TPS56637RPAR [TI]

具有 ULQ-Mode 的 4.5V 至 28V、6A 同步降压转换器 | RPA | 10 | -40 to 150;
TPS56637RPAR
型号: TPS56637RPAR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 ULQ-Mode 的 4.5V 至 28V、6A 同步降压转换器 | RPA | 10 | -40 to 150

开关 输出元件 转换器
文件: 总36页 (文件大小:2134K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS56637  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
TPS56637 4.5V 28V 输入、6A 同步降压转换器  
1 特性  
3 说明  
1
4.5V 28V 输入电压范围  
TPS56637 是一款配备了集成式 MOSFET 且具有高效  
率、高电压输入、易于使用的同步降压转换器。  
0.6V 13V 输出电压范围  
6A 最大连续输出电流  
由于具有 4.5V 28V 的宽工作输入电压范  
围,TPS56637 非常适用于由 12V19V 24V 总线  
电源轨供电的系统。其输出电压为 0.6V 13V,支持  
高达 6A 的持续输出电流。  
集成式 26mΩ 12mΩ MOSFET  
0.6V ±1% 基准电压  
D-CAP3™控制模式,用于快速瞬态响应  
Eco-mode™FCCM(强制持续导通模式)可  
选,适用于通过 MODE 引脚的轻负载运行  
TPS56637 利用 DCAP3™控制模式提供快速瞬态响  
应、良好的线路和负载调节,无需外部补偿,并支持低  
等效串联电阻 (ESR) 输出电容器,如 POSCAP 和  
MLCC。  
内部 2ms 软启动  
内置输出放电功能  
500kHz 开关频率  
电源正常状态指示器,可监控输出电压  
逐周期过流限制  
TPS56637 兼具 FCCM Eco-mode™两种运行模  
式,可在轻负载条件下通过 MODE 引脚配置进行选  
择。要在轻负载条件下实现高效率,可以选择 Eco-  
mode™FCCM 符合严格的输出电压纹波要求。  
非闭锁 UVOVOT UVLO 保护  
–40°C +150°C 的工作结温范围  
小型 10 引脚 3.0mm × 3.0mm HotRod™四方扁平  
无引线 (QFN) 封装  
可使用 WEBENCH® 电源设计器创建定制设计方案  
TPS56637 具有完整的非闭锁 OV(过压)、UV(欠  
压)、OC(过流)、OT(过热)以及 UVLO(欠压锁  
定)保护以及电源正常状态指示器和输出放电功能 特  
性。  
2 应用  
企业系统:多功能打印机、存储  
TPS56637 采用 10 引脚 3.0mm x 3.0mm  
HotRod™QFN 封装,额定结温范围为 –40°C 150°  
C。  
个人电子产品:电视、扬声器、机顶盒、便携式电  
子产品  
工业 应用:电子销售终端、工厂自动化和控制、电  
机驱动  
器件信息(1)  
通用 12V19V24V 总线电源  
器件型号  
TPS56637  
封装  
封装尺寸(标称值)  
VQFN-HR (10)  
3.00mm × 3.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化原理图  
效率与输出电流间的关系  
VOUT = 5V  
VIN  
CIN  
BOOT  
VIN  
EN  
100  
98  
96  
94  
92  
90  
88  
CBST  
L
VOUT  
SW  
TPS56637RPA  
NC  
PG  
RFBT  
COUT  
MODE  
AGND  
FB  
PGND  
RFBB  
86  
VIN=8V  
VIN=12V  
84  
Copyright © 2017, Texas Instruments Incorporated  
VIN=19V  
VIN=24V  
82  
80  
0.01  
0.1  
Output Current (A)  
1
10  
FAD2  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEG1  
 
 
 
 
TPS56637  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 17  
Application and Implementation ........................ 18  
8.1 Application Information............................................ 18  
8.2 Typical Application ................................................. 18  
Power Supply Recommendations...................... 24  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 Handling Ratings....................................................... 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements................................................ 6  
6.7 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 11  
7.3 Feature Description................................................. 12  
8
9
10 Layout................................................................... 24  
10.1 Layout Guidelines ................................................. 24  
10.2 Layout Example .................................................... 25  
11 器件和文档支持 ..................................................... 26  
11.1 文档支持 ............................................................... 26  
11.2 接收文档更新通知 ................................................. 26  
11.3 社区资源................................................................ 26  
11.4 ....................................................................... 26  
11.5 静电放电警告......................................................... 26  
11.6 Glossary................................................................ 26  
12 机械、封装和可订购信息....................................... 26  
12.1 Package Option Addendum .................................. 27  
7
4 修订历史记录  
Changes from Original (July 2018) to Revision A  
Page  
已更改 将销售状态从预告信息更改为生产数据.................................................................................................................. 1  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
TPS56637  
www.ti.com.cn  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
5 Pin Configuration and Functions  
RPA Package  
10-Pin VQFN-HR  
Top View  
VIN  
VIN  
VIN  
VIN  
8
7
BOOT  
SW  
6
9
PGND  
MODE  
NC  
10  
5
1
2
3
4
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
AGND  
3
G
I
Ground of internal analog circuitry. Connect AGND to PGND plane at a single point.  
Supply input for the gate drive voltage of the high-side MOSFET. Connect a 0.1-µF bootstrap capacitor  
between BOOT and SW.  
BOOT  
EN  
7
1
2
Enable input control. Driving EN high or leaving this pin floating enables the converter. A resistor  
divider can be used to imply an UVLO function.  
I
I
Output feedback. Connect FB to the tap of an external resistor divider from the output to GND to set  
the output voltage.  
FB  
Operation mode selection pin. Leaving this pin floating(500 kΩ) forces the TPS56637 into FCCM.  
Connecting this pin to GND(10 kΩ) forces the TPS56637 into Eco-mode™ under light load.  
MODE  
NC  
10  
5
I
N
O
Not Connected, keep this pin floating.  
Open Drain Power Good Indicator, it is asserted low if output voltage is out of PG threshold due to  
over-voltage, under-voltage, thermal shutdown, EN shutdown or during soft-start.  
PG  
4
PGND  
SW  
9
6
G
O
Power GND terminal. Source terminal of low side MOSFET.  
Switching node terminal. Connect the output inductor to this pin with wide and short tracks  
Input voltage supply pin. Drain terminal of high-side MOSFET. Connect the input decoupling capacitors  
between VIN and GND.  
VIN  
8
P
Copyright © 2018–2019, Texas Instruments Incorporated  
3
TPS56637  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over the recommended operating junction temperature range of –40°C to +150°C (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–4  
MAX  
32  
UNIT  
V
VIN  
BOOT  
SW+6  
6.0  
V
Input voltage  
BOOT-SW  
EN, FB, MODE  
PGND, AGND  
SW  
V
6.0  
V
0.3  
V
32  
V
Output voltage  
SW (<10 ns transient)  
PG  
32.5  
6
V
-0.3  
–40  
–65  
V
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 Handling Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2)  
Electrostatic  
discharge  
VESD  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over the recommended operating junction temperature range of –40°C to 150°C (unless otherwise noted).(1)  
MIN  
4.5  
NOM  
MAX  
28  
UNIT  
V
VIN  
BOOT  
4.5  
33.5  
5.5  
5.5  
0.1  
28  
V
Input Voltage  
BOOT-SW  
EN, FB, MODE  
PGND, AGND  
SW  
-0.1  
-0.1  
-0.1  
-0.1  
-0.1  
-40  
V
V
V
V
Output Voltage  
PG  
5.5  
150  
V
Operating junction temperature, TJ  
°C  
(1) Recommended Operating Conditions indicate conditions for which the device is intended to be functional, but do not guarantee specific  
performance limits. For guaranteed specifications, see Electrical Characteristics  
6.4 Thermal Information  
TPS56637  
THERMAL METRIC(1)  
QFN HOTROD  
10 PINS  
49.1  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
28.8  
16.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.8  
ΨJB  
16.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
 
TPS56637  
www.ti.com.cn  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
6.5 Electrical Characteristics  
The electrical ratings specified in this section apply to all specifications in this document unless otherwise noted. These  
specifications are interpreted as conditions that will not degrade the parametric or functional specifications of the device for  
the life of the product containing it. Typical values correspond to TJ = 25°C, VIN = 12 V. Minimum and maximum limits are  
based on TJ = –40°C to +150°C, VIN = 4.5 V to 28 V(unless otherwise noted).  
PARAMETER  
SUPPLY CURRENT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Quiescent current, Operating at ULQ  
mode(1)  
IQ  
140  
2
µA  
µA  
ISD  
Shutdown supply current  
VIN Under-Voltage Lockout  
TJ=25°C, VEN=0 V  
UVLO  
Wake up VIN voltage  
Shut down VIN voltage  
Hysteresis VIN voltage  
4.0  
3.6  
4.2  
3.7  
4.4  
3.8  
V
V
UVLO  
500  
mV  
ENABLE(EN PIN)  
IEN_INPUT  
IEN_HYS  
VEN(ON)  
VEN(OFF)  
Input current  
VEN = 1.1V  
VEN = 1.3V  
EN rising  
1
4
µA  
µA  
V
Hysteresis current  
1.18  
1.12  
1.26  
Enable threshold  
EN failling  
1.04  
V
FEEDBACK VOLTAGE  
VOUT = 5V, continuous mode  
operation, TJ=25°C  
0.594  
0.591  
0.6  
0.6  
0.606  
0.609  
V
V
VFB  
Feedback voltage  
VOUT = 5V, continuous mode  
operation, TJ=-40°C to 150°C  
MOSFET  
RDS(on)h  
RDS(on)l  
High side switch resistance  
Low side switch resistance  
TJ = 25°C, VBST - VSW = 5 V  
TJ = 25°C  
26  
12  
mΩ  
mΩ  
CURRENT LIMIT  
IOCL  
Valley current limit  
6.3  
2.3  
7.5  
3
8.6  
3.7  
A
A
IOC_REV  
Reverse current limit for FCCM Mode  
POWER GOOD  
PG lower threshold - falling  
PG lower threshold - rising  
PG upper threshold - falling  
PG upper threshold - rising  
PG sink current  
% of VFB  
85%  
90%  
% of VFB  
VPGTH  
% of VFB  
110%  
115%  
1.5  
% of VFB  
IPGSINK  
IPGLK  
VFB = 0.5V, VPG = 0.5V  
VPG = 5.5V  
mA  
µA  
PG leakage current  
-1  
1
FREQUENCY  
FSW  
Switching frequency  
VOUT =5V, continuous mode operation  
500  
kHz  
OUTPUT UNDERVOLTAGE AND OVERVOLTAGE PROTECTION  
OVP detect(L>H)  
Hysteresis  
125%  
5%  
VOVP  
Output OVP threshold  
Output UVP threshold  
Hiccup detect(H>L)  
Hysteresis  
65%  
5%  
VUVP  
THERMAL SHUTDOWN  
Temperature Rising  
Hysteresis  
165  
30  
°C  
°C  
TSDN  
Thermal shutdown threshold(2)  
SW DISCHARGE RESISTANCE  
RDISCHG  
VOUT discharge resistance  
VEN=0, VSW=0.5V, TJ=25°C  
200  
Ω
(1) Not representative of the total input current of the system when in regulation. Ensured by design and characterization test.  
(2) Not production tested. Ensured by design and engineering sample correlation.  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
TPS56637  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
6.6 Timing Requirements  
The electrical ratings specified in this section apply to all specifications in this document unless otherwise noted. These  
specifications are interpreted as conditions that will not degrade the parametric or functional specifications of the device for  
the life of the product containing it. Typical values correspond to TJ = 25°C, VIN = 12 V. Minimum and maximum limits are  
based on TJ = –40°C to +150°C, VIN = 4.5 V to 28 V(unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ON-TIME TIMER CONTROL  
tON(MIN)  
Minimum on time(1)  
Minimum off time  
50  
ns  
ns  
VFB = 0.5 V, measure SW at 50% VIN  
Eco-mode  
,
tOFF(MIN)  
200  
300  
SOFT START  
TSS  
Soft start time  
Internal soft-start time  
2
ms  
OUTPUT UNDERVOLTAGE PROTECTION  
UV triggered (VFB lower than 65%  
TUVP_WAIT  
UV protection hiccup wait time  
0.25  
25  
ms  
ms  
VFB_nom  
)
UV protection hiccup time before  
recovery  
TUVP_HICCUP  
(1) Not production tested. Ensured by design and engineering sample correlation.  
6
版权 © 2018–2019, Texas Instruments Incorporated  
TPS56637  
www.ti.com.cn  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
6.7 Typical Characteristics  
VIN = 12 V (unless otherwise noted)  
143  
142.5  
142  
4
3.5  
3
141.5  
141  
140.5  
140  
2.5  
2
139.5  
139  
1.5  
1
138.5  
138  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
TJ - Junction Temperature (èC)  
TJ - Junction Temperature (èC)  
IqTe  
IsdT  
1. Quiescent Current vs Temperature  
2. Shutdown Current vs Temperature  
18  
16  
14  
12  
10  
8
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
TJ - Junction Temperature (èC)  
TJ - Junction Temperature (èC)  
RdsH  
RdsL  
3. High-Side RDS(on) vs Temperature  
4. Low-side RDS(on) vs Temperature  
0.606  
0.604  
0.602  
0.6  
4.6  
4.4  
4.2  
4
VINUVLO_RISE  
VINUVLO_FALL  
0.598  
0.596  
0.594  
3.8  
3.6  
3.4  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
TJ - Junction Temperature (èC)  
TJ - Junction Temperature (èC)  
Vfb2  
UVLO  
5. Feedback Voltage vs Temperature  
6. VIN UVLO Threshold vs Temperature  
版权 © 2018–2019, Texas Instruments Incorporated  
7
TPS56637  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
VIN = 12 V (unless otherwise noted)  
1.26  
7.75  
7.7  
VEN_RISING  
VEN_FALLING  
1.24  
1.22  
1.2  
7.65  
7.6  
1.18  
1.16  
1.14  
1.12  
1.1  
7.55  
7.5  
7.45  
7.4  
7.35  
7.3  
1.08  
1.06  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
TJ - Junction Temperature (èC)  
TJ - Junction Temperature (èC)  
EN2p  
LOC2  
7. EN Threshold vs Temperature  
8. Valley Current Limit vs Temperature  
625  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
ECO  
FCCM  
600  
575  
550  
525  
500  
475  
450  
VIN=8V  
VIN=12V  
VIN=19V  
VIN=24V  
0
0.001  
6
8
10 12 14 16 18 20 22 24 26 28 30  
VIN - Input Voltage (V)  
0.01  
0.1  
IOUT - Output Current (A)  
1
10  
FswV  
FswL  
VOUT=5 V  
IOUT = 6 A  
VOUT = 5 V  
L = 3.3 µH  
Eco-mode™  
9. Switching Frequency vs Input voltage  
10. Switching Frequency vs Output Current  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
VIN=6V, ECO  
VIN=6V, ECO  
VIN=6V, FCCM  
VIN=12V, ECO  
VIN=12V, FCCM  
VIN=19V, ECO  
VIN=19V, FCCM  
VIN=24V, ECO  
VIN=24V, FCCM  
VIN=6V, FCCM  
VIN=12V, ECO  
VIN=12V, FCCM  
VIN=19V, ECO  
VIN=19V, FCCM  
VIN=24V, ECO  
VIN=24V, FCCM  
0.001  
0.01  
0.1  
IOUT - Load Current (A)  
1
10  
0.001  
0.01  
0.1  
IOUT - Load Current (A)  
1
10  
1.05  
3.3V  
11. VOUT = 1.05 V Efficiency, L = 1 µH  
12. VOUT = 3.3 V Efficiency, L = 2.2 µH  
8
版权 © 2018–2019, Texas Instruments Incorporated  
TPS56637  
www.ti.com.cn  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
Typical Characteristics (接下页)  
VIN = 12 V (unless otherwise noted)  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
VIN=8V, ECO  
VIN=8V, FCCM  
VIN=12V, ECO  
VIN=12V, FCCM  
VIN=19V, ECO  
VIN=19V, FCCM  
VIN=24V, ECO  
VIN=24V, FCCM  
VIN=19V, ECO  
VIN=19V, FCCM  
VIN=24V, ECO  
VIN=24V, FCCM  
0.001  
0.01  
0.1  
IOUT - Load Current (A)  
1
10  
0.001  
0.01  
0.1  
IOUT - Load Current (A)  
1
10  
5Vou  
12Vo  
13. VOUT = 5 V Efficiency, L = 3.3 µH  
14. VOUT = 12 V Efficiency, L = 5.6 µH  
版权 © 2018–2019, Texas Instruments Incorporated  
9
TPS56637  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS56637 is a 6-A synchronous buck converter operating from 4.5V to 28V input voltage (VIN), and its  
output voltage ranges from 0.6V to 13V. The proprietary D-CAP3™ mode enables low external component  
count, ease of design, optimization of the power design for power, size and efficiency. The device employs D-  
CAP3™ mode control that provides fast transient response with no external compensation components and an  
accurate feedback voltage. The control topology provides seamless transition between CCM operating mode at  
higher load condition and DCM operation at lighter load condition. Eco-mode™ allows the TPS56637 to maintain  
high efficiency at light load. FCCM mode has the quasi-fixed switching frequency at both light and heavy load.  
The TPS56637 is able to adapt both low equivalent series resistance (ESR) output capacitors such as POSCAP  
or SP-CAP, and ultra-low ESR ceramic capacitors.  
10  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS56637  
www.ti.com.cn  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
7.2 Functional Block Diagram  
PG rising threshold  
+
PG  
PG  
Logic  
UV threshold  
OV threshold  
+
+
UV  
OV  
+
PG falling threshold  
Regulator  
VREG5  
VIN  
+
UVLO  
4.2V/3.7V  
FB  
0.6V  
Reference  
Soft Start  
+
+
BOOT  
SS  
Control Logic  
ñ
ñ
ñ
ñ
ñ
ñ
ñ
On/Off time  
Min On/Off time  
FCCM/Eco-mode  
Soft-start  
One Shot  
TSD  
+
165°C /  
30°C  
SW  
Power Good  
OCL  
UVP/OVP/TSD  
XCON  
VREG5  
Ih  
Ip  
PGND  
EN  
+
+
OCL  
Enable  
Threshold  
Light Load  
Operation  
+
MODE  
NC  
ZC  
+
NOCL  
AGND  
Discharge Control  
Copyright © 2017, Texas Instruments Incorporated  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
TPS56637  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 The Adaptive On-Time Control and PWM Operation  
The main control loop of the TPS56637 is adaptive on-time pulse width modulation (PWM) controller that  
supports a proprietary DCAP3™ mode control. The DCAP3™ mode control combines adaptive on-time control  
with an internal compensation circuit for quasi-fixed frequency and low external component count configuration  
with both low-ESR and ceramic output capacitors. It is stable even with virtually no ripple at the output. The  
TPS56637 also includes an error amplifier that makes the output voltage very accurate. No external current  
sense network or loop compensation is required for DCAP3™ control topology.  
At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal  
one-shot timer expires. This one-shot duration is set proportional to the output voltage, VOUT, and is inversely  
proportional to the converter input voltage, VIN, to maintain a pseudo-fixed frequency over the input voltage  
range, hence it is called adaptive on-time control. When the feedback voltage falls below the reference voltage,  
the one-shot timer is reset and the high-side MOSFET is turned on again . An internal ripple generation circuit is  
added to reference voltage for emulating the output ripple, and this enables the use of very low-ESR output  
capacitors such as multi-layered ceramic caps (MLCC).  
7.3.2 Mode Selection  
TPS56637 has a MODE pin that can offer 2 different states of operations under light load condition. If MODE pin  
is short to GND(10kΩ), TPS56637 works under Eco-mode™ control scheme. If MODE pin is floating(500kΩ),  
TPS56637 works under FCCM mode.  
15 below shows the typical start-up sequence of the device once the enable signal triggers the EN turn-on  
threshold. After the voltage of internal VCC crosses the UVLO rising threshold, it takes about 64µs to finish the  
reading and setting of MODE. After this process, the MODE is latched and will not change until VIN or EN toggles  
to restart-up this device. Then after a delay of around 650µs the internal soft-start function begins to ramp up the  
reference voltage to the PWM comparator.  
1. MODE Pin Settings  
MODE Pin  
Light Load Operation Mode  
Eco-mode™  
Short to GND (10kΩ)  
Floating (500kΩ)  
FCCM  
EN Threshold  
1.18V  
EN  
VCC UVLO  
4.2V  
MODE  
Detection  
Internal  
VCC  
MODE  
100µs 64µs 650µs  
Tss= 2ms  
90%  
VOUT  
VOUT  
1ms  
PGOOD  
15. Power-Up Sequence  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
 
TPS56637  
www.ti.com.cn  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
7.3.2.1 Eco-mode™ Control Scheme  
When MODE pin is short to GND(10kΩ), the TPS56637 is set to Eco-mode™ control scheme to maintain high  
light load efficiency. As the output current decreases from heavy load condition, the inductor current is also  
reduced and eventually comes to a point that its rippled valley touches zero level, which is the boundary between  
continuous conduction and discontinuous conduction modes. The rectifying MOSFET is turned off when the zero  
inductor current is detected. As the load current further decreases the converter runs into discontinuous  
conduction mode. The on-time is kept almost the same as it was in the continuous conduction mode so that  
longer time is needed to discharge the output capacitor with smaller load current to the level of the reference  
voltage. This process makes the switching frequency lower, proportional to the load current, and keeps the light  
load efficiency high. The transition point to the light load operation IOUT(LL) current can be calculated by 公式 1.  
1
(V - VOUT )VOUT  
IN  
IOUT(LL)  
=
2LfSW  
V
IN  
(1)  
7.3.2.2 FCCM Control  
When MODE pin is floating(500kΩ), the TPS56637 is set to operate in forced continuous conduction mode  
(FCCM) in light load conditions and allows the inductor current to become negative. In FCCM, the switching  
frequency is maintained at a quasi-fixed level over the entire load range which is suitable for applications  
requiring tight control of the switching frequency and output voltage ripple at the cost of lower efficiency under  
light load compared with which under Eco-mode™. This mode also can help to avoid switching frequency  
dropping into audible range that may introduces some audible "noise".  
7.3.3 Soft Start and Pre-Biased Soft Start  
The TPS56637 features an internal 2-ms soft-start function. The internal soft start circuitry controls the output  
voltage slope during startup. This avoids excessive inrush current and ensures a controlled output voltage rise  
time. It also prevents unwanted voltage drops from high impedance power sources or batteries. When EN pin is  
set to start device operation, the internal soft-start circuitry will begin ramping up the reference voltage to the  
PWM comparator with a controlled slope. If the output capacitor is pre-biased at startup, the device initiates  
switching and start ramping up only after the internal reference voltage becomes greater than the feedback  
voltage VFB. This scheme ensures that the converters ramp up smoothly into regulation point.  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
 
TPS56637  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.3.4 Enable and Adjusting Undervoltage Lockout  
The EN pin provides electrical on and off control of the device. When the EN pin voltage exceeds the threshold  
voltage, the device begins operating. If the EN pin voltage is pulled below the threshold voltage, the regulator  
stops switching and enters the standby operation.  
The EN pin has an internal pull-up current source which allows the user to float the EN pin to enable the device.  
If an application requires control of the EN pin, open-drain or open-collector output logic can be used to interface  
with the pin.  
The TPS56637 implements internal undervoltage-lockout (UVLO) circuitry on the VIN pin. The device is disabled  
when the VIN pin voltage falls below the internal VIN UVLO threshold. The internal VIN UVLO threshold has a  
hysteresis of 500 mV.  
If an application requires a higher UVLO threshold on the VIN pin, then the EN pin can be configured as shown  
in 16. When using the external UVLO function, setting the hysteresis at a value greater than 500 mV is  
recommended.  
The EN pin has a small pull-up current, Ip, which sets the default state of the pin to enable when no external  
components are connected. The pull-up current is also used to control the voltage hysteresis for the UVLO  
function because it increases by Ih when the EN pin crosses the enable threshold. Use 公式 2 , and 公式 3 to  
calculate the values of R1 and R2 for a specified UVLO threshold. Once R1, R2 were settled down, the VEN  
voltage can be calculated by 公式 4, which should be lower than 5.5V with max VIN.  
VIN  
Device  
R1  
R2  
Ip  
Ih  
EN  
16. Adjustable VIN Undervoltage Lockout  
VENfalling  
VSTART  
- VSTOP  
VENrisig  
R1 =  
«
÷
÷
VENfalling  
Ip 1-  
+ Ih  
VENrising  
(2)  
(3)  
R1 ìVENfalling  
R2 =  
(
)
VSTOP - VENfalling + R1 Ip + Ih  
R ìV + R R I + I  
(
)
2
IN  
1
2
p
h
VEN =  
R1 + R2  
(4)  
Where  
Ip = 1 µA  
Ih = 4 µA  
VENfalling = 1.12 V  
VENrising = 1.18 V  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
TPS56637  
www.ti.com.cn  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
7.3.5 Output Overcurrent Limit and Undervoltage Protection  
The output overcurrent limit (OCL) is implemented using a cycle by cycle valley detect control circuit. The  
switching current is monitored during off state by measuring the low-side FET drain to source voltage. This  
voltage is proportional to the switching current. To improve accuracy, the voltage sensing is temperature  
compensated.  
During the on-time of the high-side FET switch, the switching current increases at a linear rate determined by  
VIN, VOUT, the on-time and the output inductor value. During the on-time of the low-side FET switch, this current  
decreases linearly. The average value of the switch current is the load current IOUT. If the monitored current is  
above the OCL level, the converter maintains low-side FET on and delays the creation of a new set pulse, even  
the voltage feedback loop requires one, until the current level becomes OCL level or lower. In subsequent  
switching cycles, the on-time is set to a fixed value and the current is monitored in the same manner.  
There are some important considerations for this type of over current limit. When the load current is higher than  
the over current threshold by one half of the peak-to-peak inductor ripple current, the OCL is triggered and the  
current is being limited, output voltage tends to drop because the load demand is higher than what the converter  
can support. When the output voltage falls below 65% of the target voltage, the UVP comparator detects it and  
shuts down the device after a deglitch wait time of 0.25ms and then re-start after the hiccup time of 25ms. When  
the over current condition is removed, the output will be recovered.  
7.3.6 Overvoltage Protection  
When the output voltage becomes higher than 125% of the target voltage, the OVP comparator output goes high  
after a deglitch time of 256µs and then the output will be discharged. When the over voltage condition is  
removed, the discharge path will still be on for a hiccup time of 25ms before a re-soft-start process to recover the  
output voltage.  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
TPS56637  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.3.7 UVLO Protection  
Undervoltage Lockout protection(UVLO) monitors the internal regulator voltage. When the voltage is lower than  
UVLO threshold voltage, the device is shut down. This protection is non-latched.  
7.3.8 Thermal Shutdown  
The junction temperature (Tj) of the device is monitored by an internal temperature sensor. If Tj exceeds 165°C  
(typical), the device goes into thermal shut down. Both the high-side and low-side power FETs are turned off and  
the discharge path is turned on. When Tj decreases below the hysteresis amount, the converter resumes normal  
operation, beginning with Soft Start. To avoid unstable conditions, a hysteresis of typically 30°C is implemented  
on the thermal shut down temperature.  
7.3.9 Output Voltage Discharge  
The TPS56637 has a built in discharge function by using an integrated MOSFET with 200-RDS(on), which is  
connected to the output terminal SW. The discharge is slow due to the lower current capability of the MOSFET.  
The discharge path will be turned on when the device is turned off due to UV, OV, OT and EN shut down  
conditions.  
7.3.10 Power Good  
The TPS56637 has a built in power good (PG) function to indicate whether the output voltage has reached its  
appropriate level or not. The PG signal can be used for startup sequencing of multiple rails. The PG pin is an  
open-drain output that requires a pull-up resistor (to any voltage below 5.5 V). A pull-up resistor of 100kΩ is  
recommended to pull it up to 5V voltage. It can sink 1.5mA of current and maintain its specified logic low level.  
Once the FB pin voltage is between 90% and 110% of the internal reference voltage (VREF) and after a deglitch  
time of 64µs, the PG turns to high impedance status. The PG pin is pulled low after a deglitch time of 32µs when  
FB pin voltage is lower than 85% of the internal reference voltage or greater than 115% of the internal reference  
voltage, or in events of thermal shutdown, EN shutdown, UVLO conditions. VIN must remain present for the PG  
pin to stay Low.  
2. Power Good Pin Logic Table (TPS56637)  
PG Logic Status  
Device State  
High Impedance  
Low  
VFB doesn't trigger VPGTH  
VFB triggers VPGTH  
Enable (EN=High)  
Shutdown (EN=Low)  
UVLO  
2 V < VIN < VUVLO  
TJ > TSD  
Thermal Shutdown  
Power Supply Removal  
VIN < 2 V  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS56637  
www.ti.com.cn  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
7.4 Device Functional Modes  
7.4.1 Standby Operation  
The TPS56637 can be placed in standby mode by pulling the EN pin low. The device operates with a shutdown  
current of 2µA(typical) when in standby condition.  
7.4.2 Normal Operation  
When the input voltage is above the UVLO threshold voltage and EN pin is high, TPS56637 can operate in its  
normal switching modes. Normal continuous conduction mode (CCM) occurs when the minimum switch current is  
above 0 A. In CCM, the TPS56637 operates at a quasi-fixed frequency of 500kHz (typical).  
7.4.3 Light Load Operation  
When the MODE pin is selected to operate in FCCM mode, the converter operates in continuous conduction  
mode (FCCM) during light-load conditions. During FCCM, the switching frequency is maintained at an almost  
constant level over the entire load range which is suitable for applications requiring tight control of the switching  
frequency and output voltage ripple at the cost of lower efficiency under light load. If the MODE pin is selected to  
operate in Eco-mode™ control scheme, the device enters pulse skip mode after the valley of the inductor ripple  
current crosses zero. The Eco-mode™ control scheme maintains higher efficiency at light load with a lower  
switching frequency. If the TPS56637 works at Eco-mode™ and the load current is light enough to a specific  
value, the TPS56637 will enter ULQ mode that the TPS56637 will disable some internal circuits to further  
increase the light load efficiency.  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
TPS56637  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The schematic of 17 shows a typical application for TPS56637. This design converts an input voltage range of  
8V to 28V down to 5V with a maximum output current of 6 A.  
8.2 Typical Application  
The application schematic in 17 shows the TPS56637 8-V to 28-V Input, 5-V output converter design meeting  
the requirements for 6-A output. This circuit is available as the evaluation module (EVM). The sections provide  
the design procedure.  
U1  
C4  
0.1uF  
SW  
L1  
3.3uH  
R4  
0
VIN  
VOUT  
8
1
7
VIN  
EN  
BOOT  
J1  
DNP  
C8  
22uF  
1
2
DNP  
C7  
22uF  
2
1
C1  
10uF  
C2  
10uF  
C3  
0.1uF  
R5  
49.9  
C5  
22uF  
C6  
22uF  
J2  
6
4
2
9
3
R1  
169k  
VCC  
SW  
PG  
R9  
R8  
20.0k  
100pF  
100k  
C9  
R6  
73.2k  
5
NC  
FB  
PGND  
PGND  
FB  
PGND  
AGND  
R2  
36.1k  
R7  
10.0k  
10  
MODE  
PGND  
TPS56637  
AGND  
AGND  
AGND PGND  
AGND  
Copyright © 2017, Texas Instruments Incorporated  
17. TPS56637 5-V, 6-A Reference Design  
8.2.1 Design Requirements  
3 shows the design parameters for this application.  
3. Design Parameters  
PARAMETER  
Input voltage range  
EXAMPLE VALUE  
24V nominal, 8V to 28V  
Output voltage  
5V  
ΔVOUT = ±5%  
<30 mV @ CCM  
6A  
Transient response, 6-A load step  
Output ripple voltage  
Output current rating  
Operating frequency  
500 kHz  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
TPS56637  
www.ti.com.cn  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
8.2.2 Detailed Design Procedure  
8.2.2.1 Output Voltage Resistors Selection  
The output voltage is set with a resistor divider from the output node to the VFB pin. TI recommends to use 1%  
tolerance or better divider resistors. Start by using 公式 5 to calculate VOUT. R5 is optional and can be used to  
measure the control loop's frequency response.  
To improve efficiency at very light loads consider using larger value resistors. If the resistance is too high the  
device will be more susceptible to noise and voltage errors from the VFB input current will be more noticeable.  
Please note that dynamically adjusting output voltage is not recommended.  
R6  
«
÷
VOUT = 0.6ì 1+  
R7  
(5)  
8.2.2.2 Output Filter Selection  
The LC filter used as the output filter has double pole at:  
1
fP =  
2Œ LOUT ìCOUT  
(6)  
At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal  
gain of the device. The low frequency phase is 180 degrees. At the output filter pole frequency, the gain rolls off  
at a –40 dB per decade rate and the phase drops rapidly. D-CAP3 introduces a high frequency zero that reduces  
the gain roll off to –20 dB per decade and increases the phase to 90 degrees one decade above the zero  
frequency. The inductor and capacitor for the output filter must be selected so that the double pole of 公式 6 is  
located below the high frequency zero but close enough that the phase boost provided be the high frequency  
zero provides adequate phase margin for a stable circuit. To meet this requirement use the values recommended  
in 4.  
4. Recommended Component Values  
(3)  
COUT  
(µF)  
C9 (pF)(4) R8 (kΩ)(4)  
OUTPUT  
VOLTAGE(1)  
(V)  
R6(2)  
(kΩ)  
R7  
(kΩ)  
L1  
(µH)  
MIN  
30  
30  
30  
20  
20  
25  
TYP  
35  
MAX  
100  
100  
100  
100  
100  
100  
1.05  
1.2  
1.8  
3.3  
5
7.5  
10  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
1
1
35  
20  
1.2  
2.2  
3.3  
5.6  
35  
45.3  
73.2  
191  
35  
100 to 220  
100 to 220  
100 to 220  
20  
20  
20  
30  
12  
30  
(1) Please use the recommended L1 and COUT combination of the higher and closest output rail for  
unlisted output rails.  
(2) R6=0Ω for VOUT=0.6V  
(3) COUT is the sum of effective output capacitance. In this datasheet the effective capacitance is defined  
as the actual capacitance under DC bias and temperature, not the rated or nameplate values. All high  
value ceramic capacitors have a large voltage coefficient in addition to normal tolerances and  
temperature effects. A careful study of bias and temperature variation of any capacitor bank should be  
made in order to ensure that the minimum value of effective capacitance is provided. Refer to the  
information of DC bias and temperature characteristics from manufacturers of ceramic capacitors.  
(4) R8 and C9 can be used to improve the load transient response or improve the loop-phase margin. The  
application report Optimizing Transient Response of Internally Compensated DCDC Converters with  
Feed-forward Capacitor is helpful when experimenting with a feed-forward capacitor.  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
 
 
 
TPS56637  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
The inductor peak-to-peak ripple current, peak current and RMS current are calculated using 公式 7, 公式 8, and  
公式 9. The inductor saturation current rating must be greater than the calculated peak current and the RMS or  
heating current rating must be greater than the calculated RMS current.  
Use 500 kHz for fSW. Make sure the chosen inductor is rated for the peak current of 公式 8 and the RMS current  
of 公式 9.  
V
IN(MAX) - VOUT  
VOUT  
IlP-P  
=
V
LO fSW  
IN(MAX)  
(7)  
(8)  
IlP-P  
IlPEAK = IO +  
2
1
2
2
ILO(RMS) = IO  
+
IlP-P  
12  
(9)  
For this design example, the calculated peak current is 7.28A and the calculated RMS current is 6.05 A. The  
inductor used is IHLP3232DZER3R3M11 with a peak current rating of 10.5A and an RMS current rating of 9.7A.  
The capacitor value and ESR determines the amount of output voltage ripple. TheTPS56637 is intended for use  
with ceramic or other low ESR capacitors. Recommended values range from 20 µF to 100 µF. Use 公式 10 to  
determine the required RMS current rating for the output capacitor.  
VOUT  
(
V - VOUT  
)
IN  
ICO(RMS)  
=
12 V LO fSW  
IN  
(10)  
For this design two MuRata GRM32ER71E226KE15L 22-µF output capacitors are used so that the effective  
capacitance is 31.08 µF at DC biased voltage of 5V. The calculated RMS current is 0.738A and each output  
capacitor is rated for 4 A.  
8.2.2.3 Input Capacitor Selection  
The TPS56637 requires an input decoupling capacitor and a bulk capacitor is needed depending on the  
application. TI recommends a ceramic capacitor over 10 µF for the decoupling capacitor. An additional 0.1-µF  
capacitor (C3) from VIN to PGND pin is recommended to provide additional high frequency filtering. The  
capacitor voltage rating needs to be greater than the maximum input voltage. The input voltage ripple can be  
calculated using 公式 11.  
Ioutmax 0.25  
Cin fSW  
ûV =  
in  
(11)  
The capacitor must also have a ripple current rating greater than the maximum input current ripple of the  
application. The input ripple current is calculated by 公式 12:  
VIN(min)-VOUT  
(
)
VOUT  
ICIN(rms) = IOUT ×  
×
VIN(min)  
VIN(min)  
(12)  
8.2.2.4 Bootstrap Capacitor Selection  
A 0.1-µF ceramic capacitor(C4) must be connected between the BOOT to SW pin for proper operation. TI  
recommends to use a ceramic capacitor with X5R or better grade dielectric. The capacitor must have a 10-V or  
higher voltage rating.  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
 
 
TPS56637  
www.ti.com.cn  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
8.2.3 Application Curves  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
55%  
50%  
5.032  
5.028  
5.024  
5.02  
5.016  
5.012  
5.008  
5.004  
5
VIN=8V, VOUT=5V  
VIN=12V, VOUT=5V  
VIN=19V, VOUT=5V  
VIN=24V, VOUT=5V  
VIN=8V  
VIN=12V  
VIN=19V  
VIN=24V  
4.996  
4.992  
0.001  
0.01  
0.1  
IOUT - Load Current (A)  
1
10  
0.001  
0.01  
0.1  
IOUT (A)  
1
10  
5Vou  
Load  
18. Efficiency  
19. Load Regulation  
5.056  
60  
50  
240  
Magnitude  
Phase  
200  
160  
120  
80  
5.048  
5.04  
40  
30  
5.032  
5.024  
5.016  
5.008  
5
20  
10  
40  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-40  
-80  
-120  
-160  
-200  
-240  
IOUT = 0.01A  
IOUT = 0.6A  
IOUT = 3A  
4.992  
4.984  
4.976  
IOUT = 6A  
1x103  
1x104  
VIN = 24V  
1x105  
Frequency (Hz)  
1x106 3x106  
8
10  
12  
14  
16  
18  
VIN (V)  
20  
22  
24  
26  
28  
Bode  
Line  
VOUT = 5V  
IOUT = 6A  
21. Bode Plot  
20. Line Regulation  
Vin = 200 mV/div  
Vout = 50 mV/div  
VIN = 300 mV/div  
VOUT = 40 mV/div  
IL = 3 A/div  
IL = 3 A/div  
SW = 8 V/div  
SW = 7 V/div  
5 µs/div  
100 µs/div  
22. Steady State Waveforms, IOUT = 0.01 A  
23. Steady State Waveforms, IOUT= 0.6 A  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
TPS56637  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
VIN = 300 mV/div  
VOUT = 40 mV/div  
VIN = 300 mV/div  
VOUT = 40 mV/div  
IL = 3 A/div  
IL = 3 A/div  
SW = 8 V/div  
SW = 8 V/div  
2 µs/div  
2 µs/div  
24. Steady State Waveforms, IOUT= 3 A  
25. Steady State Waveforms, IOUT= 6 A  
VOUT = 200 mV/div  
VOUT = 200 mV/div  
ILOAD = 3 A/div  
ILOAD = 3 A/div  
500 µs/div  
500 µs/div  
26. Transient Response 0 to 3 A  
27. Transient Response 0 to 6 A  
VOUT = 200 mV/div  
VOUT = 200 mV/div  
ILOAD = 3 A/div  
ILOAD = 3 A/div  
500 µs/div  
500 µs/div  
28. Transient Response 0.6 to 5.4 A  
29. Transient Response 3 to 6 A  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS56637  
www.ti.com.cn  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
Vin = 20 V/div  
Vout = 5 V/div  
Vin = 20 V/div  
Vout = 5 V/div  
PG = 5 V/div  
PG = 5 V/div  
SW = 20 V/div  
SW = 20 V/div  
10 ms/div  
10 ms/div  
30. Startup Relative to VIN  
31. Shutdown Relative to VIN  
EN = 5 V/div  
EN = 5 V/div  
Vout = 5 V/div  
Vout = 5 V/div  
PG = 5 V/div  
PG = 5 V/div  
SW = 20 V/div  
SW = 20 V/div  
200 µs/div  
5 ms/div  
32. Enable Relative to EN  
33. Disable Relative to EN  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
TPS56637  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
9 Power Supply Recommendations  
The TPS56637 is designed to operate from input supply voltage in the range of 4.5 V to 28 V. Buck converters  
require the input voltage to be higher than the output voltage for proper operation. Input supply current must be  
appropriate for the desired output current. If the input voltage supply is located far from the TPS56637 circuit,  
some additional input bulk capacitance is recommended.  
10 Layout  
10.1 Layout Guidelines  
1. Recommend a four-layer PCB for good thermal performance and with maximum ground plane.  
2. VIN and GND traces should be as wide as possible to reduce trace impedance. The wide areas are also of  
advantage from the view point of heat dissipation.  
3. Putting at least two vias for VIN and GND traces, and as close as possible to the pins.  
4. The input capacitor and output capacitor should be placed as close to the device as possible to minimize  
trace impedance.  
5. Provide sufficient vias for the input capacitor and output capacitor.  
6. Keep the SW trace as physically short and wide as practical to minimize radiated emissions.  
7. Do not allow switching current to flow under the device.  
8. A separate VOUT path should be connected to the upper feedback resistor.  
9. Make a Kelvin connection to the GND pin for the feedback path.  
10. Voltage feedback loop should be placed away from the high-voltage switching trace, and preferably has  
ground shield.  
11. The trace of the VFB node should be as small as possible to avoid noise coupling.  
12. The GND trace between the output capacitor and the GND pin should be as wide as possible to minimize  
its trace impedance.  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS56637  
www.ti.com.cn  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
10.2 Layout Example  
VIN  
CBST  
INDUCTOR  
VOUT  
8
7
5
CHF  
CIN  
6
9
COUT  
COUT  
10  
AGND  
1
2
3
4
RFBB  
RENB  
RPG  
CFF  
VCC  
RENT  
RFBT  
RFF  
PGND  
PGND  
Top Trace/Plane  
AGND Plane  
Top  
PGND Plane  
Inner PGND and AGND Plane  
Inner PGND and AGND Plane  
VIA to Signal Plane  
VIA to PGND Planes  
VIA to AGND Planes  
Signal traces and PGND and AGND Plane  
Trace on Signal Layer  
34. TPS56637 Layout  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
TPS56637  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:德州仪器 (TI)TPS56637EVM-029 6A 稳压器评估模块》 用户指南  
德州仪器 (TI)TPS56637EVM-029 6A 稳压器评估模块》 用户指南  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 商标  
D-CAP3, Eco-mode, HotRod, DCAP3, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
26  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS56637  
www.ti.com.cn  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
12.1 Package Option Addendum  
12.1.1 Packaging Information  
Package  
Type  
Package  
Drawing  
Package  
Qty  
Lead/Ball  
Finish(3)  
(1)  
(2)  
(4)  
Orderable Device  
Status  
Pins  
Eco Plan  
MSL Peak Temp  
Op Temp (°C)  
Device Marking(5)(6)  
Green (RoHS  
& no Sb/Br)  
Level-2-260C-1  
YEAR  
TPS56637RPAR  
ACTIVE  
VQFN-HR  
RPA  
10  
3000  
CU NIPDAU  
-40 to 150  
P56637  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
space  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest  
availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the  
requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified  
lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used  
between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by  
weight in homogeneous material)  
space  
(3) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the  
finish value exceeds the maximum column width.  
space  
(4) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
space  
(5) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device  
space  
(6) Multiple Device markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief  
on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third  
parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for  
release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
版权 © 2018–2019, Texas Instruments Incorporated  
27  
TPS56637  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
12.1.2 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
TPS56637RPAR  
VQFN-HR  
RPA  
10  
3000  
330  
12  
3.3  
3.3  
1.1  
8
9.1  
2
28  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS56637  
www.ti.com.cn  
ZHCSIH1A JULY 2018REVISED SEPTEMBER 2019  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
VQFN-HR  
Package Drawing Pins  
RPA 10  
SPQ  
Length (mm) Width (mm)  
367 367  
Height (mm)  
TPS56637RPAR  
3000  
35  
版权 © 2018–2019, Texas Instruments Incorporated  
29  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Nov-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS56637RPAR  
ACTIVE  
VQFN-HR  
RPA  
10  
3000 RoHS & Green  
Call TI | NIPDAU  
Level-2-260C-1 YEAR  
-40 to 150  
T56637  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS56637RPAR  
VQFN-  
HR  
RPA  
10  
3000  
330.0  
12.4  
3.3  
3.3  
1.1  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN-HR RPA 10  
SPQ  
Length (mm) Width (mm) Height (mm)  
346.0 346.0 33.0  
TPS56637RPAR  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLAT-NO LEAD  
RPA0010A  
3.1  
2.9  
A
B
3.1  
2.9  
PIN 1 INDEX AREA  
1.00  
0.80  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
PKG  
0.37  
7
0.87  
2X 0.93  
5
(0.1) TYP  
5X 0.5  
4
1.6  
1.4  
PKG  
0.3  
3X  
2
2X  
0.2  
1.8  
0.1  
C A B  
1
0.05  
C
10  
8
REF (0.36)  
0.5  
7X  
0.205  
0.3  
0.3  
0.945  
8X  
0.45  
0.35  
0.2  
2X  
0.1  
C A B  
0.1  
C A B  
0.05  
C
0.05  
C
4224047/A 01/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLAT-NO LEAD  
RPA0010A  
(1.42)  
(0.95)  
(1.4)  
(0.21)  
2X (0.93)  
2X (0.4)  
10  
8
(0.56)  
3X (0.25)  
1
2X  
(2.1)  
2X  
(0.65)  
PKG  
(2.8)  
(0.85)  
(1.7)  
4
5X (0.5)  
(R0.05) TYP  
5
7
7X  
(0.6)  
(0.37)  
8X (0.25)  
(0.87)  
PKG  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
SOLDER MASK  
OPENING  
0.07 MIN  
ALL AROUND  
METAL EDGE  
EXPOSED METAL  
NON SOLDER MASK  
DEFINED  
4224047/A 01/2018  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLAT-NO LEAD  
RPA0010A  
(1.42)  
(0.95)  
(1.4)  
(0.21)  
2X (0.93)  
2X (0.4)  
METAL  
8
10  
TYP  
2X  
(0.56)  
(0.95)  
1
3X (0.25)  
(1.15)  
PKG  
(2.8)  
(0.38)  
(0.08)  
4
2X (0.75)  
(0.95)  
5X (0.5)  
(R0.05) TYP  
5
7
7X  
(0.6)  
(0.37)  
8X (0.25)  
(0.87)  
PKG  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD  
PADS 6 and 9: 89% PRINTED COVERAGE BY  
AREA  
SCALE: 20X  
4224047/A 01/2018  
NOTES: (continued)  
5.  
Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS568215

具有 D-CAP3 控制功能的 4.5V 至 17V、8A 同步 SWIFT™ 降压转换器
TI

TPS568215OA

具有 D-CAP3 控制功能和 Out-of-Audio™ 模式的 4.5V 至 17V、8A 同步 SWIFT™ 降压转换器
TI

TPS568215OARNNR

具有 D-CAP3 控制功能和 Out-of-Audio™ 模式的 4.5V 至 17V、8A 同步 SWIFT™ 降压转换器 | RNN | 18 | -40 to 125
TI

TPS568215OARNNT

具有 D-CAP3 控制功能和 Out-of-Audio™ 模式的 4.5V 至 17V、8A 同步 SWIFT™ 降压转换器 | RNN | 18 | -40 to 125
TI

TPS568215RNNR

具有 D-CAP3 控制功能的 4.5V 至 17V、8A 同步 SWIFT™ 降压转换器 | RNN | 18 | -40 to 125
TI

TPS568215RNNT

具有 D-CAP3 控制功能的 4.5V 至 17V、8A 同步 SWIFT™ 降压转换器 | RNN | 18 | -40 to 125
TI

TPS568230

针对解决方案成本进行了优化的 4.5V 至 18V、8A 同步 SWIFT™ 降压转换器
TI

TPS568230RJER

针对解决方案成本进行了优化的 4.5V 至 18V、8A 同步 SWIFT™ 降压转换器 | RJE | 20 | -40 to 125
TI

TPS568230RJET

针对解决方案成本进行了优化的 4.5V 至 18V、8A 同步 SWIFT™ 降压转换器 | RJE | 20 | -40 to 125
TI

TPS568231

具有 D-CAP3 控制功能的 3.8V 至 17V、8A 同步降压转换器
TI

TPS568231RNNR

具有 D-CAP3 控制功能的 3.8V 至 17V、8A 同步降压转换器 | RNN | 18 | -40 to 125
TI

TPS56837

4.5V 至 28V 输入、8A 同步降压转换器
TI