TPS3600D25PWR [TI]

BATTERY-BACKUP SUPERVISORS FOR LOW-POWER PROCESSORS; 电池备份监事低功耗处理器
TPS3600D25PWR
型号: TPS3600D25PWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

BATTERY-BACKUP SUPERVISORS FOR LOW-POWER PROCESSORS
电池备份监事低功耗处理器

电池
文件: 总26页 (文件大小:504K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢇꢅ  
SLVS336B − DECEMBER 2000 − REVISED JANUARY 2007  
features  
typical applications  
D
D
Supply Current of 40 µA (Max)  
Precision Supply Voltage Monitor  
− 2.0 V, 2.5 V, 3.3 V, 5.0 V  
D
Fax Machines  
D
D
D
D
D
D
D
D
Set-Top Boxes  
Advanced Voice Mail Systems  
Portable Battery Powered Equipment  
Computer Equipment  
− Other Versions on Request  
D
D
D
Watchdog Timer With 800-ms Time-Out  
Backup-Battery Voltage Can Exceed V  
DD  
Advanced Modems  
Power-On Reset Generator With Fixed  
100-ms Reset Delay Time  
Automotive Systems  
Portable Long-Time Monitoring Equipment  
Point of Sale Equipment  
D
Battery OK Output  
D
Voltage Monitor for Power-Fail or  
Low-Battery Monitoring  
TSSOP (PW) Package  
(TOP VIEW)  
D
D
D
D
D
D
Manual Switchover to Battery-Backup  
Mode  
V
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
BAT  
RESET  
OUT  
Chip-Enable Gating −3 ns (at V  
Max. Propagation Delay  
= 5 V)  
V
DD  
DD  
GND  
MSWITCH  
CEIN  
WDI  
MR  
CEOUT  
BATTOK  
PFO  
Manual Reset  
BATTON  
PFI  
8
Battery Freshness Seal  
14-Pin TSSOP Package  
Temperature Range . . . −40°C to 85°C  
ACTUAL SIZE  
(5,10mm x 6,60mm)  
typical operating circuit  
Address  
Decoder  
Power  
Supply  
0.1 µF  
External  
Source  
CE  
CMOS  
RAM  
CE  
CMOS  
RAM  
CEIN  
CEOUT  
Address Bus  
Real-  
Time  
Clock  
Backup  
Battery  
V
DD  
V
BAT  
R
R
x
y
TPS3600  
uC  
V
CC  
V
CC  
V
CC  
PFI  
8
8
RESET  
I/O  
RESET  
WDI  
Data Bus  
16  
I/O  
PFO  
I/O  
BATTOK  
BATTON  
I/O  
MR  
Switchover  
Capacitor  
Manual  
Reset  
MSWITCH  
GND  
V
OUT  
V
CC  
0.1 µF  
GND  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
ꢀꢥ  
Copyright 2000−2007, Texas Instruments Incorporated  
ꢡ ꢥ ꢢ ꢡꢚ ꢛꢯ ꢝꢜ ꢠ ꢨꢨ ꢦꢠ ꢞ ꢠ ꢟ ꢥ ꢡ ꢥ ꢞ ꢢ ꢪ  
www.ti.com  
1
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢅ ꢆ ꢇ ꢅꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢅ ꢆꢇ ꢉ ꢈ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢅ ꢆꢃ ꢃ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢉꢅ  
ꢊ ꢋꢀ ꢀ ꢌꢍꢎꢏꢊ ꢋ ꢐꢑ ꢒꢁ ꢂ ꢒꢁ ꢌꢍꢓ ꢔ ꢂꢕ ꢍꢂ ꢖꢕ ꢍ ꢗ ꢕ ꢘꢏꢁꢕ ꢘ ꢌꢍ ꢁꢍ ꢕꢐꢌ ꢂꢂꢕ ꢍꢂ  
SLVS336B − DECEMBER 2000 − REVISED JANUARY 2007  
description  
The TPS3600 family of supervisory circuits monitor and control processor activity. In case of power-fail or  
brownout conditions, the backup-battery switchover function of TPS3600 allows to run a low-power processor  
and its peripherals from the installed backup battery without asserting a reset beforehand.  
During power on, RESET is asserted when the supply voltage (V  
or V  
) becomes higher than V  
.
DD  
BAT  
res  
Thereafter, the supply voltage supervisor monitors V  
and keeps RESET output active as long as V  
OUT  
OUT  
remains below the threshold voltage (V ). An internal timer delays the return of the output to the inactive state  
IT  
(high) to ensure proper system reset. This delay timer starts its time-out, after V  
has risen above the  
OUT  
threshold voltage (V ). In case of a brownout or power failure of both supply sources, a voltage drop below the  
IT  
threshold voltage (V ) get detected and the output becomes active (low) again.  
IT  
The product spectrum is designed for supply voltages of 2 V, 2.5 V, 3.3 V, and 5 V. The circuits are available  
in a 14-pin TSSOP package. They are characterized for operation over a temperature range of −40°C to 85°C.  
PACKAGE INFORMATION  
T
DEVICE NAME  
TPS3600D20  
TPS3600D25  
TPS3600D33  
TPS3600D50  
A
−40°C to 85°C  
ordering information application specific versions (see Note)  
TPS360  
0
D
20  
PW  
R
Reel  
Package  
Nominal Supply Voltage  
Nominal BATTOK Threshold Voltage  
Functionality  
Family  
DEVICE NAME  
TPS3600x20 PW  
TPS3600x25 PW  
TPS3600x33 PW  
TPS3600x50 PW  
NOMINAL VOLTAGE, V  
NOM  
2.0 V  
2.5 V  
3.3 V  
5.0 V  
NOMINAL BATTOK  
THRESHOLD VOLTAGE, V  
DEVICE NAME  
BOK  
TPS3600Dxx PW  
V
V
V
+ 7%  
+ 6%  
+ 8%  
+ 10%  
IT  
IT  
IT  
{
TPS3600Fxx PW  
{
TPS3600Hxx PW  
{
TPS3600Jxx PW  
V
IT  
For the application specific versions, please contact the local TI sales  
office for availability and lead time.  
www.ti.com  
2
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢇꢅ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢇꢉ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢃꢃ ꢈ ꢀ ꢁ ꢂꢃ ꢄꢅ ꢅꢆ ꢉꢅ  
ꢍꢎꢏ  
ꢍꢓ  
ꢌꢂ  
ꢍꢂ  
SLVS336B − DECEMBER 2000 − REVISED JANUARY 2007  
FUNCTION TABLES  
V
DD  
> V  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
V
> V  
IT  
V
DD  
> V  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
MSWITCH  
MR  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
V
OUT  
BATTON  
RESET  
CEOUT  
DIS  
DIS  
DIS  
DIS  
DIS  
DIS  
DIS  
DIS  
DIS  
EN  
SW  
OUT  
BAT  
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
V
BAT  
V
BAT  
V
BAT  
V
BAT  
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
V
DD  
V
DD  
V
BAT  
V
BAT  
V
BAT  
V
BAT  
V
BAT  
V
BAT  
DIS  
EN  
V
DD  
DIS  
EN  
V
DD  
V
V
DIS  
EN  
BAT  
BAT  
V
DD  
DIS  
EN  
V
DD  
V
V
DIS  
EN  
BAT  
BAT  
V
DD  
DIS  
EN  
V
DD  
V
DIS  
EN  
BAT  
BAT  
V
V
BAT  
> V  
0
BATTOK  
BOK  
0
1
1
CONDITION: V  
> V  
DD(min)  
OUT  
CEIN  
CEOUT  
0
1
0
1
CONDITION: Enabled  
PFI > V  
PFO  
PFI  
0
1
0
1
CONDITION: V  
OUT  
> V  
DD(min)  
www.ti.com  
3
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢅ ꢆ ꢇ ꢅꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢅ ꢆꢇ ꢉ ꢈ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢅ ꢆꢃ ꢃ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢉꢅ  
ꢊ ꢋꢀ ꢀ ꢌꢍꢎꢏꢊ ꢋ ꢐꢑ ꢒꢁ ꢂ ꢒꢁ ꢌꢍꢓ ꢔ ꢂꢕ ꢍꢂ ꢖꢕ ꢍ ꢗ ꢕ ꢘꢏꢁꢕ ꢘ ꢌꢍ ꢁꢍ ꢕꢐꢌ ꢂꢂꢕ ꢍꢂ  
SLVS336B − DECEMBER 2000 − REVISED JANUARY 2007  
functional schematic  
TPS3600  
MR  
MSWITCH  
V
BAT  
+
Switch  
Control  
V
OUT  
_
Internal  
Supply  
Voltage  
V
DD  
BATTON  
BATTOK  
+
Reference  
Voltage  
_
or 1.15 V  
R1  
R2  
GND  
RESET  
Logic  
and  
_
+
Timer  
RESET  
PFO  
_
+
PFI  
WDI  
Oscillator  
Watchdog  
Logic  
Transition  
Detector  
V
OUT  
and  
Control  
40 kΩ  
CEOUT  
CEIN  
www.ti.com  
4
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢇꢅ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢇꢉ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢃꢃ ꢈ ꢀ ꢁ ꢂꢃ ꢄꢅ ꢅꢆ ꢉꢅ  
ꢊꢋꢀꢀ ꢌ ꢍꢎꢏꢊꢋ ꢐꢑꢒꢁ ꢂꢒꢁ ꢌꢍꢓꢔ ꢂꢕ ꢍꢂ ꢖ ꢕꢍ ꢗ ꢕꢘꢏꢁꢕ ꢘ ꢌꢍ ꢁꢍꢕ ꢐ ꢌꢂ ꢂ ꢕ ꢍꢂ  
SLVS336B − DECEMBER 2000 − REVISED JANUARY 2007  
timing diagram  
V
BAT  
V
(BOK)  
V
V
(SWP)  
(SWN)  
V
(IT)  
V
DD  
t
t
V
OUT  
V
(SWN)  
RESET  
t
BATTOK  
1
0
t
t
BATTON  
V
BAT  
V
DD  
V
BAT  
V
DD  
V
BAT  
NOTES: A. MSWITCH = 0, MR = 1  
NOTES: B. Timing diagram shown under normal operation, not in freshness seal mode.  
www.ti.com  
5
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢅ ꢆ ꢇ ꢅꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢅ ꢆꢇ ꢉ ꢈ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢅ ꢆꢃ ꢃ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢉꢅ  
ꢊ ꢋꢀ ꢀ ꢌꢍꢎꢏꢊ ꢋ ꢐꢑ ꢒꢁ ꢂ ꢒꢁ ꢌꢍꢓ ꢔ ꢂꢕ ꢍꢂ ꢖꢕ ꢍ ꢗ ꢕ ꢘꢏꢁꢕ ꢘ ꢌꢍ ꢁꢍ ꢕꢐꢌ ꢂꢂꢕ ꢍꢂ  
SLVS336B − DECEMBER 2000 − REVISED JANUARY 2007  
Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
BATTOK  
NO.  
9
O
O
I
Battery status output  
BATTON  
CEIN  
6
Logic output/external bypass switch driver output  
Chip-enable input  
5
CEOUT  
GND  
10  
3
O
I
Chip-enable output  
Ground  
MR  
11  
4
I
Manual reset input  
MSWITCH  
PFI  
I
Manual switch to force device into battery-backup mode (connect to GND if not used)  
7
I
Power-fail comparator input (connect to GND if not used)  
Power-fail comparator output  
Active-low reset output  
PFO  
8
O
O
I
RESET  
13  
14  
2
V
V
V
Backup-battery input  
BAT  
I
Input supply voltage  
DD  
1
O
I
Supply output  
OUT  
WDI  
12  
Watchdog timer input  
detailed description  
battery freshness seal  
The battery freshness seal of the TPS3600 family disconnects the backup battery from the internal circuitry until  
it is needed. This ensures that the backup battery connected to V should be fresh when the final product is  
BAT  
put to use. The following steps explain how to enable the freshness seal mode:  
1. Connect V  
(V  
> V  
)
BAT BAT  
BAT(min)  
2. Ground PFO  
3. Connect PFI to V  
or PFI > V  
(PFI)  
DD  
4. Connect V  
to power supply (V > V )  
DD IT  
DD  
5. Ground MR  
6. Power down V  
DD  
7. The freshness seal mode is entered and pins PFO and MR can be disconnected.  
The battery freshness seal mode is disabled by the positive-going edge of RESET when V  
is applied.  
DD  
BATTOK output  
This is a logic feedback of the device to indicate the status of the backup battery. The supervisor checks the  
battery voltage every 200 ms with a voltage divider load of approximately 100 Kand a measure cycle on-time  
of 25 µs. This measurement cycle starts after the reset is released. If the battery voltage V  
is below the  
BAT  
negative-going threshold voltage V  
, the indicator BATTOK does a high-to-low transition. Otherwise, its  
(BOK)  
status remains to the V  
level.  
OUT  
Table 1. Typical Values for BATTOK Indication  
SUPERVISOR TYPE  
V
TYP  
V
MIN  
V
TYP  
V
MAX  
IT  
BOK  
BOK  
BOK  
1.97 V  
TPS3600D20  
TPS3600D25  
TPS3600D33  
TPS3600D50  
1.78 V  
2.22 V  
2.93 V  
4.40 V  
1.84 V  
2.3 V  
1.91 V  
2.38 V  
3.14 V  
4.71 V  
2.46 V  
3.24 V  
4.86 V  
3.04 V  
4.56 V  
www.ti.com  
6
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢇꢅ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢇꢉ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢃꢃ ꢈ ꢀ ꢁ ꢂꢃ ꢄꢅ ꢅꢆ ꢉꢅ  
ꢊꢋꢀꢀ ꢌ ꢍꢎꢏꢊꢋ ꢐꢑꢒꢁ ꢂꢒꢁ ꢌꢍꢓꢔ ꢂꢕ ꢍꢂ ꢖ ꢕꢍ ꢗ ꢕꢘꢏꢁꢕ ꢘ ꢌꢍ ꢁꢍꢕ ꢐ ꢌꢂ ꢂ ꢕ ꢍꢂ  
SLVS336B − DECEMBER 2000 − REVISED JANUARY 2007  
detailed description (continued)  
I
BAT  
200 ms  
25 µs  
100 µA  
t
Figure 1. BATTOK Timing  
chip-enable signal gating  
The internal gating of chip-enable signals (CE) prevents erroneous data from corrupting CMOS RAM during  
an under-voltage condition. The TPS3600 use a series transmission gate from CEIN to CEOUT. During normal  
operation (reset not asserted), the CE transmission gate is enabled and passes all CE transitions. When reset  
is asserted, this path becomes disabled, preventing erroneous data from corrupting the CMOS RAM. The short  
CE propagation delay from CEIN to CEOUT enables the TPS3600 devices to be used with most processors.  
The CE transmission gate is disabled and CEIN is high impedance (disable mode) while reset is asserted.  
During a power-down sequence when V  
crosses the reset threshold, the CE transmission gate will be  
DD  
disabled and CEIN immediately becomes high impedance if the voltage at CEIN is high. If CEIN is low during  
reset is asserted, the CE transmission gate will be disabled same time when CEIN goes high, or 15 µs after reset  
asserts, whichever occurs first. This will allow the current write cycle to complete during power down. When the  
CE transmission gate is enabled, the impedance of CEIN appears as a resistor in series with the load at CEOUT.  
The overall device propagation delay through the CE transmission gate depends on V  
, the source  
OUT  
impedance of the device connected to CEIN and the load at CEOUT. To achieve minimum propagation delay,  
the capacitive load at CEOUT should be minimized, and a low-output-impedance driver be used.  
During disable mode, the transmission gate is off and an active pullup connects CEOUT to V  
turns off when the transmission gate is enabled.  
. This pullup  
OUT  
CEIN  
t
CEOUT  
15 µs  
t
RESET  
t
Figure 2. Chip-Enable Timing  
www.ti.com  
7
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢅ ꢆ ꢇ ꢅꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢅ ꢆꢇ ꢉ ꢈ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢅ ꢆꢃ ꢃ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢉꢅ  
ꢊ ꢋꢀ ꢀ ꢌꢍꢎꢏꢊ ꢋ ꢐꢑ ꢒꢁ ꢂ ꢒꢁ ꢌꢍꢓ ꢔ ꢂꢕ ꢍꢂ ꢖꢕ ꢍ ꢗ ꢕ ꢘꢏꢁꢕ ꢘ ꢌꢍ ꢁꢍ ꢕꢐꢌ ꢂꢂꢕ ꢍꢂ  
SLVS336B − DECEMBER 2000 − REVISED JANUARY 2007  
detailed description (continued)  
power-fail comparator (PFI and PFO)  
An additional comparator is provided to monitor voltages other than the nominal supply voltage. The power-fail  
input (PFI) will be compared with an internal voltage reference of 1.15 V. If the input voltage falls below the  
power-fail threshold, V  
, of 1.15 V typical, the power-fail output (PFO) goes low. If it goes above V  
plus  
(PFI)  
(PFI)  
about 12-mV hysteresis, the output returns to high. By connecting two external resistors, it is possible to  
supervise any voltages above V . The sum of both resistors should be about 1 M, to minimize power  
(PFI)  
consumption and also to ensure that the current in the PFI pin can be neglected compared with the current  
through the resistor network. The tolerance of the external resistors should be not more than 1% to ensure  
minimal variation of sensed voltage.  
If the power-fail comparator is unused, connect PFI to ground and leave PFO unconnected.  
BATTON  
Most often BATTON is used as a gate drive for an external pass transistor for high-current applications. In  
addition it can be also used as a logic output to indicate the battery switchover status. BATTON is high when  
V
is connected to V  
.
OUT  
BAT  
BATTON can be directly connected to the gate of a PMOS transistor (see Figure 3). No current-limiting resistor  
is required. When using a PMOS transistor, it must be connected backwards from the traditional method (see  
Figure 3). This method orients the body diode from V  
discharging through the FET when its gate is high.  
to V  
and prevents the backup battery from  
DD  
OUT  
PMOS FET  
Body Diode  
D
S
G
V
DD  
BATTON V  
TPS3600  
GND  
OUT  
Figure 3. Driving an External MOSFET Transistor With BATTON  
backup-battery switchover  
In the event of a brownout or power failure, it may be necessary to keep a processor running. If a backup battery  
is installed at V , the devices automatically connect the processor to backup power when V fails. In order  
BAT  
DD  
to allow the backup battery (e.g., a 3.6-V lithium cell) to have a higher voltage than V , this family of supervisors  
DD  
OUT  
will not connect V  
to V  
when V  
and V  
is greater than V . V  
only connects to V  
(through a 2-switch)  
BAT  
OUT  
BAT  
BAT  
DD BAT  
when V  
until V  
falls below V  
crosses V  
is greater than V . When V  
recovers, switchover is deferred either  
. (See the timing diagram)  
OUT  
(SWN)  
DD  
DD  
(SWP)  
, or when V  
rises above the threshold V  
DD  
BAT  
DD  
V
DD  
> V  
BAT  
V
DD  
> V  
1
V
OUT  
(SW)  
1
1
0
0
V
DD  
DD  
DD  
0
V
1
V
0
V
BAT  
www.ti.com  
8
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢇꢅ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢇꢉ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢃꢃ ꢈ ꢀ ꢁ ꢂꢃ ꢄꢅ ꢅꢆ ꢉꢅ  
ꢊꢋꢀꢀ ꢌ ꢍꢎꢏꢊꢋ ꢐꢑꢒꢁ ꢂꢒꢁ ꢌꢍꢓꢔ ꢂꢕ ꢍꢂ ꢖ ꢕꢍ ꢗ ꢕꢘꢏꢁꢕ ꢘ ꢌꢍ ꢁꢍꢕ ꢐ ꢌꢂ ꢂ ꢕ ꢍꢂ  
SLVS336B − DECEMBER 2000 − REVISED JANUARY 2007  
detailed description (continued)  
manual switchover (MSWITCH)  
While operating in the normal mode from V , the device can be manually forced to operate in the  
DD  
battery-backup mode by connecting MSWITCH to V . The table below shows the different switchover modes.  
DD  
MSWITCH  
STATUS  
GND  
V
mode  
DD  
V
mode  
DD  
V
DD  
GND  
Switch to battery-backup mode  
Battery-backup mode  
Battery-backup mode  
V
DD  
Battery-backup mode  
If the manual switchover feature is not used, MSWITCH must be connected to ground.  
watchdog  
In a microprocessor- or DSP-based system, it is not only important to supervise the supply voltage, it is also  
important to ensure the correct program execution. The task of a watchdog is to ensure that the program is not  
stalled in an indefinite loop. The microprocessor, microcontroller, or the DSP have to toggle the watchdog input  
within typically 0.8 s to avoid a time-out from occurring. Either a low-to-high or a high-to-low transition resets  
the internal watchdog timer. If the input is unconnected the watchdog is disabled and will be retriggered  
internally.  
saving current while using the watchdog  
The watchdog input is internally driven low during the first 7/8 of the watchdog time-out period, then momentarily  
pulses high, resetting the watchdog counter. For minimum watchdog input current (minimum overall power  
consumption), leave WDI low for the majority of the watchdog time-out period, pulsing it low-high-low once  
within 7/8 of the watchdog time-out period to reset the watchdog timer. If instead, WDI is externally driven high  
for the majority of the time-out period, a current of e.g. 5 V/40 kΩ ≈ 125 µA can flow into WDI.  
V
OUT  
V
IT  
WDI  
t
(tout)  
RESET  
t
t
t
d
d
d
Undefined  
Figure 4. Watchdog Timing  
www.ti.com  
9
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢅ ꢆ ꢇ ꢅꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢅ ꢆꢇ ꢉ ꢈ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢅ ꢆꢃ ꢃ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢉꢅ  
ꢊ ꢋꢀ ꢀ ꢌꢍꢎꢏꢊ ꢋ ꢐꢑ ꢒꢁ ꢂ ꢒꢁ ꢌꢍꢓ ꢔ ꢂꢕ ꢍꢂ ꢖꢕ ꢍ ꢗ ꢕ ꢘꢏꢁꢕ ꢘ ꢌꢍ ꢁꢍ ꢕꢐꢌ ꢂꢂꢕ ꢍꢂ  
SLVS336B − DECEMBER 2000 − REVISED JANUARY 2007  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage: V  
(see Note1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
DD  
MR and WDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to (V  
+ 0.3 V)  
DD  
All other pins (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 7 V  
Continuous output current at V : I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 mA  
OUT O  
All other pins, I  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 mA  
O
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to GND. For reliable operation the device must not be operated at 7 V for more than t = 1000h  
continuously.  
DISSIPATION RATING TABLE  
PACKAGE  
T
< 25°C  
DERATING FACTOR  
T
= 70°C  
T = 85°C  
A
POWER RATING  
A
A
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
A
PW  
700 mW  
5.6 mW/°C  
448 mW  
364 mW  
recommended operating conditions at specified temperature range  
MIN  
MAX  
UNIT  
V
Supply voltage, V  
DD  
1.65  
1.5  
0
5.5  
Battery supply voltage, V  
BAT  
5.5  
V
Input voltage, V  
V
+ 0.3  
V
I
OUT  
High-level input voltage, V  
IH  
0.7 x V  
V
OUT  
Low-level input voltage, all other pins, V  
IL  
0.3 x V  
V
OUT  
200  
Continuous output current at V  
, I  
mA  
ns/V  
OUT O  
Input transition rise and fall rate at WDI, MSWITCH, t/V  
Slew rate at V or V  
100  
34 mV/µs  
85 °C  
DD BAT  
Operating free-air temperature range, T  
−40  
A
www.ti.com  
10  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢇꢅ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢇꢉ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢃꢃ ꢈ ꢀ ꢁ ꢂꢃ ꢄꢅ ꢅꢆ ꢉꢅ  
ꢊꢋꢀꢀ ꢌ ꢍꢎꢏꢊꢋ ꢐꢑꢒꢁ ꢂꢒꢁ ꢌꢍꢓꢔ ꢂꢕ ꢍꢂ ꢖ ꢕꢍ ꢗ ꢕꢘꢏꢁꢕ ꢘ ꢌꢍ ꢁꢍꢕ ꢐ ꢌꢂ ꢂ ꢕ ꢍꢂ  
SLVS336B − DECEMBER 2000 − REVISED JANUARY 2007  
electrical characteristics over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
− 0.2 V  
TYP  
MAX  
UNIT  
V
V
V
V
V
V
V
V
V
= 2.0 V,  
= 3.3 V,  
= 5.0 V,  
= 1.8 V,  
= 3.3 V,  
= 5.0 V,  
= 2.0 V,  
= 3.3 V,  
= 5.0 V,  
I
I
I
I
I
I
I
I
I
= −400 µA  
= −2 mA  
= −3 mA  
= −20 µA  
= −80 µA  
= −120 µA  
= −1 mA  
= −2 mA  
= −5 mA  
V
V
V
V
V
V
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OH  
OH  
OH  
OH  
OH  
OH  
OH  
OH  
OH  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
RESET,  
BATTOK,  
BATTON  
− 0.4 V  
− 0.3 V  
− 0.4 V  
− 0.2 V  
− 0.3 V  
PFO  
High-level output  
voltage  
V
OH  
V
CEOUT  
Enable mode  
CEIN = V  
OUT  
CEOUT  
Disable mode  
V
OUT  
= 3.3 V,  
I
= −0.5 mA  
V
OUT  
− 0.4 V  
OH  
V
V
V
V
V
V
V
V
V
= 2.0 V,  
= 3.3 V,  
= 5.0 V,  
= 1.8 V,  
= 3.3 V,  
= 5.0 V,  
= 2.0 V,  
= 3.3 V,  
= 5.0 V,  
I
I
I
I
I
I
I
I
I
= 400 µA  
= 2 mA  
= 3 mA  
= 500 µA  
= 3 mA  
= 5 mA  
= 1 mA  
= 2 mA  
= 5 mA  
0.2  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
BAT  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
RESET,  
PFO,  
BATTOK  
0.4  
0.2  
0.4  
0.2  
0.3  
Low-level output  
voltage  
V
OL  
BATTON  
V
CEOUT  
Enable mode  
CEIN = 0 V  
V
V
> 1.1 V OR  
> 1.4 V,  
V
res  
Power-up reset voltage (see Note 2)  
0.4  
V
V
I
= 20 µA  
DD  
OL  
I
O
I
O
I
O
I
O
I
O
= 5 mA,  
V
V
= 1.8 V  
= 3.3 V  
= 5 V  
V − 50 mV  
DD  
DD  
= 75 mA,  
= 150 mA,  
= 4 mA,  
V
DD  
− 150 mV  
Normal mode  
DD  
V
V
DD  
− 250 mV  
V
OUT  
DD  
V
= 1.5 V  
= 3.3 V  
V
BAT  
− 50 mV  
BAT  
BAT  
Battery-backup mode  
= 75 mA,  
V
V
− 150 mV  
BAT  
V
V
to V  
OUT  
on-resistance  
on-resistance  
TPS3600x20  
V
V
= 3.3 V  
1
1
2
2
DD  
DD  
r
ds(on)  
to V  
OUT  
= 3.3 V  
BAT  
BAT  
1.74  
2.17  
2.57  
2.87  
4.31  
1.13  
1.78  
2.22  
1.82  
2.27  
2.69  
2.99  
4.49  
1.17  
+ 8.3%  
TPS3600x25  
TPS3600x30  
TPS3600x33  
TPS3600x50  
PFI  
2.63  
V
IT  
Negative-going input  
threshold voltage  
(see Notes 3 and 4)  
2.93  
T
A
= −40°C to 85°C  
V
V
4.40  
V
V
1.15  
(PFI)  
TPS3600Dxx  
V
IT  
+ 5.8%  
V
IT  
+ 7.1%  
V
V
(BOK)  
IT  
Battery switch threshold voltage  
negative-going V  
V
V
IT  
+ 1%  
V + 2%  
IT  
+ 3.2%  
(SWN)  
IT  
OUT  
NOTES: 2. The lowest supply voltage at which RESET becomes active. t  
r(VDD)  
15 µs/V.  
3. To ensure best stability of the threshold voltage, a bypass capacitor (ceramic, 0.1 µF) should be placed near the supply terminal.  
4. Voltage is sensed at V  
OUT  
www.ti.com  
11  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢅ ꢆ ꢇ ꢅꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢅ ꢆꢇ ꢉ ꢈ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢅ ꢆꢃ ꢃ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢉꢅ  
ꢊ ꢋꢀ ꢀ ꢌꢍꢎꢏꢊ ꢋ ꢐꢑ ꢒꢁ ꢂ ꢒꢁ ꢌꢍꢓ ꢔ ꢂꢕ ꢍꢂ ꢖꢕ ꢍ ꢗ ꢕ ꢘꢏꢁꢕ ꢘ ꢌꢍ ꢁꢍ ꢕꢐꢌ ꢂꢂꢕ ꢍꢂ  
SLVS336B − DECEMBER 2000 − REVISED JANUARY 2007  
electrical characteristics over recommended operating conditions (unless otherwise noted)  
(continued)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
1.65 V < V < 2.5 V  
20  
40  
IT  
2.5 V < V < 3.5 V  
V
IT  
IT  
3.5 V < V < 5.5 V  
IT  
50  
1.65 V < V  
2.5 V < V  
< 2.5 V  
30  
(BOK)  
< 3.5 V  
< 5.5 V  
60  
BATTOK  
PFI  
(BOK)  
3.5 V < V  
(BOK)  
100  
12  
V
hys  
Hysteresis  
mV  
V
V
DD  
= 1.8 V  
66  
(BSW)  
1.65 V < V  
2.5 V < V  
< 2.5 V  
85  
(SWN)  
< 3.5 V  
< 5.5 V  
100  
110  
V
(SWN)  
(SWN)  
3.5 V < V  
(SWN)  
WDI (see Note 5) WDI = V  
DD  
= 5 V  
150  
I
High-level input current  
IH  
MR  
MR = 0.7 × V , V  
DD DD  
= 5 V  
= 5 V  
= 5 V  
−33  
−76  
−150  
−255  
25  
µA  
WDI (see Note 5) WDI = 0 V,  
V
DD  
I
I
Low-level input current  
Input current  
IL  
MR  
MR = 0 V,  
V < V  
V
DD  
110  
−25  
PFI, MSWITCH  
nA  
I
I
DD  
PFO = 0 V,  
PFO = 0 V,  
PFO = 0 V,  
V
= 1.8 V  
= 3.3 V  
= 5 V  
−0.3  
−1.1  
−2.4  
40  
DD  
V
DD  
V
DD  
I
I
Short-circuit current  
PFO  
mA  
OS  
V
OUT  
V
OUT  
= V  
= V  
DD  
V
V
supply current  
µA  
µA  
DD  
DD  
8
BAT  
V
OUT  
V
OUT  
= V  
= V  
−0.1  
0.1  
40  
1
DD  
I
I
supply current  
(BAT)  
BAT  
BAT  
CEIN leakage current  
Input capacitance  
Disable mode, V < V  
µA  
lkg  
I
DD  
C
V = 0 V to 5.0 V  
I
5
pF  
i
NOTE 5: For details on how to optimize current consumption when using WDI, see the detailed description section.  
www.ti.com  
12  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢇꢅ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢇꢉ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢃꢃ ꢈ ꢀ ꢁ ꢂꢃ ꢄꢅ ꢅꢆ ꢉꢅ  
ꢊꢋꢀꢀ ꢌ ꢍꢎꢏꢊꢋ ꢐꢑꢒꢁ ꢂꢒꢁ ꢌꢍꢓꢔ ꢂꢕ ꢍꢂ ꢖ ꢕꢍ ꢗ ꢕꢘꢏꢁꢕ ꢘ ꢌꢍ ꢁꢍꢕ ꢐ ꢌꢂ ꢂ ꢕ ꢍꢂ  
SLVS336B − DECEMBER 2000 − REVISED JANUARY 2007  
timing requirements at R = 1 M, C = 50 pF, T = 40°C to 85°C  
L
L
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
V
= V + 0.2 V, V = V − 0.2 V  
IT IL IT  
5
1
µs  
DD  
IH  
MR  
t
w
Pulse width  
> V + 0.2 V, V = 0.3 x V , V = 0.7 x V  
IT IL DD IH DD  
100  
ns  
DD  
WDI  
switching characteristics at R = 1 M, C = 50 pF, T = 40°C to 85°C  
L
L
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
100  
MAX  
UNIT  
V
DD  
V + 0.2 V,  
IT  
t
d
Delay time  
MR 0.7 x V  
,
60  
140  
ms  
DD  
See timing diagram  
V
> V + 0.2 V,  
IT  
DD  
See timing diagram  
t
t
Watchdog time-out  
0.48  
0.8  
15  
2
1.12  
s
(tout)  
Propagation (delay) time,  
low-to-high-level output  
50% RESET to 50% CEOUT  
to RESET  
V
OUT  
= V  
IT  
µs  
µs  
µs  
PLH  
V
V
= V − 0.2 V,  
IT  
IL  
IH  
V
DD  
5
5
= V + 0.2 V  
IT  
V
V
= V  
= V  
(PFI)  
− 0.2 V,  
+ 0.2 V  
IL  
IH  
(PFI)  
PFI to PFO  
3
V
V
V
V + 0.2 V,  
IT  
Propagation (delay) time,  
high-to-low-level output  
DD  
IL  
IH  
t
PHL  
MR to RESET  
= 0.3 x V  
,
0.1  
1
µs  
DD  
= 0.7 x V  
DD  
V
DD  
V
DD  
V
DD  
= 1.8 V  
= 3.3 V  
= 5 V  
5
1.6  
1
15  
5
ns  
ns  
ns  
50% CEIN to 50% CEOUT  
CL = 50 pF only (see Note 6)  
3
V
V
V
= V  
= V  
− 0.2 V,  
+ 0.2 V,  
IL  
IH  
BAT  
BAT  
< V  
Transition time  
V
DD  
to BATTON  
3
µs  
(BAT)  
IT  
NOTE 6: Ensured by design.  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
Static Drain-source on-state resistance V  
Static Drain-source on-state resistance V  
Static Drain-source on-state resistance  
Supply current  
to V  
OUT  
5
6
DD  
vs Output current  
to V  
OUT  
r
BAT  
DS(on)  
vs Chip enable input voltage  
vs Supply voltage  
7
I
8, 9  
10  
DD  
V
Normalized threshold voltage  
vs Free-air temperature  
IT  
High-level output voltage at RESET  
High-level output voltage at PFO  
High-level output voltage at CEOUT  
Low-level output voltage at RESET  
Low-level output voltage at CEOUT  
Low-level output voltage at BATTON  
11, 12  
13, 14  
V
vs High-level output current  
vs Low-level output current  
OH  
15, 16, 17, 18  
19, 20  
21, 22  
23, 24  
25  
V
OL  
Minimum Pulse Duration at V  
DD  
vs Threshold voltage overdrive at V  
DD  
t
p(min)  
Minimum Pulse Duration at PFI  
vs Threshold voltage overdrive at PFI  
26  
www.ti.com  
13  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢅ ꢆ ꢇ ꢅꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢅ ꢆꢇ ꢉ ꢈ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢅ ꢆꢃ ꢃ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢉꢅ  
ꢊ ꢋꢀ ꢀ ꢌꢍꢎꢏꢊ ꢋ ꢐꢑ ꢒꢁ ꢂ ꢒꢁ ꢌꢍꢓ ꢔ ꢂꢕ ꢍꢂ ꢖꢕ ꢍ ꢗ ꢕ ꢘꢏꢁꢕ ꢘ ꢌꢍ ꢁꢍ ꢕꢐꢌ ꢂꢂꢕ ꢍꢂ  
SLVS336B − DECEMBER 2000 − REVISED JANUARY 2007  
TYPICAL CHARACTERISTICS  
STATIC DRAIN SOURCE ON-STATE RESISTANCE  
STATIC DRAIN SOURCE ON-STATE RESISTANCE  
(V  
TO V  
vs  
)
(V  
TO V  
vs  
)
BAT  
OUT  
DD  
OUT  
OUTPUT CURRENT  
OUTPUT CURRENT  
1.5  
1.4  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
V
= 3.3 V  
BAT  
MSWITCH = V  
DD  
T
= 85°C  
A
T
A
= 85°C  
1.3  
1.2  
1.1  
1
T
= 25°C  
A
T
A
= 25°C  
T
= 0°C  
A
T
A
= 0°C  
T
= −40°C  
A
T
A
= −40°C  
V
V
= 3.3 V  
DD  
0.9  
0.8  
1
= GND  
BAT  
MSWITCH = GND  
0.9  
50  
75  
100  
125  
150  
175  
200  
50  
76  
100  
125  
150  
175  
200  
I
O
− Output Current − mA  
I
O
− Output Current − mA  
Figure 5  
Figure 6  
STATIC DRAIN SOURCE ON-STATE RESISTANCE  
SUPPLY CURRENT  
vs  
(CEIN to CEOUT)  
vs  
SUPPLY VOLTAGE  
CHIP-ENABLE INPUT VOLTAGE  
40  
7
6
5
4
3
2
V
V
Mode  
= 5 V  
BAT  
BAT  
35  
MSWITCH = GND  
T
= 25°C  
A
30  
T
A
= 85°C  
T
A
= −40°C  
25  
20  
15  
10  
T
A
= 0°C  
T
A
= 25°C  
T
= 0°C  
A
T
= −40°C  
A
T
= 85°C  
A
I
V
= 5 mA  
CEOUT  
= 5 V  
1
0
5
0
DD  
MSWITCH = GND  
0
1
2
3
4
5
0
0.5  
1
1.5  
DD  
2
2.5  
3
3.5  
4
4.5  
5
V
CEIN  
− Chip-Enable Input Voltage − V  
V
− Supply Voltage − V  
Figure 7  
Figure 8  
www.ti.com  
14  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢇꢅ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢇꢉ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢃꢃ ꢈ ꢀ ꢁ ꢂꢃ ꢄꢅ ꢅꢆ ꢉꢅ  
ꢊꢋꢀꢀ ꢌ ꢍꢎꢏꢊꢋ ꢐꢑꢒꢁ ꢂꢒꢁ ꢌꢍꢓꢔ ꢂꢕ ꢍꢂ ꢖ ꢕꢍ ꢗ ꢕꢘꢏꢁꢕ ꢘ ꢌꢍ ꢁꢍꢕ ꢐ ꢌꢂ ꢂ ꢕ ꢍꢂ  
SLVS336B − DECEMBER 2000 − REVISED JANUARY 2007  
TYPICAL CHARACTERISTICS  
NORMALIZED THRESHOLD VOLTAGE  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
30  
25  
20  
15  
10  
5
1.001  
1
V
V
Mode  
V
Mode  
DD  
BAT  
= GND  
V
BAT  
= GND  
or  
DD  
MSWITCH = GND  
MSWITCH = GND  
= 0°C  
T
A
0.999  
0.998  
0.997  
T
A
= 25°C  
T
= 85°C  
A
T
= −40°C  
A
0.996  
0.995  
0
−40 −30 −20 −10  
0
10 20 30 40 50 60 70 80  
0
1
2
3
4
5
6
T
A
− Free-Air Temperature − °C  
V
DD  
− Supply Voltage − V  
Figure 9  
Figure 10  
HIGH-LEVEL OUTPUT VOLTAGE AT RESET  
HIGH-LEVEL OUTPUT VOLTAGE AT RESET  
vs  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
5.1  
5
6
5
4
3
2
1
0
V
V
= 5 V  
DD  
Expanded View  
= GND  
BAT  
MSWITCH = GND  
T
= −40°C  
A
T
A
= −40°C  
T
= 25°C  
A
4.9  
T
A
= 25°C  
T
A
= 0°C  
T
A
= 0°C  
4.8  
4.7  
T
A
= 85°C  
T
A
= 85°C  
V
V
= 5 V  
= GND  
MSWITCH = GND  
DD  
BAT  
4.6  
4.5  
0
−0.5 −1 −1.5 −2 −2.5 −3 −3.5 −4 −4.5 −5  
0
−5  
−10  
−15  
−20  
−25  
−30  
−35  
I − High-Level Output Current − mA  
OH  
I
− High-Level Output Current − mA  
OH  
Figure 11  
Figure 12  
www.ti.com  
15  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢅ ꢆ ꢇ ꢅꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢅ ꢆꢇ ꢉ ꢈ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢅ ꢆꢃ ꢃ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢉꢅ  
ꢊ ꢋꢀ ꢀ ꢌꢍꢎꢏꢊ ꢋ ꢐꢑ ꢒꢁ ꢂ ꢒꢁ ꢌꢍꢓ ꢔ ꢂꢕ ꢍꢂ ꢖꢕ ꢍ ꢗ ꢕ ꢘꢏꢁꢕ ꢘ ꢌꢍ ꢁꢍ ꢕꢐꢌ ꢂꢂꢕ ꢍꢂ  
SLVS336B − DECEMBER 2000 − REVISED JANUARY 2007  
TYPICAL CHARACTERISTICS  
HIGH-LEVEL OUTPUT VOLTAGE AT PFO  
HIGH-LEVEL OUTPUT VOLTAGE AT PFO  
vs  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
5.55  
5.50  
5.45  
5.40  
5.35  
5.30  
5.25  
5.20  
6
5
4
3
2
Expanded View  
T
= −40°C  
A
T
= −40°C  
A
T
A
= 25°C  
T
A
= 25°C  
T
A
= 0°C  
T
A
= 0°C  
T
A
= 85°C  
T
= 85°C  
A
V
= 5.5 V  
DD  
PFI = 1.4 V  
= GND  
V
= 5.5 V  
DD  
PFI = 1.4 V  
= GND  
1
0
V
BAT  
MSWITCH = GND  
5.15  
5.10  
V
BAT  
MSWITCH = GND  
0
−20 −40 −60 −80 −100 −120 −140160180 −200  
0
−0.5 −1  
−1.5  
−2  
−2.5  
I − High-Level Output Current − µA  
OH  
I
− High-Level Output Current − mA  
OH  
Figure 13  
Figure 14  
HIGH-LEVEL OUTPUT VOLTAGE AT CEOUT  
HIGH-LEVEL OUTPUT VOLTAGE AT CEOUT  
vs  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
3.35  
3.30  
3.25  
3.20  
3.5  
V
V
= 3.3 V  
Expanded View  
Enable Mode  
V
= 3.3 V  
(CEIN)  
(CEIN)  
= 5 V  
DD  
Enable Mode  
V
DD  
= 5 V  
MSWITCH = GND  
3
2.5  
2
MSWITCH = GND  
T
A
= −40°C  
T
= −40°C  
A
T
A
= 25°C  
T
A
= 0°C  
T
A
= 25°C  
T
= 0°C  
A
1.5  
1
T
A
= 85°C  
T
A
= 85°C  
3.15  
3.10  
0.5  
0
0
−0.5 −1 −1.5 −2 −2.5 −3 −3.5 −4 −4.5 −5  
−10  
−30  
−50 −70 −90 110 −130 −150  
I − High-Level Output Current − mA  
OH  
I
− High-Level Output Current − mA  
OH  
Figure 15  
Figure 16  
www.ti.com  
16  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢇꢅ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢇꢉ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢃꢃ ꢈ ꢀ ꢁ ꢂꢃ ꢄꢅ ꢅꢆ ꢉꢅ  
ꢊꢋꢀꢀ ꢌ ꢍꢎꢏꢊꢋ ꢐꢑꢒꢁ ꢂꢒꢁ ꢌꢍꢓꢔ ꢂꢕ ꢍꢂ ꢖ ꢕꢍ ꢗ ꢕꢘꢏꢁꢕ ꢘ ꢌꢍ ꢁꢍꢕ ꢐ ꢌꢂ ꢂ ꢕ ꢍꢂ  
SLVS336B − DECEMBER 2000 − REVISED JANUARY 2007  
TYPICAL CHARACTERISTICS  
HIGH-LEVEL OUTPUT VOLTAGE AT CEOUT  
HIGH-LEVEL OUTPUT VOLTAGE AT CEOUT  
vs  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
3.5  
3.4  
3.3  
3.2  
3.1  
3.5  
V
V
= open  
Expanded View  
Disable Mode  
(CEIN)  
= 1.65 V  
DD  
MSWITCH = GND  
3
T
A
= −40°C  
T = −40°C  
A
2.5  
T
A
= 25°C  
T
A
= 25°C  
T
A
= 0°C  
2
T
A
= 0°C  
1.5  
T
= 85°C  
A
3
2.9  
2.8  
2.7  
T
= 85°C  
A
1
0.5  
0
Disable Mode  
V
V
= open  
(CEIN)  
= 1.65 V  
DD  
MSWITCH = GND  
0 −0.1 −0.2 −0.3 −0.4 −0.5 −0.6 −0.7 −0.8 −0.9 −1  
0
−0.5 −1 −1.5 −2 −2.5 −3 −3.5 −4 −4.5  
I − High-Level Output Current − mA  
OH  
I
− High-Level Output Current − mA  
OH  
Figure 17  
Figure 18  
LOW-LEVEL OUTPUT VOLTAGE AT RESET  
LOW-LEVEL OUTPUT VOLTAGE AT RESET  
vs  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
500  
3.5  
3
Expanded View  
V
V
= 3.3 V  
= GND  
DD  
BAT  
T = 85°C  
A
V
V
= 3.3 V  
DD  
MSWITCH = GND  
400  
300  
200  
100  
0
= GND  
BAT  
MSWITCH = GND  
2.5  
2
T
= 25°C  
A
T
= 0°C  
A
T
A
= 0°C  
T
= 25°C  
A
1.5  
1
T
= 85°C  
A
T
A
= −40°C  
T
= −40°C  
A
0.5  
0
1
2
3
4
5
0
0
5
10  
15  
20  
25  
I − Low-Level Output Current − mA  
OL  
I
− Low-Level Output Current − mA  
OL  
Figure 19  
Figure 20  
www.ti.com  
17  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢅ ꢆ ꢇ ꢅꢈ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢅ ꢆꢇ ꢉ ꢈ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢅ ꢆꢃ ꢃ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢉꢅ  
ꢊ ꢋꢀ ꢀ ꢌꢍꢎꢏꢊ ꢋ ꢐꢑ ꢒꢁ ꢂ ꢒꢁ ꢌꢍꢓ ꢔ ꢂꢕ ꢍꢂ ꢖꢕ ꢍ ꢗ ꢕ ꢘꢏꢁꢕ ꢘ ꢌꢍ ꢁꢍ ꢕꢐꢌ ꢂꢂꢕ ꢍꢂ  
SLVS336B − DECEMBER 2000 − REVISED JANUARY 2007  
TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE AT CEOUT  
LOW-LEVEL OUTPUT VOLTAGE AT CEOUT  
vs  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
140  
120  
3.5  
3
V
V
= GND  
Enable Mode  
Expanded View  
(CEIN)  
= 5 V  
Enable Mode  
DD  
V
V
= GND  
MSWITCH = GND  
(CEIN)  
= 5 V  
DD  
T
A
= 85°C  
MSWITCH = GND  
2.5  
2
100  
80  
T
= 85°C  
A
T
= 25°C  
A
T
A
= 25°C  
T
A
= 0°C  
T
A
= 0°C  
60  
1.5  
1
T
A
= −40°C  
T
A
= −40°C  
40  
20  
0
0.5  
0
0
1
2
3
4
5
10 20 30 40 50 60 70 80 90 100  
0
I − Low-Level Output Current − mA  
OL  
I
− Low-Level Output Current − mA  
OL  
Figure 21  
Figure 22  
LOW-LEVEL OUTPUT VOLTAGE AT BATTON  
LOW-LEVEL OUTPUT VOLTAGE AT BATTON  
vs  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
3.5  
3
400  
350  
300  
250  
200  
150  
100  
Enable Mode  
V
V
= 3.3 V  
Enable Mode  
Expanded View  
DD  
V
V
= 3.3 V  
DD  
= GND  
BAT  
= GND  
BAT  
MSWITCH = GND  
MSWITCH = GND  
T
A
= 85°C  
2.5  
2
T
= 85°C  
A
T
= 25°C  
A
T
= 0°C  
A
T
A
= 0°C  
T
A
= 25°C  
1.5  
1
T
A
= −40°C  
T
A
= −40°C  
0.5  
0
50  
0
5
10  
15  
20  
25  
30  
0
0
1
2
3
4
5
I
− Low-Level Output Current − mA  
OL  
I
− Low-Level Output Current − mA  
OL  
Figure 23  
Figure 24  
www.ti.com  
18  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢇꢅ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢇꢉ ꢈ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢅ ꢆ ꢃꢃ ꢈ ꢀ ꢁ ꢂꢃ ꢄꢅ ꢅꢆ ꢉꢅ  
ꢋꢀꢀ  
ꢍꢎꢏ  
ꢍꢓ  
ꢕꢍ  
ꢕꢘꢏ  
ꢌꢂ  
ꢍꢂ  
SLVS336B − DECEMBER 2000 − REVISED JANUARY 2007  
TYPICAL CHARACTERISTICS  
TPS3600D50  
MINIMUM PULSE DURATION AT V  
vs  
DD  
THRESHOLD OVERDRIVE AT V  
DD  
10  
9
8
7
6
5
4
3
2
1
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
V
T(0)  
− Threshold Overdrive at V  
− V  
DD  
Figure 25  
TPS3600D50  
MINIMUM PULSE DURATION AT PFI  
vs  
THRESHOLD OVERDRIVE AT PFI  
5
4.6  
4.2  
3.8  
3.4  
3
V
DD  
= 1.65 V  
2.6  
2.2  
1.8  
1.4  
1
0.6  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Threshold Overdrive at PFI − V  
Figure 26  
www.ti.com  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Nov-2006  
PACKAGING INFORMATION  
Orderable Device  
TPS3600D20PW  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TSSOP  
PW  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS3600D20PWG4  
TPS3600D20PWR  
TPS3600D20PWRG4  
TPS3600D25PW  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS3600D25PWG4  
TPS3600D25PWR  
TPS3600D25PWRG4  
TPS3600D33PW  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS3600D33PWG4  
TPS3600D33PWR  
TPS3600D33PWRG4  
TPS3600D50PW  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS3600D50PWG4  
TPS3600D50PWR  
TPS3600D50PWRG4  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Nov-2006  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-May-2007  
TAPE AND REEL INFORMATION  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-May-2007  
Device  
Package Pins  
Site  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) (mm) Quadrant  
(mm)  
(mm)  
TPS3600D20PWR  
TPS3600D25PWR  
TPS3600D33PWR  
TPS3600D50PWR  
PW  
PW  
PW  
PW  
14  
14  
14  
14  
FRB  
FRB  
FRB  
FRB  
0
0
0
0
0
0
0
0
7.0  
7.0  
7.0  
7.0  
5.6  
5.6  
5.6  
5.6  
1.6  
1.6  
1.6  
1.6  
8
8
8
8
12  
12  
12  
12  
Q1  
Q1  
Q1  
Q1  
TAPE AND REEL BOX INFORMATION  
Device  
Package  
Pins  
Site  
Length (mm) Width (mm) Height (mm)  
TPS3600D20PWR  
TPS3600D25PWR  
TPS3600D33PWR  
TPS3600D50PWR  
PW  
PW  
PW  
PW  
14  
14  
14  
14  
FRB  
FRB  
FRB  
FRB  
342.9  
342.9  
342.9  
342.9  
336.6  
336.6  
336.6  
336.6  
20.6  
20.6  
20.6  
20.6  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-May-2007  
Pack Materials-Page 3  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,  
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.  
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s  
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should  
provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask  
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services  
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such  
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under  
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an  
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service  
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business  
practice. TI is not responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would  
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement  
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications  
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related  
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any  
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its  
representatives against any damages arising out of the use of TI products in such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is  
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in  
connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products  
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any  
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Applications  
Audio  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/audio  
Automotive  
Broadband  
Digital Control  
Military  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
interface.ti.com  
logic.ti.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/lpw  
Telephony  
Low Power  
Wireless  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

TPS3600D25PWRG4

BATTERY-BACKUP SUPERVISORS FOR LOW-POWER PROCESSORS
TI

TPS3600D33

BATTERY-BACKUP SUPERVISORS FOR LOW-POWER PROCESSORS
TI

TPS3600D33PW

BATTERY-BACKUP SUPERVISORS FOR LOW-POWER PROCESSORS
TI

TPS3600D33PWG4

BATTERY-BACKUP SUPERVISORS FOR LOW-POWER PROCESSORS
TI

TPS3600D33PWLE

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO14, PLASTIC, TSSOP-14
TI

TPS3600D33PWR

BATTERY-BACKUP SUPERVISORS FOR LOW-POWER PROCESSORS
TI

TPS3600D33PWRG4

BATTERY-BACKUP SUPERVISORS FOR LOW-POWER PROCESSORS
TI

TPS3600D50

BATTERY-BACKUP SUPERVISORS FOR LOW-POWER PROCESSORS
TI

TPS3600D50PW

BATTERY-BACKUP SUPERVISORS FOR LOW-POWER PROCESSORS
TI

TPS3600D50PWG4

BATTERY-BACKUP SUPERVISORS FOR LOW-POWER PROCESSORS
TI

TPS3600D50PWLE

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO14, PLASTIC, TSSOP-14
TI

TPS3600D50PWR

BATTERY-BACKUP SUPERVISORS FOR LOW-POWER PROCESSORS
TI