TPS61230DRCR [TI]

5A 可调节输出电压高效同步升压转换器 | DRC | 10 | -40 to 85;
TPS61230DRCR
型号: TPS61230DRCR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

5A 可调节输出电压高效同步升压转换器 | DRC | 10 | -40 to 85

升压转换器 开关 光电二极管 输出元件
文件: 总32页 (文件大小:1822K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS61230, TPS61231, TPS61232  
ZHCS174C JANUARY 2014REVISED OCTOBER 2014  
TPS6123x 具有 5A 开关的高效同步升压转换器  
1 特性  
3 说明  
1
输入电压范围:2.3V 5.5V  
TPS6123x 器件系列是一款采用紧凑解决方案尺寸的高  
效同步升压转换器。 它针对由单节锂离子电池或 3.3V  
稳压电源轨供电的产品进行了优化。集成电路 (IC) 中  
集成了一个 5A 开关,并且能够在由 3.3V 输入电源供  
电,输出电压为 5V 时传送高达 2.1A 的输出电流。 此  
器件基于准恒定接通时间谷值电流模式控制机制。 典  
型运行频率为 2MHZ,这样可使用小型电感器和电容  
器来实现小解决方案尺寸。 TPS61230 TPS61231  
通过一个外部电阻分压器提供可调输出电压,而  
TPS61232 提供 5V 的固定输出电压。  
输出电压范围:2.5V 5.5V  
同步升压转换器效率高达 96%  
输出电流 2.1A 3.3V 5V 电源转换  
带有可调阀值/滞后的输入电源电压监控器  
用于在轻载时实现高效率的省电模式  
关断期间负载断开  
输出过压保护  
可编程软启动  
电源正常输出  
2MHz 开关频率  
轻负载期间,TPS6123x 自动进入省电模式,以最低静  
态电流实现最大效率。 在关断期间,负载完全从输入  
上断开,并且输入流耗减少至 1.5µA(典型值)。 此  
器件集成一个精密低功率 EN 比较器。 EN 阀值以及使  
能比较器的滞后可由外部电阻器调节,并且支持应用专  
用系统加电和断电要求。 还内置了其他诸如输出过压  
保护、热关断保护和电源正常输出等特性。  
输出电容器放电 (TPS61231)  
3mm x 3mm x 0.9mm 超薄小外形尺寸无引线  
(VSON) 封装  
2 应用范围  
低压锂离子电池供电类产品  
USB 电源  
此器件采用 3mm x 3mm x 0.9mm VSON 封装。  
平板电脑  
移动电源、备用电池  
工业仪表计量设备  
器件信息(1)  
部件号  
TPS61230  
封装  
封装尺寸(标称值)  
超薄小外形尺寸无引  
线 (VSON) (10)  
TPS61231(2)  
3.00mm x 3.00mm  
TPS61232  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
(2) 产品预览。 有关更多信息,请联系 TI 厂家  
TPS61230 典型应用  
TPS61230 典型应用效率  
L1  
1.0µH  
100  
90  
80  
VIN  
VIN  
EN  
SW  
VOUT  
FB  
C1  
22µF  
VOUT  
C2  
3x22µF  
R1  
402k  
HYS  
SS  
R2  
100k  
70  
C3  
10nF  
Vin = 3.0 V  
GND  
PG  
Vin = 3.6 V  
Vin = 4.2 V  
Vout = 5.0 V  
R3  
1.0Meg  
60  
TPS61230  
0.001  
0.010  
0.100  
Iout (A)  
1.000  
C008  
1
UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products  
conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include  
testing of all parameters.  
English Data Sheet: SLVSAQ2  
 
 
 
 
 
 
TPS61230, TPS61231, TPS61232  
ZHCS174C JANUARY 2014REVISED OCTOBER 2014  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 11  
Applications and Implementation ...................... 12  
9.1 Application Information............................................ 12  
9.2 Typical Applications ................................................ 12  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 Handling Ratings....................................................... 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 8  
8.1 Overview ................................................................... 8  
8.2 Functional Block Diagram ......................................... 8  
8.3 Feature Description................................................... 8  
9
10 Power Supply Recommendations ..................... 20  
11 Layout................................................................... 21  
11.1 Layout Guidelines ................................................. 21  
11.2 Layout Example .................................................... 21  
11.3 Thermal Considerations........................................ 21  
12 器件和文档支持 ..................................................... 23  
12.1 器件支持................................................................ 23  
12.2 文档支持 ............................................................... 23  
12.3 相关链接................................................................ 23  
12.4 ....................................................................... 23  
12.5 静电放电警告......................................................... 23  
12.6 术语表 ................................................................... 23  
13 机械封装和可订购信息 .......................................... 23  
8
4 修订历史记录  
Changes from Revision B (June 2014) to Revision C  
Page  
已更改 Electrical Characteristics in the IQ row; VOUT = 3.5 V to VOUT = No Supply ............................................................... 5  
Changes from Revision A (March 2014) to Revision B  
Page  
已将 TPS61232 添加到数据................................................................................................................................................ 1  
已更改器件信息 ...................................................................................................................................................................... 1  
Changed the Device Comparison Table................................................................................................................................. 3  
Changed the Handling Ratings table ..................................................................................................................................... 4  
Changes from Original (September 2013) to Revision A  
Page  
已从数据表中删除 TPS61232 ................................................................................................................................................ 1  
已将数据表更改为全新的 TI 格式............................................................................................................................................ 1  
已将说明从:输入流耗减少至 0.5µA(典型值)更改为:输入流耗减少至 1.5µA(典型值) ................................................ 1  
Changed the Functional Block Diagram. Removed Note 2 ................................................................................................... 8  
Deleted the Programming The Output Voltage section ....................................................................................................... 13  
Changed 14 label From: Startup (A) To: Startup (Ω)....................................................................................................... 15  
2
Copyright © 2014, Texas Instruments Incorporated  
 
TPS61230, TPS61231, TPS61232  
www.ti.com.cn  
ZHCS174C JANUARY 2014REVISED OCTOBER 2014  
5 Device Comparison Table  
PART NUMBER  
TPS61230DRC  
TPS61231DRC(1)  
TPS61232DRC  
OUTPUT VOLTAGE  
Adjustable  
OUTPUT DISCHARGE  
No  
Yes  
No  
Adjustable  
5-V fixed output  
(1) Preview product. Contact TI factory for more information  
6 Pin Configuration and Functions  
11-PIN VSON  
DRC PACKAGE  
(Top View)  
SW  
VIN  
EN  
1
10  
9
SW  
2
VOUT  
HYS  
FB  
3
8
GND  
11  
VOUT  
4
7
PG  
SS  
5
6
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
SW  
NUMBER  
1,2  
3,4  
5
PWR The switch pin of the converter. It is connected to the drain of the internal Power MOSFETs.  
PWR Boost converter output pin.  
VOUT  
PG  
OUT Power Good open drain output. Can be left floating if not used.  
SS  
6
IN  
IN  
Soft startup pin. A soft startup capacitor connects to this pin to set the soft start time.  
FB  
7
Voltage feedback of adjustable versions. Must be connected to VOUT on fixed output voltage version.  
HYS  
EN  
8
OUT EN hysteresis program pin. See the application section for details. Can be left floating if not used.  
9
IN  
Enable logic input. Logic HIGH enables the device. Logic LOW disables the device and turns it into  
shutdown mode. This pin must be terminated.  
VIN  
10  
11  
IN  
Supply voltage pin.  
GND  
PWR Ground pin.  
Copyright © 2014, Texas Instruments Incorporated  
3
TPS61230, TPS61231, TPS61232  
ZHCS174C JANUARY 2014REVISED OCTOBER 2014  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–40  
MAX  
UNIT  
V
Voltage range at pins(2)  
EN, FB, PG, SS, HYS, VIN, VOUT, SW  
7
Operating junction temperature range, TJ  
150  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.  
(2) All voltages are with respect to network ground pin.  
7.2 Handling Ratings  
MIN  
-65  
–2  
MAX  
150  
2
UNIT  
°C  
Tstg  
Storage temperature range  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
kV  
Electrostatic  
discharge  
VESD  
Charged device model (CDM), per JEDEC specification JESD22-C101, all  
pins(2)  
V
–500  
500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN  
TYP  
MAX  
UNIT  
VIN  
Supply voltage at VIN pin  
Sink current at PG pin  
2.3  
5.5  
500  
5.5  
V
µA  
V
ISINK_PG  
VPG  
TJ  
Pull-up resistor voltage  
Operating junction temperature  
-40  
125  
°C  
7.4 Thermal Information  
TPS6123x  
THERMAL METRIC(1)  
UNIT  
DRC (11 PINS)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
49.1  
57.2  
26.6  
0.8  
RθJC(top)  
RθJB  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
ψJB  
23.8  
4.5  
RθJC(bottom)  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
版权 © 2014, Texas Instruments Incorporated  
TPS61230, TPS61231, TPS61232  
www.ti.com.cn  
ZHCS174C JANUARY 2014REVISED OCTOBER 2014  
7.5 Electrical Characteristics  
TJ = –40°C to 125°C and VIN = 3.6 V. Typical values are at TJ = 25°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
VIN falling  
VIN rising  
2.0  
2.1  
2.1  
2.2  
VUVLO  
Input under voltage lockout  
V
IC enabled, No load, No switching  
VOUT = 5 V, TJ = –40 °C to 85°C  
35  
200  
1.5  
60  
IQ  
Quiescent current into VIN  
µA  
IC enabled, No load  
VIN = 4.2 V, VOUT = No supply, TJ = –40 °C to  
85°C  
230  
0 V VEN 0.4 V, VIN = 2.3 V to 5.5 V, TJ = -40  
°C to 85°C  
ISD  
Shutdown current into VIN  
6
µA  
µA  
Leakage current from SW to VOUT  
VEN = 0 V, VOUT = 0 V; VSW = VIN = 3.6 V  
2.5  
OUTPUT  
VOUT  
Output voltage range  
2.5  
4.9  
5.5  
5.1  
V
V
V
VOUT  
Output voltage accuracy, TPS61232  
Output voltage accuracy, TPS61232  
PWM mode  
PFM mode(1)  
PWM mode  
PFM mode(1)  
VFB = 1 V  
5.0  
5.035  
1
VOUT  
0.985  
1.015  
100  
Feedback voltage, TPS61230 and  
TPS61231  
VFB  
V
1.007  
FB pin leakage current  
nA  
Output discharge resistor  
TPS61231  
RDIS  
VOUT = 5 V  
200  
Ω
Over voltage protection DC threshold  
Over voltage protection hysteresis  
Bias current in soft start phase  
Line regulation  
VOUT rising  
5.7  
6
6.2  
VOVP  
ISS  
V
VOUT falling below VOVP  
After pre-charge phase  
IOUT = 1 A, VIN = 2.3 V to 4.5 V  
IOUT = 0.5 A to 2 A  
0.15  
5
µA  
0.06  
0.15  
%/V  
%/A  
Load regulation  
LOGIC INTERFACE  
VTH_EN_ON EN pin threshold rising  
VIN = 2.3 V to 5.5 V  
VIN = 2.3 V to 5.5 V  
1.15  
1.11  
1.19  
1.14  
1.23  
1.18  
V
V
VTH_EN_OF  
EN pin threshold falling  
F
VOL_HYS  
VTH_PG  
VOL_PG  
HYS pin low level voltage  
Power good DC threshold  
PG pin low level voltage  
ISINK_HYS = 1 mA, VEN = 1.1 V  
VOUT rising, referenced to VOUT_NOMINAL  
VOUT falling referenced to VOUT_NOMINAL  
ISINK_PG = 500 µA  
0.7  
99%  
93%  
0.4  
V
93%  
87%  
95%  
90%  
V
A
A
POWER STAGE  
ILIM_SW Switch valley current limit  
4.0  
2.0  
1.8  
0.4  
5.0  
2.8  
2.6  
0.55  
50  
6.0  
3.5  
3.3  
0.7  
75  
VOUT = 5 V  
ILIM_Pre  
Precharge current limit  
VOUT = 3.5 V  
VOUT = 0 V  
High side MOSFET on resistance  
Low side MOSFET on resistance  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
VOUT = 5 V  
RDS(on)  
mΩ  
VOUT = 5 V  
50  
75  
TJ rising  
150  
20  
TJSD  
°C  
TJ falling below TJSD  
(1) L = 1 µH, COUT = 20 µF (effective capacitance value)  
版权 © 2014, Texas Instruments Incorporated  
5
TPS61230, TPS61231, TPS61232  
ZHCS174C JANUARY 2014REVISED OCTOBER 2014  
www.ti.com.cn  
7.6 Typical Characteristics  
VIN = 3.6 V, VOUT = 5.0 V, TJ = -40°C to 125 °C, unless otherwise noted.  
70  
60  
50  
40  
30  
70  
60  
50  
40  
30  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
C001  
C002  
Junction Temperature (ƒC)  
Junction Temperature (ƒC)  
1. High-Side MOSFET On Resistance vs Junction  
2. Low-Side MOSFET On Resistance vs Junction  
Temperature  
Temperature  
1.010  
2.20  
1.005  
1.000  
0.995  
0.990  
2.00  
1.80  
VIN Rising  
V
Falling  
IN  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
±40  
±20  
0
20  
40  
60  
80  
100  
120  
C003  
Junction Temperature (ƒC)  
Junction Temperature (oC)  
C013  
3. Voltage Reference vs Junction Temperature  
4. Vin UVLO Threshold vs Junction Temperature  
1.30  
1.20  
1.10  
50  
40  
30  
20  
o
Tj = 85 C  
EN Rising  
EN Falling  
o
Tj = 25 C  
Tj = -40oC  
±40  
±20  
0
20  
40  
60  
80  
100  
120  
2
3
4
5
Junction Temperature (oC)  
Input Voltage (V)  
C014  
C010  
5. EN Logic Threshold vs Junction Temperature  
6. Quiescent Current vs Input Voltage (Boost Mode)  
6
版权 © 2014, Texas Instruments Incorporated  
TPS61230, TPS61231, TPS61232  
www.ti.com.cn  
ZHCS174C JANUARY 2014REVISED OCTOBER 2014  
Typical Characteristics (接下页)  
VIN = 3.6 V, VOUT = 5.0 V, TJ = -40°C to 125 °C, unless otherwise noted.  
4
3
2
1
0
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
o
Tj = 85 C  
o
Tj = 125 C  
o
o
Tj = 25 C  
Tj = 25 C  
Tj = -40oC  
Tj = -40oC  
2
3
4
5
2
3
4
5
Input Voltage (V)  
Input Voltage (V)  
C011  
C012  
7. Shutdown Current vs Input Voltage (Boost Mode)  
8. Switch Valley Current Limit vs Input Voltage (Boost  
Mode)  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
±40  
±20  
0
20  
40  
60  
80  
100  
120  
Junction Temperature (oC)  
C015  
9. Soft Start Charge Current vs Junction Temperature  
版权 © 2014, Texas Instruments Incorporated  
7
TPS61230, TPS61231, TPS61232  
ZHCS174C JANUARY 2014REVISED OCTOBER 2014  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS6123x synchronous step-up converter typically operates at a quasi-constant 2-MHz frequency pulse  
width modulation (PWM) at moderate to heavy load currents. At light load currents, the TPS6123x converter  
operates in power-save mode with pulse frequency modulation (PFM). The converter uses a novel quasi-  
constant on-time valley current mode control scheme which provides excellent transient line / load response with  
minimal output capacitance. Internal loop compensation simplifies the design process while minimizing the  
number of external components. The TPS6123x device can smoothly transit in and out of zero duty cycle mode  
(high side FET full on). Therefore the output can be kept as close as possible to its regulation limits even though  
the converter is subject to an input voltage that tends to be excessive.  
8.2 Functional Block Diagram  
SW  
VIN  
Supply for  
logic circuitry  
61230/1  
VOUT  
Over Voltage  
Protection  
FB  
EA  
VOUT  
61232  
2)  
REF  
VOUT  
Valley  
Current  
Sense  
Pulse  
Modulator  
Gate  
Driver  
1)  
EN  
Thermal  
Shutdown  
EN  
Threshold/  
Hysteresis  
ON/  
OFF  
OVP  
PG  
PG Comparator  
EN  
FB  
REF  
REF  
Logic  
HYS  
EN Comparator  
Undervoltage  
Lockout  
Softstart  
SS  
GND  
(1) Output discharge block is implemented in TPS61231 only.  
(2) Internal resistor divider is implemented in TPS61232 only. For adjustable output versions, the FB pin is directly  
connected to the negative pin of the EA.  
8.3 Feature Description  
8.3.1 Startup  
In boost mode (PWM or PFM), the rectifying switch is turned on first until the output capacitor is charged to 0.5 V  
with the current limit of 550 mA after the device is enabled. Then, the output capacitor is continuously charged to  
a value close to the input voltage. This is called the pre-charge phase. During the pre-charge phase, the output  
current is limited by the pre-charge current limit of the high side rectifying switch and the SS pin voltage follows  
the FB voltage (in the TPS61232, the SS pin follows the internal FB voltage). Once the output capacitor has  
been biased to the input voltage, the device starts switching. This is called the soft start phase. During the soft  
8
版权 © 2014, Texas Instruments Incorporated  
TPS61230, TPS61231, TPS61232  
www.ti.com.cn  
ZHCS174C JANUARY 2014REVISED OCTOBER 2014  
Feature Description (接下页)  
start phase, the SS pin voltage limits the FB pin voltage, and the output voltage rising slope follows the SS pin  
voltage slope. The capacitor connected to the SS pin is charged by the internal bias current of ISS, giving the time  
of the soft start phase shown in 公式 1. The larger the soft start capacitor, the longer the soft start phase time.  
Leaving the SS pin floating sets the minimum soft startup phase time. The device finishes the soft start phase  
and operates normally when the nominal output voltage is reached.  
æ
ç
è
ö
C SS  
VIN  
ç
÷
÷
tSS  
=
´ 1 -  
´ VR EF  
5mA  
VO U T  
ø
(1)  
The SS pin voltage is discharged in the cases when the device gets disabled by the EN pin, thermal shutdown  
and undervoltage lockout. The SS pin may be left floating to disable the soft start phase and start up with the  
fastest time. In zero duty cycle mode, only the pre-charge phase works during startup.  
8.3.2 Current Limit Operation  
The device employs a valley current sensing scheme. Switch valley current limit detection occurs during the off  
time through sensing of the voltage drop across the synchronous rectifier. If the current is above the valley  
current limit level when it is time to turn off the synchronous rectifier, the device instead keeps the synchronous  
rectifier on until its current decreases below the valley current limit level. The maximum continuous output current  
IOUT(MAX), before entering switch valley current limit operation, is defined by 公式 2.  
1
2
æ
ö
÷
ø
IOUT(MAX) = (1- D)´ I  
ç LIM_ SW  
+
DIL  
è
VOUT - V  
IN  
D =  
VOUT  
V
D
IN  
DIL =  
´
L
fSW  
(2)  
Where  
ILIM_SW = Switch valley current limit  
L = Inductor value  
fSW = Switching frequency  
When the switch current limit is reached, the output voltage decreases from further load increase. The switch  
valley current limit works in PWM, PFM and Zero Duty Cycle Mode operations.  
Another current limit scheme, pre-charge current limit, ILIM_Pre is implemented. Pre-charge current limit detection  
works when VOUT < VOUT_NOM and VOUT < VIN . It can happen when the device is in the pre-charge phase or an  
over load condition. It impacts the minimum load resistance at startup as shown in 14 and 27.  
8.3.3 Enable/Disable  
The EN pin is connected to an ON/OFF detector (ON/OFF) and an input of the Enable Comparator, shown in the  
functional block diagram. With a voltage level of 0.4 V or less at the EN pin, the ON/OFF detector turns the  
device into Shutdown mode and the quiescent current is reduced to typically 1.5 uA. In this mode, the EN  
comparator and the entire internal control circuitry are switched off. A voltage level of typically 0.9 V at the EN  
pin triggers the ON/OFF detector and activates the internal reference, the EN comparator and the UVLO  
comparator. Once the ON/OFF detector has tripped, the quiescent current into the VIN pin is typically 1.5 μA.  
The TPS6123x starts regulation once the voltage at the EN pin trips the threshold VEN_TH_ON and the VIN pin  
voltage is above the UVLO threshold. The device enters startup and ramps up the output voltage. The TPS6123x  
stops regulation once the voltage on the EN pin falls blow the threshold VEN_TH_OFF or the VIN pin voltage falls  
below the UVLO threshold. For proper operation, The EN pin must be terminated and must not be left floating.  
An external logic signal applied directly to the EN pin can enable/disable the device. The device can be driven  
into shutdown mode by pulling the EN pin to GND. In this mode, true load disconnect between the battery and  
load prevents current flow from VIN to VOUT, as well as reverse flow from VOUT to VIN.  
版权 © 2014, Texas Instruments Incorporated  
9
 
 
TPS61230, TPS61231, TPS61232  
ZHCS174C JANUARY 2014REVISED OCTOBER 2014  
www.ti.com.cn  
Feature Description (接下页)  
8.3.4 Undervoltage Lockout  
An under voltage lockout is implemented to avoid mis-operation of the device at low input voltages. It shuts down  
the device with voltages lower than VUVLO  
.
Use the HYS pin to configure a new undervoltage lockout threshold and hysteresis shown in 10 and 公式 3.  
The new thresholds must be higher than VUVLO; otherwise it does not work. The devices holds the HYS pin low  
until the EN voltage rises above VEN_TH_ON. Then, the HYS pin goes high impedance.  
VIN  
EN  
Threshold/  
Hysteresis  
ON/  
OFF  
REN1  
EN  
REF  
REN2  
REN3  
EN Comparator  
HYS  
10. EN Comparator threshold and hysteresis setting  
REN1  
REN1  
æ
ö
÷
ø
æ
ö
÷
ø
V
= VTH_EN_OFF ´ 1+  
= 1.14V ´ 1+  
ç
ç
IN_OFF  
REN2 + REN3  
REN2 + REN3  
è
è
REN1  
REN1  
REN2  
æ
ö
÷
ø
æ
ö
÷
ø
V
= VTH_EN_ ON ´ 1+  
= 1.19V ´ 1+  
ç
ç
IN_ ON  
REN2  
è
è
(3)  
8.3.5 Output Capacitor Discharge, TPS61231  
To make sure the device starts up under defined conditions, the output capacitor of the TPS61231 gets  
discharged by the VOUT pin with a typical discharge resistor of RDIS in the cases when the device gets disabled  
by the EN pin, thermal shutdown, and undervoltage lockout.  
8.3.6 Power Good Output  
The PG output is low when the output voltage is below 90% of its nominal value. The PG pin becomes high  
impedance once the output is higher than 95% of its nominal voltage. The PG pin is an open drain output and is  
specified to sink up to 500 µA. This PG output requires a pull-up resistor that cannot be connected to any voltage  
higher than 5.5 V. PG is held low when the device is disabled by the EN pin and thermal shutdown.  
8.3.7 Over Voltage Protection  
The device stops switching as soon as the output voltage exceeds VOVP. When the output voltage falls 0.15V  
below the OVP threshold, the device resumes normal operation until the output voltage exceeds the OVP  
threshold again.  
8.3.8 Thermal Shutdown  
The device goes into thermal shutdown and stops switching once the junction temperature exceeds TJSD. Once  
the junction temperature falls below the threshold, it returns to normal operation automatically.  
10  
版权 © 2014, Texas Instruments Incorporated  
 
 
TPS61230, TPS61231, TPS61232  
www.ti.com.cn  
ZHCS174C JANUARY 2014REVISED OCTOBER 2014  
8.4 Device Functional Modes  
The TPS6123x boost converter family has three operation modes, as shown in 1.  
1. Operation Mode Description  
MODE  
PWM  
PFM  
DESCRIPTION  
CONDITION  
Boost in normal switching operation VIN < VOUT + 0.2 V, heavy load  
Boost in power save operation  
Zero duty cycle operation  
VIN < VOUT + 0.2 V, light load  
VOUT < VIN VOUT + 0.24 V and VOUT  
Zero Duty Cycle  
VOUT_NOM  
8.4.1 Boost Normal Mode  
The TPS6123x boost converter family typically operates at a quasi-constant 2-MHz frequency pulse width  
modulation (PWM) at moderate to heavy load currents. Based on the VIN/VOUT ratio, a simple circuit predicts the  
required on-time. At the beginning of the switching cycle, the low-side N-MOS switch, shown in the functional  
block diagram, is turned on and the inductor current ramps up to a peak current that is defined by the on-time  
and the inductance. In the second phase, once this peak current is reached, the current comparator trips, the on-  
timer is reset turning off the low-side N-MOS switch and turning on the high-side rectifying switch. The current  
through the inductor then decays to an internally set valley current. Once this occurs, the on-timer is set to turn  
the boost switch back on again and the cycle is repeated.  
8.4.2 Boost Power Save Mode  
The device integrates a power save mode with pulse frequency modulation (PFM) to improve efficiency at light  
load. In power save mode, the device only switches when the output voltage trips below a set threshold voltage.  
It ramps up the output with several pulses and enters the power save mode when the output voltage exceeds the  
set threshold voltage. PFM is left and PWM mode entered when the inductor current becomes discontinuous.  
The DC output voltage in PFM mode rises above the nominal output voltage in PWM mode by 0.7%.  
Output Voltage  
PFM mode at light load  
VOUT_DC = 1.007 x VOUT_NOM  
VOUT_NOM  
PWM mode at heavy load  
t
11. Output Voltage in PFM/PWM Mode  
8.4.3 Zero Duty Cycle Mode  
When the input voltage is lower than VOUT + 0.24 V and VOUT is higher than the nominal output voltage, the  
device automatically changes to a Zero Duty Cycle Mode. In Zero Duty Cycle Mode, the rectifying switch is  
constantly turned on and the low side switch is turned off. The output voltage in this mode depends on the  
resistance between the input and the output, calculated as:  
VOUT = VIN -IOUT ´(RDS(on) + RL )  
(4)  
版权 © 2014, Texas Instruments Incorporated  
11  
 
TPS61230, TPS61231, TPS61232  
ZHCS174C JANUARY 2014REVISED OCTOBER 2014  
www.ti.com.cn  
9 Applications and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The devices are designed to operate from an input voltage supply range between 2.3 V and 5.5 V with a  
maximum output current of 2.1 A. The devices operate in PWM mode for medium to heavy load conditions and in  
power save mode at light load currents. In PWM mode the TPS6123x converter operates with the nominal  
switching frequency of 2 MHz which provides a controlled frequency variation over the input voltage range. As  
the load current decreases, the converter enters power save mode, reducing the switching frequency and  
minimizing the IC quiescent current to achieve high efficiency over the entire load current range. The WEBENCH  
software uses an iterative design procedure and accesses a comprehensive database of components when  
generating a design. See the 相关文档ꢀ section for additional documentation.  
9.2 Typical Applications  
9.2.1 TPS61230 2.3-V to 5.5-V Input, 5-V Output Converter  
L1  
1.0µH  
VIN  
VIN  
EN  
SW  
VOUT  
FB  
C1  
22µF  
VOUT  
C2  
3x22µF  
R1  
402k  
HYS  
SS  
R2  
100k  
C3  
10nF  
GND  
PG  
R3  
1.0Meg  
TPS61230  
12. TPS61230 5-V Output Typical Application  
9.2.1.1 TPS61230 5-V Output Design Requirements  
Use the following typical application design procedure to select external components values for the TPS61230  
device.  
2. TPS61230 5-V Output Design Parameters  
DESIGN PARAMETERS  
Input Voltage Range  
Output Voltage  
EXAMPLE VALUES  
2.3 V to 5.5 V  
5.0 V  
Output Voltage Ripple  
Transient Response  
Input Voltage Ripple  
Output Current Rating  
Operating Frequency  
±3% VOUT  
±10% VOUT  
±200 mV  
2.1 A  
2 MHz  
12  
版权 © 2014, Texas Instruments Incorporated  
 
TPS61230, TPS61231, TPS61232  
www.ti.com.cn  
ZHCS174C JANUARY 2014REVISED OCTOBER 2014  
9.2.1.2 TPS61230 5-V Detailed Design Procedure  
3. TPS61230 5-V Output List of Components  
REFERENCE  
DESCRIPTION  
MANUFACTURER  
Coilcraft  
Murata  
L1  
C1  
C2  
C3  
R1  
R2  
1.0 μH, power inductor, XFL4020-102MEB  
2 μF 6.3 V, 0805, X5R ceramic, GRM21BR60J226ME39  
3 × 22 μF 10 V, 0805, X5R ceramic, LMK212BBJ226MG  
10 nF, X7R ceramic  
YUDEN  
Murata  
402 k, resistor, chip, 1/10W, 1%  
Rohm  
100 k, resistor, chip, 1/10W, 1%  
Rohm  
9.2.1.2.1 Programming the Output Voltage  
The TPS6123x device family's output voltage need to be programmed via an external voltage divider to set the  
desired output voltage.  
An external resistor divider is used, as shown in 公式 5. By selecting R1 and R2, the output voltage is  
programmed to the desired value. When the output voltage is regulated, the typical voltage at the FB pin is VFB  
.
The following equation can be used to calculate R1 and R2.  
R1  
R2  
R1  
R2  
æ
ö
÷
ø
æ
ö
÷
ø
VOUT = VFB ´ 1+  
= 1V ´ 1+  
ç
ç
è
è
(5)  
For best accuracy, R2 should be kept smaller than 100 kΩ to ensure that the current following through R2 is at  
least 100 times larger than FB pin leakage current. Changing R2 towards a lower value increases the robustness  
against noise injection. Changing the R2 towards higher values reduces the quiescent current for achieving  
highest efficiency at low load currents.  
For the fixed output voltage version, TPS61232, the FB pin must be tied to the output directly.  
9.2.1.2.2 Inductor and Capacitor Selection  
The second step is the selection of the inductor and capacitor components. To simplify this process, 4 outlines  
possible inductor and output capacitor value combinations.  
4. Inductor and Output Capacitor Combinations  
COUT (µF)(2)  
L (µH)(1)  
10  
20  
47  
100  
0.47  
1.0  
(3)  
1.5  
(1) This is the nominal inductance of inductor. Inductor tolerance and current de-rating is anticipated. The  
effective inductance can vary by -30%.  
(2) This is the effective capacitance of output capacitors. A higher nominal value is required.  
(3) Typical application configuration. Other check mark indicates alternative filter combinations.  
9.2.1.2.2.1 Inductor Selection  
A boost converter requires two main passive components for storing energy during the conversion, an inductor  
and an output capacitor. It is advisable to select an inductor with a saturation current rating higher than the  
possible peak current flowing through the power switches. The inductor peak current varies as a function of the  
load, the input and output voltages and is estimated using 公式 6.  
IOUT  
V
´D  
1
IN  
IL(PEAK)  
=
+
´
(1- D)´ h  
2
L ´ fSW  
(6)  
Where  
η = Power conversion estimated efficiency  
版权 © 2014, Texas Instruments Incorporated  
13  
 
 
 
 
TPS61230, TPS61231, TPS61232  
ZHCS174C JANUARY 2014REVISED OCTOBER 2014  
www.ti.com.cn  
Selecting an inductor with insufficient saturation performance can lead to excessive peak current in the  
converter. This could eventually harm the device and reduce reliability. It's recommended to choose the  
saturation current for the inductor 20%~30% higher than the IL(PEAK), from 公式 6. The following inductors are  
recommended to be used in designs.  
5. List of Inductors  
INDUCTANCE  
[µH]  
CURRENT  
RATING [A]  
DC RESISTANCE  
PART NUMBER  
MANUFACTURER  
[mΩ]  
1.0  
1.0  
5.4  
7.5  
6.6  
10.8  
9
XFL4020-102ME  
LQH6PPN1R0  
Coilcraft  
muRata  
Coilcraft  
0.47  
7.6  
XFL4015-471ME  
9.2.1.2.2.2 Output Capacitor Selection  
For the output capacitor, it is recommended to use small X5R or X7R ceramic capacitors placed as close as  
possible to the VOUT and GND pins of the IC. If, for any reason, the application requires the use of large  
capacitors which cannot be placed close to the IC, using a smaller ceramic capacitor of 1 µF in parallel to the  
large one is highly recommended. This small capacitor should be placed as close as possible to the VOUT and  
GND pins of the IC.  
Care must be taken when evaluating a capacitor’s derating under bias. The bias can significantly reduce  
capacitance. Ceramic capacitors can loss as much as 50% of their capacitance at rated voltage. Therefore, leave  
margin on the voltage rating to ensure adequate effective capacitance.  
The ESR impact on the output ripple must be considered as well, if tantalum or electrolytic capacitors are used.  
Assuming there is enough capacitance such that the ripple due to the capacitance can be ignored, the ESR  
needed to limit the VRipple is:  
VRipple(ESR) = IL(PEAK) ´ESR  
(7)  
9.2.1.2.2.3 Input Capacitor Selection  
Multilayer X5R or X7R ceramic capacitors are an excellent choice for input decoupling of the step-up converter  
as they have extremely low ESR and are available in small footprints. Input capacitors should be located as  
close as possible to the device. While a 22-μF input capacitor is sufficient for most applications, larger values  
may be used to reduce input current ripple without limitations. Take care when using only ceramic input  
capacitors. When a ceramic capacitor is used at the input and the power is being supplied through long wires,  
such as from a wall adapter, a load step at the output can induce ringing at the VIN pin. This ringing can couple  
to the output and be mistaken as loop instability or could even damage the part. Additional "bulk" capacitance  
(electrolytic or tantalum) should in this circumstance be placed between CIN and the power source to reduce  
ringing than can occur between the inductance of the power source leads and CIN.  
9.2.1.2.3 Loop Stability, Feed Forward Capacitor  
The third step is to check the loop stability. The stability evaluation is to look from a steady-state perspective at  
the following signals:  
Switching node, SW  
Inductor current, IL  
Output ripple, VRipple(OUT)  
When the switching waveform shows large duty cycle jitter or the output voltage or inductor current shows  
oscillations, the regulation loop may be unstable. This is often a result of board layout and/or L-C combination.  
The load transient response is another approach to check the loop stability. During the load transient recovery  
time, VOUT can be monitored for settling time, overshoot or ringing that helps judge the converter’s stability.  
Without any ringing, the loop has usually more than 45° of phase margin.  
As for the heavy load transient applications such as a 2 A load step transient, a feed forward capacitor in parallel  
with R1 is recommended. The feed forward capacitor increases the loop bandwidth by adding a zero. This results  
in a lower output voltage drop, as shown in 36. Set the feed forward capacitor zero near 20 kHz for most  
applications. See application report Optimizing Transient Response of Internally Compensated dc-dc Converters  
With Feedforward Capacitor (SLVA289).  
14  
版权 © 2014, Texas Instruments Incorporated  
TPS61230, TPS61231, TPS61232  
www.ti.com.cn  
ZHCS174C JANUARY 2014REVISED OCTOBER 2014  
9.2.1.3 TPS61230 5-V Output Application Performance Plots  
4.0  
3.0  
2.0  
1.0  
0.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
Vout = 5 V  
Vout = 5 V  
TA = -40 °C  
TA = 25 °C  
TA = 85 °C  
TA = -40 ƒC  
TA = 25 ƒC  
TA = 85 ƒC  
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
C004  
C006  
Vin (V)  
Vin (V)  
13. Maximum Load Current after Startup  
14. Minimum Resistance at Startup  
100  
90  
5.20  
5.10  
5.00  
4.90  
4.80  
80  
70  
TA = -40 °C  
Vin = 3.0 V  
Vin = 3.6 V  
Vin = 4.2 V  
TA = 25 °C  
TA = 85 °C  
Vout = 5 V, Vin = 3.6 V  
0.010  
Vout = 5.0 V  
60  
0.001  
0.010  
0.100  
Iout (A)  
1.000  
0.001  
0.100  
Iout (A)  
1.000  
C008  
C0011  
15. Efficiency  
16. Load Regulation  
5.20  
10,000K  
Vout = 5.0 V  
5.10  
5.00  
4.90  
4.80  
1,000K  
100K  
10K  
TA = -40 °C  
TA = 25 °C  
TA = 85 °C  
Vin = 2.3 V  
Vin = 3.6 V  
Vin = 4.2 V  
Vout = 5 V, Iout = 1 A  
2.8  
1K  
0.001  
2.3  
3.3  
3.8  
4.3  
4.8  
0.010  
0.100  
Iout (A)  
1.000  
C0013  
C0015  
Vin (V)  
17. Line Regulation  
18. Switching Frequency  
版权 © 2014, Texas Instruments Incorporated  
15  
TPS61230, TPS61231, TPS61232  
ZHCS174C JANUARY 2014REVISED OCTOBER 2014  
www.ti.com.cn  
t -- 300 ns/div  
t -- 10 µs/div  
Vout (AC, 50 mV/div)  
Vout (AC, 50 mV/div)  
Icoil (DC, 1 A/div)  
SW (DC, 5 V/div)  
Icoil (DC, 1 A/div)  
SW (DC, 5 V/div)  
19. PWM Operation (VOUT = 5 V, IOUT = 2 A)  
20. PFM Operation (VOUT = 5 V, IOUT = 50 mA)  
t -- 50 µs/div  
t -- 10 µs/div  
Vout (DC, 1 V/div)  
Load (DC, 2 A/div)  
PG (DC, 5 V/div)  
PG (LOW, 0 V)  
SW (DC, 5 V/div)  
Vout (AC, 0.5 V/div)  
Icoil (DC, 5 A/div)  
Icoil (DC, 5 A/div)  
21. Load Transient (VOUT = 5 V, IOUT = 0.5 A to 2 A)  
22. Output Over Voltage Protection (FB = 0 V, ROUT = 30  
Ω)  
t -- 300 µs/div  
t -- 100 µs/div  
EN (DC, 5 V/div)  
EN (DC, 5 V/div)  
PG (DC, 5 V/div)  
PG (DC, 5 V/div)  
Vout (DC, 2 V/div)  
Icoil (DC, 2 A/div)  
Vout (DC, 2 V/div)  
Icoil (DC, 2 A/div)  
23. Startup (VOUT = 5 V, ROUT = 2.5 Ω)  
24. Shutdown (VOUT = 5 V, ROUT = 2.5 Ω)  
16  
版权 © 2014, Texas Instruments Incorporated  
TPS61230, TPS61231, TPS61232  
www.ti.com.cn  
ZHCS174C JANUARY 2014REVISED OCTOBER 2014  
9.2.2 TPS61230 2.3-V to 5.5-V Input, 3.5-V Output Converter  
L1  
1.0µH  
VIN  
VIN  
EN  
SW  
VOUT  
FB  
C1  
22µF  
VOUT  
C2  
3x22µF  
R1  
250k  
HYS  
SS  
R2  
100k  
C3  
10nF  
GND  
PG  
R3  
1.0Meg  
TPS61230  
25. TPS61230 3.5-V Output Typical Application  
9.2.2.1 TPS61230 3.5-V Output Design Requirements  
6. TPS61230 3.5-V Output Design Parameters  
DESIGN PARAMETERS  
Input Voltage Range  
Output Voltage  
EXAMPLE VALUES  
2.3 V to 5.5 V  
3.5 V  
Output Voltage Ripple  
Transient Response  
Input Voltage Ripple  
Output Current Rating  
Operating Frequency  
±3% VOUT  
±10% VOUT  
±200 mV  
2.1 A  
2 MHz  
9.2.2.2 Detailed Design Procedure  
Refer to the TPS61230 5-V Detailed Design Procedure section for the 3.5-V detailed design procedures.  
版权 © 2014, Texas Instruments Incorporated  
17  
TPS61230, TPS61231, TPS61232  
ZHCS174C JANUARY 2014REVISED OCTOBER 2014  
www.ti.com.cn  
9.2.2.3 TPS61230 3.5-V Output Application Performance Plots  
5.0  
4.0  
3.0  
2.0  
1.0  
3.0  
2.5  
2.0  
1.5  
1.0  
Vout = 3.5 V  
Vout = 3.5 V  
TA = -40 °C  
TA = 25 °C  
TA = 85 °C  
TA = -40 °C  
TA = 25 °C  
TA = 85 °C  
2.3  
2.8  
3.3  
3.8  
4.3  
2.3  
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
C003  
C005  
Vin (V)  
Vin (V)  
26. Maximum Load Current after Startup  
27. Minimum Resistance at Startup  
100  
90  
3.64  
3.57  
3.50  
3.43  
3.36  
80  
70  
Vin = 2.5 V  
TA = -40 °C  
Vin = 3.0 V  
Vin = 3.3 V  
TA = 25 °C  
TA = 85 °C  
Vout = 3.5 V, Vin = 3.0 V  
0.010  
Vout = 3.5 V  
60  
0.001  
0.010  
0.100  
Iout (A)  
1.000  
0.001  
0.100  
Iout (A)  
1.000  
C007  
C0010  
28. Efficiency  
29. Load Regulation  
3.64  
10,000K  
Vout = 3.5 V  
3.57  
3.50  
3.43  
3.36  
1,000K  
100K  
10K  
TA = -40 °C  
TA = 25 °C  
TA = 85 °C  
Vin = 2.3 V  
Vin = 2.7 V  
Vin = 3.0 V  
Vout = 3.5 V, Iout = 1 A  
2.5  
1K  
0.001  
2.3  
2.7  
2.9  
3.1  
3.3  
0.010  
0.100  
Iout (A)  
1.000  
C0012  
C0014  
Vin (V)  
30. Line Regulation  
31. Switching Frequency  
18  
版权 © 2014, Texas Instruments Incorporated  
TPS61230, TPS61231, TPS61232  
www.ti.com.cn  
ZHCS174C JANUARY 2014REVISED OCTOBER 2014  
t -- 2 ms/div  
t -- 200 µs/div  
PG (DC, 2 V/div)  
EN (DC, 5 V/div)  
PG (DC, 5 V/div)  
Vin (DC, 1 V/div)  
Vout (DC, 1 V/div)  
Icoil (DC, 1.5 A/div)  
Vout (DC, 2 V/div)  
Icoil (DC, 1 A/div)  
32. Input Sweep (VOUT = 3.5 V, VIN = 2.7 V to 4.2 V, IOUT  
=
33. Startup (VOUT = 3.5 V, VIN = 3.0 V, ROUT = 2.3 Ω)  
1.5 A)  
t -- 75 µs/div  
EN (DC, 5 V/div)  
PG (DC, 5 V/div)  
Vout (DC, 2 V/div)  
Icoil (DC, 1 A/div)  
34. Shutdown (VOUT = 3.5 V, VIN = 3.0 V, ROUT = 2.3 Ω)  
版权 © 2014, Texas Instruments Incorporated  
19  
TPS61230, TPS61231, TPS61232  
ZHCS174C JANUARY 2014REVISED OCTOBER 2014  
www.ti.com.cn  
9.2.3 TPS61230 Application with Feed Forward Capacitor for Best Transient Response  
As for the heavy load transient applications such as a 2-A load step transient, a feed forward capacitor in parallel  
with R1 is recommended. The feed forward capacitor increases the loop bandwidth by adding a zero. This results  
in a lower output voltage drop, as shown in 36. Set the feed forward capacitor zero near 20 kHz for most  
applications. See application report Optimizing Transient Response of Internally Compensated dc-dc Converters  
With Feedforward Capacitor (SLVA289).  
L1  
1.0µH  
VIN  
VIN  
EN  
SW  
VOUT  
FB  
C1  
22µF  
VOUT  
C2  
3x22µF  
R1  
402k  
C4  
18pF  
HYS  
SS  
R2  
100k  
C3  
10nF  
GND  
PG  
R3  
1.0Meg  
TPS61230  
35. TPS61230 5-V Output with Cff Typical Application  
9.2.3.1 Design Requirements  
Refer to the TPS61230 5-V Output Design Requirements section for the design requirements.  
9.2.3.2 Detailed Design Procedure  
Refer to the TPS61230 5-V Detailed Design Procedure section for the detailed design procedures.  
9.2.3.3 Application Curve  
t -- 50 µs/div  
Load (DC, 2 A/div)  
PG (DC, 5 V/div)  
Vout (AC, 0.5 V/div)  
Icoil (DC, 5 A/div)  
36. Load Transient (VOUT = 5 V, IOUT = 0.5 A to 2 A, CFF = 18 pF)  
10 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 2.3 V and 5.5 V. This input supply  
must be well regulated. If the input supply is located more than a few inches from the converter, additional bulk  
capacitance may be required in addition to the ceramic bypass capacitors. An electrolytic or tantalum capacitor  
with a value of 47 μF is a typical choice.  
20  
版权 © 2014, Texas Instruments Incorporated  
 
TPS61230, TPS61231, TPS61232  
www.ti.com.cn  
ZHCS174C JANUARY 2014REVISED OCTOBER 2014  
11 Layout  
11.1 Layout Guidelines  
For all switching power supplies, the layout is an important step in the design, especially at high peak currents  
and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as  
well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground  
tracks. The input capacitor, output capacitor, and the inductor should be placed as close as possible to the IC.  
Use a common ground node for power ground and a different one for control ground to minimize the effects of  
ground noise. Connect these ground nodes at the GND pin of the IC. The most critical current path for all boost  
converters is from the switching FET, through the synchronous FET, then the output capacitors, and back to  
ground of the switching FET. Therefore, the output capacitors and their traces should be placed on the same  
board layer as the IC and as close as possible between the IC’s VOUT and GND pin.  
See 37 for the recommended layout.  
11.2 Layout Example  
Top Layer  
Bottom Layer  
R1  
R2  
GND  
C3  
GND  
C1 1  
VIN  
C2  
VOUT  
L1  
R3  
37. Layout Recommendation  
11.3 Thermal Considerations  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-  
dissipation limits of a given component.  
Two basic approaches for enhancing thermal performance are listed below.  
Improving the power dissipation capability of the PCB design  
Introducing airflow in the system  
版权 © 2014, Texas Instruments Incorporated  
21  
 
TPS61230, TPS61231, TPS61232  
ZHCS174C JANUARY 2014REVISED OCTOBER 2014  
www.ti.com.cn  
Thermal Considerations (接下页)  
For more details on how to use the thermal parameters in the dissipation ratings table please check the  
application report Thermal Characteristics of Linear and Logic Packages Using JEDEC PCB Designs (SZZA017)  
and the application report Semiconductor and IC Package Thermal Metrics (SPRA953).  
22  
版权 © 2014, Texas Instruments Incorporated  
TPS61230, TPS61231, TPS61232  
www.ti.com.cn  
ZHCS174C JANUARY 2014REVISED OCTOBER 2014  
12 器件和文档支持  
12.1 器件支持  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.2 文档支持  
12.2.1 相关文档ꢀ  
《采用前馈电容优化内部补偿 DC-DC 转换器的瞬态响应SLVA289  
《采用 JEDEC PCB 设计的线性和逻辑封装散热特性》(SZZA017)  
《半导体和 IC 封装热指标》(SPRA953)  
12.3 相关链接  
以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
7. 相关链接  
部件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
TPS61230  
TPS61231  
TPS61232  
12.4 商标  
All trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
13 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014, Texas Instruments Incorporated  
23  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS61230DRCR  
TPS61230DRCT  
TPS61232DRCR  
TPS61232DRCT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSON  
VSON  
VSON  
VSON  
DRC  
DRC  
DRC  
DRC  
10  
10  
10  
10  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
SBK  
SBK  
SBL  
SBL  
NIPDAU  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS61230DRCR  
TPS61230DRCT  
TPS61232DRCR  
TPS61232DRCT  
VSON  
VSON  
VSON  
VSON  
DRC  
DRC  
DRC  
DRC  
10  
10  
10  
10  
3000  
250  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS61230DRCR  
TPS61230DRCT  
TPS61232DRCR  
TPS61232DRCT  
VSON  
VSON  
VSON  
VSON  
DRC  
DRC  
DRC  
DRC  
10  
10  
10  
10  
3000  
250  
346.0  
210.0  
346.0  
210.0  
346.0  
185.0  
346.0  
185.0  
33.0  
35.0  
33.0  
35.0  
3000  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DRC 10  
3 x 3, 0.5 mm pitch  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226193/A  
www.ti.com  
PACKAGE OUTLINE  
VSON - 1 mm max height  
DRC0010G  
PLASTIC QUAD FLATPACK-NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.6±0.1  
(0.2) TYP  
6X 0.41  
(0.18) TYP  
8X 0.5  
5
6
11  
SYMM  
2X  
2
2.1±0.1  
(R0.15)  
TYP  
1
10  
0.3  
10X  
PIN1 ID  
OPTIONAL  
0.2  
0.1  
0.05  
C A B  
C
0.5  
0.3  
10X  
SYMM  
4218882/A 12/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VSON - 1 mm max height  
DRC0010G  
PLASTIC QUAD FLATPACK-NO LEAD  
(2.8)  
SYMM  
8X  
(0.18)  
TYP  
6X (0.41)  
(0.625)  
TYP  
10X (0.6)  
10X (0.24)  
1
10  
8X (0.5)  
SYMM  
11  
(2.15)  
2X  
(0.825)  
6
5
(R0.05) TYP  
2X (0.55)  
(Ø 0.2) VIA  
TYP  
(1.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
EXPOSED METAL  
NON- SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218882/A 12/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271)  
.
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VSON - 1 mm max height  
DRC0010G  
PLASTIC QUAD FLATPACK-NO LEAD  
(2.8)  
SYMM  
8X  
(0.18)  
6X (0.41)  
8X (0.44)  
10X (0.6)  
10X (0.24)  
1
10  
2X  
(1)  
2X  
(0.96)  
8X (0.5)  
11  
SYMM  
2X  
(0.58)  
6
5
(R0.05) TYP  
EXPOSED METAL  
TYP  
2X (1.47)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD  
79% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4218882/A 12/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS61230DRCT

5A 可调节输出电压高效同步升压转换器 | DRC | 10 | -40 to 85
TI

TPS61232

5A、5V 固定输出电压高效同步升压转换器
TI

TPS61232DRCR

5A、5V 固定输出电压高效同步升压转换器 | DRC | 10 | -40 to 85
TI

TPS61232DRCT

5A、5V 固定输出电压高效同步升压转换器 | DRC | 10 | -40 to 85
TI

TPS61235P

8A 谷值电流、5.1V 固定输出电压同步升压转换器
TI

TPS61235PRWLR

8A 谷值电流、5.1V 固定输出电压同步升压转换器 | RWL | 9 | -40 to 85
TI

TPS61235PRWLT

8A 谷值电流、5.1V 固定输出电压同步升压转换器 | RWL | 9 | -40 to 85
TI

TPS61235RWLR

TPS6123x 8-A Valley Current Synchronous Boost Converters with Constant Current Output Feature 9-VQFN-HR -40 to 85
TI

TPS61235RWLT

TPS6123x 8-A Valley Current Synchronous Boost Converters with Constant Current Output Feature 9-VQFN-HR -40 to 85
TI

TPS61236P

8A 谷值电流、可调节输出电压同步升压转换器
TI

TPS61236PRWLR

8A 谷值电流、可调节输出电压同步升压转换器 | RWL | 9 | -40 to 85
TI

TPS61236PRWLT

8A 谷值电流、可调节输出电压同步升压转换器 | RWL | 9 | -40 to 85
TI