to-case thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
ψJB  
28.1  
27.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Measured on the evaluation module (EVM PWR767A), 2-layer 50mm × 63mm PCB (2 oz on all layers).  
(3) N/A - Dose not apply for EVM configuration.  
4
Copyright © 2016–2018, Texas Instruments Incorporated  
TPS61230A  
www.ti.com.cn  
ZHCSFD9B JULY 2016REVISED OCTOBER 2018  
6.5 Electrical Characteristics  
TJ = -40 °C to 125 °C and VIN = 3.6 V. Typical values are at TJ = 25 °C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Power Supply  
VIN  
Input voltage range  
2.5  
4.5  
2.5  
V
V
VVIN_UVLO  
VVIN_HYS  
Input under voltage lockout  
VIN UVLO hysteresis  
VIN rising  
150  
20  
mV  
IC enabled, No load , No Switching, VOUT = 5 V,  
VIN = 4.2 V  
IQ_VIN  
Quiescent current into VIN pin  
50  
µA  
IQ_VOUT  
ISD  
Quiescent current into VOUT pin  
Shutdown current into VIN  
IC enabled, No load, No Switching VOUT = 5 V  
IC disabled, TJ < 85°C, VIN = 4.2 V  
25  
55  
1
µA  
µA  
0.2  
Output  
VOUT  
Output voltage range  
2.5  
5.5  
V
V
VFB_PWM  
VFB_PFM  
VOVP  
Feedback voltage  
PWM mode  
PFM mode  
1.171 1.195 1.219  
101.2  
Feedback voltage  
% VFB  
V
Output overvoltage protection threshold  
Leakage current into FB pin  
5.7  
5.8  
5.99  
20  
ILKG_FB  
Power Switch  
RDS(on)  
RDS(on)  
fsw  
VFB = 1.2 V  
nA  
High-side MOSFET on resistance  
Low-side MOSFET on resistance  
Switching frequency  
VIN = 3.6 V, VOUT = 5 V, CBST = 10 nF,  
VIN = 3.6 V, VOUT = 5 V, CBST = 10 nF  
VIN = 3.6 V, VOUT = 5 V, PWM Operation  
18  
21  
35 m  
36 mΩ  
805  
1150  
1495 kHz  
tON_min  
Minimum on time  
180  
ns  
A
Linear mode, VOUT = 2.5 V  
Linear mode, VOUT = 0 V  
1.02  
0.06  
4.8  
Pre-charge mode and short circuit  
current limit (DC charge mode)  
ILIM_PRE  
0.6  
7.8  
1.9  
A
ILIMIT  
tstartup  
TSD  
Switching valley current limit  
Soft Start time (boost)  
6.3  
1.05  
160  
10  
A
VIN = 3.6 V, VOUT = 5 V  
TJ rising  
0.3  
ms  
°C  
°C  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
TJ falling below TSD  
Protection  
THC_OFF  
THC_ON  
Time for the hiccup off time  
Time for the hiccup on time  
VIN = 3.6 V  
VIN = 3.6 V  
23  
ms  
ms  
3.5  
Logic Interface  
VEN_H  
EN Logic high threshold  
EN Logic low threshold  
EN pin input leakage current  
1.0  
0.3  
V
V
VEN_L  
0.4  
ILKG_EN  
Connected to 3.6V VIN  
0.1  
µA  
版权 © 2016–2018, Texas Instruments Incorporated  
5
TPS61230A  
ZHCSFD9B JULY 2016REVISED OCTOBER 2018  
www.ti.com.cn  
6.6 Typical Characteristics  
VIN = 3.6 V, VOUT = 5.0 V, TJ = -40°C to 125 °C, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
100  
95  
90  
85  
80  
75  
70  
Load = 10 mA  
Load = 100 mA  
Load = 1 A  
VIN = 3.0 V  
VIN = 3.6 V  
VIN = 4.3 V  
Load = 2A  
0.0001  
0.001  
0.01  
Load (A)  
0.1  
1
3
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.34.4  
Input Voltage (V)  
D001  
D001  
TA = 25 ºC  
1. Efficiency vs. Output Current  
TA = 25 ºC  
2. Efficiency vs. Input Voltage  
5.20  
5.16  
5.12  
5.08  
5.04  
5.00  
4.96  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
Load = 10 mA  
Load = 100 mA  
Load = 1 A  
Load = 2 A  
VIN = 3.0 V  
VIN = 3.6 V  
VIN = 4.3 V  
2.5  
3
3.5  
4
4.5  
0.0001  
0.001  
0.01  
Load (A)  
0.1  
1
3
Input Voltage (V)  
D001  
D001  
TA = 25 ºC  
TA = 25 ºC  
3. Line Regulation  
4. Load Regulation  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
30  
25  
20  
15  
10  
VIN = 3.0 V  
VIN = 3.6 V  
VIN = 4.2 V  
0.3  
0.5  
0.7  
0.9  
1.1  
Load (A)  
1.3  
1.5  
1.7  
1.9 2  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Junction Temperature (oC)  
D001  
D001  
TA = 25 ºC  
VOUT = 5 V  
VIN = 3.6V  
5. Frequency vs. Load  
6. High-Side FET Rdson vs Junction Temperature  
6
版权 © 2016–2018, Texas Instruments Incorporated  
TPS61230A  
www.ti.com.cn  
ZHCSFD9B JULY 2016REVISED OCTOBER 2018  
Typical Characteristics (接下页)  
VIN = 3.6 V, VOUT = 5.0 V, TJ = -40°C to 125 °C, unless otherwise noted.  
30  
25  
20  
15  
10  
1.210  
1.205  
1.200  
1.195  
1.190  
1.185  
1.180  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Junction Temperature (oC)  
Junction Temperature (oC)  
D001  
D001  
VOUT = 5 V  
VIN = 3.6V  
7. Low-Side FET Rdson vs Junction Temperature  
8. Voltage Reference vs Junction Temperature  
40  
35  
30  
25  
20  
15  
10  
5
6.5  
6
5.5  
5
4.5  
TJ = -40oC  
TJ = 25oC  
TJ = 85oC  
TJ = -40oC  
TJ = 25oC  
TJ = 125oC  
4
2.5  
3
3.5  
4
4.5  
2.5  
3
3.5  
4
4.5  
Input Voltage (V)  
Input Voltage (V)  
D001  
D001  
9. Quiescent Current vs Input Voltage  
10. Switch Valley Current Limit vs Input Voltage  
2.4  
2.3  
2.2  
2.1  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
VIN Rising  
VIN Falling  
EN Rising  
EN Falling  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Junction Temperature (oC)  
Junction Temperature (oC)  
D001  
D001  
11. Vin UVLO Threshold vs Junction Temperature  
12. EN logic Threshold vs Junction Temperature  
版权 © 2016–2018, Texas Instruments Incorporated  
7
TPS61230A  
ZHCSFD9B JULY 2016REVISED OCTOBER 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS61230A is a high efficiency synchronous boost converter with integrating the 21-mlow side FET and  
18-mhigh side FET. The device could deliver up to 12-W output power with 5.5-V maximum output voltage  
from single cell Li-Iron battery. TPS61230A uses a quasi constant on-time valley current mode which provides an  
excellent transient response. The TPS61230xA typically operates at a quasi-constant 1.15-MHz frequency pulse  
width modulation (PWM) at the moderate to heavy load currents, allows the use of small inductor and capacitors  
to achieve a compact solution size.  
During the PWM operation, a simple circuit predicts the required on time (with the VIN / VOUT ratio) of the ow-  
side FET. At the beginning of each switching cycle, the low-side FET turns on and the inductor current ramps up  
to the peak current determined by the on-time and the inductance. Once the on-timer expires, the high-side FET  
turns on and the inductor current decays to a preset valley current threshold determined by the Error Amplifier’s  
output. The switching cycle repeats again by calculating the on time and activating the low-side FET.  
At the light load currents, TPS61230A operates in Power Save Mode with pulse frequency modulation (PFM) and  
improves the efficiency under the light load.  
Internal soft-start and loop compensation simplifies the design process and minimizes the number of external  
components.  
7.2 Functional Block Diagram  
L
VIN  
CIN  
VIN  
CBST  
SW  
4
5
1
VOUT  
7
UVLO  
Thermal  
Shutdown  
VIN  
VOUT  
COUT  
ON  
EN  
Current Sense  
2
OFF  
Gate Driver  
Logic  
VOUT  
R2  
R1  
REF  
FB  
3
Soft Start  
Control  
Pulse Modulator  
VOUT  
OVP & Short  
Protection  
GND  
6
Copyright © 2016, Texas Instruments Incorporated  
8
版权 © 2016–2018, Texas Instruments Incorporated  
TPS61230A  
www.ti.com.cn  
ZHCSFD9B JULY 2016REVISED OCTOBER 2018  
7.3 Feature Description  
7.3.1 Startup  
When the device is enabled, the high-side FET turns on to charge the output capacitor linearly by a DC current  
which is called the pre-charge phase. The pre-charge startup phase terminates until the output voltage being  
close to the input voltage (typically VOUT = VIN -115mV). Once the output capacitor has been biased close to  
the input voltage (VOUT = VIN -115mV), the device starts switching which is called the boost soft start phase.  
During the soft start phase, there is a soft start voltage controlling the FB pin voltage, and the output voltage  
rising slope follows the soft start voltage slew rate (typically). The soft start phase completes when the soft start  
voltage reaches the internal reference voltage. The device begins to operate normally and regulates the output  
voltage at the pre-set target value.  
1. Start-up Mode Description  
MODE  
DESCRIPTION  
CONDITION  
Pre-charge  
Vout linearly startup without switching  
Vout startup with switching phase  
VOUT < VIN – 115mV  
VOUT > VIN -115mV  
Boost Soft Start  
7.3.2 Enable and Disable  
The device is enabled by setting EN pin to a voltage above 1.2V. At first, the internal reference is activated and  
the internal analog circuits are settled. Afterwards, the startup is activated and the output voltage ramps up. With  
the EN pin pulled to ground, the device enters into the shutdown mode. In the shutdown mode, the TPS61230A  
stops switching and the internal control circuitry is turned off.  
7.3.3 Under-Voltage Lockout (UVLO)  
The under voltage lockout circuit prevents the device from malfunctioning at the low input voltage of the battery  
from the excessive discharge. The device starts operation once the rising VIN trips the under-voltage lockout  
threshold (UVLO) , and it disables the output stage of the converter once the VIN is below UVLO falling  
threshold.  
7.3.4 Current Limit Operation  
During the startup phase, the output current is limited to the pre-charge current limit which is proportional to the  
output voltage. The device could support minimum 1.0A output current at 2.5V input.  
The TPS61230A employs a valley current sensing scheme at the normal boost switching phase. The switch  
valley current limit detection occurs during the off time through the sensing the voltage drop across the rectifier  
FET. If the switch valley current is lower than the valley current limit level, the device turns off the rectifier FET.  
The maximum continuous output current (IOUT_LIM), prior to entering current limit operation, can be defined by:  
1
IOUT _LIM = (1-D)ì(IVALLEY _LIM  
+
DIL )  
2
(1)  
V ì h  
VOUT  
IN  
D = 1-  
(2)  
(3)  
V
D
f
IN  
DIL =  
ì
L
If the output current is further increased and the output voltage is pulled blow the input voltage, the TPS61230A  
enters into the hiccup protection mode. The average current and thermal will be much lowered at the hiccup  
steady state and the device could recovery automatically as long as the over load condition being released.  
版权 © 2016–2018, Texas Instruments Incorporated  
9
TPS61230A  
ZHCSFD9B JULY 2016REVISED OCTOBER 2018  
www.ti.com.cn  
Load  
increasing  
IVALLEY_LIM  
IOUT_LIM  
IOUT  
(1-D)T  
DT  
T = 1 / f  
∆IL = (VIN / L) x (D / f)  
13. Current Limit Operation  
7.3.5 Over Voltage Protection  
The device stops switching as soon as the output voltage exceeds the over voltage protection (OVP) threshold.  
Both of the low side FET and high side FET turn off. The device resumes the normal operation when the output  
voltage is below the OVP threshold.  
7.3.6 Load Disconnect  
The TPS61230A disconnects the output from the input of the power supply when the device is shutdown. In case  
of a connected battery it prevents it from being discharged during the shutdown of the converter.  
7.3.7 Thermal Shutdown  
The TPS61230A has a built-in temperature sensor which monitors the internal junction temperature, TJ. If the  
junction temperature exceeds the threshold (160 °C typical), the device goes into the thermal shutdown, and the  
high-side and low-side FETs turn off. When the junction temperature falls below the thermal shutdown falling  
threshold (150 °C typical), the device resumes the operation.  
10  
版权 © 2016–2018, Texas Instruments Incorporated  
TPS61230A  
www.ti.com.cn  
ZHCSFD9B JULY 2016REVISED OCTOBER 2018  
7.4 Device Functional Modes  
The TPS61230A has two operation modes, as shown in 2.  
2. Operation Mode Description  
MODE  
PWM  
PFM  
DESCRIPTION  
Boost in normal switching operation Heavy load  
Boost in power save operation Light load  
CONDITION  
7.4.1 PWM Mode  
The TPS61230A typically operates at a quasi-constant 1.15 MHz frequency pulse width modulation (PWM) at  
moderate to heavy load currents.  
7.4.2 PFM Mode  
The device integrates a power save mode with the pulse frequency modulation (PFM) to improve the efficiency at  
the light load. In the PFM mode, the device starts to switch when the output voltage trips below a set threshold  
voltage. When the output voltage ramping over the PFM threshold, the device stops switching. The DC output  
voltage in PFM mode rises above the nominal output voltage in PWM mode by 1.2%.  
VOUT  
PFM at light load  
PWM at medium to  
heavy load  
∆V=1.012 x VOUT_NORM  
VOUT_NORM  
t
14. Output Voltage in PFM / PWM Mode  
版权 © 2016–2018, Texas Instruments Incorporated  
11  
 
TPS61230A  
ZHCSFD9B JULY 2016REVISED OCTOBER 2018  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS61230A is designed to operate from an input voltage supply range between 2.5 V and 4.5 V with a  
maximum output current of 2.4 A. The device operates in PWM mode for medium to heavy load conditions and in  
the PFM mode at the light load currents. In PWM mode the TPS61230A converter operates with the nominal  
switching frequency of 1.15 MHz which provides a controlled frequency variation over the input voltage range. As  
the load current decreases, the converter enters into the PFM mode, reducing the switching frequency and  
minimizing the quiescent current to achieve the high efficiency over the entire load current range.  
8.2 Typical Applications  
8.2.1 TPS61230A 2.5-V to 4.5-V Input, 5-V Output Converter  
L
1uH  
VOUT  
5V/2.4A  
SW  
VOUT  
C3  
10nF  
R1  
316kΩ  
TPS61230A  
C2  
2x22 uF  
VIN  
CBST  
VIN  
FB  
R2  
100kΩ  
C1  
10 uF  
GND  
ON  
EN  
OFF  
Copyright © 2016, Texas Instruments Incorporated  
15. TPS61230A 5-V Output Typical Application  
8.2.1.1 TPS61230A 5-V Output Design Requirements  
Use the following typical application design procedure to select the external components values for the  
TPS61230A device.  
3. TPS61230A 5-V Output Design Parameters  
DESIGN PARAMETERS  
Input Voltage Range  
Output Voltage  
EXAMPLE VALUES  
2.5 V to 4.5 V  
5.0 V  
Output Voltage Ripple  
Transient Response  
Input Voltage Ripple  
Output Current Rating  
Operating frequency  
+/- 3% VOUT  
+/- 10% VOUT  
+/- 200mV  
2.4 A  
1.15 MHz  
12  
版权 © 2016–2018, Texas Instruments Incorporated  
TPS61230A  
www.ti.com.cn  
ZHCSFD9B JULY 2016REVISED OCTOBER 2018  
8.2.1.2 TPS61230A 5-V Detailed Design Procedure  
4. TPS61230A 5-V Output List of Components  
REFERENCE  
DESCRIPTION  
MANUFACTURER  
Coilcraft  
L
1.0 μH, Power Inductor, XFL4020-102MEB  
22 μF 6.3V, 0805, X5R ceramic, GRM21BR61A226ME44  
2 × 22 μF 10V, 0805, X5R ceramic, GRM21BR61A226ME44  
10 nF, X7R ceramic  
CIN  
Murata  
COUT  
CBST  
R2  
Murata  
Murata  
316k, Resistor, Chip, 1/10W, 1%  
Vishay-Dale  
Vishay-Dale  
R1  
100k,Resistor, Chip, 1/10W, 1%  
8.2.1.2.1 Programming The Output Voltage  
The TPS61230A's output voltage need to be programmed via an external voltage divider to set the desired  
output voltage.  
An external resistor divider is used, as shown in 公式 4. By selecting R1 and R2, the output voltage is  
programmed to the desired value. When the output voltage is regulated, the typical voltage at the FB pin is VFB  
.
The following equation can be used to calculate R1 and R2.  
R1  
R2  
R1  
R2  
æ
ö
æ
ö
VOUT = VFB ´ 1+  
= 1.195V ´ 1+  
ç
÷
ç
÷
è
ø
è
ø
(4)  
R2 is typically around 100kΩ to ensure that the current following through R2 is at least 100 times larger than FB  
pin leakage current. Changing R2 towards a lower value increases the robustness against noise injection.  
Changing the R2 towards higher values reduces the quiescent current for achieving highest efficiency at low load  
currents.  
For the fixed output voltage version, the FB pin must be tied to the output directly.  
8.2.1.2.2 Inductor and Capacitor Selection  
The second step is the selection of the inductor and capacitor components.  
8.2.1.2.2.1 Inductor Selection  
A boost converter requires two main passive components for storing energy during the conversion, an inductor  
and an output capacitor. It is advisable to select an inductor with a saturation current rating higher than the  
possible peak current flowing through the power FETs. The inductor peak current varies as a function of the load,  
the input and output voltages and is estimated using 公式 5.  
IOUT  
V
´D  
1
IN  
IL(PEAK)  
=
+
´
(1- D)´ h  
2
L ´ fSW  
(5)  
Where  
η = Power conversion estimated efficiency  
Selecting an inductor with the insufficient saturation performance can lead to the excessive peak current in the  
converter. This could eventually harm the device and reduce reliability. It's recommended to choose the  
saturation current for the inductor 20%~30% higher than the IL(PEAK), from 公式 5. The following inductors are  
recommended to be used in designs.  
5. List of Inductors  
INDUCTANCE  
[µH]  
CURRENT  
RATING [A]  
DC RESISTANCE  
PART NUMBER  
MANUFACTURER  
[mΩ]  
1.0  
1.0  
9.0  
5.1  
12  
744 383 560 10  
Wurth  
10.8  
XFL4020-102MEB  
Coilcraft  
版权 © 2016–2018, Texas Instruments Incorporated  
13  
 
 
TPS61230A  
ZHCSFD9B JULY 2016REVISED OCTOBER 2018  
www.ti.com.cn  
8.2.1.2.2.2 Output Capacitor Selection  
For the output capacitor, it is recommended to use small X5R or X7R ceramic capacitors placed as close as  
possible to the VOUT and GND pins of the IC. If, for any reason, the application requires the use of large  
capacitors which can not be placed close to the IC, using a smaller ceramic capacitor of 1 µF in parallel to the  
large one is highly recommended. This small capacitor should be placed as close as possible to the VOUT and  
GND pins of the IC.  
Care must be taken when evaluating a capacitor’s derating under bias. The bias can significantly reduce  
capacitance. Ceramic capacitors can loss as much as 50% of their capacitance at rated voltage. Therefore, leave  
margin on the voltage rating to ensure adequate effective capacitance.  
The ESR impact on the output ripple must be considered as well, if tantalum or electrolytic capacitors are used.  
Assuming there is enough capacitance such that the ripple due to the capacitance can be ignored, the ESR  
needed to limit the VRipple is:  
VRipple(ESR) = IL(PEAK) ´ESR  
(6)  
8.2.1.2.2.3 Input Capacitor Selection  
Multilayer X5R or X7R ceramic capacitors are an excellent choice for input decoupling of the step-up converter  
as they have extremely low ESR and are available in small footprints. Input capacitors should be located as  
close as possible to the device. While a 10 μF input capacitor is sufficient for most applications, larger values  
may be used to reduce input current ripple without limitations. Take care when using only ceramic input  
capacitors. When a ceramic capacitor is used at the input and the power is being supplied through long wires,  
such as from a wall adapter, a load step at the output can induce ringing at the VIN pin. This ringing can couple  
to the output and be mistaken as loop instability or could even damage the part. Additional "bulk" capacitance  
(electrolytic or tantalum) should in this circumstance be placed between CIN and the power source to reduce the  
ringing that can occur between the inductance of the power source leads and CIN.  
8.2.1.2.3 Loop Stability, Feed Forward Capacitor  
The third step is to check the loop stability. The stability evaluation is to look from a steady-state perspective at  
the following signals:  
Switching node, SW  
Inductor current, IL  
Output ripple, VRipple(OUT)  
When the switching waveform shows large duty cycle jitter or the output voltage or inductor current shows  
oscillations, the regulation loop may be unstable. This is often a result of board layout and/or L-C combination.  
The load transient response is another approach to check the loop stability. During the load transient recovery  
time, VOUT can be monitored for settling time, overshoot or ringing that helps judge the converter’s stability.  
Without any ringing, the loop has usually more than 45° of phase margin.  
As for the heavy load transient applications such as a 2 A load step transient, a feed forward capacitor in parallel  
with R1 is recommended. The feed forward capacitor increases the loop bandwidth by adding a zero.  
14  
版权 © 2016–2018, Texas Instruments Incorporated  
TPS61230A  
www.ti.com.cn  
ZHCSFD9B JULY 2016REVISED OCTOBER 2018  
8.2.1.3 TPS61230A 5-V Output Application Performance Plots  
VOUT (AC) 20 mV/div  
VOUT (AC) 30 mV/div  
SW 2 V/div  
IL 1 A/div  
SW 3 V/div  
IL 2 A/div  
Time scale: 20 ms/div  
Time scale: 20 ms/div  
VOUT = 5 V, VIN = 3.6 V, IOUT = 2 A, TA = 25 ºC, L = 1 µH,  
COUT = 2x22 µF  
VOUT = 5 V, VIN = 3.6 V, IOUT = 10 mA, TA = 25 ºC  
16. Steady State Switching at PWM  
17. Steady State Switching at PFM  
EN 2 V/div  
Load 1.5 A/div  
VOUT 5V Offset 100 mV/div  
VOUT 2 V/div  
IL 1 A/div  
IL 1 A/div  
Time scale: 500 ms/div  
Time scale: 10 ms/div  
VOUT = 5 V, VIN = 3.6 V, ROUT = 5 Ω, TA = 25 ºC  
18. Startup by EN  
VOUT = 5 V, VIN = 3.6 V, IOUT = 0 - 2 A Sweep, TA = 25 ºC  
19. Load Sweep  
Load 500 mA/div  
Load 200 mA/div  
VOUT (AC) 200 mV/div  
VOUT AC 200 mV/div  
IL 1 A/div  
IL 1 A/div  
Time scale: 50 ms/div  
Time scale: 500 ms/div  
VOUT = 5 V, VIN = 3.6 V, IOUT = 0.1 - 1 A with 10 µs slew rate,  
TA = 25 ºC  
VOUT = 5 V, VIN = 3.6 V, IOUT = 0.5 - 1 A with 10 µs slew rate,  
TA = 25 ºC  
20. Load Transient PFM / PWM  
21. Load Transient PWM  
版权 © 2016–2018, Texas Instruments Incorporated  
15  
TPS61230A  
ZHCSFD9B JULY 2016REVISED OCTOBER 2018  
www.ti.com.cn  
VIN 500 mV/div  
VOUT 2 V/div  
IL 1 A/div  
VOUT (AC) 20 mV/div  
IL 1 A/div  
Time scale: 200 ms/div  
Time scale: 20 ms/div  
VOUT = 5 V, VIN = 3.6 - 4.2 V, Slew rate 50 µs, IOUT = 1 A,  
TA = 25 ºC  
VOUT = 5 V, VIN = 3.6 V, IOUT = 1 A before short, TA = 25 ºC  
22. Line Transient  
23. Output Short Entry  
VOUT 10 mV/div  
IL 200 mA/div  
Time scale: 10 ms/div  
VOUT = 5 V, VIN = 3.6 V, IOUT short, TA = 25 ºC  
24. Output Short Steady State  
16  
版权 © 2016–2018, Texas Instruments Incorporated  
TPS61230A  
www.ti.com.cn  
ZHCSFD9B JULY 2016REVISED OCTOBER 2018  
8.2.2 Systems Example - TPS61230A with Feed Forward Capacitor for Best Transient Response  
As for the heavy load transient applications such as a 2 A load step transient, a feed forward capacitor in parallel  
with R1 is recommended. The feed forward capacitor increases the loop bandwidth by adding a zero. This results  
in a lower output voltage drop, as shown in . See Application Note SLVA289.for the feed forward capacitor  
selection.  
L
1uH  
VOUT  
5V/2.4A  
SW  
VOUT  
C3  
10nF  
R1  
316kΩ  
TPS61230A  
C2  
10 pF  
C2  
2x22 uF  
VIN  
CBST  
VIN  
FB  
R2  
100kΩ  
C1  
10 uF  
GND  
ON  
EN  
OFF  
Copyright © 2016, Texas Instruments Incorporated  
25. TPS61230A 5-V Output with Cff Typical Application  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 2.5 V and 4.5 V. This input supply  
must be well regulated. If the input supply is located more than a few inches from the converter, additional bulk  
capacitance may be required in addition to the ceramic bypass capacitors. An electrolytic or tantalum capacitor  
with a value of 47 μF is a typical choice.  
版权 © 2016–2018, Texas Instruments Incorporated  
17  
TPS61230A  
ZHCSFD9B JULY 2016REVISED OCTOBER 2018  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
For all switching power supplies, the layout is an important step in the design, especially at high peak currents  
and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as  
well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground  
tracks. The input capacitor, output capacitor, and the inductor should be placed as close as possible to the IC.  
Use a common ground node for power ground and a different one for control ground to minimize the effects of  
ground noise. Connect these ground nodes at the GND pin of the IC. The most critical current path for all boost  
converters is from the switching FET, through the synchronous FET, then the output capacitors, and back to  
ground of the switching FET. Therefore, the output capacitors and their traces should be placed on the same  
board layer as the IC and as close as possible between the IC’s VOUT and GND pin.  
See 26 for the recommended layout.  
10.2 Layout Example  
Top Layer  
Bottom Layer  
VIN  
L
CIN  
SW  
GND  
GND  
VIN  
FB  
RUP_FB  
COUT2  
COUT1  
EN  
RDOWN_FB  
GND  
CBST  
VOUT  
SW  
VOUT  
CBST  
26. Layout Recommendation  
18  
版权 © 2016–2018, Texas Instruments Incorporated  
 
TPS61230A  
www.ti.com.cn  
ZHCSFD9B JULY 2016REVISED OCTOBER 2018  
10.3 Thermal Considerations  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-  
dissipation limits of a given component.  
Two basic approaches for enhancing thermal performance are listed below.  
Improving the power dissipation capability of the PCB design  
Introducing airflow in the system  
For more details on how to use the thermal parameters in the dissipation ratings table please check the Thermal  
Characteristics Application Note (SZZA017) and the IC Package Thermal Metrics Application Note (SPRA953).  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
《散热特性应用手册》(文献编号:SZZA017)  
IC 封装热指标应用手册》(文献编号:SPRA953)  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
版权 © 2016–2018, Texas Instruments Incorporated  
19  
TPS61230A  
ZHCSFD9B JULY 2016REVISED OCTOBER 2018  
www.ti.com.cn  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
20  
版权 © 2016–2018, Texas Instruments Incorporated  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2019 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS61230ARNSR  
TPS61230ARNST  
ACTIVE  
ACTIVE  
VQFN-HR  
VQFN-HR  
RNS  
RNS  
7
7
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
12EI  
12EI  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-May-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS61230ARNSR  
TPS61230ARNST  
VQFN-  
HR  
RNS  
RNS  
7
7
3000  
250  
180.0  
8.4  
2.3  
2.3  
1.15  
4.0  
8.0  
Q2  
VQFN-  
HR  
180.0  
8.4  
2.3  
2.3  
1.15  
4.0  
8.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-May-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS61230ARNSR  
TPS61230ARNST  
VQFN-HR  
VQFN-HR  
RNS  
RNS  
7
7
3000  
250  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RNS0007A  
VQFN - 1 mm max height  
SCALE 4.750  
PLASTIC QUAD FLATPACK - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
1 MAX  
C
SEATING PLANE  
0.08 C  
PKG  
(0.2) TYP  
1.1  
0.9  
0.8  
0.6  
0.05  
0.00  
0.35  
2X  
0.25  
7
6
0.015 PIN 5  
PKG  
0.54  
5
0.3  
0.2  
0.45  
3X  
0.35  
0.45  
0.35  
4
1
0.3  
4X  
0.2  
0.1  
0.05  
3X 0.5  
C B  
C
A
2X 1.5  
ALL PADS  
4222253/A 09/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RNS0007A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
3X (0.5)  
4
PKG  
4X (0.25)  
4X (0.6)  
1
(0.9)  
(0.015)  
PIN 5  
(2.4)  
5
PKG  
(0.54)  
(0.25)  
7
6
(R0.05) TYP  
2X (0.3)  
(0.6)  
(0.75)  
(0.9)  
(1.2)  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
SOLDER MASK  
OPENING  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
PADS 5-7  
PADS 1-4  
SOLDER MASK DETAILS  
4222253/A 09/2015  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RNS0007A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
3X (0.5)  
PKG  
4X (0.25)  
4X (0.6)  
(R0.05) TYP  
1
4
4X  
EXPOSED METAL  
(0.9)  
3X  
(0.015)  
PIN 5  
2X (0.86)  
3X (0.66)  
5
PKG  
(0.54)  
3X (0.25)  
7
6
3X (0.3)  
2X (0.525)  
(0.8)  
SOLDER MASK  
EDGE, TYP  
METAL UNDER  
SOLDER MASK  
TYP  
(0.263)  
(0.938)  
(0.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
PAD 5: 79%, PADS 6 & 7: 85%  
SCALE:30X  
4222253/A 09/2015  
NOTES: (continued)  
5. For alternate stencil design recommendations, see IPC-7525 or board assembly site preference.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS61230ARNSR

采用 2.0mm x 2.0mm QFN 封装的 5V/6A 高效率升压转换器 | RNS | 7 | -40 to 125
TI

TPS61230ARNST

采用 2.0mm x 2.0mm QFN 封装的 5V/6A 高效率升压转换器 | RNS | 7 | -40 to 125
TI

TPS61230DRCR

5A 可调节输出电压高效同步升压转换器 | DRC | 10 | -40 to 85
TI

TPS61230DRCT

5A 可调节输出电压高效同步升压转换器 | DRC | 10 | -40 to 85
TI

TPS61232

5A、5V 固定输出电压高效同步升压转换器
TI

TPS61232DRCR

5A、5V 固定输出电压高效同步升压转换器 | DRC | 10 | -40 to 85
TI

TPS61232DRCT

5A、5V 固定输出电压高效同步升压转换器 | DRC | 10 | -40 to 85
TI

TPS61235P

8A 谷值电流、5.1V 固定输出电压同步升压转换器
TI

TPS61235PRWLR

8A 谷值电流、5.1V 固定输出电压同步升压转换器 | RWL | 9 | -40 to 85
TI

TPS61235PRWLT

8A 谷值电流、5.1V 固定输出电压同步升压转换器 | RWL | 9 | -40 to 85
TI

TPS61235RWLR

TPS6123x 8-A Valley Current Synchronous Boost Converters with Constant Current Output Feature 9-VQFN-HR -40 to 85
TI

TPS61235RWLT

TPS6123x 8-A Valley Current Synchronous Boost Converters with Constant Current Output Feature 9-VQFN-HR -40 to 85
TI