TPS549B22RVFR [TI]

具有差分遥感功能和 PMBus 的 1.5V 至 18V、25A 同步 SWIFT™ 降压转换器 | RVF | 40 | -40 to 125;
TPS549B22RVFR
型号: TPS549B22RVFR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有差分遥感功能和 PMBus 的 1.5V 至 18V、25A 同步 SWIFT™ 降压转换器 | RVF | 40 | -40 to 125

转换器
文件: 总68页 (文件大小:5571K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS549B22  
ZHCSGO0 JUNE 2017  
TPS549B22 1.5V 18V VIN4.5V 22V VDD,具有全差动传感功能和  
PMBus™ 25A SWIFT™  
同步降压转换器  
1 特性  
2 应用  
1
输入电压 (PVIN)1.5V 18V  
企业级存储、SSDNAS  
输入偏置电压 (VDD) 范围:4.5V 22V  
输出电压范围:0.6V 5.5V  
无线和有线通信基础设施  
工业 PC、自动化、ATEPLC、视频监控  
企业服务器、交换机、路由器  
集成型 4.1mΩ 1.9mΩ 功率 MOSFET,持续输  
出电流为 25A  
ASICSoCFPGADSP 内核和 I/O 电源轨  
基准电压范围:0.6V 1.2V(步长为 50mV),  
采用 VSEL 引脚  
3 说明  
±0.5%0.9VREF 公差范围:–40°C +125°C 结  
TPS549B22 器件是一款紧凑型单通道降压转换器,具  
有自适应导通时间 D-CAP3 模式控制。该器件专为高  
精度、高效率、快速瞬态响应、易于使用、外部组件较  
少且空间受限的电源系统而设计。  
真正的差分遥感放大器  
D-CAP3™控制环路  
自适应导通时间控制,具有 8 PMBusTM  
该器件 采用 全差动传感和 TI 的集成 FET,高侧导通  
电阻为 4.1mΩ,低侧导通电阻为 1.9mΩ。此外,该器  
件还 具有 0.5% 的精度和 0.9V 基准电压,环境温度范  
围介于 –40°C +125°C 之间。其竞争 优势 包括:超  
低的外部组件数、精准的负载和线路调节、自动跳频或  
FCCM 工作模式以及内部软启动控制。  
率:315kHz425kHz550kHz650kHz、  
825kHz900kHz1.025MHz 1.125MHz  
温度补偿和可编程电流限值,具有 RILIM OC 钳  
可选断续或闭锁 OVP UVP  
通过精确的 EN 实现的 VDD UVLO 外部调整  
预偏置启动支持  
TPS549B22 器件采用 7mm × 5mm40 引脚、  
LQFN-CLIP (RVF) 封装(RoHs 豁免)。  
Eco-mode™FCCM 可供选择  
全套故障保护和 PGOOD  
器件信息(1)  
标准 VOUT_COMMAND VOUT_MARGIN(高  
电平和低电平)  
器件型号  
TPS549B22  
封装  
封装尺寸(标称值)  
LQFN-CLIP (40)  
7.00mm × 5.00mm  
引脚捆绑和实时编程  
故障报告和警告  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
针对所选命令的 NVM 备份  
1MHz PMBus,支持 PEC SMB_ALRT#  
结合使用 TPS549B22 WEBENCH® 电源设计器  
创建定制设计  
简化应用  
PVIN  
VSEL  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
MODE  
PGOOD  
PGOOD  
ILIM  
TPS549B22  
RESV_TRK  
RSN  
Load  
+
œ
RSP  
VOSNS  
ALERT#  
DATA  
CLOCK  
ENABLE  
Copyright  
© 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNVSAU8  
 
 
 
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
目录  
7.6 Register Maps......................................................... 29  
Application and Implementation ........................ 43  
8.1 Application Information............................................ 43  
8.2 Typical Applications ................................................ 44  
Power Supply Recommendations...................... 54  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics............................................ 10  
Detailed Description ............................................ 14  
7.1 Overview ................................................................. 14  
7.2 Functional Block Diagram ....................................... 15  
7.3 Feature Description................................................. 15  
7.4 Device Functional Modes........................................ 19  
7.5 Programming........................................................... 19  
10 Layout................................................................... 54  
10.1 Layout Guidelines ................................................. 54  
10.2 Layout Examples................................................... 55  
10.3 Mounting and Thermal Profile Recommendation.. 57  
11 器件和文档支持 ..................................................... 58  
11.1 器件支持................................................................ 58  
11.2 文档支持................................................................ 58  
11.3 接收文档更新通知 ................................................. 58  
11.4 社区资源................................................................ 58  
11.5 ....................................................................... 58  
11.6 静电放电警告......................................................... 58  
11.7 Glossary................................................................ 58  
12 机械、封装和可订购信息....................................... 59  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2017 6 月  
*
初始发行版  
2
Copyright © 2017, Texas Instruments Incorporated  
 
TPS549B22  
www.ti.com.cn  
ZHCSGO0 JUNE 2017  
5 Pin Configuration and Functions  
RVF Package  
40-Pin LQFN-CLIP With Thermal Pad  
Top View  
32  
26  
27  
21  
31 30 29 28  
25 24 23 22  
PGND  
20  
VSEL 33  
19 PGND  
MODE  
34  
35  
18  
17  
16  
15  
PGND  
PGND  
PGND  
PGND  
PGOOD  
ILIM 36  
37  
38  
RESV_TRK  
RSN  
Thermal Pad  
14 PGND  
PGND  
RSP 39  
VOSNS  
13  
40  
6
7
8
9
10 11 12  
1
2
3
4
5
Pin Functions  
PIN  
I/O/P(1)  
DESCRIPTION  
NAME  
ADDR  
NO.  
32  
I
Program device address and SKIP or FCCM mode.  
Ground pin for internal analog circuits.  
AGND  
30  
G
Supply rail for high-side gate driver (boot terminal). Connect boot capacitor from this pin to SW  
node. Internally connected to BP via bootstrap PMOS switch.  
BOOT  
5
P
BP  
31  
29  
O
P
LDO output  
DRGND  
Internal gate driver return.  
Enable pin that can turn on the DC/DC switching converter. Use also to program the required  
PVIN UVLO when PVIN and VDD are connected together.  
EN_UVLO  
4
I
ILIM  
36  
34  
I/O  
I
Program overcurrent limit by connecting a resistor to ground.  
MODE  
Mode selection pin. Select the control mode (DCAP3 or DCAP), and soft-start timing selection.  
6, 7, 26,  
27  
NC  
No connect.  
13, 14, 15,  
16, 17, 18,  
19, 20  
PGND  
P
Power ground of internal FETs.  
PGOOD  
35  
3
O
I
Open drain power-good status signal.  
Clock input for the PMBus interface.  
Data I/O for the PMBus interface.  
PMB_CLK  
PMB_DATA  
2
I/O  
21, 22, 23,  
24, 25  
PVIN  
P
Power supply input for integrated power MOSFET pair.  
RSN  
38  
39  
37  
1
I
I
Inverting input of the differential remote sense amplifier.  
Non-inverting input of the differential remote sense amplifier.  
Do not connect.  
RSP  
RESV_TRK  
SMB_ALRT#  
I
O
Alert output for the PMBus interface.  
(1) I = input, O = output, G = GND  
Copyright © 2017, Texas Instruments Incorporated  
3
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O/P(1)  
DESCRIPTION  
NAME  
NO.  
8, 9, 10,  
11, 12  
SW  
I/O  
Output switching terminal of power converter. Connect the pins to the output inductor.  
VDD  
28  
40  
P
I
Controller power supply input.  
Output voltage monitor input pin.  
VOSNS  
Program the initial start-up and or reference voltage without feedback resistor dividers (from  
0.6 V to 1.2 V in 50-mV increments).  
VSEL  
33  
I
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–5  
MAX  
25  
UNIT  
PVIN  
VDD  
25  
BOOT  
34  
DC  
BOOT to SW  
7.7  
9
< 10 ns  
PMB_CLK, PMB_DATA  
Input voltage  
6
V
EN_UVLO, VOSNS, MODE, ADDR, ILIM  
7.7  
3.6  
0.3  
0.3  
25  
RSP, RESV_TRK, VSEL  
RSN  
PGND, AGND, DRGND  
DC  
SW  
< 10 ns  
27  
Output voltage  
PGOOD, BP  
–0.3  
–0.3  
–55  
7.7  
6
V
V
Output voltage  
SMB_ALRT#, PMB_DATA  
Junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
–55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the network ground terminal unless otherwise noted.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
4
Copyright © 2017, Texas Instruments Incorporated  
TPS549B22  
www.ti.com.cn  
ZHCSGO0 JUNE 2017  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
PVIN with no snubber circuit:  
SW ringing peak voltage equals 23 V at 25-A output  
1.5  
14  
PVIN with snubber circuit:  
SW ringing peak voltage equals 23 V at 25-A output  
1.5  
18  
VDD  
4.5  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–5  
22  
24.5  
6.5  
7
BOOT  
DC  
BOOT to SW  
< 10 ns  
Input voltage  
V
PMB_CLK, PMB_DATA  
EN_UVLO, VOSNS, MODE, ADDR, ILIM  
RSP, RESV_TRK, VSEL  
RSN  
5.5  
5.5  
3.3  
0.1  
0.1  
18  
PGND, AGND, DRGND  
DC  
SW  
< 10 ns  
27  
Output voltage  
PGOOD, BP  
–0.1  
–0.1  
–40  
7
V
V
Output voltage  
SMB_ALRT#, PMB_DATA  
5.5  
125  
Junction temperature, TJ  
°C  
6.4 Thermal Information  
TPS549B22  
THERMAL METRIC(1)  
RVF (LQFN-CLIP)  
UNIT  
40 PINS  
28.5  
18.3  
3.6  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.96  
3.6  
ψJB  
RθJC(bot)  
0.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
over operating free-air temperature range, VVDD = 12 V, VEN_UVLO = 5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
MOSFET ON-RESISTANCE (RDS(on)  
)
High-side FET  
RDS(on)  
(VBOOT – VSW) = 5 V, ID = 25 A, TJ = 25°C  
VVDD = 5 V, ID = 25 A, TJ = 25°C  
4.1  
1.9  
mΩ  
mΩ  
Low-side FET  
INPUT SUPPLY AND CURRENT  
VVDD  
VDD supply voltage  
Nominal VDD voltage range  
4.5  
22  
V
No load, power conversion enabled (no switching),  
TA = 25°C,  
IVDD  
VDD bias current  
2
mA  
µA  
IVDDSTBY  
VDD standby current  
No load, power conversion disabled, TA = 25°C  
700  
Copyright © 2017, Texas Instruments Incorporated  
5
 
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range, VVDD = 12 V, VEN_UVLO = 5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
UNDERVOLTAGE LOCKOUT  
VVDD_UVLO  
VDD UVLO rising threshold  
4.23  
4.25  
0.2  
4.34  
V
V
VVDD_UVLO(HYS) VDD UVLO hysteresis  
VEN_ON_TH  
VEN_HYS  
EN_UVLO on threshold  
EN_UVLO hysteresis  
1.45  
270  
1.6  
1.75  
340  
V
300  
mV  
EN_UVLO input leakage  
current  
IEN_LKG  
VEN_UVLO = 5 V  
–1  
0
1
µA  
INTERNAL REFERENCE VOLTAGE RANGE  
VINTREF  
Internal REF voltage  
900.4  
mV  
Internal REF voltage  
tolerance  
VINTREFTOL  
VINTREF  
–40°C TJ 125°C  
–0.5%  
0.6  
0.5%  
1.2  
Internal REF voltage range  
V
OUTPUT VOLTAGE  
Loop comparator input offset  
VIOS_LPCMP  
–2.5  
2.5  
1
mV  
voltage(1)  
IRSP  
RSP input current  
VO discharge current  
VRSP = 600 mV  
–1  
8
µA  
IVO(dis)  
VVO = 0.5 V, power conversion disabled  
12  
7
mA  
DIFFERENTIAL REMOTE SENSE AMPLIFIER  
fUGBW  
A0  
Unity gain bandwidth(1)  
Open loop gain(1)  
Slew rate(1)  
Input range(1)  
Input offset voltage(1)  
5
MHz  
dB  
75  
SR  
±4.7  
V/µsec  
V
VIRNG  
VOFFSET  
–0.2  
–3.5  
1.8  
3.5  
mV  
INTERNAL BOOT STRAP SWITCH  
VF  
Forward voltage  
VBP-BOOT, IF = 10 mA, TA = 25°C  
0.1  
0.2  
1.5  
V
IBOOT  
VBST leakage current  
VBOOT = 30 V, VSW = 25 V, TA = 25°C  
0.01  
µA  
SWITCHING FREQUENCY  
275  
380  
490  
585  
740  
790  
920  
950  
315  
425  
550  
650  
825  
900  
1025  
1125  
60  
350  
475  
615  
740  
fSW  
VO switching frequency(2)  
VIN = 12 V, VVO = 1 V, TA = 25°C  
kHz  
930  
995  
1160  
1250  
tON(min)  
Minimum on-time(1)  
Minimum off-time(1)  
ns  
ns  
tOFF(min)  
DRVH falling to rising  
300  
(1) Specified by design. Not production tested.  
(2) Correlated with close-loop EVM measurement at load current of 30 A.  
6
Copyright © 2017, Texas Instruments Incorporated  
TPS549B22  
www.ti.com.cn  
ZHCSGO0 JUNE 2017  
Electrical Characteristics (continued)  
over operating free-air temperature range, VVDD = 12 V, VEN_UVLO = 5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
MODE, VSEL, ADDR DETECTION  
Open  
VBP  
1.9091  
1.8243  
1.7438  
1.6725  
1.6042  
1.5348  
1.465  
RLOW = 187 kΩ  
RLOW = 165 kΩ  
RLOW = 147 kΩ  
RLOW = 133 kΩ  
RLOW = 121 kΩ  
RLOW = 110 kΩ  
RLOW = 100 kΩ  
RLOW = 90.9 kΩ  
RLOW = 82.5 kΩ  
RLOW = 75 kΩ  
1.3952  
1.3245  
1.2557  
1.187  
RLOW = 68.1 kΩ  
RLOW = 60.4 kΩ  
RLOW = 53.6 kΩ  
RLOW = 47.5 kΩ  
RLOW = 42.2 kΩ  
RLOW = 37.4 kΩ  
RLOW = 33.2 kΩ  
RLOW = 29.4 kΩ  
RLOW = 25.5 kΩ  
RLOW = 22.1 kΩ  
RLOW = 19.1 kΩ  
RLOW = 16.5 kΩ  
RLOW = 14.3 kΩ  
RLOW = 12.1 kΩ  
RLOW = 10 kΩ  
1.1033  
1.0224  
0.9436  
0.8695  
0.7975  
0.7303  
0.6657  
0.5953  
0.5303  
0.4699  
0.415  
VBP = 2.93 V,  
RHIGH = 100 kΩ  
MODE, VSEL, and ADDR  
detection voltage  
VDETECT_TH  
V
0.3666  
0.3163  
0.2664  
0.2138  
0.1708  
0.1299  
0.0898  
0.0512  
GND  
RLOW = 7.87 kΩ  
RLOW = 6.19 kΩ  
RLOW = 4.64 kΩ  
RLOW = 3.16 kΩ  
RLOW = 1.78 kΩ  
RLOW = 0 Ω  
Copyright © 2017, Texas Instruments Incorporated  
7
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range, VVDD = 12 V, VEN_UVLO = 5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
SOFT-START  
RMODE_LOW = 60.4 kΩ  
7
3.6  
1.6  
0.8  
8(3)  
4(4)  
2
10  
5.2  
2.8  
1.6  
VOUT rising from 0 V to  
95% of final set point,  
RMODE_HIGH = 100 kΩ  
RMODE_LOW = 53.6 kΩ  
RMODE_LOW = 47.5 kΩ  
RMODE_LOW = 42.2 kΩ  
tSS  
Soft-start time  
ms  
1
POWER-ON DELAY  
Delay from enable to switching POD[2:0] = 000  
Delay from enable to switching POD[2:0] = 001  
Delay from enable to switching POD[2:0] = 010  
Delay from enable to switching POD[2:0] = 011  
Delay from enable to switching POD[2:0] = 100  
Delay from enable to switching POD[2:0] = 101  
Delay from enable to switching POD[2:0] = 110  
Delay from enable to switching POD[2:0] = 111  
256  
512  
µs  
1.024  
2.048  
4.096  
8.192  
16.384  
32.768  
tPODLY  
Power-on delay time  
ms  
PGOOD COMPARATOR  
PGOOD in from higher  
105  
89  
108  
92  
111  
95  
PGOOD in from lower  
VPGTH  
PGOOD threshold  
%VREF  
PGOOD out to higher  
120  
PGOOD out to lower  
68  
IPG  
PGOOD sink current  
PGOOD delay time  
VPGOOD = 0.5 V  
6.9  
mA  
µs  
Delay for PGOOD going in, PGD[2:0] = 000  
Delay for PGOOD going in, PGD[2:0] = 001  
Delay for PGOOD going in, PGD[2:0] = 010  
Delay for PGOOD going in, PGD[2:0] = 011  
Delay for PGOOD going in, PGD[2:0] = 100  
Delay for PGOOD going in, PGD[2:0] = 101  
Delay for PGOOD going in, PGD[2:0] = 110  
Delay for PGOOD going in, PGD[2:0] = 111  
Delay for PGOOD coming out  
256  
512  
1.024  
2.048  
4.096  
8.192  
16.384  
131  
tPGDLY  
ms  
2
1
µs  
IPGLK  
PGOOD leakage current  
VPGOOD = 5 V  
–1  
0
μA  
CURRENT DETECTION  
RLIM = 61.9 kΩ  
OC tolerance  
RLIM = 51.1 kΩ  
OC tolerance  
RLIM = 40.2 kΩ  
RLIM = 61.9 kΩ  
RLIM = 51.1 kΩ  
RLIM = 40.2 kΩ  
30  
±15%(5)  
25  
A
A
IOCL_VA  
Valley current limit threshold  
±15%(5)  
17  
20  
23  
A
A
–30  
Negative valley current limit  
threshold  
IOCL_VA_N  
–25  
–20  
Clamp current at VLIM clamp  
at lowest  
ICLMP_LO  
ICLMP_HI  
VILIM_CLMP = 0.1 V, TA = 25°C  
VILIM_CLMP = 1.2 V, TA = 25°C  
5
A
A
Clamp current at VLIM clamp  
at highest  
50  
(3) In order to use the 8-ms SS setting, follow the steps outlined in Application Workaround to Support 4-ms and 8-ms SS Settings.  
(4) In order to use the 4-ms SS setting, follow the steps outlined in Application Workaround to Support 4-ms and 8-ms SS Settings.  
(5) Calculated from 20-A test data. Not production tested.  
8
Copyright © 2017, Texas Instruments Incorporated  
TPS549B22  
www.ti.com.cn  
ZHCSGO0 JUNE 2017  
Electrical Characteristics (continued)  
over operating free-air temperature range, VVDD = 12 V, VEN_UVLO = 5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
PROTECTIONS AND OOB  
Wake-up  
3.32  
3.11  
V
VBPUVLO  
BP UVLO threshold voltage  
Shutdown  
VOVP  
OVP threshold voltage  
OVP response time  
OVP detect voltage  
100-mV over drive  
UVP detect voltage  
117%  
65%  
120%  
123%  
1
VREF  
µs  
tOVPDLY  
VUVP  
tUVPDLY  
VOOB  
UVP threshold voltage  
UVP delay filter delay time  
OOB threshold voltage  
68%  
1
71%  
VREF  
ms  
8%  
16  
24  
38  
67  
VREF  
ms  
tSS = 1 ms  
tSS = 2 ms  
tSS = 4 ms  
tSS = 8 ms  
ms  
tHICDLY  
Hiccup blanking time  
ms  
ms  
BP VOLTAGE  
VBP  
BP LDO output voltage  
BP LDO dropout voltage  
BP LDO overcurrent limit  
VIN = 12 V, 0 A ILOAD 10 mA,  
VIN = 4.5 V, ILOAD = 30 mA, TA = 25°C  
VIN = 12 V, TA = 25°C  
5.07  
100  
V
VBPDO  
365  
0.8  
mV  
mA  
IBPMAX  
PMB_CLK and PMB_DATA INPUT BUFFER LOGIC THRESHOLDS  
PMB_CLK and PMB_DATA  
VIL-PMBUS  
V
V
low-level input voltage(1)  
PMB_CLK and PMB_DATA  
VIH-PMBUS  
1.35  
high-level input voltage(1)  
PMB_CLK and PMB_DATA  
VHY-PMBUS  
150  
165  
mV  
hysteresis voltage(1)  
PMB_CLK and SMB_ALRT OUTPUT PULLDOWN  
PMB_DATA and SMB_ALRT  
VOL-PMBUS  
ISINK = 20 mA  
0.4  
30  
V
low-level output voltage(1)  
THERMAL SHUTDOWN  
Shutdown temperature  
Hysteresis  
155  
Built-In thermal shutdown  
TSDN  
°C  
threshold(1)  
Copyright © 2017, Texas Instruments Incorporated  
9
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
6.6 Typical Characteristics  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
VIN = 5 V  
VIN = 5 V  
VIN = 12 V  
VIN = 14 V  
VIN = 18 V  
VIN = 12 V  
VIN = 14 V  
VIN = 18 V  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Output Current (A)  
Output Current (A)  
D001  
D002  
VOUT = 1 V  
VDD = VIN  
SKIP Mode  
VOUT = 1 V  
VDD = VIN  
FCCM Mode  
fSW = 650 kHz  
fSW = 650 kHz  
Figure 1. Efficiency vs Output Current  
Figure 2. Efficiency vs Output Current  
4.5  
4
1.01  
1.005  
1
3.5  
3
2.5  
2
1.5  
1
0.995  
0.99  
VIN = 5 V  
VIN = 5 V  
VIN = 12 V  
VIN = 14 V  
VIN = 18 V  
VIN = 12 V  
VIN = 14 V  
VIN = 18 V  
0.5  
0
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Output Current (A)  
Output Current (A)  
D003  
D004  
VOUT = 1 V  
VDD= VIN  
SKIP Mode  
VOUT = 1 V  
VDD = VIN  
FCCM Mode  
fSW = 650 kHz  
fSW = 650 kHz  
Figure 3. Converter Power Loss vs Output Current  
Figure 4. Output Voltage Regulation vs Output Current  
2.525  
100%  
95%  
90%  
85%  
80%  
2.52  
2.515  
2.51  
2.505  
2.5  
2.495  
2.49  
VIN = 5 V  
VIN = 5 V  
2.485  
2.48  
VIN = 12 V  
VIN = 14 V  
VIN = 18 V  
VIN = 12 V  
VIN = 14 V  
VIN = 18 V  
2.475  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
SKIP Mode  
25  
Output Current (A)  
Output Current (A)  
D005  
D006  
VDD = VIN  
fSW = 650 kHz  
L= 820 nH, 0.9 mΩ  
SKIP Mode  
VDD = VIN  
fSW = 650 kHz  
L= 820 nH, 0.9 mΩ  
VOUT = 2.5 V  
VOUT = 2.5 V  
Figure 5. Efficiency vs Output Current  
Figure 6. Output Voltage Regulation vs Output Current  
10  
Copyright © 2017, Texas Instruments Incorporated  
TPS549B22  
www.ti.com.cn  
ZHCSGO0 JUNE 2017  
Typical Characteristics (continued)  
100%  
6
5
4
3
2
1
0
95%  
90%  
85%  
80%  
VIN = 9 V  
VIN = 9 V  
VIN = 12 V  
VIN = 14 V  
VIN = 18 V  
VIN = 12 V  
VIN = 14 V  
VIN = 18 V  
0
5
10  
15  
20  
FCCM Mode  
25  
0
5
10  
15  
20  
25  
Output Current (A)  
Output Current (A)  
D007  
D008  
VDD = VIN  
fSW = 650 kHz  
L= 820 nH, 0.9 mΩ  
VDD = VIN  
fSW = 650 kHz  
FCCM Mode  
VOUT = 5 V  
VOUT = 5 V  
L= 820 nH, 0.9 mΩ  
Figure 7. Efficiency vs Output Current  
Figure 8. Power Loss vs Output Current  
IOUT = 25 A  
IOUT = 25 A  
VDD = VIN = 12 V  
VOUT = 1 V  
fSW = 650 kHz  
VDD = VIN = 12 V  
VOUT = 1 V  
fSW = 650 kHz  
Natural convection at room temperature  
Natural convection at room temperature  
Figure 9. Thermal Image  
Figure 10. Thermal Image  
IOUT = 25 A  
VDD = VIN = 12 V  
VOUT = 2.5 V  
fSW = 650 kHz  
IOUT = 25 A  
VDD = VIN = 12 V  
VOUT = 5 V  
fSW = 650 kHz  
Natural convection at room temperature  
Natural convection at room temperature  
Figure 11. Thermal Image  
Figure 12. Thermal Image  
Copyright © 2017, Texas Instruments Incorporated  
11  
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
1 – Operation only  
2 – Turnoff  
4 – VOUT Command up to 1.2 V  
5 – VOUT Command down to 0.6 V  
6 – Turnoff  
3 – Turnon without Margin  
Figure 13. PMBus 1-MHz Bus Speed with 1.8-V Pullup  
Figure 14. 6 Sequenced Events – I2C Write  
1 – Operation only  
2 – Turnoff  
4 – VOUT Command up to 1.2 V  
5 – VOUT Command down to 0.6 V  
6 – Turnoff  
1 – Operation only  
4 – VOUT Command up to 1.2 V  
5 – VOUT Command down to 0.6 V  
6 – Turnoff  
2 – Turnoff  
3 – Turnon without Margin  
3 – Turnon without Margin  
Figure 15. 6 Sequenced Events – I2C Write/Read  
Figure 16. 6 Sequenced Events – I2C Write/Read with PEC  
1 – Operation only  
4 – 16 VOUT Command up to 1.2 V,  
50 mV per step down to 0.6 V  
17 – Turnoff  
1 – Operation only  
4 – 16 VOUT Command up to 1.2 V,  
50 mV per step down to 0.6 V  
17 – Turnoff  
2 – Turnoff  
2 – Turnoff  
3 – Turnon without Margin  
3 – Turnon without Margin  
Figure 17. 17 Sequenced Events – I2C Write  
Figure 18. 17 Sequenced Events – I2C Write/Read  
12  
Copyright © 2017, Texas Instruments Incorporated  
TPS549B22  
www.ti.com.cn  
ZHCSGO0 JUNE 2017  
Typical Characteristics (continued)  
1 – Operation only  
2 – Turnoff  
4 – 16 VOUT Command up to 1.2 V,  
1 – Operation only  
4 – 16 VOUT Command up to 1.2  
V,  
50 mV per step down to 0.6 V  
50 mV per step down to 0.6 V  
17 – Turnoff  
2 – Turnoff  
3 – Turnon without Margin  
3 – Turnon without Margin  
17 – 28 VOUT Command from 0.6  
V
to 1.2 V, 50 mV per step  
29 – Turnoff  
Figure 19. 17 Sequenced Events – I2C Write/Read with PEC  
Figure 20. 29 Sequenced Events – I2C Write  
1 – Operation only  
2 – Turnoff  
4 – 16 VOUT Command up to 1.2 V,  
50 mV per step down to 0.6 V  
17 – 28 Vout Command from 0.6 V  
to 1.2 V, 50 mV per step  
29 – Turnoff  
1 – Operation only  
4 – 16 Vout Command up to 1.2 V,  
50 mV per step down to 0.6 V  
2 – Turnoff  
3 – Turnon without Margin  
17 – 28 Vout Command from 0.6 V  
to 1.2 V, 50 mV per step  
29 – Turnoff  
3 – Turnon without Margin  
Figure 21. 29 Sequenced Events – I2C Write/Read  
Figure 22. 29 Sequenced Events – I2C Write/Read with PEC  
Copyright © 2017, Texas Instruments Incorporated  
13  
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
TPS549B22 device is a high-efficiency, single-channel, FET-integrated, synchronous buck converter. It is  
suitable for point-of-load applications with 25 A or lower output current in storage, telecom and similar digital  
applications. The device features proprietary D-CAP3 mode control combined with adaptive on-time architecture.  
This combination is ideal for building modern high/low duty ratio, ultra-fast load step response DC-DC converters.  
TPS549B22 device has integrated MOSFETs rated at 25-A TDC.  
The converter input voltage range is from 1.5 V up to 18 V, and the VDD input voltage range is from 4.5 V to  
22 V. The output voltage ranges from 0.6 V to 5.5 V.  
Stable operation with all ceramic output capacitors is supported as the D-CAP3 mode uses emulated current  
information to control the modulation. An advantage of this control scheme is that it does not require phase  
compensation network outside which makes it easy to use and also enables low external component count. .  
Adaptive on-time control tracks the preset switching frequency over a wide range of input and output voltage  
while increasing switching frequency as needed during load step transient.  
The default preset switching frequency for this device is 650 kHz. Switching frequency is also programmable  
from 8 preset values via PMBus interface. supports digital communication via PMBus using standard interfacing  
pins, PMB_CLK, PMB_DATA and SMB_ALRT#. The detailed PMBus features, capabilities and command sets of  
the TPS549B22 can be found in PMBus Programming.  
14  
Copyright © 2017, Texas Instruments Incorporated  
TPS549B22  
www.ti.com.cn  
ZHCSGO0 JUNE 2017  
7.2 Functional Block Diagram  
External Soft  
RESV_TRK  
Start  
MUX  
Internal  
Soft Start  
VREF -32%  
EN_UVLO  
RSN  
PGOOD  
+
-
VREF +8/16%  
+
-
UV  
Delay  
Control  
+
+
-
OV  
+
-
VREF -8/16%  
PVIN  
RSP  
VREF +20%  
BOOT  
+
-
PWM  
+
+
D-CAP3TM  
Ramp Generator  
vout  
VREF  
VOSNS  
VSEL  
Reference  
Generator  
XCON  
PMB_CLK  
Adjustment/  
Margining  
SW  
PMBus  
Interface  
PMB_DATA  
tON  
One-  
Shot  
SMB_ALRT#  
ADDR  
Control Logic  
Address  
Detector  
BP  
+
ZC  
x(1/16)  
ILIM  
-
PGND  
AGND  
+
x(-1/16)  
LS  
OCP  
-
LDO  
VDD  
Regulator  
MODE Logic  
MODE  
DRGND  
Copyright © 2017, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 25-A FET  
The TPS549B22 device is a high-performance, integrated FET converter supporting current rating up to 25 A  
thermally. It integrates two N-channel NexFET™ power MOSFETs, enabling high power density and small PCB  
layout area. The drain-to-source breakdown voltage for these FETs is 25-V DC and 27-V transient for 10 ns.  
Avalanche breakdown occurs if the absolute maximum voltage rating exceeds 27 V. In order to limit the switch  
node ringing of the device, TI recommends adding an R-C snubber from the SW node to the PGND pins. Refer  
to Layout Guidelines for the detailed recommendations.  
7.3.2 On-Resistance  
The typical on-resistance (RDS(on)) for the high-side MOSFET is 4.1 mΩ, and typical on-resistance for the low-  
side MOSFET is 1.9 mΩ with a nominal gate voltage (VGS) of 5 V.  
Copyright © 2017, Texas Instruments Incorporated  
15  
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
Feature Description (continued)  
7.3.3 Package Size, Efficiency and Thermal Performance  
The TPS549B22 device is available in a 7 mm × 5 mm QFN package with 40 power and I/O pins. The device  
employs TI proprietary MCM packaging technology with thermal pad. With a properly designed system layout,  
applications achieve optimized safe operating area (SOA) performance. The curves shown in Figure 23 and  
Figure 24 are based on the orderable evaluation module design. (See www.ti.com to order the EVM.)  
110  
100  
90  
110  
100  
90  
80  
80  
70  
70  
60  
60  
50  
50  
Nat Conv  
100 LFM  
200 LFM  
400 LFM  
Nat Conv  
100 LFM  
200 LFM  
400 LFM  
40  
40  
30  
30  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Output Current (A)  
Output Current (A)  
D012  
D011  
VIN = 12 V  
VOUT = 5.5 V  
fSW = 650 kHz  
VIN = 12 V  
VOUT = 1 V  
fSW = 650 kHz  
Figure 24. Safe Operating Area  
Figure 23. Safe Operating Area  
7.3.4 Soft-Start Operation  
In the TPS549B22 device the soft-start time controls the inrush current required to charge the output capacitor  
bank during start-up. The device offers selectable soft-start options of 1 ms, 2 ms, 4 ms and 8 ms. When the  
device is enabled (either by EN or VDD UVLO), the reference voltage ramps from 0 V to the final level defined by  
VSEL pin-strap configuration, in a given soft-start time. The TPS549B22 device supports several soft-start times  
between 1 ms and 8 ms selected by MODE pin configuration. Refer to MODE definition table for details.  
7.3.5 VDD Supply Undervoltage Lockout (UVLO) Protection  
The TPS549B22 device provides fixed VDD undervoltage lockout threshold and hysteresis. The typical VDD turnon  
threshold is 4.25 V, and hysteresis is 0.2 V. The VDD UVLO can be used in conjunction with the EN_UVLO signal  
to provide proper power sequence to the converter design. UVLO is a non-latched protection.  
7.3.6 EN_UVLO Pin Functionality  
The EN_UVLO pin drives an input buffer with accurate threshold and can be used to program the exact required  
turnon and turnoff thresholds for switcher enable, VDD UVLO or VIN UVLO (if VIN and VDD are tied together). If  
desired, an external resistor divider can be used to set and program the turnon threshold for VDD or VIN UVLO.  
Figure 25 shows how to program the input voltage UVLO using the EN_UVLO pin.  
16  
Copyright © 2017, Texas Instruments Incorporated  
 
TPS549B22  
www.ti.com.cn  
ZHCSGO0 JUNE 2017  
Feature Description (continued)  
PVIN  
29  
28  
26 25 24 23 22 21  
PGND 20  
PGND 19  
PGND 18  
PGND 17  
PGND 16  
PGND 15  
PGND 14  
PGND 13  
TPS549B22  
4
PVIN  
Copyright © 2017, Texas Instruments Incorporated  
Figure 25. Programming the UVLO Voltage  
7.3.7 Fault Protections  
This section describes positive and negative overcurrent limits, overvoltage protections, out-of-bounds limits,  
undervoltage protections, and overtemperature protections.  
7.3.7.1 Current Limit (ILIM) Functionality  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
5
10  
15  
20  
25  
30  
35  
40  
Output Current (A)  
D010  
Figure 26. Current Limit Resistance vs OCP Valley Overcurrent Limit  
The ILIM pin sets the OCP level. Connect the ILIM pin to GND through the voltage setting resistor, RILIM. In order  
to provide both good accuracy and a cost-effective solution, the TPS549B22 device supports temperature  
compensated internal MOSFET RDS(on) sensing.  
Copyright © 2017, Texas Instruments Incorporated  
17  
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
Feature Description (continued)  
Also, the TPS549B22 device performs both positive and negative inductor current limiting with the same  
magnitudes. The positive current limit normally protects the inductor from saturation that causes damage to the  
high-side FET and low-side FET. The negative current limit protects the low-side FET during OVP discharge.  
The voltage between GND pin and SW pin during the OFF time monitors the inductor current. The current limit  
has 1200 ppm/°C temperature slope to compensate the temperature dependency of the on-resistance (RDS(on)).  
The GND pin is used as the positive current sensing node.  
The TPS549B22 device uses cycle-by-cycle over-current limiting control. The inductor current is monitored  
during the OFF-state and the controller maintains the OFF-state during the period that the inductor current is  
larger than the overcurrent ILIM level. VILIM sets the valley level of the inductor current.  
7.3.7.2 VDD Undervoltage Lockout (UVLO)  
The TPS549B22 device has an UVLO protection function for the VDD supply input. The on-threshold voltage is  
4.25 V with 200 mV of hysteresis. During a UVLO condition, the device is disabled regardless of the EN_UVLO  
pin voltage. The supply voltage (VVDD) must be above the on-threshold to begin the pin strap detection.  
7.3.7.3 Overvoltage Protection (OVP) and Undervoltage Protection (UVP)  
The device monitors a feedback voltage to detect overvoltage and undervoltage. When the feedback voltage  
becomes lower than 68% of the target voltage, the UVP comparator output goes high and an internal UVP delay  
counter begins counting. After 1 ms, the device latches OFF both high-side and low-side MOSFETs drivers. The  
UVP function enables after soft-start is complete.  
When the feedback voltage becomes higher than 120% of the target voltage, the OVP comparator output goes  
high and the circuit latches OFF the high-side MOSFET driver and turns on the low-side MOSFET until reaching  
a negative current limit. Upon reaching the negative current limit, the low-side FET is turned off and the high-side  
FET is turned on again for a minimum on-time. The TPS549B22 device operates in this cycle until the output  
voltage is pulled down under the UVP threshold voltage for 1 ms. The fault is cleared with a reset of VDD or by  
retoggling the EN pin.  
Table 1. Overvoltage Protection Details  
REFERENCE  
VOLTAGE  
START-UP  
OVP  
THRESHOLD  
OPERATING  
OVP  
THRESHOLD  
OVP DELAY  
100 mV OD  
(µs)  
SOFT-START  
RAMP  
OVP RESET  
(VREF  
)
1.2 × Internal  
VREF  
1.2 × Internal  
VREF  
Internal  
Internal  
1
UVP  
7.3.7.4 Out-of-Bounds Operation  
The device has an out-of-bounds (OOB) overvoltage protection that protects the output load at a much lower  
overvoltage threshold of 8% above the target voltage. OOB protection does not trigger an overvoltage fault, so  
the device is not latched off after an OOB event. OOB protection operates as an early no-fault overvoltage-  
protection mechanism. During the OOB operation, the controller operates in forced PWM mode only by turning  
on the low-side FET. Turning on the low-side FET beyond the zero inductor current quickly discharges the output  
capacitor thus causing the output voltage to fall quickly toward the setpoint. During the operation, the cycle-by-  
cycle negative current limit is also activated to ensure the safe operation of the internal FETs.  
7.3.7.5 Overtemperature Protection  
TPS549B22 device has overtemperature protection (OTP) by monitoring the die temperature. If the temperature  
exceeds the threshold value (default value 165°C), TPS549B22 device is shut off. When the temperature falls  
about 25°C below the threshold value, the device turns on again. The OTP is a non-latch protection.  
18  
Copyright © 2017, Texas Instruments Incorporated  
TPS549B22  
www.ti.com.cn  
ZHCSGO0 JUNE 2017  
7.4 Device Functional Modes  
7.4.1 DCAP3 Control Topology  
The TPS549B22 employs an artificial ramp generator that stabilizes the loop. The ramp amplitude is  
automatically adjusted as a function of selected switching frequency (fSW) The ramp amplitude is a function of  
duty cycle (VOUT-to-VIN ratio). Consequently, two additional pin-strap bits are provided for fine tuning the internal  
ramp amplitude. The device uses an improved DCAP3 control loop architecture that incorporates a steady-state  
error integrator. The slow integrator improves the output voltage DC accuracy greatly and presents minimal  
impact to small signal transient response. To further enhance the small signal stability of the control loop, the  
device uses a modified ramp generator that supports a wider range of output LC stage.  
7.4.2 DCAP Control Topology  
For advanced users of this device, the internal DCAP3 ramp can be disabled using the MODE[4] pin-strap bit.  
This situation requires an external RCC network to ensure control loop stability. Place this RCC network across  
the output inductor. Use a range between 10 mV and 15 mV of injected RSP pin ripple. If no feedback resistor  
divider network is used, insert a 10-kΩ resistor between the VOUT pin and the RSP pin.  
7.5 Programming  
7.5.1 Programmable Pin-Strap Settings  
ADDR, VSEL and MODE. Description: a 1% or better 100-kΩ resistor is needed from BP to each of the three  
pins. The bottom resistor from each pin to ground (see MODE, VSEL, ADDR DETECTION section of the  
Electrical Characteristics table) in conjunction with the top resistor defines each pin strap selection. The pin  
detection checks for external resistor divider ratio during initial power up (VDD is brought down below  
approximately 3 V) when BP LDO output is at approximately 2.9 V.  
7.5.1.1 Address Selection (ADDR) Pin  
The TPS549B22 allows up to 16 different chip addresses for PMBus communication with the first 3 bits fixed as  
001. The address selection process is defined by resistor divider ratio from BP pin to ADDR pin, and the address  
detection circuit starts to work only after the initial power up when VDD has risen above its UVLO threshold.  
Table 4 lists all combinations of the address selections. The 1% or better tolerance resistors with typical  
temperature coefficient of ±100ppm/°C are recommended.  
ADDR pin-strap configuration also programs the light load conduction mode.  
7.5.1.2 VSEL Pin  
VSEL pin strap configuration is used to program initial boot voltage value, hiccup mode and latch off mode. The  
initial boot voltage is used to program the main loop voltage reference point. VSEL voltage settings provide TI  
designated discrete internal reference voltages. Table 2 lists internal reference voltage selections.  
Copyright © 2017, Texas Instruments Incorporated  
19  
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
Table 2. Internal Reference Voltage Selections  
(1)  
VSEL[4]  
VSEL[3]  
VSEL[2]  
VSEL[1]  
VSEL[0]  
1: Latch-Off  
0: Hiccup  
RVSEL (kΩ)  
Open  
187  
1111: 0.975 V  
1: Latch-Off  
0: Hiccup  
165  
1110: 1.1992 V  
1101: 1.1504 V  
1100: 1.0996 V  
1011: 1.0508 V  
1010: 1.0000 V  
1001: 0.9492 V  
1000: 0.9023 V  
0111: 0.9004 V  
0110: 0.8496 V  
0101: 0.8008 V  
0100: 0.7500 V  
0011: 0.6992 V  
0010: 0.6504 V  
0001: 0.5996 V  
0000: 0.975 V  
147  
1: Latch-Off  
0: Hiccup  
133  
121  
1: Latch-Off  
0: Hiccup  
110  
100  
1: Latch-Off  
0: Hiccup  
90.9  
82.5  
75  
1: Latch-Off  
0: Hiccup  
68.1  
60.4  
53.6  
47.5  
42.2  
37.4  
33.2  
29.4  
25.5  
22.1  
19.1  
16.5  
14.3  
12.1  
10  
1: Latch-Off  
0: Hiccup  
1: Latch-Off  
0: Hiccup  
1: Latch-Off  
0: Hiccup  
1: Latch-Off  
0: Hiccup  
1: Latch-Off  
0: Hiccup  
1: Latch-Off  
0: Hiccup  
1: Latch-Off  
0: Hiccup  
1: Latch-Off  
0: Hiccup  
7.87  
6.19  
4.64  
3.16  
1.78  
0
1: Latch-Off  
0: Hiccup  
1: Latch-Off  
0: Hiccup  
(1) 1% or better and connect to ground  
20  
Copyright © 2017, Texas Instruments Incorporated  
 
TPS549B22  
www.ti.com.cn  
ZHCSGO0 JUNE 2017  
7.5.1.3 DCAP3 Control and Mode Selection  
The MODE pinstrap configuration programs the control topology and internal soft-start timing selections. The  
TPS549B22 device supports both DCAP3 and DCAP operation  
MODE[4] selection bit is used to set the control topology. If MODE[4] bit is 0, it selects DCAP operation. If  
MODE[4] bit is 1, it selects DCAP3 operation.  
MODE[1] and MODE[0] selection bits are used to set the internal soft-start timing.  
Table 3. Allowable MODE Pin Selections  
(1)  
MODE[4]  
MODE[3]  
MODE[2]  
MODE[1]  
MODE[0]  
RMODE (kΩ)  
60.4  
11: 8 ms(2)  
10: 4 ms(2)  
01: 2 ms  
53.6  
0: Internal  
Reference  
1: DCAP3  
0: Internal SS  
47.5  
00: 1 ms  
42.2  
11: 8 ms(2)  
10: 4 ms(2)  
01: 2 ms  
4.64  
3.16  
0: Internal  
Reference  
0: DCAP  
0: Internal SS  
1.78  
00: 1 ms  
0
(1) 1% or better and connect to ground  
(2) See Application Workaround to Support 4-ms and 8-ms SS Settings.  
7.5.1.4 Application Workaround to Support 4-ms and 8-ms SS Settings  
In order to properly design for 4-ms and 8-ms SS settings, additional application consideration is needed. The  
recommended application workaround to support the 4-ms and 8-ms soft-start settings is to ensure sufficient time  
delay between the VDD and EN_UVLO signals. The minimum delay between the rising maximum VDD UVLO level  
and the minimum turn on threshold of EN_UVLO is at least TDELAY_MIN  
.
TDELAY _MIN = K ì VREF  
where  
K = 9 ms/V for SS setting of 4 ms  
K = 18 ms/V for SS setting of 8 ms  
VREF is the internal reference voltage programmed by VSEL pin strap  
(1)  
For example, if SS setting is 4 ms and VREF = 1 V, program the minimum delay at least 9 ms; if SS setting is 8  
ms, the minimum delay should be programmed at least 18 ms. See Figure 27 and Figure 28 for detailed timing  
requirement. Because TPS549B22 is a PMBus device, the end user has the option of programming power-on  
delay (POD) as another workaround. Be sure to follow the same calculation to determine the needed POD (see  
MFR_SPECIFIC_01 (address = D1h) and Table 25 for detailed information).  
Figure 27. Proper Sequencing of VDD and EN_UVLO to Support the use of 4-ms SS Setting  
Copyright © 2017, Texas Instruments Incorporated  
21  
 
 
 
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
VDD  
VDD_UVLO  
Maximum Threshold  
4.34 V  
EN_UVLO  
EN_UVLO  
Minimum ON Threshold 1.45 V  
Minimum  
TDELAY_MIN  
Figure 28. Minimum Delay Between VDD and EN_UVLO to Support the use of 4-ms and 8-ms SS settings  
The workaround/consideration described previously is not required for SS settings of 1 ms and 2 ms.  
7.5.2 Programmable Analog Configurations  
7.5.2.1 RSP/RSN Remote Sensing Functionality  
RSP and RSN pins are used for remote sensing purpose. In the case where feedback resistors are required for  
output voltage programming, connect the RSP pin to the mid-point of the resistor divider, and connect the RSN  
pin to the load return. In the case where feedback resistors are not required as when the VSEL programs the  
output-voltage setpoint, connect the RSP pin to the positive sensing point of the load, and the RSN pin must  
always be connected to the load return.  
RSP and RSN pins are extremely high-impedance input terminals of the true differential remote sense amplifier.  
The feedback resistor divider must use resistor values much less than 100 kΩ.  
7.5.2.1.1 Output Differential Remote Sensing Amplifier  
The examples in this section show simplified remote sensing circuitry where each example uses an internal  
reference of 1 V. Figure 29 shows remote sensing without feedback resistors, with an output voltage setpoint of 1  
V. Figure 30 shows remote sensing using feedback resistors, with an output voltage setpoint of 5 V.  
22  
Copyright © 2017, Texas Instruments Incorporated  
 
TPS549B22  
www.ti.com.cn  
ZHCSGO0 JUNE 2017  
TPS549B22  
TPS549B22  
38 RSN  
38 RSN  
39 RSP  
39 RSP  
40 VOSNS  
40 VOSNS  
BOOT  
BOOT  
5
5
Load  
Load  
+
œ
+
œ
Copyright © 2017, Texas Instruments Incorporated  
Copyright © 2017, Texas Instruments Incorporated  
Figure 29. Remote Sensing Without Feedback  
Resistors  
Figure 30. Remote Sensing With Feedback  
Resistors  
7.5.2.2 Power Good (PGOOD Pin) Functionality  
The TPS549B22 device has power-good output that registers high when switcher output is within the target. The  
power-good function is activated after soft start has finished. When the soft-start ramp reaches 300 mV above  
the internal reference voltage, SS end signal goes high to enable the PGOOD detection function. If the output  
voltage becomes within ±8% of the target value, internal comparators detect power-good state and the power-  
good signal becomes high after a 1-ms programmable delay. If the output voltage goes outside of ±16% of the  
target value, the power-good signal becomes low after two microsecond (2-µs) internal delay. The open-drain  
power-good output must be pulled up externally. The internal N-channel MOSFET does not pull down until the  
VDD supply is above 1.2 V.  
7.5.3 PMBus Programming  
TPS549B22 has seven internal custom user-accessible 8-bit registers. The PMBus interface has been designed  
for program flexibility, supporting direct format for write operation. Read operations are supported for both  
combined format and stop separated format. While there is no auto increment/decrement capability in the  
TPS549B22 PMBus logic, a tight software loop can be designed to randomly access the next register  
independent of which register was accessed first. The start and stop commands frame the data packet and the  
repeat start condition is allowed when necessary.  
7.5.3.1 TPS549B22 Limitations to the PMBUS Specifications  
TPS549B22 only recognizes seven bit addressing. This means TPS549B22 is not compatible with ten bit  
addressing and CBUS communication. The device can operate in standard mode (100 kbit/s), fast mode (400  
kbit/s) or faster mode (1000 kbit/s).  
7.5.3.2 Slave Address Assignment  
The seven bit slave address is 001A3A2A1A0x, where A3A2A1A0 is set by the ADDR pin on the device. Bit 0 is the  
data direction bit, i.e. 001A3A2A1A00 is used for write operation and 001A3A2A1A01 is used for read operation.  
Copyright © 2017, Texas Instruments Incorporated  
23  
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
7.5.3.3 PMBUS Address Selection  
TPS549B22 allows up to 16 different chip addresses for PMBus communication, with the first three bits fixed as  
001. The address selection process is defined by the resistor divider ratio from BP pin to ADDR pin, and the  
address detection circuit will start to work only after VDD input supply has risen above its UVLO threshold.  
Table 4 lists the divider ratio and some example resistor values. The 1% tolerance resistors with typical  
temperature coefficient of ±100 ppm/ºC are recommended. Higher performance resistors can be used if tighter  
noise margin is required for more reliable address detection.  
7.5.3.4 Supported Formats  
The supported formats are described in the following subsections.  
7.5.3.4.1 Direct Format — Write  
The simplest format for a PMBus write is direct format. After the start condition [S], the slave chip address is  
sent, followed by an eighth bit indicating a write. TPS549B22 then acknowledges that it is being addressed, and  
the master responds with an 8 bit register address byte. The slave acknowledges and the master sends the  
appropriate 8-bit data byte. Once again the slave acknowledges and the master terminates the transfer with the  
stop condition [P].  
7.5.3.4.2 Combined Format — Read  
After the start condition [S], the slave chip address is sent, followed by an eighth bit indicating a write.  
TPS549B22 then acknowledges that it is being addressed, and the master responds with an 8-bit register  
address byte. The slave acknowledges and the master sends the repeated start condition [Sr]. Once again, the  
slave chip address is sent, followed by an eighth bit indicating a read. The slave responds with an acknowledge  
followed by previously addressed 8-bit data byte. The master then sends a non-acknowledge (NACK) and finally  
terminates the transfer with the stop condition [P].  
7.5.3.5 Stop Separated Reads  
Stop-separated reads can also be used. This format allows a master to set up the register address pointer for a  
read and return to that slave at a later time to read the data. In this format the slave chip address followed by a  
write bit are sent after a start [S] condition. TPS549B22 then acknowledges it is being addressed, and the master  
responds with the 8-bit register address byte. The master then sends a stop or restart condition and may then  
address another slave. After performing other tasks, the master can send a start or restart condition to the  
TPS549B22 with a read command. The device acknowledges this request and returns the data from the register  
location that had been set up previously.  
24  
Copyright © 2017, Texas Instruments Incorporated  
TPS549B22  
www.ti.com.cn  
ZHCSGO0 JUNE 2017  
Table 4. ADDR Pin Selection Table  
RADDR (kΩ)  
PMBus_Address<3:0>  
CM  
(1% or better and  
connect to ground)  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
1: FCCM  
0: SKIP  
Open  
187  
165  
147  
133  
121  
110  
100  
90.9  
82.5  
75  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
68.1  
60.4  
53.6  
47.5  
42.2  
37.4  
33.2  
29.4  
25.5  
22.1  
19.1  
16.5  
14.3  
12.1  
10  
7.87  
6.19  
4.64  
3.16  
1.78  
0
Copyright © 2017, Texas Instruments Incorporated  
25  
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
7.5.3.6 Supported PMBUS Commands and Registers  
Only the following PMBus commands are supported by TPS549B22, and not all parts of each command are  
supported.  
Table 5. PMBUS Command and Register Table  
No. of DATA  
BYTES  
CMD CODE  
COMMAND NAME  
DESCRIPTION  
NVM?  
TYPE  
BIT PATTERN  
00XX XX00 = Turn Off  
1000 XX00 = Turn on (VOUT Margin off)  
1001 0100 = Turn on (VOUT Margin Low, Ignore  
Fault)  
1001 1000 = Turn on (VOUT Margin Low, Act on  
Fault)  
1010 0100 = Turn on (VOUT Margin High,  
Ignore Fault)  
1010 1000 = Turn on (VOUT Margin High, Act  
on Fault)  
The OPERATION command is  
used to turn the unit on and off  
in conjunction with the input  
from the EN pin. It is also used  
to cause the device to set the  
output voltage to the upper or  
lower margin voltages.  
1h  
OPERATION  
no  
R/W Byte  
1
0001 0011 = Act on neither OPERATION nor EN  
Configures the combination of  
EN pin input and serial bus  
commands needed to turn the  
unit on and off. This includes  
how the unit responds when  
power is applied.  
pin  
0001 0111 = Act on EN pin and ignore  
OPERATION  
0001 1011 = Act on OPERATION and ignore EN  
pin  
0001 1111 = Act on OPERATION and Act on EN  
pin (requires both)  
2h  
ON_OFF_CONFIG  
yes  
R/W Byte  
1
Clears all fault status registers  
to 0x00 and deasserts  
SMBAlert. The "Unit is Off" bit  
in the status byte and  
"PGOOD# de-assertion" bit in  
the status word are not cleared  
when this command is issued.  
3h  
CLEAR_FAULTS  
no  
Send Byte  
R/W Byte  
0
1
No data. Write only.  
1000 0000 Only allow WRITE_PROTECT  
0100 0000 Only allow WRITE_PROTECT and  
OPERATION  
0010 0000 Only allow WRITE_PROTECT,  
OPERATION, ON_OFF_CONFIG and  
VOUT_COMMAND  
Prevents unwanted writes to  
the device. This register can be  
over-written. This is not a  
permanent lock.  
10h  
WRITE_PROTECT  
yes  
0000 0000 Allow all writes  
Copies Operating Memory to  
matching non-volatile Default  
Store Memory.  
11h  
12h  
STORE_DEFAULT_ALL  
no  
no  
Send Byte  
Send Byte  
0
0
No data. Write only.  
No data. Write only.  
Restores all parameters from  
non-volatile Default Store  
RESTORE_DEFAULT_ALL  
Memory to Operating Memory  
This command provides a way  
for a host system to determine  
some key capabilities of a  
PMBus device, including PEC,  
Alert and Speed.  
19h  
CAPABILITY  
no  
Read Byte  
1
1101 0000 = PEC, 1-MHz bus speed, ALERT  
000x xxxx = Linear format.  
0001 0111 = Exponent value of –9 (1.953 mV  
resolution)  
Hard coded to linear mode with  
exponent of –9.  
20h  
21h  
VOUT_MODE  
no  
Read Byte  
R/W Word  
1
2
Output voltage setpoint. DAC  
resolution is 1.9531 mV and  
range is ~0.6 V to ~1.200 V  
0000 0001 0011 0011 = 0.5996 V  
0000 0010 0110 0110 = 1.1992 V  
VOUT_COMMAND  
yes  
Sets the voltage to which the  
output is to be changed when  
the OPERATION command is  
set to "MARGIN HIGH".  
0000 0001 0011 0011 = 0.5996 V  
0000 0010 0110 0110 = 1.1992 V  
25h  
26h  
VOUT_MARGIN_HIGH  
VOUT_MARGIN_LOW  
no  
no  
R/W Word  
R/W Word  
2
2
Sets the voltage to which the  
output is to be changed when  
the OPERATION command is  
set to "MARGIN LOW".  
0000 0001 0011 0011 = 0.5996 V  
0000 0010 0110 0110 = 1.1992 V  
Status of all fault conditions in a  
data byte.  
78h  
79h  
STATUS_BYTE  
STATUS_WORD  
no  
no  
Read Byte  
Read Word  
1
2
See Table 6  
See Table 6  
Status of all fault conditions in  
two data bytes.  
Returns one byte of information  
relating to the status of the  
output voltage related faults.  
7Ah  
7Bh  
STATUS_VOUT  
STATUS_OUT  
no  
no  
Read Byte  
Read Byte  
1
1
See Table 8  
See Table 8  
Returns one byte of information  
relating to the status of the  
output current related faults.  
26  
Copyright © 2017, Texas Instruments Incorporated  
TPS549B22  
www.ti.com.cn  
CMD CODE  
ZHCSGO0 JUNE 2017  
Table 5. PMBUS Command and Register Table (continued)  
No. of DATA  
COMMAND NAME  
DESCRIPTION  
NVM?  
TYPE  
BIT PATTERN  
BYTES  
XXX0 0000  
0XX0 0000 = A valid or supported command has  
been received  
1XX0 0000 = An invalid or unsupported  
command has been received  
X0X0 0000 = A valid or supported data has been  
received  
Status of communications, logic  
and memory in a data byte  
7Eh  
STATUS_CML  
no  
Read Byte  
1
X1X0 0000 = An invalid or unsupported data has  
been received  
XX00 0000 = Packet error check has failed  
XX10 0000 = Packet error check has succeeded  
Customer programmable byte  
that does not affect chip  
functionality  
D0h  
D1h  
D2h  
D3h  
MFR_SPECIFIC_00  
MFR_SPECIFIC_01  
MFR_SPECIFIC_02  
MFR_SPECIFIC_03  
yes  
yes  
yes  
yes  
R/W Byte  
R/W Byte  
R/W Byte  
R/W Byte  
1
1
1
1
Program PGOOD delay and  
Power-On delay  
Read SST, CM, HICLOFF, TRK  
and SEQ. Program Forced  
SKIP Soft Start.  
Program Fsw and control  
mode, Read RC ramp  
Free format  
D4h  
D6h  
MFR_SPECIFIC_04  
MFR_SPECIFIC_06  
Program the DCAP3 offset  
Program the VDD UVLO level  
yes  
yes  
R/W Byte  
R/W Byte  
1
1
Program the final tracking set  
point and select  
pseudo/external tracking  
D7h  
FCh  
MFR_SPECIFIC_07  
MFR_SPECIFIC_44  
yes  
no  
R/W Byte  
1
2
Read TI PMBUS GUI Devcie ID  
and IC revision code  
Read Word  
spacer  
spacer  
Figure 31. Start-up and VOUT_COMMAND Timing Diagram  
Copyright © 2017, Texas Instruments Incorporated  
27  
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
Table 6. Status Word Summary Table  
BITS  
Low 7  
Low 6  
Low 5  
Low 4  
Low 3  
NAME  
MEANING  
not used  
not used  
OFF  
Unit is not providing power to the output  
Output overvoltage  
VOUT_OV_FAULT  
IOUT_OC_FAULT  
VDD_UV_FAULT  
Output overcurremt  
Input VDD undervoltage  
Internal die temperature.  
Overtemperature fault  
Low 2  
TEMP  
Low 1  
Low 0  
High 7  
High 6  
High 5  
High 4  
High 3  
High 2  
High 1  
High 0  
CML  
OTHER  
Communications, logic or memory fault  
None of the above in the PMBUS spec  
Any output voltage fault or warning  
Any output current fault or warning  
Input VDD undervoltage  
Not used  
VOUT  
IOUT  
VDD_UV_FAULT  
not used  
PGOOD#  
not used  
not used  
not used  
Power good de-asserted  
not used  
not used  
not used  
Table 7. Status VOUT Summary Table  
BITS  
NAME  
MEANING  
7
6
5
4
3
2
1
OVF  
Overvoltage fault  
OVW  
UVW  
Overvoltage warning  
Undervoltage warning  
Undervoltage fault  
not used  
UVF  
not used  
not used  
not used  
not used  
not used  
Table 8. Status IOUT Summary Table  
BITS  
NAME  
MEANING  
7
OCF  
Overcurrent fault  
Overcurrent and output undervoltage  
fault  
6
OCUVF  
5
4
3
2
1
0
not used  
UCF  
not used  
Negative overcurrent limit  
not used  
not used  
not used  
not used  
not used  
not used  
not used  
not used  
28  
Copyright © 2017, Texas Instruments Incorporated  
TPS549B22  
www.ti.com.cn  
ZHCSGO0 JUNE 2017  
7.6 Register Maps  
7.6.1 OPERATION Register (address = 1h)  
Figure 32. OPERATION  
7
6
0
5
4
3
2
1
0
0
0
On_OFF  
R/W  
OPMARGIN<3:0>  
R/W  
R/W  
R
R
RLEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 9. OPERATION  
Bit  
7
Field  
Type  
R/W  
R
Reset  
Description  
0: Turn off switching converter (if CMD=1)  
1: Turn on switching converter (if CMD=1), and also enable  
VOUT Margin function  
ON_OFF  
0
0
6
00xx: Turn off VOUT Margin function  
0101: Turn on VOUT Margin Low and Ignore Fault  
0110: Turn on VOUT Margin Low and Act On Fault  
1001: Turn on VOUT Margin High and Ignore Fault  
1010: Turn on VOUT Margin High and Act On Fault  
5:2  
OPMARGIN<3:0>  
R/W  
0
1
0
R
R
0
0
7.6.2 ON_OFF_CONFIG Register (address = 2h)  
Figure 33. ON_OFF_CONFIG  
7
0
6
0
5
0
4
3
2
1
1
0
1
1
CMD  
R/W  
CP  
R/W  
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 10. ON_OFF_CONFIG  
Bit  
7
Field  
Type  
R
Reset  
Description  
0
0
0
1
6
R
5
R
4
R
0: Ignore ON_OFF bit  
1: Act on ON_OFF bit  
3
2
CMD  
CP  
R/W  
R/W  
0
1
0: Ignore ON_OFF bit  
1: Act on ON_OFF bit  
1
0
R
R
1
1
7.6.3 CLEAR FAULTS (address = 3h)  
The CLEAR_FAULTS command is used to clear any fault bits that have been set. This command simultaneously  
clears all bits in all status registers. At the same time, the device clears its SMB_ALERT# signal output if the  
device is asserting the SMB_ALERT# signal.  
The CLEAR_FAULTS command does not cause a unit that has latched off for a fault condition to restart. If the  
fault is still present when the bit is cleared, the fault bit shall immediately be set again and the host notified by the  
usual means.  
Copyright © 2017, Texas Instruments Incorporated  
29  
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
7.6.4 WRITE PROTECT (address = 10h)  
Figure 34. WRITE PROTECT  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W  
R/W  
R/W  
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 11. WRITE PROTECT  
Bit  
Field  
Type  
Reset  
Description  
00000000: Enable writes to ALL commands  
00100000: Enable writes to only WRITE_PROTECT,  
OPERATION and ON_OFF_CONFIG and VOUT_COMMAND  
commands  
7:0  
WRITE_PROTECT  
R/W  
0
01000000: Enable writes to only WRITE_PROTECT and  
OPERATION  
10000000: Enable writes to only WRITE_PROTECT  
7.6.5 STORE_DEFAULT_ALL (address = 11h)  
Store all of the current storable register settings in the EEPROM memory as the new defaults on power up.  
It is permitted to use the STORE_DEFAULT_ALL command while the device is operating. However, the device  
may be unresponsive during the write operation with unpredictable memory storage results. TI recommends to  
turn the device output off before issuing this command.  
EEPROM programming faults will set the ‘CML’ bit in the STATUS_BYTE and the ‘MEM’ bit in the STATUS_CML  
registers.  
7.6.6 RESTORE_DEFAULT_ALL (address = 12h)  
Write EEPROM data to those CSRs that: (1) have EEPROM support, and; (2) are unprotected according to  
current setting of WRITE_PROTECT.  
It is permitted to use the RESTORE_DEFAULT_ALL command while the device is operating. However, the  
device may be unresponsive during the copy operation with unpredictable, undesirable or even catastrophic  
results. TI recommends turning the device output off before issuing this command.  
No data bytes are sent, just the command code is sent.  
7.6.7 CAPABILITY (address = 19h)  
This command provides a way for a host system to determine some key capabilities of this PMBus device.  
Figure 35. CAPABILITY  
7
PEC=1  
R
6
5
4
ALRT=1  
R
3
0
2
0
1
0
0
0
SPEED <1:0>  
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 12. CAPABILITY  
Bit  
7
Field  
Type  
R
Reset  
1
Description  
1: Packet Error Checking is supported  
10: Maximum supported bus speed is 1 MHz  
PEC=1  
6:5  
SPEED <1:0>  
R
10b  
TPS549B22 has an ALERT# pin and it supports SMBus Alert Response  
protocol  
4
ALRT=1  
R
1
3
2
1
0
R
R
R
R
0
0
0
0
30  
Copyright © 2017, Texas Instruments Incorporated  
TPS549B22  
www.ti.com.cn  
ZHCSGO0 JUNE 2017  
7.6.8 VOUT_MODE (address = 20h)  
Figure 36. VOUT_MODE  
7
6
MODE = 000  
R
5
4
3
2
1
0
Exponent = 10111  
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 13. VOUT_MODE  
Bit  
7:5  
4:0  
Field  
Type  
R
Reset  
0
Description  
000: Linear Format  
10111: Exponent = 9 (equivalent of 1.9531 mV/LSB)  
MODE = 000  
Exponent  
R
17h  
7.6.9 VOUT_COMMAND (address = 21h)  
The VOUT_COMMAND command sets the output voltage in volts. The exponent is set be VOUT_MODE at –9  
(equivalent of 1.9531 mV/LSB). The programmed VOUT is computed as:  
VOUT = VOUT_COMMAND × VOUT_MODE volts = VOUT_COMMAND × 2–9  
V
(2)  
The support range for TPS549B22 is: 0.5996 V to 1.1992 V. It is effectively 9 bits limited to 307 to 614 decimal.  
Slew-rate control is provided through MODE pin.  
VOUT changes 1 step per tslew, where tslew is programmable by MODE pin: 4, 8, 16, or 32 µs.  
Figure 37. VOUT_COMMAND  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Mantissa  
R/W  
R
R
R
R
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 14. VOUT_COMMAND  
Bit  
7:4  
3:0  
7:0  
Field  
Type  
R
Reset  
0000  
Description  
Mantissa  
Mantissa  
Mantissa  
R/W  
R/W  
00xx  
x = pin strap  
xxxx xxxx  
7.6.10 VOUT_MARGIN_HIGH (address = 25h) ®  
The VOUT_MARGIN_HIGH command loads the TPS549B22 with the voltage to which the output is to be  
changed when the OPERATION command is set to “Margin High”.  
The data bytes are two bytes formatted according to the setting of the VOUT_MODE command.  
The support margin range for TPS549B22 is: 0.5996 V to 1.1992 V. It is effectively 9 bits limited to 307 to 614  
decimal. Slew-rate control is provided through MODE pin.  
Figure 38. VOUT_MARGIN_HIGH  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Mantissa  
R/W  
R
R
R
R
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 15. VOUT_MARGIN_HIGH  
Bit  
7:4  
3:0  
7:0  
Field  
Type  
R
Reset  
0000  
Description  
Mantissa  
Mantissa  
Mantissa  
R/W  
R/W  
00xx  
x = pin strap  
xxxx xxxx  
Copyright © 2017, Texas Instruments Incorporated  
31  
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
7.6.11 VOUT_MARGIN_LOW (address = 26h)  
The VOUT_MARGIN_LOW command loads the TPS549B22 with the voltage to which the output is to be  
changed when the OPERATION command is set to “Margin Low”.  
The data bytes are two bytes formatted according to the setting of the VOUT_MODE command.  
The support margin range for TPS549B22 is: 0.5996 V to 1.1992 V. It is effectively 9-bits limited to 307 to 614  
decimal. Slew-rate control is provided through MODE pin.  
Figure 39. VOUT_MARGIN_LOW:  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Mantissa  
R/W  
R
R
R
R
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 16. VOUT_MARGIN_LOW:  
Bit  
7:4  
3:0  
7:0  
Field  
Type  
R
Reset  
0000  
Description  
Mantissa  
Mantissa  
Mantissa  
R/W  
R/W  
00xx  
x = pin strap  
xxxx xxxx  
7.6.12 STATUS_BYTE (address = 78h)  
Figure 40. STATUS_BYTE  
7
Not used  
R
6
OFF  
R
5
VOUT_OV  
R
4
IOUT_OC  
R
3
VDD_UV  
R
2
TEMP  
R
1
0
CML  
R
OTHER  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 17. STATUS_BYTE  
Bit  
Field  
Type  
Reset  
Description  
7
Not Used  
R
N/A  
Not used  
0: IC is on. This includes the following fault response conditions  
where the output is still being actively driven, such as OVP and  
OCF.  
1: IC is off. This includes two conditions. One is unit is  
commanded off via OPERATION/ON_OFF _CONFIG and the  
other is unit is commanded on via  
6
OFF  
R
N/A  
OPERATION/ON_OFF_CONFIG; but, due to fault response the  
output has been tri-stated by UVF, OT and UVLO.  
0: An output overvoltage fault has not occurred  
1: An output overvoltage fault has occurred  
5
4
3
2
1
0
VOUT_OV  
IOUT_OC  
VDD_UV  
TEMP  
R
R
R
R
R
R
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0: An output overcurrent fault has not occurred  
1: An output overcurrent fault has occurred  
0: An input undervoltage fault has not occurred  
1: An input undervoltage fault has occurred  
0: A temperature fault or warning has not occurred  
1: A temperature fault or warning has occurred  
0: A communications, memory or logic fault has not occurred  
1: A communications, memory or logic fault has occurred  
CML  
0: A fault or warning not listed above has not occurred  
1: A fault of warning not listed above has occurred  
OTHER  
32  
Copyright © 2017, Texas Instruments Incorporated  
TPS549B22  
www.ti.com.cn  
ZHCSGO0 JUNE 2017  
7.6.13 STATUS_WORD (High Byte) (address = 79h)  
Figure 41. STATUS_WORD (High Byte)  
7
VOUT  
R
6
IOUT  
R
5
VDD  
R
4
Not Used  
R
3
PGOOD#  
R
2
1
Not Used  
R
0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 18. STATUS_WORD (High Byte)  
Bit  
Field  
Type  
Reset  
Description  
0: An output voltage fault or warning has not occurred  
1: An output voltage fault or warning has occurred  
7
VOUT  
R
N/A  
0: An output current fault has not occurred  
1:An output current fault has occurred  
6
IOUT  
R
N/A  
A VDD voltage fault has not occurred  
1: A VDD voltage fault has occurred  
5
4
VDD  
R
R
N/A  
N/A  
Not Used  
Not Used  
0: PGOOD pin is at logic high  
1: PGOOD pin is at logic high  
3
PGOOD#  
Not Used  
R
R
N/A  
N/A  
2:0  
Not used  
Copyright © 2017, Texas Instruments Incorporated  
33  
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
7.6.14 STATUS_VOUT (address = 7Ah)  
Figure 42. STATUS_VOUT  
7
OVF  
R
6
OVW  
R
5
UVW  
R
4
UVF  
R
3
2
1
0
Not Used  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 19. STATUS_VOUT  
Bit  
Field  
Type  
Reset  
Description  
0: An output overvoltage fault has not occurred  
1: An output overvoltage fault has occurred  
7
OVF  
R
N/A  
0: An output overvoltage warning has not occurred  
1: An output overvoltage warning has occurred  
6
5
OVW  
UVW  
R
R
N/A  
N/A  
0: An output undervoltage warning has not occurred  
1: An output undervoltage warning has occurred  
0: An output undervoltage fault has not occurred  
1: An output undervoltage fault has occurred  
4
UVF  
R
R
N/A  
N/A  
3:0  
Not Used  
Not Used  
7.6.15 STATUS_IOUT (address = 7Bh)  
Figure 43. STATUS_IOUT  
7
OCF  
R
6
OCUVF  
R
5
Not Used  
R
4
UCF  
R
3
2
1
0
Not Used  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 20. STATUS_IOUT  
Bit  
Field  
Type  
Reset  
Description  
0: An output positive overcurrent fault has not occurred  
1: An output positive overcurrent fault has occurred  
7
OCF  
R
N/A  
0: A simultaneous output positive overcurrent and undervoltage  
fault has not occurred  
1: A simultaneous output positive overcurrent and undervoltage  
fault has occurred  
6
OCUVF  
R
N/A  
5
4
Not Used  
UCF  
R
R
R
N/A  
N/A  
N/A  
Not Used  
0: An output negative overcurrent fault has not occurred  
1: An output negative overcurrent fault has occurred  
3:0  
Not Used  
Not Used  
34  
Copyright © 2017, Texas Instruments Incorporated  
TPS549B22  
www.ti.com.cn  
ZHCSGO0 JUNE 2017  
7.6.16 STATUS_CML (address = 7Eh)  
Figure 44. STATUS_CML  
7
COMM  
R
6
DATA  
R
5
PEC  
R
4
3
Not Used  
R
2
1
OTH  
R
0
Not Used  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 21. STATUS_CML  
Bit  
Field  
Type  
Reset  
Description  
0: A valid or supported command has been received  
1: An invalid or unsupported command has been received  
7
COMM  
R
N/A  
0: A valid or supported data has been received  
1: An invalid or unsupported data has been received  
6
DATA  
R
N/A  
0: Packet Error Check has failed  
1: Packet Error Check has succeeded  
5
PEC  
R
R
N/A  
N/A  
4:2  
Not Used  
Not Used  
0: A communication fault other than the ones listed in this table  
has not occurred  
1: A communication fault other than the ones listed in this table  
has occurred. Currently, this bit is only set for too many data  
bytes  
1
0
OTH  
R
R
N/A  
N/A  
Not Used  
Not Used  
7.6.17 MFR_SPECIFIC_00 (address = D0h)  
Figure 45. MFR_SPECIFIC_00  
7
6
5
4
3
2
1
0
USER SCRATCH PAD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 22. MFR_SPECIFIC_00  
Bit  
Field  
Type  
Reset  
Description  
The MFR_SPECIFIC_00 is a user-accessible register dedicated  
as a user scratch pad.  
7:0  
USER SCRATCH PAD  
R/W  
0
Copyright © 2017, Texas Instruments Incorporated  
35  
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
7.6.18 MFR_SPECIFIC_01 (address = D1h)  
Figure 46. MFR_SPECIFIC_01  
7
0
6
0
5
4
3
2
1
0
PGD  
R/W  
POD  
R/W  
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 23. MFR_SPECIFIC_01  
Bit  
7:6  
5:3  
2:0  
Field  
Type  
R
Reset  
00b  
Description  
The MFR_SPECIFIC_01 is a user-accessible register dedicated  
for configuring the PGOOD delay and Power-On Delay  
functions. (Refer to Table 24 and Table 25)  
PGD  
POD  
R/W  
R/W  
010b  
010b  
Table 24. PGD[2:0]  
PGD[2]  
PGD[1]  
PGD[0]  
PGood Delay  
256 µs  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
512 µs  
1.024 ms  
2.048 ms  
4.096 ms  
8.192 ms  
16.384 ms  
131.072 ms  
Table 25. POD[2:0]  
POD[2]  
POD[1]  
POD[0]  
Power-On Delay  
256 µs  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
512 µs  
1.024 ms  
2.048 ms  
4.096 ms  
8.192 ms  
16.384 ms  
32.768 ms  
36  
Copyright © 2017, Texas Instruments Incorporated  
 
 
TPS549B22  
www.ti.com.cn  
ZHCSGO0 JUNE 2017  
7.6.19 MFR_SPECIFIC_02 (address = D2h)  
The MFR_SPECIFIC_02 register allows the user to read the configuration of various pin-strap features and/or  
overwrite them. Note that any overwritten values here are only good until the next power-on-reset, when all  
parameters revert back to their pin-strap configurations.  
Figure 47. MFR_SPECIFIC_02  
7
6
5
0
4
3
2
1
0
TRK  
R/W  
SEQ  
R/W  
FORCESKIPSS  
R/W  
SST  
R/W  
HICLOFF  
R/W  
CM  
R/W  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 26. MFR_SPECIFIC_02  
Bit  
Field  
Type  
Reset  
Description  
This bit indicates whether the device is using internal or external  
reference voltage tracking. It will initially be loaded and reflect  
the value of the pin strap; but, can also be overwritten by  
PMBus.  
7
TRK  
R/W  
P
0: No tracking. The device will use internal reference voltage.  
1: External tracking.  
This bit indicates whether the device is using internal or external  
soft-start ramp. It will initially be loaded and reflect the value of  
the pin strap; but, can also be overwritten by PMBus.  
0: No sequencing. The device will use the internal soft start  
ramp.  
6
5
4
SEQ  
R/W  
R
P
0
1
1: Sequencing  
This bit (when set) allows the user to force Soft-start to always  
use SKIP mode; regardless of the CM pin strap.  
0: CM bit controls whether to operate in SKIP or FCCM mode  
during and after soft start.  
FORCESKIPSS  
R/W  
1: Soft start is forced to operate in SKIP mode, then CM bit  
controls the mode after soft start.  
These bits indicate the time the device takes to ramp the output  
voltage up to regulation (that is, soft-start). The field will initially  
be loaded and reflect the value of the pin strap; but, can also be  
overwritten by PMBus. (Refer to Table 27)  
3:2  
SST  
R/W  
R/W  
P
P
This bit indicates the response the device will take upon an  
output undervoltage fault. There are two fault response options  
which are enforced by the analog circuits: Hiccup or Latch-off.  
The bit value will initially be loaded and reflect the value of the  
pin strap; but, can also be overwritten by PMBus.  
0: Hiccup after UVP fault.  
1
HICLOFF  
1: Latch off after UVP fault.  
This bit indicates the conduction mode for the device. The bit  
value will initially be loaded and reflect the value of the pin strap;  
0
CM  
R/W  
P
but,  
can  
also  
be  
overwritten  
by  
PMBus.  
0: SKIP  
1: FCCM  
Table 27. SST  
SST[1]  
SST[0]  
Soft-start time  
1 ms  
0
0
1
1
0
1
0
1
2 ms  
4 ms  
8 ms  
Copyright © 2017, Texas Instruments Incorporated  
37  
 
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
7.6.20 MFR_SPECIFIC_03 (address = D3h)  
The MFR_SPECIFIC_03 register allows the user to read the configuration of the DCAP pin-strap feature (and/or  
overwrite it), as well configure the Ramp Generator and the PWM switching frequency.  
Figure 48. MFR_SPECIFIC_03  
7
6
0
5
4
3
0
2
1
0
DCAP3  
R/W  
RCSP  
R/W  
FS  
R
R
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 28. MFR_SPECIFIC_03 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
This bit allows the user to read/configure the device’s internal  
DCAP-3 mode. It is initially loaded and reflects the value of the  
pin strap, but can also be overwritten by PMBus.  
7
DCAP3  
R/W  
P
0: Internal DCAP3 is disabled (ramp injection is off).  
1: Internal DCAP3 is enabled (ramp injection is on)  
6
R
0
These bits allow the user to read/configure the D-CAP3 ramp  
generator’s resistor value selection. (Refer to Table 29.)  
5:4  
3
RCSP  
FS  
R/W  
R
P
0
These bits allow the user to read/configure the device’s PWM  
switching frequency. (Refer to Table 30)  
2:0  
R/W  
011b  
Table 29. RCSP  
RCSP[1]  
RCSP[0]  
Resistor Selection  
Resistor ÷ 2  
0
0
1
1
0
1
0
1
Resistor ÷ 1  
Resistor × 2  
Resistor × 3  
Table 30. FS  
FS[2]  
FS[1]  
FS[0]  
Switching Frequency  
315 kHz  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
425 kHz  
550 kHz  
650 KHz  
825 KHz  
900 KHz  
1.025 MHz  
1.125 MHz  
38  
Copyright © 2017, Texas Instruments Incorporated  
 
 
TPS549B22  
www.ti.com.cn  
ZHCSGO0 JUNE 2017  
7.6.21 MFR_SPECIFIC_04 (address = D4h)  
The MFR_SPECIFIC_04 register allows the user to configure the D-CAP offset reduction and fixed offset  
correction.  
Figure 49. MFR_SPECIFIC_04  
7
6
5
4
0
3
0
2
0
1
0
0
0
DCAP3OffsetSel  
R/W  
DCAP3Offset[1:0]  
R/W  
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 31. MFR_SPECIFIC_04  
Bit  
Field  
Type  
Reset  
Description  
This bit allows the user to read/configure the D-CAP loop’s offset  
reduction scheme.  
0: Select DCAP loop manual offset reduction circuit.  
1: Select DCAP loop automatic offset reduction circuit.  
7
DCAP3OffsetSel  
R/W  
1
These bits allow the user to read/configure the D-CAP3 offset  
correction if and only if DCAP3OffsetSel = 0 (refer to Table 32).  
6:5  
4:0  
DCAP3Offset  
R/W  
R
0
0
Table 32. DCAP3OFFSET  
Additional Offset Correction  
Voltage Added  
DCAP3Offset[1]  
DCAP3Offset[0]  
0
0
1
1
0
1
0
1
0 mV  
+ 2 mV  
+ 4 mV  
+ 6 mV  
Copyright © 2017, Texas Instruments Incorporated  
39  
 
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
7.6.22 MFR_SPECIFIC_06 (address = D6h)  
The MFR_SPECIFIC_06 is a user-accessible register dedicated for configuring the VDD UVLO threshold.  
Figure 50. MFR_SPECIFIC_06  
7
0
6
0
5
0
4
0
3
0
2
1
0
VDDUVLO[2:0]  
R/W  
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 33. MFR_SPECIFIC_06  
Bit  
Field  
Type  
Reset  
Description  
7:3  
R
0
These bits allow the user to read/configure the device VDD  
ULVO threshold (refer to Table 34).  
2:0  
VDDUVLO  
R/W  
101b  
Table 34. VDDUVLO  
VDDUVLO[2]  
VDDUVLO[1]  
VDDUVLO[0]  
VDD UVLO threshold  
10.2 volts  
0
1
1
1
1
X
0
0
1
1
X
0
1
0
1
2.8 volts  
4.25 volts  
6 volts  
8.1 volts  
40  
Copyright © 2017, Texas Instruments Incorporated  
 
TPS549B22  
www.ti.com.cn  
ZHCSGO0 JUNE 2017  
7.6.23 MFR_SPECIFIC_07 (address = D7h)  
The MFR_SPECIFIC_07 is a user-accessible register dedicated for configuring the device’s PGOOD threshold  
and external tracking options.  
Figure 51. MFR_SPECIFIC_07  
7
6
5
0
4
3
2
1
0
VPBAD  
R/W  
SPARE  
R/W  
TRKOPTION  
R/W  
VTRKIN[3:0]  
R/W  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 35. MFR_SPECIFIC_07  
Bit  
Field  
Type  
Reset  
Description  
This bit allows the user to read/configure the PGOOD high and  
low thresholds.  
0: PGOOD high and low thresholds are +16% and -16%,  
respectively  
7
VPBAD  
R/W  
1
1: PGOOD high and low thresholds are +20% and -32%,  
respectively  
This bit allows the user to read/configure an EEPROM backed  
SPARE bit and corresponding digital block output.  
0: pSPARE = 0  
6
5
SPARE  
R/W  
R
0
0
1: pSPARE = 1  
This bit allows the user to read/control whether the external  
TRKIN is enabled by a 425 mV threshold, or not.  
0: TRKIN voltage must be above 425mV (that is, TRKINOK = 1)  
before switcher can be enabled.  
1: TRKIN voltage does not need to be above 425mV before  
switcher can be enabled.  
4
TRKOPTION  
VTRKIN  
R/W  
R/W  
0
These bits allow the user to read/configure the device’s final  
TRKIN target voltage for external tracking operation. (Refer to  
Table 36)  
3:0  
1111b  
Table 36. VTRKIN  
Final TRKIN target  
voltage for  
external tracking  
operation  
VTRKIN[3]  
VTRKIN[2]  
VTRKIN[1]  
VTRKIN[0]  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
500 mV  
550 mV  
600 mV  
650 mV  
700 mV  
750 mV  
800 mV  
850 mV  
900 mV  
950 mV  
1.00 V  
1.05 V  
1.10 V  
1.15 V  
1.20 V  
1.25 V  
Copyright © 2017, Texas Instruments Incorporated  
41  
 
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
7.6.24 MFR_SPECIFIC_44 (address = FCh)  
The DEVICE_CODE command returns a 12-bit unique identifier code for the device and a 4 bit device revision  
code.  
Figure 52. MFR_SPECIFIC_44  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Identifier Code  
Revision Code  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 37. MFR_SPECIFIC_44  
Bit  
7:0  
7:4  
3:0  
Field  
Type  
R
Reset  
Description  
02h  
0
Identifier Code  
Revision Code  
0000 0010 0000b – Device ID Code Identifier for TPS549B22.  
1000b - Revision Code (first silicon starts at 0)  
R
R
0
Can  
42  
Copyright © 2017, Texas Instruments Incorporated  
TPS549B22  
www.ti.com.cn  
ZHCSGO0 JUNE 2017  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS549B22 device is a highly-integrated synchronous step-down DC-DC converter with PMBus features  
and capabilities. This devices is used to convert a higher DC input voltage to a lower DC output voltage, with a  
maximum output current of 25 A. Use the following design procedure to select key component values for this  
family of devices.  
Copyright © 2017, Texas Instruments Incorporated  
43  
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
8.2 Typical Applications  
8.2.1 TPS549B22 1.5-V to 18-V Input, 1-V Output, 25-A Converter  
J1  
VIN = 6V - 16V  
C1  
DNP330uF  
C2  
22µF  
C3  
22µF  
C4  
22µF  
C5  
22µF  
C6  
22µF  
C7  
22µF  
C8  
22µF  
C9  
22µF  
C10  
2200pF  
C11  
100µF  
C12  
330uF  
C13  
22µF  
C14  
DNP  
22uF  
C15  
DNP  
22uF  
C16  
DNP  
22uF  
C17  
DNP  
22uF  
C18  
DNP  
22uF  
C19  
DNP  
22uF  
C20  
DNP  
22µF  
DNP  
J2  
PGND  
VDD  
TP1  
R1  
1.00  
U1  
VDD  
28  
40  
5
VDD  
VOSNS  
NetC31_1  
R10  
VOUT = 1V  
TP2  
TP3  
J3  
BOOT  
C34  
1uF  
C35  
1µF TP4  
R2  
DNP  
0
Remote Sense pos/neg should run as balanced pair  
R3  
DNP  
0
DNP  
21  
22  
23  
24  
25  
0
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
I_OUT = 25A MAX  
TP5  
SW  
C22  
0.1µF  
L1  
8
SW  
SW  
SW  
SW  
SW  
9
R6  
200k  
10  
11  
12  
330nH  
DRGND  
TP6  
CHB  
R4  
0
C21  
DNP  
470pF  
R5  
1.50k  
DNP  
TP9  
BP  
C23  
DNP  
470µF  
C24  
470µF  
R11  
0
C25  
100µF  
C26  
100µF  
C27  
DNP  
100µF  
C28  
DNP  
100µF  
C29  
100µF  
C30  
DNP  
100uF  
BP  
4
R7  
0
EN_UVLO  
BP  
CNTL  
CNTL/EN_UVLO  
J4  
6
TP19  
R9  
DNP  
3.01  
NC  
NC  
NC  
NC  
TP7  
CHA  
C32  
R8  
DNP  
1.10k  
6800pF  
31  
7
26  
27  
C31  
DNP  
0.1uF  
PGOOD  
TP8  
LOW  
R13  
C33  
100µF  
R12  
100k  
35  
34  
32  
33  
36  
37  
1
C45  
4.7µF  
PGOOD  
MODE  
DNPC44  
1uF  
100k  
C36  
1000pF  
R14  
DNP  
DNP  
MODE  
FSEL  
VSEL  
C37  
DNP  
470uF  
C38  
470µF  
C39  
100µF  
C40  
100µF  
C41  
DNP  
100µF  
C42  
100µF  
C43  
DNP  
100uF  
39  
38  
PGND  
0
RSP  
RSN  
R15  
10.0k  
ADDR  
NetC31_1  
DRGND  
TP12  
ILIM  
VSEL  
DRGND  
R16  
J5  
0
ILIM  
TP14  
R19  
61.9k  
RESV_TRK  
SMB_ALRT#  
PMB_DATA  
PMB_CLK  
DRGND  
AGND  
13  
14  
15  
16  
17  
18  
19  
20  
TP10  
TP11  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
R17  
DNP  
0
R18  
DNP  
DNPC46  
1000pF  
ALERT  
DATA  
CLK  
0
2
3
29  
30  
TP13  
PGND  
TP18  
PGND  
PGND  
AGND  
41  
PAD  
NT1  
NT2  
TPS549B22RVFR  
Net-Tie  
Net-Tie  
DRGND AGND  
PGND  
AGND  
PGND  
DRGND  
----- GND NET TIES -----  
TP15  
VSEL  
TP16  
MODE  
TP17  
FSEL  
BP  
J6  
TP20  
CLK  
TP21  
DATA  
TP22  
ALERT  
1
3
5
7
9
2
4
R20  
100k  
R21  
100k  
R22  
100k  
6
8
10  
VSEL  
MODE  
FSEL  
PMBus  
R23  
37.4k  
R24  
42.2k  
R25  
25.5k  
AGND  
AGND  
Copyright © 2017, Texas Instruments Incorporated  
Figure 53. Typical Application Schematic  
44  
Copyright © 2017, Texas Instruments Incorporated  
 
TPS549B22  
www.ti.com.cn  
ZHCSGO0 JUNE 2017  
8.2.2 Design Requirements  
For this design example, use the input parameters shown in Table 38.  
Table 38. Design Example Specifications  
PARAMETER  
Input voltage  
VIN(ripple) Input ripple voltage  
TEST CONDITION  
MIN  
TYP  
MAX  
18  
UNIT  
VIN  
5
12  
V
V
V
IOUT = 25 A  
0.4  
VOUT  
Output voltage  
1
Line regulation  
5 V VIN 18 V  
0 V IOUT 25 A  
IOUT = 25 A  
0.5%  
0.5%  
Load regulation  
VPP  
VOVER  
VUNDER  
IOUT  
tSS  
Output ripple voltage  
Transient response overshoot  
Transient response undershoot  
Output current  
10  
30  
30  
mV  
mV  
mV  
A
ISTEP = 15 A  
ISTEP = 15 A  
5 V VIN 18 V  
25  
Soft-start time  
1
32  
ms  
A
IOC  
Overcurrent trip point  
Peak efficiency  
η
IOUT = 7 A,  
90%  
650  
fSW  
Switching frequency  
kHz  
8.2.3 Detailed Design Procedure  
8.2.3.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS549B22 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.3.2 Switching Frequency Selection  
The default switching frequency of the TPS549B22 device is 650 kHz. There are a total of 8 switching frequency  
settings that can be programmed via PMBus interface. For each switching frequency setting, there are 4 internal  
ramp compensations (DCAP3) to choose from, also via PMBus. When DCAP3 mode is selected (preferred), the  
internal ramp compensation is used for stabilizing the converter design. The ramp is a function of the switching  
frequency and duty cycle range (the output voltage to input voltage ratio). Table 39 summarizes the ramp  
choices using these functions.  
Copyright © 2017, Texas Instruments Incorporated  
45  
 
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
Table 39. Switching Frequency Selection  
VOUT RANGE  
(FIXED VIN = 12 V)  
DUTY CYCLE RANGE  
SWITCHING FREQUENCY  
SETTING  
RAMP  
SELECT  
OPTION  
TIME  
CONSTANT  
t (µs)  
(VOUT/VIN) (%)  
(fSW) (kHz)  
MIN  
0.6  
0.9  
1.5  
2.5  
0.6  
0.9  
1.5  
2.5  
0.6  
0.9  
1.5  
2.5  
0.6  
0.9  
1.5  
2.5  
MAX  
0.9  
1.5  
2.5  
5.5  
0.9  
1.5  
2.5  
5.5  
0.9  
1.5  
2.5  
5.5  
0.9  
1.5  
2.5  
5.5  
MIN  
5
MAX  
7.5  
R/2  
9
R × 1  
R × 2  
R × 3  
R/2  
16.8  
32.3  
55.6  
7
7.5  
12.5  
>21  
5
12.5  
21  
315,  
425  
7.5  
12.5  
21  
R × 1  
R × 2  
R × 3  
R/2  
13.5  
25.9  
44.5  
5.6  
7.5  
12.5  
>21  
5
550,  
650  
7.5  
12.5  
21  
R × 1  
R × 2  
R × 3  
R/2  
10.4  
20  
7.5  
12.5  
>21  
5
825,  
900  
34.4  
3.8  
7.5  
12.5  
21  
R × 1  
R × 2  
R × 3  
7.1  
7.5  
12.5  
>21  
1.025,  
1.225 MHz  
13.6  
23.3  
8.2.3.3 Inductor Selection  
To calculate the value of the output inductor, use Equation 3. The coefficient KIND represents the amount of  
inductor ripple current relative to the maximum output current. The output capacitor filters the inductor ripple  
current. Therefore, choosing a high inductor ripple current impacts the selection of the output capacitor since the  
output capacitor must have a ripple current rating equal to or greater than the inductor ripple current. In general,  
maintain a KIND coefficient between 0 and 40 for balanced performance. Using this target ripple current, the  
required inductor size can be calculated as shown in Equation 3  
1V ì 18 V -1V  
VOUT  
ìfSW  
V - VOUT  
(
)
IN  
ìKIND  
OUT max  
L1=  
ì
=
= 0.29 mH  
18 V ì650 kHzì25 A ì0.2  
(
)
V
I
(
(
)
)
IN max  
(
)
(
)
(3)  
Selecting a KIND of 0.2, the target inductance L1 = 290 nH. Using the next standard value, the 330 nH is chosen  
in this application for its high current rating, low DCR, and small size. The inductor ripple current, RMS current,  
and peak current can be calculated using Equation 4, Equation 5 and Equation 6. Use these values to select an  
inductor with approximately the target inductance value, and current ratings that allow normal operation with  
some margin.  
V
- VOUT  
1V ì 18 V -1V  
VOUT  
ì fSW  
(
)
IN max  
(
)
IRIPPLE  
=
ì
=
= 4.4 A  
L1  
18 V ì 650 kHzì330 nH  
V
(
)
IN max  
(
)
(4)  
1
2
2
IL rms  
=
I
+
ì I  
= 25 A  
(
)
(
)
OUT  
RIPPLE  
(
)
12  
(5)  
(6)  
1
2
IL peak = I  
+
ì I  
(
= 27.2 A  
(
)
)
OUT  
RIPPLE  
(
)
46  
Copyright © 2017, Texas Instruments Incorporated  
 
 
 
 
 
TPS549B22  
www.ti.com.cn  
ZHCSGO0 JUNE 2017  
8.2.3.4 Output Capacitor Selection  
There are three primary considerations for selecting the value of the output capacitor. The output capacitor  
affects three criteria:  
Stability  
Regulator response to a change in load current or load transient  
Output voltage ripple  
These three considerations are important when designing regulators that must operate where the electrical  
conditions are unpredictable. The output capacitance needs to be selected based on the most stringent of these  
three criteria.  
8.2.3.4.1 Minimum Output Capacitance to Ensure Stability  
To prevent sub-harmonic multiple pulsing behavior, TPS549B22 application designs must strictly follow the small  
signal stability considerations described in Equation 7.  
t
VREF  
8t  
COUT min  
>
ON ì  
ì
(
)
2
LOUT VOUT  
where  
COUT(min) is the minimum output capacitance needed to meet the stability requirement of the design  
tON is the on-time information based on the switching frequency and duty cycle (in this design, 128 ns)  
τ is the ramp compensation time constant of the design based on the switching frequency and duty cycle, (in  
this design, 25.9 µs, refer to Table 39)  
LOUT is the output inductance (in the design, 0.33 µH)  
VREF is the user-selected reference voltage level (in this design, 1 V)  
VOUT is the output voltage (in this design, 1 V)  
(7)  
The minimum output capacitance calculated from Equation 7 is 40 µF. The stability is ensured when the amount  
of the output capacitance is 40 µF or greater. And when all MLCCs (multi-layer ceramic capacitors) are used,  
both DC- and AC-derating effects must be considered to ensure that the minimum output capacitance  
requirement is met with sufficient margin.  
8.2.3.4.2 Response to a Load Transient  
The output capacitance must supply the load with the required current when current is not immediately provided  
by the regulator. When the output capacitor supplies load current, the impedance of the capacitor greatly affects  
the magnitude of voltage deviation (such as undershoot and overshoot) during the transient.  
Use Equation 8 and Equation 9 to estimate the amount of capacitance needed for a given dynamic load step and  
release.  
NOTE  
There are other factors that can impact the amount of output capacitance for a specific  
design, such as ripple and stability.  
«
÷
2
VOUT ì tSW  
LOUT ì DI  
ì
+ tOFF min  
(
)
LOAD max  
(
)
(
)
÷
V
IN min  
(
)
COUT min_under  
=
(
)
V
- VOUT  
IN min  
(
)
÷
ì tSW - tOFF min ì VOUT  
÷
2ì DVLOAD insert) ì  
(
(
)
«
÷
«
V
÷
IN min  
(
)
(8)  
Copyright © 2017, Texas Instruments Incorporated  
47  
 
 
 
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
2
LOUT ì DI  
(
)
LOAD max  
(
)
COUT min_ over  
=
(
)
2ì DVLOAD release ì VOUT  
(
)
where  
COUT(min_under) is the minimum output capacitance to meet the undershoot requirement  
COUT(min_over)is the minimum output capacitance to meet the overshoot requirement  
L is the output inductance value (0.33 µH)  
ILOAD(max) is the maximum transient step (15 A)  
VOUT is the output voltage value (1 V)  
tSW is the switching period (1.54 µs)  
VIN(min) is the minimum input voltage for the design (10.8 V)  
tOFF(min) is the minimum off time of the device (300 ns)  
VLOAD(insert) is the undershoot requirement (30 mV)  
VLOAD(release) is the overshoot requirement (30 mV)  
(9)  
Most of the above parameters can be found in Table 38.  
The minimum output capacitance to meet the undershoot requirement is 516 µF. The minimum output  
capacitance to meet the overshoot requirement is 1238 µF. This example uses a combination of POSCAP and  
MLCC capacitors to meet the overshoot requirement.  
POSCAP bank 1: 2 x 470 µF, 2.5 V, 6 mΩ per capacitor  
MLCC bank 2: 7 × 100 µF, 2.5 V, 1 mΩ per capacitor with DC+AC derating factor of 60%  
Recalculating the worst case overshoot using the described capacitor bank design, the overshoot is 29.0 mV  
which meets the 30-mV overshoot specification requirement.  
8.2.3.4.3 Output Voltage Ripple  
The output voltage ripple is another important design consideration. Equation 10 calculates the minimum output  
capacitance required to meet the output voltage ripple specification. This criterion is the requirement when the  
impedance of the output capacitance is dominated by ESR.  
IRIPPLE  
COUT min RIPPLE  
=
= 82 mF  
(
)
8ì fSW ì VOUT ripple  
(
)
(10)  
In this case, the maximum output voltage ripple is 10 mV. For this requirement, the minimum capacitance for  
ripple requirement yields 82 µF. Because this capacitance value is significantly lower compared to that of  
transient requirement, determine the capacitance bank from steps in the previous section Response to a Load  
Transient. Because the output capacitor bank consists of both POSCAP and MLCC type capacitors, it is  
important to consider the ripple effect at the switching frequency due to effective ESR. Use Equation 11 to  
determine the maximum ESR of the output capacitor bank for the switching frequency.  
IRIPPLE  
VOUT ripple  
-
(
)
8ì fSW ìCOUT  
ESRMAX  
=
= 2.2 mW  
IRIPPLE  
(11)  
Estimate the effective ESR at the switching frequency by obtaining the impedance vs frequency characteristics of  
the output capacitors. The parallel impedance of capacitor bank 1 and capacitor bank 2 at the switching  
frequency of the design example is estimated to be 1.2 m, which is less than that of the maximum ESR value.  
Therefore, the output voltage ripple requirement (10 mV) can be met. For detailed calculation on the effective  
ESR please contact the factory to obtain a user-friendly Excel based design tool.  
48  
Copyright © 2017, Texas Instruments Incorporated  
 
 
TPS549B22  
www.ti.com.cn  
ZHCSGO0 JUNE 2017  
8.2.3.5 Input Capacitor Selection  
The TPS549B22 devices require a high-quality, ceramic, type X5R or X7R, input decoupling capacitor with a  
value of at least 1 μF of effective capacitance on the VDD pin, relative to AGND. The power stage input  
decoupling capacitance (effective capacitance at the PVIN and PGND pins) must be sufficient to supply the high  
switching currents demanded when the high-side MOSFET switches on, while providing minimal input voltage  
ripple as a result. This effective capacitance includes any DC bias effects. The voltage rating of the input  
capacitor must be greater than the maximum input voltage. The capacitor must also have a ripple current rating  
greater than the maximum input current ripple to the device during full load. The input ripple current can be  
calculated using Equation 12.  
V
- VOUT  
(
)
IN min  
VOUT  
(
)
ICIN rms = IOUT max) ì  
ì
= 10 Arms  
(
)
(
V
V
IN min  
IN min  
(
)
(
)
(12)  
The minimum input capacitance and ESR values for a given input voltage ripple specification, VIN(ripple), are  
shown in Equation 13 and Equation 14. The input ripple is composed of a capacitive portion, VRIPPLE(cap), and a  
resistive portion, VRIPPLE(esr)  
.
IOUT max ì VOUT  
(
)
CIN min  
=
= 21.4 mF  
(
)
VRIPPLE cap ì V  
)
ì fSW  
IN max  
(
(
)
(13)  
VRIPPLE ESR  
(
)
ESRCIN max  
=
= 3.4 mW  
(
)
I
RIPPLE  
IOUT max  
+
«
÷
(
)
2
(14)  
The value of a ceramic capacitor varies significantly over temperature and the amount of DC bias applied to the  
capacitor. The capacitance variations due to temperature can be minimized by selecting a dielectric material that  
is stable over temperature. X5R and X7R ceramic dielectrics are usually selected for power regulator capacitors  
because they have a high capacitance to volume ratio and are fairly stable over temperature. The input capacitor  
must also be selected with the DC bias taken into account. For this example design, a ceramic capacitor with at  
least a 25-V voltage rating is required to support the maximum input voltage. For this design, allow 0.1-V input  
ripple for VRIPPLE(cap), and 0.1-V input ripple for VRIPPLE(esr). Using Equation 13 and Equation 14, the minimum  
input capacitance for this design is 21.4 µF, and the maximum ESR is 3.4 mΩ. For this example, four 22-μF, 25-  
V ceramic capacitors and one additional 100-μF, 25-V low-ESR polymer capacitors in parallel were selected for  
the power stage.  
8.2.3.6 Bootstrap Capacitor Selection  
A ceramic capacitor with a value of 0.1 μF must be connected between the BOOT and SW pins for proper  
operation. TI recommends using a ceramic capacitor with X5R or better grade dielectric. Use a capacitor with a  
voltage rating of 25 V or higher.  
8.2.3.7 BP Pin  
Bypass the BP pin to DRGND with 4.7 µF of capacitance. In order for the regulator to function properly, it is  
important that these capacitors be localized to the TPS549B22 , with low-impedance return paths. See Layout  
Guidelines for more information.  
8.2.3.8 R-C Snubber and VIN Pin High-Frequency Bypass  
Though it is possible to operate the TPS549B22 within absolute maximum ratings without ringing reduction  
techniques, some designs may require external components to further reduce ringing levels. This example uses  
two approaches: a high frequency power stage bypass capacitor on the VIN pins, and an R-C snubber between  
the SW area and GND.  
The high-frequency VIN bypass capacitor is a lossless ringing reduction technique which helps minimizes the  
outboard parasitic inductances in the power stage, which store energy during the low-side MOSFET on-time, and  
discharge once the high-side MOSFET is turned on. For this example two 2.2-nF, 25-V, 0603-sized high-  
frequency capacitors are used. The placement of these capacitors is critical to its effectiveness. Their ideal  
placement is shown in Figure 53.  
Copyright © 2017, Texas Instruments Incorporated  
49  
 
 
 
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
Additionally, an R-C snubber circuit is added to this example. To balance efficiency and spike levels, a 1-nF  
capacitor and a 1-Ω resistor are chosen. In this example a 0805-sized resistor is chosen, which is rated for 0.125  
W, nearly twice the estimated power dissipation. See Snubber Circuits: Theory, Design and Application for more  
information about snubber circuits.  
8.2.3.9 Optimize Reference Voltage (VSEL)  
Optimize the reference voltage by choosing a value for RVSEL. The TPS549B22 device is designed with a wide  
range of precision reference voltage support from 0.6 V to 1.2 V with an available step change of 50 mV.  
Program these reference voltages using the VSEL pin-strap configurations. See Table 2 for internal reference  
voltage selections. In addition to providing initial boot voltage value, use the VSEL pin to program hiccup and  
latch-off mode.  
There are two ways to program the output voltage set point. If the output voltage set point is one of the 16  
available reference and boot voltage options, no feedback resistors are required for output voltage programming.  
In the case where feedback resistors are not needed, connect the RSP pin to the positive sensing point of the  
load. Always connect the RSN pin to the load return sensing point.  
In this design example, since the output voltage set point is 1 V, select RVSEL(LS) of either 75 kΩ (latch off) or 68.1  
kΩ (hiccup) as shown in Table 3. If the output voltage set point is NOT one of the 16 available reference or boot  
voltage options, feedback resistors are required for output voltage programming. Connect the RSP pin to the  
mid-point of the resistor divider. Always connect the RSN pin to the load return sensing point as shown in Figure  
23 and Figure 24.  
The general guideline to select boot and internal reference voltage is to select the reference voltage closest to  
the output voltage set point. In addition, because the RSP and RSN pins are extremely high-impedance input  
terminals of the true differential remote sense amplifier, use a feedback resistor divider with values much less  
than 100 kΩ.  
8.2.3.10 MODE Pin Selection  
MODE pin strap configuration is used to program control topology and internal soft-start timing selections.  
TPS549B22 supports both DCAP3 and DCAP operation. For general POL applications, TI strongly recommends  
configuring the control topology to be DCAP3 due to its simple to use and no external compensation features. In  
the rare instance where DCAP is needed, an RCC network across the output inductor is needed to generate  
sufficient ripple voltage on the RSP pin. In this design example, RMODE(LS) of 42.2 kΩ is selected for DCAP3 and  
soft start time of 1 ms.  
8.2.3.11 ADDR Pin Selection  
ADDR pin strap configuration is used to program device address and light load conduction mode selection. The  
TPS549B22 allows up to 16 different chip addresses for PMBus communication with the first 3 bits fixed as 001.  
The address selection process is defined by resistor divider ratio from BP pin to ADDR pin, and the address  
detection circuit will start to work only after the initial power up when VDD has risen above its UVLO threshold.  
For this application example, a device address of 16d is desired. We select the low side RADDR to be 0 Ω  
considering the SKIP operation and device address of 16d. Table 4 lists all combinations of the address  
selections. The 1% or better tolerance resistors with typical temperature coefficient of ±100 ppm/°C are  
recommended  
8.2.3.12 Overcurrent Limit Design  
The TPS549B22 device uses the ILIM pin to set the OCP level. Connect the ILIM pin to GND through the voltage  
setting resistor, RILIM. In order to provide both good accuracy and cost effective solution, this device supports  
temperature compensated MOSFET on-resistance (RDS(on)) sensing. Also, this device performs both positive and  
negative inductor current limiting with the same magnitudes. Positive current limit is normally used to protect the  
inductor from saturation therefore causing damage to the high-side and low-side FETs. Negative current limit is  
used to protect the low-side FET during OVP discharge.  
The inductor current is monitored by the voltage between PGND pin and SW pin during the OFF time. The ILIM  
pin has 1200 ppm/°C temperature slope to compensate the temperature dependency of the on-resistance. The  
PGND pin is used as the positive current sensing node.  
50  
Copyright © 2017, Texas Instruments Incorporated  
TPS549B22  
www.ti.com.cn  
ZHCSGO0 JUNE 2017  
TPS549B22 has cycle-by-cycle over-current limiting control. The inductor current is monitored during the OFF  
state and the controller maintains the OFF state during the period that the inductor current is larger than the  
overcurrent ILIM level. The voltage on the ILIM pin (VILIM) sets the valley level of the inductor current. The range  
of value of the RILIM resistor is between 9.53 kΩ and 105 kΩ. The range of valley OCL is between 5 A and 50 A  
(typical). If the RILIM resistance is outside of the recommended range, OCL accuracy and function cannot be  
ensured. (see Table 40)  
Table 40. Closed Loop EVM Measurement of OCP Settings  
1% RILIM  
(kΩ)  
OVERCURRENT PROTECTION VALLEY (A)  
82.1  
71.5  
61.9  
51.1  
40.2  
30.1  
20.5  
40  
35  
30  
25  
20  
15  
10  
Use Equation 15 to relate the valley OCL to the RILIM resistance.  
RILIM = 2.0664 × OCLVALLEY – 0.6036  
where  
RILIM is in kΩ  
OCLVALLEY is in A  
(15)  
In this design example, the desired valley OCL is 43 A, the calculated RILIM is 61.9 kΩ. Use Equation 16 to  
calculate the DC OCL to be 32.1 A.  
OCLDC = OCLVALLEY + 0.5ìIRIPPLE  
where  
RILIM is in kΩ  
OCLDC is in A  
(16)  
In an overcurrent condition, the current to the load exceeds the inductor current and the output voltage falls.  
When the output voltage crosses the under-voltage fault threshold for at least 1 ms, the behavior of the device  
depends on the VSEL pin strap setting. If hiccup mode is selected, the device restarts after a 16-ms delay (1-ms  
soft-start option). If the overcurrent condition persists, the OC hiccup behavior repeats. During latch-off mode  
operation the device shuts down until the EN pin is toggled or VDD pin is power cycled.  
Copyright © 2017, Texas Instruments Incorporated  
51  
 
 
 
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
Figure 54. VOUT Command Graphic User Interface  
52  
Copyright © 2017, Texas Instruments Incorporated  
TPS549B22  
www.ti.com.cn  
ZHCSGO0 JUNE 2017  
8.2.4 Application Curves  
1.01  
1.005  
1
0.995  
0.99  
VIN = 5 V  
VIN = 12 V  
VIN = 14 V  
VIN = 18 V  
0
5
10  
15  
20  
SKIP Mode  
25  
Output Current (A)  
D009  
fSW = 650 kHz  
FCCM mode  
VDD = VIN = 5 V  
VOUT = 1 V  
VDD = VIN  
fSW = 650 kHz  
5-A DC with 15-A  
step at 40A/µs  
VOUT = 1 V  
Figure 55. Output Voltage Regulation vs. Output Current  
Figure 56. Transient Response Peak-to-Peak  
VIN = 12 V  
IOUT = 0 A  
VOUT = 0.6 V to 1.2 V  
VIN = 12 V  
IOUT = 0 A  
VOUT = 1.2 V to 0.6 V  
Figure 57. VOUT Command  
Figure 58. VOUT Command  
VIN = 12 V  
IOUT = 40 A  
VOUT = 0.6 V to 1.2 V  
VIN = 12 V  
IOUT = 40 A  
VOUT = 1.2 V to 0.6 V  
Figure 59. VOUT Command  
Figure 60. VOUT Command  
版权 © 2017, Texas Instruments Incorporated  
53  
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
9 Power Supply Recommendations  
This device is designed to operate from an input voltage supply between 1.5 V and 18 V. Ensure the supply is  
well regulated. Proper bypassing of input supplies and internal regulators is also critical for noise performance,  
as is the quality of the PCB layout and grounding scheme. See the recommendations in the Layout section.  
10 Layout  
10.1 Layout Guidelines  
Consider these layout guidelines before starting a layout work using TPS549B22.  
It is absolutely critical that all GND pins, including AGND (pin 30), DRGND (pin 29), and PGND (pins 13, 14,  
15, 16, 17, 18, 19, and 20) are connected directly to the thermal pad underneath the device via traces or  
plane.  
Include as many thermal vias as possible to support a 25-A thermal operation. For example, a total of 35  
thermal vias are used (outer diameter of 20 mil) in the TPS49B22EVM-847, which is available for purchase at  
www.ti.com.  
Placed the power components (including input/output capacitors, output inductor and TPS549B22 device) on  
one side of the PCB (solder side). Insert at least two inner layers (or planes) connected to the power ground,  
in order to shield and isolate the small signal traces from noisy power lines.  
Place the VIN pin decoupling capacitors as close as possible to the PVIN and PGND pins to minimize the  
input AC current loop. Place a high-frequency decoupling capacitor (with a value between 1 nF and 0.1 µF)  
as close to the PVIN pin and PGND pin as the spacing rule allows. This placement helps suppress the switch  
node ringing.  
Place VDD and BP decoupling capacitors as close as possible to the device pins. Do not use PVIN plane  
connection for the VDD pin. Separate the VDD signal from the PVIN signal by using separate trace  
connections. Provide GND vias for each decoupling capacitor and make the loop as small as possible.  
Ensure that the PCB trace defined as switch node (which connects the SW pins and up-stream of the output  
inductor) are as short and wide as possible. In the TPS49B22EVM-847 design, the SW trace width is 200 mil.  
Use a separate via or trace to connect SW node to snubber and bootstrap capacitor. Do not combine these  
connections.  
Place all sensitive analog traces and components (including VOSNS, RSP, RSN, ILIM, MODE, VSEL and  
ADDR) far away from any high voltage switch node (itself and others), such as SW and BOOT to avoid noise  
coupling. In addition, place MODE, VSEL and ADDR programming resistors near the device pins.  
The RSP and RSN pins operate as inputs to a differential remote sense amplifier that operates with very high  
impedance. It is essential to route the RSP and RSN pins as a pair of diff-traces in Kelvin-sense fashion.  
Route them directly to either the load sense points (+ and –) or the output bulk capacitors. The internal circuit  
uses the VOSNS pin for on-time adjustment. It is critical to tie the VOSNS pin directly tied to VOUT (load  
sense point) for accurate output voltage result.  
Pins 6, 7, and 26 are not connected in the 25-A TPS549B22 device, while pins 6, and 7 connect to SW and  
pins 26 connects to PVIN in the 40-A TPS549D22 device.  
54  
版权 © 2017, Texas Instruments Incorporated  
 
TPS549B22  
www.ti.com.cn  
ZHCSGO0 JUNE 2017  
10.2 Layout Examples  
61. EVM Top View  
62. EVM Top Layer  
63. EVM Inner Layer 1  
64. EVM Inner Layer 2  
版权 © 2017, Texas Instruments Incorporated  
55  
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
Layout Examples (接下页)  
65. EVM Inner Layer 3  
66. EVM Inner Layer 4  
67. EVM Bottom Layer  
56  
版权 © 2017, Texas Instruments Incorporated  
TPS549B22  
www.ti.com.cn  
ZHCSGO0 JUNE 2017  
10.3 Mounting and Thermal Profile Recommendation  
Proper mounting technique adequately covers the exposed thermal tab with solder. Excessive heat during the  
reflow process can affect electrical performance. 68 shows the recommended reflow oven thermal profile.  
Proper post-assembly cleaning is also critical to device performance. See  
QFN/SON PCB Attachment for more information.  
tP  
TP  
TL  
TS(max)  
TS(min)  
tL  
rRAMP(up)  
rRAMP(down)  
tS  
t25P  
Time (s)  
25  
68. Recommended Reflow Oven Thermal Profile  
41. Recommended Thermal Profile Parameters  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
RAMP UP AND RAMP DOWN  
rRAMP(up)  
Average ramp-up rate, TS(max) to TP  
Average ramp-down rate, TP to TS(max)  
3
6
°C/s  
°C/s  
rRAMP(down)  
PRE-HEAT  
TS  
Pre-heat temperature  
150  
60  
200  
180  
°C  
s
tS  
Pre-heat time, TS(min) to TS(max)  
REFLOW  
TL  
TP  
tL  
Liquids temperature  
217  
°C  
°C  
s
Peak temperature  
260  
150  
40  
Time maintained above liquidus temperature, TL  
Time maintained within 5°C of peak temperature, TP  
Total time from 25°C to peak temperature, TP  
60  
20  
tP  
s
t25P  
480  
s
版权 © 2017, Texas Instruments Incorporated  
57  
 
TPS549B22  
ZHCSGO0 JUNE 2017  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 使用 WEBENCH® 工具创建定制设计  
单击此处,使用 TPS549B22 器件并借助 WEBENCH® 电源设计器创建定制设计方案。  
1. 在开始阶段键入输出电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化关键设计参数,如效率、封装和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他解决方案进行比较。  
WEBENCH Power Designer 提供一份定制原理图以及罗列实时价格和组件可用性的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案导出至常用 CAD 格式  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com/WEBENCH。  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
《阻尼器电路:理论、设计和应用》  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。请单击右上角的通知我进行注册,即可收到所有的  
产品更改信息每周摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
D-CAP3, Eco-mode, NexFET, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
PMBus is a trademark of SMIF, Inc..  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
58  
版权 © 2017, Texas Instruments Incorporated  
TPS549B22  
www.ti.com.cn  
ZHCSGO0 JUNE 2017  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2017, Texas Instruments Incorporated  
59  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
2500  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS549B22RVFR  
TPS549B22RVFT  
ACTIVE  
LQFN-CLIP  
LQFN-CLIP  
RVF  
40  
40  
RoHS-Exempt  
& Green  
NIPDAU | SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
(549B22, 549B22A1)  
(549B22, 549B22A1)  
ACTIVE  
RVF  
RoHS-Exempt  
& Green  
NIPDAU | SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Jan-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS549B22RVFR  
TPS549B22RVFT  
LQFN-  
CLIP  
RVF  
RVF  
40  
40  
2500  
250  
330.0  
16.4  
5.3  
7.3  
1.8  
8.0  
16.0  
Q1  
LQFN-  
CLIP  
180.0  
16.4  
5.3  
7.3  
1.8  
8.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Jan-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS549B22RVFR  
TPS549B22RVFT  
LQFN-CLIP  
LQFN-CLIP  
RVF  
RVF  
40  
40  
2500  
250  
367.0  
213.0  
367.0  
191.0  
38.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RVF0040A  
LQFN-CLIP - 1.52 mm max height  
S
C
A
L
E
2
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
A
B
PIN 1 INDEX AREA  
7.1  
6.9  
C
1.52  
1.32  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.3 0.1  
EXPOSED  
THERMAL PAD  
36X 0.5  
13  
20  
12  
21  
41  
SYMM  
2X  
5.3 0.1  
5.5  
32  
1
0.3  
40X  
0.2  
40  
33  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
SYMM  
0.05  
0.5  
0.3  
40X  
4222989/B 10/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
4. Reference JEDEC registration MO-220.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RVF0040A  
LQFN-CLIP - 1.52 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(3.3)  
6X (1.4)  
40  
33  
40X (0.6)  
1
32  
40X (0.25)  
2X  
(1.12)  
36X (0.5)  
6X  
(1.28)  
(6.8)  
(5.3)  
41  
SYMM  
(R0.05) TYP  
(
0.2) TYP  
VIA  
12  
21  
13  
20  
SYMM  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:12X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222989/B 10/2017  
NOTES: (continued)  
5. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RVF0040A  
LQFN-CLIP - 1.52 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(0.815) TYP  
40  
33  
40X (0.6)  
1
41  
32  
40X (0.25)  
(1.28)  
TYP  
36X (0.5)  
(0.64)  
TYP  
SYMM  
(6.8)  
(R0.05) TYP  
8X  
(1.08)  
12  
21  
METAL  
TYP  
20  
13  
8X (1.43)  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
71% PRINTED SOLDER COVERAGE BY AREA  
SCALE:18X  
4222989/B 10/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS549B22RVFT

具有差分遥感功能和 PMBus 的 1.5V 至 18V、25A 同步 SWIFT™ 降压转换器 | RVF | 40 | -40 to 125
TI

TPS549D22

具有差分遥感功能和 PMBus 的 1.5V 至 16V、40A 同步 SWIFT™ 降压转换器
TI

TPS549D22RVFR

具有差分遥感功能和 PMBus 的 1.5V 至 16V、40A 同步 SWIFT™ 降压转换器 | RVF | 40 | -40 to 125
TI

TPS549D22RVFT

具有差分遥感功能和 PMBus 的 1.5V 至 16V、40A 同步 SWIFT™ 降压转换器 | RVF | 40 | -40 to 125
TI

TPS54A20

小型、10MHz、8V 至 14V、10A 同步 SWIFT™ 串联电容器降压转换器
TI

TPS54A20RNJR

小型、10MHz、8V 至 14V、10A 同步 SWIFT™ 串联电容器降压转换器 | RNJ | 20 | -40 to 125
TI

TPS54A20RNJT

小型、10MHz、8V 至 14V、10A 同步 SWIFT™ 串联电容器降压转换器 | RNJ | 20 | -40 to 125
TI

TPS54A24

4.5V 至 17V、10A 同步 SWIFT™ 降压转换器
TI

TPS54A24RTWR

4.5V 至 17V、10A 同步 SWIFT™ 降压转换器 | RTW | 24 | -40 to 150
TI

TPS54J060

4V 至 16V 输入、6A 同步降压转换器,900mV 基准电压,闭锁电流限制
TI

TPS54J060RPGR

4V 至 16V 输入、6A 同步降压转换器,900mV 基准电压,闭锁电流限制 | RPG | 14 | -40 to 125
TI

TPS54J061

4V 至 16V 输入、6A 同步降压转换器,600mV 基准电压和断续电流限制
TI