TPS259827ONRGER [TI]

具有精确负载电流监测和可调节瞬态故障管理功能的 2.7V 至 24V、2.7mΩ、15A 电子保险丝 | RGE | 24 | -40 to 125;
TPS259827ONRGER
型号: TPS259827ONRGER
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有精确负载电流监测和可调节瞬态故障管理功能的 2.7V 至 24V、2.7mΩ、15A 电子保险丝 | RGE | 24 | -40 to 125

电子
文件: 总55页 (文件大小:5979K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS25982  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
具有 1.5% 精确负载电流监测和可调节瞬态故障管理功能的 TPS25982  
2.7V 24V15A2.7mΩ 智能电子保险丝  
1 特性  
3 说明  
1
宽输入电压范围:2.7V 24V  
绝对最大值为 30V  
TPS25982 系列电子保险丝是采用小型封装的高度集  
成电路保护和电源管理解决方案。这些器件可在宽输入  
电压范围内工作。单个器件适用于需要最小 I*R 压降的  
低电压系统以及需要低功率耗散的高电压、高电流系  
统。它们能够非常有效地抵御过载、短路、电压浪涌和  
过多浪涌电流。  
低导通电阻:RON = 2.7mΩ(典型值)  
可调节电流限制阈值  
范围:2A 15A  
精度:± 8%ILIM > 5A 时的典型值)  
断路器和限流器选项  
过压事件受内部截止电路的限制,可通过多个器件选项  
来选择过压阈值。  
可调节过流消隐计时器  
处理负载瞬态而不跳变  
精确的电流监视器输出  
± 1.5%25°C IOUT > 3A 时的典型值)  
用户可配置的故障响应  
存在多种器件选项,可在过流情况响应、断路器或有源  
限流器之间进行选择。可以使用单个外部电阻器来设置  
过流限值和快速跳变(短路)阈值。这些器件通过区分  
瞬态事件和实际故障来智能地管理过流响应,从而允许  
系统在线路和负载瞬变期间不间断运行,而不会影响故  
障保护的稳健性。可将该器件配置为在故障关闭后保持  
闭锁或自动重试。可使用电容器来配置自动重试次数和  
重试延迟。这使远程系统能够自动从临时故障中恢复,  
同时确保电源不会因持续的故障而无限期地承受应力。  
闭锁或自动重试  
重试次数(有限或无限)  
重试之间的延迟  
强大的短路保护  
快速跳变响应时间 < 400ns(典型值)  
完成 100 万次电源短路事件测试  
不受线路瞬变影响 - 无干扰性跳变  
TPS25982 器件采用 4mm × 4mm 小型 QFN 封装。这  
些器件的额定工作结温范围为 –40˚C 125˚C。  
可调节的输出压摆率控制 (dVdt) 控制  
可调节的欠压锁定  
器件信息(1)  
过压锁定(固定 3.7V7.6V 16.9V 且无 OVLO  
选项)  
器件型号  
TPS25982  
封装  
QFN (24)  
封装尺寸(标称值)  
4.0mm × 4.0mm  
集成式过热保护  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
电源正常状态指示  
可调节的负载检测和握手计时器  
UL 2367 认证  
简化电路原理图  
TPS25982  
Power  
Supply  
文件编号E339631  
ILIM 182Ω  
IN  
OUT  
VPG  
RPG  
LDSTRT  
RVL1  
R
EN/UVLO  
NRETRY  
PG  
IMON  
IEC 62368 CB 认证  
CL  
RL  
CIN  
RETRY_DLY  
dVdt  
小尺寸:4mm × 4mm QFN 封装  
*
*
CNRETRY  
CLDSTRT  
RVL2  
GND ITIMER  
ILIM  
RILIM  
CdVdt  
*
CRETRY_DLY  
RIMON  
*
CITIMER  
2 应用  
* Optional components for extended functionality  
热插拔  
服务器待机电源轨、PCIe 转接卡、附加卡和风扇  
模块保护  
路由器和开关光学模块保护  
工业 PC  
数字电视  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEI3  
 
 
 
 
TPS25982  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
目录  
8.5 Device Functional Modes........................................ 29  
Application and Implementation ........................ 31  
9.1 Application Information............................................ 31  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
器件比较............................................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 7  
7.6 Timing Requirements................................................ 8  
7.7 Switching Characteristics.......................................... 9  
7.8 Typical Characteristics............................................ 10  
Detailed Description ............................................ 17  
8.1 Overview ................................................................. 17  
8.2 Functional Block Diagram ....................................... 17  
8.3 Feature Description................................................. 18  
8.4 Fault Response ...................................................... 27  
9
9.2 Typical Application: Standby Power Rail Protection in  
Datacenter Servers ................................................. 31  
9.3 System Examples ................................................... 38  
10 Power Supply Recommendations ..................... 42  
10.1 Transient Protection.............................................. 42  
10.2 Output Short-Circuit Measurements ..................... 43  
11 Layout................................................................... 44  
11.1 Layout Guidelines ................................................. 44  
11.2 Layout Example .................................................... 45  
12 器件和文档支持 ..................................................... 46  
12.1 文档支持 ............................................................... 46  
12.2 接收文档更新通知 ................................................. 46  
12.3 社区资源................................................................ 46  
12.4 ....................................................................... 46  
12.5 静电放电警告......................................................... 46  
12.6 Glossary................................................................ 46  
13 机械、封装和可订购信息....................................... 46  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (June 2019) to Revision B  
Page  
Change Overtemperature Protection IdVdt min from 3.55 µA to 2 µA in the Electrical Characteristics table.......................... 5  
Changes from Original (October 2018) to Revision A  
Page  
已更改 将高级信息更改为生产数据” ................................................................................................................................... 1  
2
版权 © 2018–2020, Texas Instruments Incorporated  
 
TPS25982  
www.ti.com.cn  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
5 器件比较表  
过压锁定阈值  
典型值 (V)  
3.7  
器件型号  
过流响应  
TPS259822LNRGE  
TPS259823LNRGE  
TPS259824LNRGE  
TPS259827LNRGE  
TPS259822ONRGE  
TPS259823ONRGE  
TPS259824ONRGE  
TPS259827ONRGE  
有源限流器  
有源限流器  
有源限流器  
有源限流器  
断路器  
7.6  
16.9  
OVLO  
3.7  
7.6  
断路器  
16.9  
断路器  
OVLO  
断路器  
Copyright © 2018–2020, Texas Instruments Incorporated  
3
 
TPS25982  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
6 Pin Configuration and Functions  
RGE  
24-Pin QFN  
Top View  
18  
17  
OUT  
OUT  
IN  
IN  
1
2
IN  
IN  
IN  
Thermal Pad 1  
16  
15  
14  
13  
3
4
5
6
dVdt  
GND  
GND  
GND  
GND  
Thermal Pad 2  
EN/UVLO  
PG  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
17, 18, 19,  
20, 21, 22,  
23, 24  
OUT  
Power  
Power Output  
1, 2, 3, 16,  
Pad 1  
Thermal /  
Power  
Power Input. The exposed pad must be soldered to input power plane uniformly to ensure  
proper heat dissipation and to maintain optimal current distribution through the device.  
IN  
4, 5, 14,  
Pad 2  
GND  
Ground  
Connect to System Ground  
Active High Enable for the device. A resistor divider on this pin from input supply to GND can  
be used to adjust the Undervoltage Lockout threshold. Do not leave floating.  
EN/UVLO  
6
Analog Input  
A capacitor from this pin to GND sets the overcurrent blanking interval during which the  
output current can temporarily exceed set current limit (but lower than fast-trip threshold)  
before the device overcurrent response takes action. Leave this pin open for fastest  
response to overcurrent events. Refer to ITIMER Functional Mode Summary for more  
details.  
Analog  
Output  
ITIMER  
7
Analog  
Output  
An external resistor from this pin to GND sets the output current limit threshold and fast trip  
threshold. Do not leave floating.  
ILIM  
8
9
Analog output load current monitor. This pin sources a current proportional to the load  
current. This can be converted to a voltage signal by connecting an appropriate resistor from  
this pin to GND.  
Analog  
Output  
IMON  
A capacitor from this pin to GND sets the time period that has to elapse after a fault  
shutdown before the device attempts to restart automatically. Connect this pin to GND for  
latch-off operation (no auto-retries) after a fault. Refer to Fault Response section for more  
details.  
Analog  
Output  
RETRY_DLY  
NRETRY  
10  
11  
A capacitor from this pin to GND sets the number of times the part attempts to restart  
automatically after shutdown due to fault. Connect this pin to GND if the part should retry  
indefinitely. Refer to Fault Response section for more details.  
Analog  
Output  
4
Copyright © 2018–2020, Texas Instruments Incorporated  
TPS25982  
www.ti.com.cn  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
Load Detect/Handshake Signal. A capacitor from this pin to GND sets the time period after  
PG assertion within which the pin has to be pulled low for the device to remain ON. Connect  
to GND if the load detect/handshake feature is not used. Refer to Load Detect/Handshake  
(LDSTRT) section for more details. Do not leave floating.  
LDSTRT  
12  
Analog Input  
Active High Power Good Indication. This pin is asserted when the FET is fully enhanced and  
PG  
13  
15  
Digital Output output has reached maximum voltage. It is an open drain output that requires an external  
pull-up resistor to an external supply. This pin remains logic low when VIN < VUVP  
.
Analog  
Output  
A capacitor from this pin to GND sets the output turn on slew rate. Leave this pin floating for  
the fastest slew rate during start up.  
dVdt  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
Parameter  
Pin  
MIN  
–0.3  
–0.8  
–0.3  
MAX UNIT  
VIN  
Maximum Input Voltage Range  
Maximum Output Voltage Range  
Maximum Enable Pin Voltage Range  
Maximum LDSTRT Pin Voltage Range  
Maximum dVdt Pin Voltage Range  
Maximum PG Pin Voltage Range  
Maximum ITIMER Pin Voltage Range  
Maximum NRETRY Pin Voltage Range  
Maximum RETRY_DLY Pin Voltage Range  
Maximum Continuous Switch Current  
Junction temperature  
IN  
30  
V
V
V
V
V
V
V
V
V
A
°C  
VOUT  
OUT  
min (30V, VIN + 0.3)  
VEN/UVLO  
VLDSTRT  
VdVdt  
EN/UVLO  
LDSTRT  
dVdt  
7
7
Internally Limited  
–0.3  
VPG  
PG  
7
VITIMER  
VNRETRY  
VRETRY_DLY  
IMAX  
ITIMER  
NRETRY  
RETRY_DLY  
IN to OUT  
Internally Limited  
Internally Limited  
Internally Limited  
Internally Limited  
Internally Limited  
TJ  
TLEAD  
Tstg  
Maximum Soldering Temperature  
Storage temperature  
300 °C  
150 °C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
± 2000  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specificationJESD22-C101, all pins(2)  
± 1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2018–2020, Texas Instruments Incorporated  
5
TPS25982  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
Parameter  
Pin  
MIN  
MAX  
UNIT  
V
VIN  
Input Voltage Range  
IN  
2.7  
24  
VIN + 0.3  
6(1)  
VOUT  
Output Voltage Range  
OUT  
V
VEN/UVLO  
VLDSTRT  
VdVdT  
Enable Pin Voltage Range  
EN/UVLO  
LDSTRT  
dVdt  
V
LDSTRT Pin Capacitor Voltage Rating  
dVdT Pin Capacitor Voltage Rating  
PG Pin Voltage Range  
4
V
VIN + 4  
V
VPG  
PG  
6(2)  
V
VITIMER  
VNRETRY  
VRETRY_DLY  
RILIM  
ITIMER Pin Capacitor Voltage Rating  
NRETRY Pin Capacitor Voltage Rating  
RETRY_DLY Pin Capacitor Voltage Rating  
ILIM Pin Resistor  
ITIMER  
NRETRY  
4
4
V
V
RETRY_DLY  
ILIM  
4
V
82  
1650  
15  
A
IMAX  
Continuous Switch Current  
Junction temperature  
IN to OUT  
TJ  
–40  
125  
°C  
(1) For supply voltages below 6V, it is okay to pull up the EN pin to IN directly. For supply voltages greater than 6V, it is recommended  
to use an appropriate resistor divider between IN, EN and GND to ensure the voltage at the EN pin is within the specified limits.  
(2) For supply voltages below 6V, it is okay to pull up the PG pin to IN/OUT through a resistor. For supply voltages greater than 6V, it is  
recommended to use a stepped down power supply to ensure the voltage at the PG pin is within the specified limits.  
7.4 Thermal Information  
TPS25982X  
THERMAL METRIC(1) (2)  
RGE (QFN)  
24 PINS  
34.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
36.7  
11.2  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
3
ΨJB  
11.2  
RθJC(bot)  
1.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Based on simulations conducted with the device mounted on a JEDEC 4-layer PCB (2s2p) with minimum recommended pad size (2 oz  
Cu) and 3x2 via array.  
6
Copyright © 2018–2020, Texas Instruments Incorporated  
TPS25982  
www.ti.com.cn  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
7.5 Electrical Characteristics  
(Test conditions unless otherwise noted) –40°C TJ 125°C, VIN = 12 V for TPS259824x/7x, 5 V for TPS259823x, 3.3 V for  
TPS259822x, VEN/UVLO = 2 V, RILIM = 1650 Ω , CdVdT = Open, OUT = Open. All voltages referenced to GND.  
PARAMETER  
INPUT SUPPLY (IN)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN  
IQ  
Input Voltage Range  
IN Quiescent Current  
2.7  
24  
1200  
300  
20  
V
µA  
µA  
µA  
V
V
EN VUVLO(R)  
800  
204  
VSD < VEN < VUVLO  
VEN < VSD  
ISD  
IN Shutdown Current  
3.67  
2.53  
2.42  
VIN Rising  
2.46  
2.35  
2.6  
IN Undervoltage Protection  
Threshold  
VUVP  
VIN Falling  
2.49  
V
OVERVOLTAGE PROTECTION (IN)  
TPS259822x, VIN Rising  
TPS259823x, VIN Rising  
TPS259824x, VIN Rising  
TPS259822x, VIN Falling  
TPS259823x, VIN Falling  
TPS259824x, VIN Falling  
3.62  
7.39  
3.7  
7.6  
3.76  
7.76  
V
V
V
V
V
V
VOVP(R)  
16.32  
3.52  
16.9  
3.6  
17.31  
3.66  
Overvoltage Protection Threshold  
VOVP(F)  
7.22  
7.4  
7.55  
15.80  
16.4  
16.81  
OUTPUT CURRENT MONITOR (IMON)  
3 A IOUT min(15 A, ILIM), –40 °C ≤  
GIMON  
Current Monitor Gain (IIMON:IOUT  
)
238.6  
246  
253.4  
µA/A  
TA 75 °C  
OUTPUT CURRENT LIMIT (ILIM)  
RILIM = 773 , TJ = 25  
RILIM = 773 , TJ = -40 to 125 ℃  
RILIM = 300 , TJ = 25 ℃  
RILIM = 300 , TJ = -40 to 125 ℃  
RILIM = 182 , TJ = 25 ℃  
RILIM = 182 , TJ = -40 to 125 ℃  
RILIM = 100 , TJ = 25 ℃  
RILIM = 100 , TJ = -40 to 125 ℃  
RILIM = Open  
1.76  
1.53  
2
2
2.17  
2.43  
A
A
A
A
A
A
A
A
A
4.75  
4.98  
4.98  
8.13  
8.13  
14.71  
14.71  
0
5.23  
4.36  
5.66  
ILIM  
IOUT Current Limit Threshold  
7.77  
8.54  
7.23  
9.07  
13.56  
12.85  
15.66  
15.99  
IOUT Circuit Breaker Threshold  
During ILIM pin Short to GND  
Condition (Single point failure)  
ICB  
ISC  
RILIM = Short to GND, TJ = 25 ℃  
20  
A
Short-circuit Fast Trip Threshold  
210  
2.7  
% ILIM  
ON-RESISTANCE (IN - OUT)  
TJ = 25 , IOUT = 2 A  
3.2  
4.5  
mΩ  
mΩ  
RON ON State Resistance  
TJ = -40 to 125 , IOUT = 2 A  
ENABLE / UNDERVOLTAGE LOCKOUT (EN/UVLO)  
VUVLO(R)  
VEN Rising  
VEN Falling  
1.18  
1.08  
1.2  
1.1  
1.23  
1.13  
V
V
EN/UVLO Pin Voltage Threshold  
VUVLO(F)  
EN/UVLO Pin Voltage Threshold for  
Lowest Shutdown Current  
VSD  
VEN Falling  
0.59  
0.8  
V
IENLKG  
EN/UVLO Pin Leakage Current  
0.1  
µA  
POWER GOOD INDICATION (PG)  
VIN < VUVP, VEN < VSD, IPG = 26 µA  
VIN = 3.3V, IPG 5 mA  
651  
320  
100  
786  
mV  
mV  
mV  
PG Pin Low Voltage (PG de-  
asserted)  
VPGD  
VIN 5V, IPG 5 mA  
PG Pin Leakage Current (PG  
asserted)  
IPGLKG  
PG pulled up to 5 V through 10 kΩ  
1.7  
µA  
RON(PGA)  
RON When PG is asserted  
4.2  
mΩ  
Copyright © 2018–2020, Texas Instruments Incorporated  
7
TPS25982  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
Electrical Characteristics (continued)  
(Test conditions unless otherwise noted) –40°C TJ 125°C, VIN = 12 V for TPS259824x/7x, 5 V for TPS259823x, 3.3 V for  
TPS259822x, VEN/UVLO = 2 V, RILIM = 1650 Ω , CdVdT = Open, OUT = Open. All voltages referenced to GND.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN - VOUT Threshold when PG is  
de-asserted  
VPGTHD  
0.224  
0.326  
0.450  
V
AUTO-RETRY DELAY INTERVAL (RETRY_DLY)  
VRETRY_DLY(R)  
VRETRY_DLY(F)  
VRETRY_DLY_HY  
1.1  
V
V
RETRY_DLY Oscillator Comparator  
Threshold  
0.35  
RETRY_DLY Oscillator Hysteresis  
RETRY_DLY Pin Bias Current  
0.65  
1.7  
0.75  
2.05  
0.85  
2.5  
V
S
IRETRY_DLY  
µA  
NUMBER OF AUTO-RETRIES (NRETRY)  
VNRETRY(R)  
VNRETRY(F)  
VNRETRY_HYS  
INRETRY  
1.1  
0.35  
0.75  
2.05  
V
V
NRETRY Oscillator Comparator  
Threshold  
NRETRY Oscillator Hysteresis  
NRETRY Pin Bias Current  
0.65  
1.7  
0.85  
2.5  
V
µA  
CURRENT FAULT TIMER (ITIMER)  
IITIMER  
RITIMER  
VINT  
ITIMER Discharge Current  
ISC > IOUT > ILIM  
1.4  
2.1  
23  
2.8  
µA  
kΩ  
V
ITIMER Internal Pull-up Resistance IOUT < ILIM  
ITIMER Pin Default Voltage  
IOUT < ILIM  
2.5  
ITIMER Comparator Falling  
Threshold  
VITIMER  
ISC > IOUT > ILIM, ITIMER Voltage Rising  
1.53  
0.98  
V
V
ITIMER Comparator Voltage  
Threshold Delta  
ΔVITIMER  
ISC > IOUT > ILIM, ITIMER Voltage Falling  
0.7  
1.3  
LDSTRT  
VLDSTRT  
ILDSTRT  
LDSTRT Rising Threshold  
LDSTRT Charging Current  
LDSTRT voltage rising  
PG asserted  
1.1  
1.7  
1.21  
2.05  
1.3  
2.4  
V
µA  
LDSTRT Internal Pull-down  
Resistance  
RLDSTRT  
31  
OVERTEMPERATURE PROTECTION  
TSD  
Thermal Shutdown Threshold  
TJ Rising  
TJ Falling  
150  
10  
°C  
°C  
TSDHys  
dVdt  
IdVdt  
Thermal Shutdown Hysteresis  
dVdt Pin Charging Current  
2
4.6  
6.33  
µA  
7.6 Timing Requirements  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX  
UNIT  
VIN > VOVLO(R) to VOUT, TPS259822x  
VIN > VOVLO(R) to VOUT, TPS259823x  
VIN > VOVLO(R) to VOUT, TPS259824x  
IOUT > ILIM + 30% and ITIMER expired to  
1.5  
5
µs  
µs  
µs  
(1)  
tOVP  
Overvoltage Protection Response Time  
5
(2)  
tLIM  
tSC  
Current Limit Response Time  
Short Circuit Response Time  
270  
400  
120  
µs  
ns  
µs  
IOUT ILIM  
IOUT > 3 x ILIM to VOUT turned OFF  
VG > (VIN + 3.6V) to PGor (VIN - VOUT)>  
VPGTHD to PG↓  
(3)  
tPGD  
PG Assertion/De-assertion De-glitch  
(1) Please refer to Fig. 43  
(2) Please refer to Fig. 45  
(3) Please refer to Fig. 47  
8
Copyright © 2018–2020, Texas Instruments Incorporated  
TPS25982  
www.ti.com.cn  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
7.7 Switching Characteristics  
The output rising slew rate is internally controlled and constant across the entire operating voltage range to ensure the turn  
on timing is not affected by the load conditions. The rising slew rate can be adjusted by adding capacitance from the dVdt pin  
to ground. As CdVdt is increased it will slow the rising slew rate (SR). See Slew Rate and Inrush Current Control (dVdt) section  
for more details. The Turn-Off Delay and Fall Time, however, are dependent on the RC time constant of the load capacitance  
(COUT) and Load Resistance (RL). The Switching Characteristics are only valid for the power-up sequence where the supply is  
available in steady state condition and the load voltage is completely discharged before the device is enabled.Typical Values  
are taken at TJ = 25°C unless specifically noted otherwise. RL = 3.6 , COUT = 1 mF  
CdVdt  
6800pF  
=
PARAMETER  
VIN  
CdVdt = Open CdVdt = 3300pF  
UNIT  
2.7 V  
12 V  
24 V  
2.7 V  
12 V  
24 V  
2.7 V  
12 V  
24 V  
2.7 V  
12 V  
24 V  
2.7 V  
12 V  
24 V  
6.26  
7.35  
7.4  
1.39  
1.4  
0.68  
SRON  
tD,ON  
tR  
Output Rising slew rate  
0.68  
0.68  
1.7  
V/ms  
1.4  
1.3  
1.49  
2.1  
Turn on delay  
Rise time  
1.24  
1.2  
3.01  
4.74  
3.35  
14.41  
28.41  
5.05  
17.42  
33.15  
152  
ms  
ms  
ms  
µs  
2.91  
1.63  
6.99  
13.77  
3.12  
9.09  
16.68  
152  
0.67  
1.35  
2.66  
1.97  
2.59  
3.86  
151  
212  
262  
tON  
Turn on time  
Turn off delay  
tD,OFF  
212  
212  
262  
262  
VEN/UVLO  
EN/UVLO  
VUVLO(R)  
VUVLO(F)  
0
tON  
SRON  
tD,OFF  
90%  
VIN  
OUT  
10%  
0V  
tR  
tD,ON  
tF  
Time  
1. TPS25982 Switching Times  
版权 © 2018–2020, Texas Instruments Incorporated  
9
TPS25982  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
7.8 Typical Characteristics  
4
2.56  
2.54  
2.52  
2.5  
VIN  
2.7 V  
3.3 V  
5 V  
12 V  
24 V  
3.8  
3.6  
3.4  
3.2  
3
2.48  
2.46  
2.44  
2.42  
2.4  
Rising  
Falling  
2.8  
2.6  
2.4  
2.2  
2
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ (èC)  
TJ (èC)  
D006  
D007  
2. ON Resistance vs Temperature  
3. Supply UVP Threshold vs Temperature  
7.625  
3.7  
3.68  
3.66  
3.64  
3.62  
3.6  
7.6  
7.575  
Rising  
Falling  
Rising  
Falling  
7.55  
7.525  
7.5  
7.475  
7.45  
7.425  
7.4  
3.58  
7.375  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ (èC)  
TJ (èC)  
D001  
D003  
TPS259822x Variants  
TPS259823x Variants  
4. Supply OVP Threshold vs Temperature  
5. Supply OVP Threshold vs Temperature  
16.9  
16.85  
16.8  
1.21  
1.2  
1.19  
1.18  
1.17  
16.75  
16.7  
Rising  
Falling  
16.65  
16.6  
1.16  
1.15  
1.14  
1.13  
1.12  
1.11  
1.1  
Rising  
Falling  
16.55  
16.5  
16.45  
16.4  
16.35  
16.3  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ (èC)  
TJ (èC)  
D009  
D008  
TPS259824x Variants  
6. Supply OVP Threshold vs Temperature  
7. EN/UVLO Threshold vs Temperature  
0.875  
0.85  
900  
VIN  
2.7 V  
12 V  
875  
850  
0.825  
24 V  
825  
VIN  
0.8  
3.3 V  
12 V  
24 V  
800  
775  
750  
725  
700  
675  
650  
0.775  
0.75  
0.725  
0.7  
0.675  
0.65  
0.625  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ (èC)  
TJ (èC)  
D002  
D014  
VENUVLO = 2 V, OUT = Open  
8. Quiescent Current vs Temperature  
9. EN/UVLO Falling Threshold for Lowest Current  
Consumption  
10  
版权 © 2018–2020, Texas Instruments Incorporated  
TPS25982  
www.ti.com.cn  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
Typical Characteristics (接下页)  
240  
12  
10  
8
VIN  
2.7 V  
VIN  
235  
230  
225  
220  
215  
210  
205  
200  
195  
190  
185  
180  
175  
170  
165  
160  
2.7 V  
12 V  
24 V  
12 V  
24 V  
6
4
2
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ(èC)  
TJ (èC)  
D004  
D005  
VENUVLO = 1 V, OUT = Open  
VENUVLO = 0 V, OUT = Open  
10. Shut-Down Current vs Temperature  
11. Deep Shut-Down Current vs Temperature  
25  
20  
18  
16  
14  
12  
10  
8
MIN  
MAX  
20  
15  
10  
5
0
-5  
6
-10  
-15  
-20  
-25  
4
2
0
0
200 400 600 800 1000 1200 1400 1600 1800  
RILIM (W)  
0
2
4
6
8
ILIM (A)  
10  
12  
14  
16  
D010  
D011  
Across Process, Voltage, Temperature Corners  
12. Output Current Limit (ILIM) vs RILIM  
13. Output Current Limit (ILIM) Accuracy  
3
2.5  
2
900  
IPG  
26uA  
242uA  
850  
800  
750  
700  
650  
600  
550  
500  
1.5  
1
0.5  
0
MIN  
MAX  
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
-3.5  
-4  
0
2
4
6
8
IOUT (A)  
10  
12  
14  
16  
-40  
-20  
0
20  
40  
TJ (èC)  
60  
80  
100 120 140  
D012  
D015  
Across Process, Voltage, Temperature Corners, Normalized to  
VIN = 0 V  
mean value of 246 μA/A  
15. Power Good Output Voltage (De-asserted State) vs  
14. Output Current Monitor Gain (GIMON) Accuracy  
Temperature  
2.2  
2.18  
2.16  
2.14  
2.12  
2.1  
1.0025  
1
0.9975  
0.995  
0.9925  
0.99  
0.9875  
0.985  
2.08  
2.06  
0.9825  
2.04  
VIN  
VIN  
0.98  
0.9775  
0.975  
2.02  
2
2.7 V  
12 V  
24 V  
2.7 V  
12 V  
24 V  
1.98  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ (èC)  
TJ (èC)  
D016  
D019  
16. ITIMER Voltage Threshold Delta vs Temperature  
17. ITIMER Discharge Current vs Temperature  
版权 © 2018–2020, Texas Instruments Incorporated  
11  
TPS25982  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
1.215  
1.213  
1.211  
1.209  
1.207  
1.205  
2.16  
2.14  
2.12  
2.1  
VIN  
2.7 V  
12 V  
24 V  
2.08  
2.06  
2.04  
VIN  
2.02  
2.7 V  
12 V  
24 V  
2
1.98  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ (èC)  
TJ (èC)  
D020  
D021  
18. LDSTRT Charging Current vs Temperature  
19. LDSTRT Threshold Voltage vs Temperature  
5
2.16  
VIN  
2.14  
2.12  
2.1  
2.7 V  
12 V  
24 V  
4.8  
4.6  
2.08  
2.06  
2.04  
2.02  
2
4.4  
VIN  
4.2  
2.7 V  
12 V  
24 V  
4
-40  
1.98  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ (èC)  
TJ (èC)  
D022  
D024  
20. DVDT Charging Current vs Temperature  
0.76  
21. RETRY_DLY Bias Current vs Temperature  
2.14  
2.12  
2.1  
VIN  
2.7 V  
12 V  
0.758  
0.756  
24 V  
0.754  
2.08  
2.06  
2.04  
2.02  
0.752  
0.75  
0.748  
0.746  
0.744  
0.742  
0.74  
VIN  
2
2.7 V  
12 V  
24 V  
1.98  
1.96  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ (èC)  
TJ (èC)  
D025  
D027  
22. RETRY_DLY Oscillator Hysteresis vs Temperature  
23. NRETRY Bias Current vs Temperature  
0.76  
0.755  
0.75  
1000  
VIN  
3.3 V  
12 V  
TA  
-40 èC  
500  
300  
200  
27 èC  
24 V  
85 èC  
125 èC  
100  
0.745  
0.74  
50  
30  
20  
0.735  
0.73  
10  
5
3
2
0.725  
0.72  
1
-40  
-20  
0
20  
40  
TJ (èC)  
60  
80  
100 120 140  
0
4
8
12  
16  
Power Dissipation (W)  
20  
24  
28  
32  
36  
40  
D026  
D023  
24. NRETRY Oscillator Hysteresis vs Temperature  
25. Thermal Shutdown Plot - Steady State  
12  
版权 © 2018–2020, Texas Instruments Incorporated  
TPS25982  
www.ti.com.cn  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
Typical Characteristics (接下页)  
200  
100  
50  
TPS259827x  
TPS259822x/23x/24x  
30  
20  
10  
5
3
2
1
0.5  
2
3
4
5
6
7 8 10  
Power Dissipation (W)  
20  
30 40 50 70 100  
D002  
26. Thermal Shutdown Plot - Inrush/Overload  
CIN = 1 μF  
COUT = 220 μF  
27. Hotplug  
CdVdt = 3.3 nF  
COUT = 220 μF  
CdVdt = 10 nF  
ROUT = Open  
28. Startup With EN - dVdt Limited  
COUT = 220 μF  
CdVdt = 3.3 nF  
ROUT = 6 Ω  
TPS259824x (16.7-V OVP variant)  
30. Overvoltage Protection  
29. Startup With EN Into Resistive Load - dVdt Limited  
版权 © 2018–2020, Texas Instruments Incorporated  
13  
TPS25982  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
RILIM = 100 Ω  
CITIMER = Open  
RILIM = 100 Ω  
CITIMER = 4.7 nF  
31. Current Limit Without Transient Overcurrent Blanking  
32. Current Limit With Transient Overcurrent Blanking  
RILIM = 100 Ω CITIMER = 4.7 nF RETRY_DLY =  
RILIM = 100 Ω  
CITIMER = 4.7 nF CRETRY_DLY = 1 nF,  
CNRETRY = Open  
Short to GND  
33. Current Limit Followed By Thermal Shutdown - Latch-  
34. Current Limit Followed By Thermal Shutdown - Auto-  
off  
Retry  
14  
版权 © 2018–2020, Texas Instruments Incorporated  
TPS25982  
www.ti.com.cn  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
Typical Characteristics (接下页)  
RILIM = 100 Ω  
CITIMER = 4.7 nF  
RILIM = 100 Ω  
CITIMER = 4.7 nF CRETRY_DLY = Open,  
CNRETRY = Open  
36. Circuit Breaker - Auto-Retry  
35. Circuit Breaker With Transient Overcurrent Blanking  
RILIM = 100 Ω  
RILIM = 100 Ω  
37. Power Up Into Output Short-Circuit  
38. Output Hard Short-Circuit While ON  
版权 © 2018–2020, Texas Instruments Incorporated  
15  
TPS25982  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
RILIM = 100 Ω  
RILIM = 332 Ω  
40. Supply Line Transient Immunity - Input Voltage Step  
39. Output Hard Short-Circuit While ON (Zoomed In)  
RILIM = 511 Ω  
41. Supply Line Transient Immunity - Adjacent Load Hot Unplug  
16  
版权 © 2018–2020, Texas Instruments Incorporated  
TPS25982  
www.ti.com.cn  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
8 Detailed Description  
8.1 Overview  
The TPS25982 device is a smart eFuse with integrated power switch that is used to manage load voltage and  
load current. The device starts its operation by monitoring the IN bus. When VIN is above the Undervoltage  
Protection threshold (VUVP) and below the Overvoltage Protection threshold (VOVP), the device samples the  
EN/UVLO pin. A high level on this pin enables the internal MOSFET to start conducting and allow current to flow  
from IN to OUT. When EN/UVLO is held low, the internal MOSFET is turned off. After a successful start-up  
sequence, the device now actively monitors its load current, input voltage and protects the load from harmful  
overcurrent and overvoltage conditions. The device also relies on a built-in thermal sense circuit to shut down  
and protect itself in case the device internal temperature (Tj) exceeds the safe operating conditions.  
8.2 Functional Block Diagram  
TPS25982  
PG  
120 µs  
120 µs  
/Q  
Q
R
S
GHI  
GND  
PG_int  
FET Temperature Sense &  
Overtemperature Protection  
TSD  
326 mV  
OUT  
IN  
x 246  
µA/A  
UVPb  
Charge  
Pump  
GHI  
GHI  
2.53 V  
2.42 V  
IMON  
4.6 µA  
dVdt  
ILIM  
OVPb#  
UVLOb  
3.6 V  
3.7 V/7.6 V/16.9 V  
3.6 V/7.4 V/16.4 V  
SWEN  
Gate control  
OC  
GHI  
CL*  
Short  
detect  
Current Limit Amplifier*  
EN/UVLO  
1.2 V  
1.1 V  
VIN transient  
detect  
ILIM pin fault  
SCPb  
LDSTRT_FLT  
CL* or CB**  
SD  
0.6 V  
2.5V  
SD  
UVPb  
RETRY  
RETRY  
R
Q
1.5 V  
FLTb  
FLT  
ITIMER  
PG_int  
CB**  
TSD  
ITIMER pin fault  
ILIM pin fault  
Short  
detect  
1.2 V  
S
OC  
2.1 µA  
R
Retry Logic  
S
Q
Q
Q
2.5V  
2 µA  
ITIMER pin fault  
* TPS25982xL (CL variants) only  
RETRY_DLY  
NRETRY  
LDSTRT  
** TPS25982xO (CB variants) only  
#
Not applicable for TPS259827x (no-OVLO variant)  
版权 © 2018–2020, Texas Instruments Incorporated  
17  
TPS25982  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.3 Feature Description  
The TPS25982 eFuse is a compact, feature rich power management device that provides detection, protection  
and indication in the event of system faults.  
8.3.1 Undervoltage Protection (UVLO and UVP)  
The TPS25982 implements Undervoltage Protection on IN to turn off the output in case the applied voltage  
becomes too low for the downstream load or the device to operate correctly. The Undervoltage Protection has a  
default internal threshold of VUVP. If needed, it is also possible to set a user defined Undervoltage Protection  
threshold higher than VUVP using the UVLO comparator on the EN/UVLO pin. 42 and 公式 1 show how a  
resistor divider from supply to GND can be used to set the UVLO set point for a given voltage supply level.  
Power  
Supply  
IN  
RVL1  
EN/UVLO  
RVL2  
GND  
42. Adjustable Supply UVLO Threshold  
VUVLO(R) x (RVL1+ RVL2)  
RVL2  
VINUVLO =  
(1)  
The resistors must be sized large enough to minimize the constant leakage from supply to ground through the  
resistor divider network. At the same time, keep the current through the resistor network sufficiently larger (20x)  
than the leakage current on the EN/UVLO pin to minimize the error in the resistor divider ratio.  
8.3.2 Overvoltage Protection (OVP)  
The TPS25982 implements Overvoltage Lock-Out (OVLO) on IN to protect the output load in the event of input  
overvoltage. When the input exceeds the Overvoltage Protection threshold (VOVP(R)) the device turns off the  
output within tOVP. As long as an overvoltage condition is present on the input, the device stays disabled and the  
output will be turned off. Once the input voltage returns to the normal operating range, the device attempts to  
start up normally.  
18  
版权 © 2018–2020, Texas Instruments Incorporated  
 
 
TPS25982  
www.ti.com.cn  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
Feature Description (接下页)  
Input Overvoltage Event  
Input Overvoltage Removed  
VOVP(R)  
VOVP(F)  
IN  
0
tOVP  
OUT  
dVdt Limited  
0
VPG  
PG  
0
Time  
43. Overvoltage Response  
There are multiple device options with different fixed overvoltage thresholds to choose from, including one  
without internal overvoltage protection. See the Device Comparison Table for a list of available options.  
8.3.3 Inrush Current, Overcurrent, and Short-Circuit Protection  
TPS25982 devices incorporate three levels of protection against overcurrent:  
Adjustable slew rate (dVdt) for inrush current control  
Adjustable overcurrent protection (with adjustable blanking timer) - Circuit Breaker or Active Current Limiter to  
protect against soft overload conditions  
Adjustable fast-trip response to quickly protect against severe overcurrent (short-circuit) faults  
8.3.3.1 Slew Rate and Inrush Current Control (dVdt)  
During hot-plug events or while trying to charge a large output capacitance, there can be a large inrush current. If  
the inrush current is not controlled, it can damage the input connectors and/or cause the system power supply to  
droop leading to unexpected restarts elsewhere in the system. The TPS25982 provides integrated output slew  
rate (dVdt) control to manage the inrush current during start-up. The inrush current is directly proportional to the  
load capacitance and rising slew rate. The following equation can be used to calculate the slew rate (SR)  
required to limit the inrush current (IINRUSH) for a given load capacitance (COUT):  
IINRUSH  
(
mA  
)
SR V / ms =  
(
)
COUT  
(
mF  
)
(2)  
An external capacitance can be connected to the dVdt pin to control the rising slew rate and lower the inrush  
current during turn on. The required CdVdt capacitance to produce a given slew rate can be calculated using the  
following formula:  
4600  
CdVdt pF =  
(
)
SR V / ms  
(
)
(3)  
19  
The fastest output slew rate is achieved by leaving the dVdt pin open.  
版权 © 2018–2020, Texas Instruments Incorporated  
TPS25982  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
Feature Description (接下页)  
8.3.3.2 Circuit Breaker  
The TPS25982xO (Circuit Breaker) variants respond to output overcurrent conditions by turning off the output  
after a user adjustable transient fault blanking interval. When the load current exceeds the programmed current  
limit threshold (ILIM set by the ILIM pin resistor RILIM), but lower than the fast-trip threshold (2.1 x ILIM), the device  
starts discharging the ITIMER pin capacitor using an internal pull-down current (IITIMER). If the load current drops  
below the current limit threshold before the ITIMER capacitor drops by ΔVITIMER, the circuit breaker action is not  
engaged and the ITIMER is reset by pulling it up to VINT internally. This allows short transient overcurrent pulses  
to pass through the device without tripping the circuit. If the overcurrent condition persists, the ITIMER capacitor  
continues to discharge and once it falls by ΔVITIMER, the circuit breaker action turns off the FET immediately. The  
following equation can be used to calculate the RILIM value for a desired current limit threshold.  
1460  
RILIM W =  
(
)
ILIM  
( )  
A - 0.11  
(4)  
Leaving the ILIM pin Open sets the current limit to zero and causes the FET to shut off as  
soon as any load current is detected. Shorting the ILIM pin to ground at any point during  
normal operation is detected as a fault and the part shuts down. The ILIM pin Short to  
GND fault detection circuit requires a minimum amount of load current (ICB) to flow through  
the device. This ensures robust eFuse behavior even under single point failure conditions.  
Refer to the Fault Response section for details on the device behavior after a fault.  
Transient Output Overload  
Overload Removed  
Persistent Output Overload  
ITIMER expired  
2.1 x ILIM  
IOUT  
ILIM  
Circuit Breaker  
operation  
0
VINT  
tITIMER  
4VITIMER  
ITIMER  
OUT  
0
VIN  
0
VPG  
PG  
TJ  
0
TSD  
TSDHYS  
TJ  
Time  
44. Circuit Breaker Response  
20  
版权 © 2018–2020, Texas Instruments Incorporated  
TPS25982  
www.ti.com.cn  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
Feature Description (接下页)  
The duration for which load transients are allowed can be adjusted using an appropriate capacitor value from  
ITIMER pin to ground. The transient overcurrent blanking interval can be calculated using 公式 5.  
CITIMER (nF) ì DVITIMER (V)  
tITIMER (ms) =  
IITIMER (mA)  
(5)  
Leave the ITIMER pin open to allow the part to break the circuit with the minimum possible delay.  
1. Device ITIMER Functional Mode Summary  
ITIMER Pin Connection  
OPEN  
Timer Delay before Overcurrent response  
0 s  
Capacitor to ground  
Short to GND  
As per 公式 5  
ITIMER Pin Fault - Part Shuts Off  
1. Shorting the ITIMER pin to ground is detected as a fault and the part shuts down. This  
ensures robust eFuse behavior even in case of single point failure conditions. Refer to the  
Fault Response section for details on the device behavior after a fault.  
2. Larger ITIMER capacitors take longer to charge during start-up and may lead to  
incorrect fault assertion if the ITIMER voltage is still below the pin short detection  
threshold after the device has reached steady state. To avoid this, it is recommended to  
limit the maximum ITIMER capacitor to the value suggested by the equation below.  
tGHI  
CITIMER <  
53000  
VIN + 3.6V  
tGHI = tD,ON + Cdvdt ì  
«
÷
Idvdt  
Where  
tGHI is the time taken by the device to reach steady state  
tD,ON is the device turn-on delay  
Cdvdt is the dVdt capacitance  
Idvdt is the dVdt charging current  
It is possible to avoid incorrect ITIMER pin fault assertion and achieve higher ITIMER  
intervals if needed by increasing the dVdt capacitor value accordingly, but at the expense  
of higher start-up time.  
Once the part shuts down due to a Circuit Breaker fault, it can be configured to either stay latched off or restart  
automatically. Refer to the Fault Response section for details.  
8.3.3.3 Active Current Limiting  
The TPS25982xL (Current Limiter) variants respond to output overcurrent conditions by actively regulating the  
current to a set limit after a user adjustable fault blanking interval. When the load current exceeds the  
programmed current limit threshold (ILIM set by the ILIM pin resistor RILIM), but lower than the fast-trip threshold  
(2.1 x ILIM), the device starts discharging the ITIMER pin capacitor using an internal pull-down current (IITIMER). If  
the load current drops below the current limit threshold before the ITIMER capacitor voltage drops by ΔVITIMER  
,
the current limit action is not engaged and the ITIMER is reset by pulling it up to VINT internally. This allows short  
transient overcurrent pulses to pass through the device without limiting the current. If the overcurrent condition  
persists, the ITIMER capacitor continues to discharge and once it falls by ΔVITIMER, the device regulates the FET  
gate voltage to actively limit the output current to the set ILIM level. The device will exit current limiting when the  
load current falls below ILIM. 公式 6 can be used to calculate the RILIM value for a desired current limit.  
版权 © 2018–2020, Texas Instruments Incorporated  
21  
 
 
TPS25982  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
1460  
RILIM W =  
(
)
ILIM  
( )  
A - 0.11  
(6)  
Leaving the ILIM pin Open sets the current limit to zero and causes the FET to shut off as  
soon as any load current is detected. Shorting the ILIM pin to ground at any point during  
normal operation is detected as a fault and the part shuts down. The ILIM pin Short to  
GND fault detection circuit requires a minimum amount of load current (ICB) to flow through  
the device. This ensures robust eFuse behavior even under single point failure conditions.  
Refer to the Fault Response section for details on the device behavior after a fault.  
ITIMER expired  
tLIM  
Transient Output Overload  
Overload Removed  
Persistent Output Overload  
2.1 x ILIM  
Thermal shutdown  
IOUT  
ILIM  
Current limiting  
operation  
0
tITIMER  
VINT  
4VITIMER  
ITIMER  
0
VIN  
VIN - VPGTHD  
OUT  
0
VPG  
PG  
TJ  
0
TSD  
TSDHYS  
TJ  
Time  
45. Active Current Limiter Response  
The duration for which load transients are allowed can be adjusted using an appropriate capacitor value from  
ITIMER pin to ground. The transient overcurrent blanking interval can be calculated using 公式 7.  
CITIMER (nF) ì DVITIMER (V)  
tITIMER (ms) =  
IITIMER (mA)  
(7)  
Leave the ITIMER pin open to allow the part to activate the current limit with the minimum possible delay. Refer  
to ITIMER Functional Mode Summary for more details.  
22  
版权 © 2018–2020, Texas Instruments Incorporated  
 
TPS25982  
www.ti.com.cn  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
1. Current limiting based on RILIM is active during startup for both Current Limit and Circuit  
Breaker variants. In case the startup current exceeds ILIM, the device regulates the current  
to the set limit. However, during startup the current limit is engaged without waiting for the  
ITIMER delay.  
2. Shorting the ITIMER pin to ground is detected as a fault and the part shuts down. This  
ensures robust eFuse behavior even in case of single point failure conditions. Refer to the  
Fault Response section for details on the device behavior after a fault.  
3. Larger ITIMER capacitors take longer to charge during start-up and may lead to  
incorrect fault assertion if the ITIMER voltage is still below the pin short detection  
threshold after the device has reached steady state. To avoid this, it is recommended to  
limit the maximum ITIMER capacitor to the value suggested by the equation below.  
tGHI  
CITIMER <  
53000  
VIN + 3.6V  
tGHI = tD,ON + Cdvdt ì  
«
÷
Idvdt  
Where  
tGHI is the time taken by the device to reach steady state  
tD,ON is the device turn-on delay  
Cdvdt is the dVdt capacitance  
Idvdt is the dVdt charging current  
It is possible to avoid incorrect ITIMER pin fault assertion and achieve higher ITIMER  
intervals if needed by increasing the dVdt capacitor value accordingly, but at the expense  
of higher start-up time.  
During current regulation, the output voltage will drop resulting in increased device power dissipation across the  
FET. If the device internal temperature (TJ) exceeds the thermal shutdown threshold (TSD), the FET is turned  
off. See Overtemperature Protection (OTP) for more details on device response to overtemperature.  
8.3.3.4 Short-Circuit Protection  
During an output short-circuit event, the current through the device increases very rapidly. When an output short-  
circuit is detected, the internal fast-trip comparator turns off the output within the tSC. The comparator employs a  
scalable threshold which is equal to 2.1 × ILIM. This enables the user to adjust the fast-trip threshold as per  
system needs rather than using a fixed threshold which may not be suitable for all systems. After a fast trip  
event, the device restarts in a current limited mode to try and restore power to the load quickly in case the fast  
trip was triggered by a transient event. However, if the fault is persistent, the device will stay in current limit  
causing the junction temperature to rise and eventually enter thermal shutdown. See Overtemperature Protection  
(OTP) section for details on the device response to overtemperature.  
In some of the systems, for example servers or telecom equipment which house multiple hot-pluggable cards  
connected to a common supply backplane, there can be transients on the supply due to switching of large  
currents through the inductive backplane. This can result in current spikes on adjacent cards which could be  
potentially large enough to inadvertently trigger the fast-trip comparator of the eFuse. The TPS25982 uses a  
proprietary algorithm to avoid nuisance tripping in such cases thereby facilitating un-interrupted system  
operation.  
版权 © 2018–2020, Texas Instruments Incorporated  
23  
TPS25982  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
Input Line  
Transient  
Persistent Output Short-Circuit  
Thermal Shutdown  
Output Short-Circuit Removed  
Temporary Output  
Short-Circuit  
Retry Timer Elapsed  
IN  
0
tSC  
tSC  
2.1 x ILIM  
IOUT  
ILIM  
0
No Fast-trip  
Fast-trip  
Fast-trip  
VIN  
OUT  
dVdt Limited  
Start-up  
Current Limited  
Start-up  
0
VPG  
PG  
tRETRY_DLY  
0
TSD  
TSDHYS  
TJ  
Time  
46. Input Line Transient and Output Short-Circuit Response  
To prevent the current limit/circuit breaker loop from interfering with the input line transient  
detection logic, TI recommends to set the ITIMER interval higher than 100 μs. Refer to  
1 for more details on ITIMER.  
8.3.4 Overtemperature Protection (OTP)  
The device monitors the internal die temperature (TJ) at all times and shuts down the part as soon as the  
temperature exceeds a safe operating level (TSD) thereby protecting the device from damage. The device will  
not turn back on until the die cools down sufficiently, that is the die temperature falls below (TSD - TSDHys).  
Thereafter, the part can be configured to either remain latched off or restart automatically. Refer to the Fault  
Response section for details.  
8.3.5 Analog Load Current Monitor (IMON)  
The device allows the system to monitor the output load current accurately by providing an analog current on the  
IMON pin which is proportional to the current through the FET. The user can connect a resistor from IMON to  
ground to convert this signal to a voltage which can be fed to the input of an Analog-to-Digital Converter. The  
internal amplifier on the IMON employs chopper based offset cancellation techniques to provide accurate  
measurement even at lower currents over time and temperature.  
VIMON V = G  
mA / A ìI  
A ìR  
( )  
W
( )  
( )  
(
)
IMON  
OUT  
IMON  
(8)  
24  
版权 © 2018–2020, Texas Instruments Incorporated  
TPS25982  
www.ti.com.cn  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
It is recommended to limit the maximum IMON voltage to the values mentioned in VIMON(Max) Recommended  
Values . This is to ensure the IMON pin internal amplifier has sufficient headroom to operate linearly.  
2. VIMON(MAX) Recommended Values  
VIN  
Recommended VIMON(MAX)  
2.7 V  
3.3 V  
> 5 V  
1 V  
1.8 V  
3.3 V  
It is recommended to add a RC low pass filter on the IMON output to filter out any glitches and get a smooth  
average current measurement. TI recommends a series resistance of 10 kΩ or higher.  
8.3.6 Power Good (PG)  
PG is an active high open drain output which indicates whether the FET is fully turned ON and the output voltage  
has reached the maximum value. After power-up, PG is pulled low initially. The gate driver circuit starts charging  
the gate capacitance from the internal charge pump. When the FET gate voltage reaches (VIN + 3.6V), PG is  
asserted after a de-glitch time (tPGD). During normal operation, if at any time VOUT falls below (VIN - VPGTHD), PG  
is de-asserted after a de-glitch time (tPGD).  
Overcurrent Removed  
Device Enabled  
Overcurrent Event  
VUVLO(R)  
0
EN/UVLO  
IN  
Slew rate (dVdt) controlled  
startup/Inrush current limiting  
0
VIN  
Current limiting  
operation  
VPGTHD  
OUT  
PG  
0
VPG  
0
120 µs  
120 µs  
120 µs  
VIN  
dVdT  
0
VIN + 3.6V  
VGate  
tITIMER  
0
ILIM  
IINRUSH  
0
IOUT  
Time  
47. Power Good Assertion and De-assertion  
版权 © 2018–2020, Texas Instruments Incorporated  
25  
 
TPS25982  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
1. When there is no supply to the device, the PG pin is expected to stay low. However,  
there is no active pull-down in this condition to drive this pin all the way down to 0 V. If the  
PG pin is pulled up to an independent supply which is present even if the TPS25982 is  
unpowered, there can be a small voltage seen on this pin depending on the pin sink  
current, which in turn is a function of the pull-up supply voltage and resistor. Minimize the  
sink current to keep this pin voltage low enough not to be detected as a logic HIGH by  
associated external circuits in this condition.  
2. The PG pin provides a mechanism to detect a possible failed MOSFET condition during  
start-up. If the PG does not get asserted for an extended period of time after the device is  
powered up and enabled, it might be an indication of internal MOSFET failure.  
8.3.7 Load Detect/Handshake (LDSTRT)  
The LDSTRT pin provides a mechanism for the downstream load circuit to indicate to the TPS25982 that the  
load is present and has powered up successfully. This allows the system to have additional control over the  
conditions in which power is presented to the load and disconnect the power when the load is not present or  
unable to provide a valid handshake signal after an expected boot-up time.  
Once the TPS25982 completes the startup sequence and the output reaches the full voltage, it asserts the PG  
signal. At the same time, it also starts charging the capacitor on the LDSTRT pin (CLDSTRT) with an internal  
current source (ILDSTRT). If the LDSTRT pin voltage rises above VLDSTRT before the load circuit pulls it low, the  
TPS25982 detects the condition as a LDSTRT fault and turns off the FET to power down the load. The time to  
trigger the LDSTRT fault can be calculated from the following equation:  
CLDSTRT (nF) ì VLDSTRT (V)  
tLDSTRT (ms) =  
ILDSTRT (mA)  
(9)  
During normal operation, if at any time the load circuit releases the active pull-down on the LDSTRT pin, the  
capacitor CLDSTRT would start charging up again and eventually trigger a shutdown due to LDSTRT fault once the  
capacitor charges up to VLDSTRT  
.
Once the TPS25982 turns off due to LDSTRT fault, it can be turned ON again in 3 ways:  
LDSTRT pin is driven low  
Input supply voltage is driven low (< VUVP(F)) and then driven high (> VUVP(R)  
EN/UVLO voltage is driven low (< VSD) and then driven high (> VUVLO(R)  
)
)
Tie the LDSTRT pin to ground if this functionality is not needed.  
IN  
IN  
0
0
EN/UVLO  
EN/UVLO  
OUT  
0
0
VIN  
VIN  
OUT  
0
0
VPG  
VPG  
PG  
PG  
0
0
tLDSTRT  
tLDSTRT  
1.2 V  
2.5 V  
LDSTRT  
LDSTRT  
1.2 V  
LDSTRT pulled low by MCU  
No Handshake Signal from System MCU  
0
0
Time  
Time  
48. Successful LDSTRT Handshake  
49. Unsuccessful LDSTRT Handshake  
26  
版权 © 2018–2020, Texas Instruments Incorporated  
 
TPS25982  
www.ti.com.cn  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
The LDSTRT pin can also be used to implement a load or module detect function wherein the output power is  
presented only when the load or module is plugged in. A typical use case for this function is on optical module  
power supply rails in Switches/Routers or similar networking end equipment. The LDSTRT pin should be tied to a  
corresponding pin on the module connector which gets pulled low by the module when it is plugged in. An  
example of such a signal is ModPrsL on QSFP-DD modules.  
In this scheme, initially when the TPS25982 is powered up or enabled, the output charges up and PG is  
asserted. If the module is not plugged in, there is no external pull-down on the LDSTRT pin and the pin voltage  
starts rising due to internal pull-up . Once the LDSTRT pin voltage exceeds VLDSTRT, the TPS25982 turns off the  
output power. If the module is plugged in later, the LDSTRT pin is pulled low by the module and the TPS25982  
turns on the output power.  
IN  
0
EN/UVLO  
0
VIN  
OUT  
dVdt limited  
0
VPG  
PG  
0
2.5 V  
LDSTRT  
1.2 V  
Optical module not present  
Optical module plugged in  
0
Time  
50. Optical Module Plug-In Detection Using LDSTRT  
8.4 Fault Response  
The following events trigger an internal fault which causes the device to shut down:  
Overtemperature Protection  
Circuit Breaker Operation  
ITIMER pin Short to GND  
ILIM pin Short to GND  
Once the device shuts down due to a fault, even if the associated external fault is subsequently cleared, the fault  
stays latched internally and the output cannot turn on again until the latch is reset. The fault latch can be  
externally reset by one of the following methods:  
Input supply voltage is driven low (< VUVP(F)  
)
EN/UVLO voltage is driven low (< VSD  
)
The fault latch can also be reset by an internal auto-retry logic. The user can either disable the auto-retry  
behavior completely (latch-off behavior) or configure the device to auto-retry indefinitely or for a limited number of  
times before latching off. The auto-retry behavior is controlled by the connections on the RETRY_DLY and  
NRETRY pins.  
版权 © 2018–2020, Texas Instruments Incorporated  
27  
 
TPS25982  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
Fault Response (接下页)  
3. Pin Configurable Fault Response  
EN/UVLO  
RETRY_DLY  
X
NRETRY  
DEVICE STATE  
Disabled  
L
X
X
H
Short to GND  
No auto-retry (Latch-off)  
Auto-retry 4 times with minimum delay between retries and  
then latch-off  
H
Open  
Open  
H
H
Open  
Short to GND  
Auto-retry indefinitely with minimum delay between retries  
Capacitor to GND  
Capacitor to GND  
Auto-retry delay and count as per 公式 10 and 公式 11  
Auto-retry 4 times with finite delay between retries as per 公  
10 and then latch-off  
H
H
Capacitor to GND  
Capacitor to GND  
Open  
Auto-retry indefinitely with finite delay between retries as per  
Short to GND  
公式 10  
To configure the part for a finite number of auto-retries with a finite auto-retry delay, first choose the capacitor  
value on RETRY_DLY pin using the following equation.  
128ì CRETRY_DLY (pF) + 4 pF ì VRETRY_DLY_HYS (V)  
(
)
tRETRY_DLY (ms) =  
IRETRY_DLY (mA)  
(10)  
(11)  
Next, choose the capacitor value on the NRETRY pin using the following equation.  
4ìIRETRY_DLY (mA)ìCNRETRY (pF)  
NRETRY =  
INRETRY (mA)ì CRETRY_DLY (pF) + 4 pF  
(
)
The number of auto-retries is quantized to certain discrete levels as shown in 4 .  
4. NRETRY Quantization Levels  
NRETRY Calculated From 公式 11  
0 < N < 4  
NRETRY Actual  
4
16  
4 < N < 16  
16 < N < 64  
64  
64 < N < 256  
256  
1024  
256 < N < 1024  
5. NRETRY and RETRY_DLY Combination Examples  
Auto Retry Delay  
915 ms  
416 ms  
91.7 ms  
2.2 nF  
9.3 ms  
3 ms  
RETRY_DLY Capacitor  
22 nF  
10 nF  
220 pF  
68 pF  
No. of Auto Retries  
NRETRY Capacitor  
Open  
4
16  
47 nF  
0.22 μF  
1 μF  
22 nF  
0.1 μF  
0.47 μF  
1.5 μF  
4.7 nF  
1 nF  
2.2 nF  
10 nF  
33 nF  
220 pF  
1 nF  
64  
22 nF  
256  
0.1 μF  
4.7 nF  
10 nF  
1024  
Infinite  
3.3 μF  
0.47 μF  
Short to GND  
28  
版权 © 2018–2020, Texas Instruments Incorporated  
 
 
 
TPS25982  
www.ti.com.cn  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
A spreadsheet design tool TPS25982xx Design Calculator is also available for simplified calculations.  
Output overload followed by Thermal Shutdown  
Retry Timer starts once device cools down  
1st Retry  
Nth Retry  
IN  
0
tRETRY_DLY  
Thermal Shutdown  
Thermal Shutdown  
IOUT  
ILIM  
0
VIN  
OUT  
Programmed number of retries over,  
Device Latches Off  
0
TSD  
TSDHYS  
TJ  
TJ  
Time  
51. Auto-Retry After Fault  
The auto-retry logic has a mechanism to reset the count to zero if two consecutive faults occur far apart in time.  
This ensures that the auto-retry response to any later fault is handled as a fresh sequence and not as a  
continuation of the previous fault. If the fault which triggered the shutdown and subsequent auto-retry cycle is  
cleared eventually and does not occur again for a duration equal to 7 retry delay timer periods starting from the  
last fault, the auto-retry logic resets the internal auto-retry count to zero.  
8.5 Device Functional Modes  
The TPS25982 can be pin strapped to support various configurable functional modes.  
6. LDSTRT Handshake Functional Modes  
EN/UVLO  
LDSTRT  
DEVICE STATE  
Disabled  
ON  
L
H
H
X
L
H
OFF  
Refer to Load Detect/Handshake (LDSTRT) section for more details.  
7. Fault Response Functional Modes  
EN/UVLO  
RETRY_DLY  
X
NRETRY  
DEVICE STATE  
L
X
X
Disabled  
H
Short to GND  
No auto-retry (Latch-off)  
Auto-retry 4 times with minimum delay between retries and  
then latch-off  
H
Open  
Open  
H
H
Open  
Short to GND  
Auto-retry indefinitely with minimum delay between retries  
Capacitor to GND  
Capacitor to GND  
Auto-retry delay and count as per 公式 10 and 公式 11  
版权 © 2018–2020, Texas Instruments Incorporated  
29  
TPS25982  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
7. Fault Response Functional Modes (接下页)  
EN/UVLO  
RETRY_DLY  
NRETRY  
DEVICE STATE  
Auto-retry 4 times with finite delay between retries as per 公  
10 and then latch-off  
H
Capacitor to GND  
Open  
Auto-retry indefinitely with finite delay between retries as per  
H
Capacitor to GND  
Short to GND  
公式 10  
Refer to Fault Response section for more details.  
30  
版权 © 2018–2020, Texas Instruments Incorporated  
TPS25982  
www.ti.com.cn  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPS25982 device is an integrated 15-A eFuse that is typically used for hot-swap and power rail protection  
applications. It operates from 2.7 V to 24 V with adjustable overcurrent and undervoltage protection. It also  
provides optional overvoltage with various fixed internal thresholds. The device aids in controlling the inrush  
current and has the flexibility to configure the number of auto-retries and retry delay. The adjustable overcurrent  
blanking timer provides the functionality to allow transient overcurrent pulses without limiting or tripping. These  
devices protect source, load and internal MOSFET from potentially damaging events in systems such as Server  
standby rails, PCIe cards, SSDs, HDDs, Optical Modules, Routers and Switches.  
The following design procedure can be used to select the supporting component values based on the application  
requirement. Additionally, a spreadsheet design tool TPS25982xx Design Calculator is available in the web  
product folder.  
9.2 Typical Application: Standby Power Rail Protection in Datacenter Servers  
VIN  
TPS259824O  
VOUT  
12 V  
IN  
OUT  
3.3V  
LDSTRT  
RVL1  
1MΩ  
RPG  
100KΩ  
EN/UVLO  
NRETRY  
PG  
IMON  
CIN  
CNRETRY  
2.2nF  
CL  
1.4mF  
RL  
0.1µF  
RETRY_DLY  
dVdt  
SMCJ12A  
CLDSTRT  
0.1µF  
RVL2  
B520C-13-F  
GND ITIMER  
ILIM  
125KΩ  
RIMON  
CdVdt  
887Ω  
CRETRY_DLY  
2.2nF  
10nF  
RILIM  
100Ω  
CITIMER  
4.7nF  
52. Typical Application Schematic - Protection for Server Standby Rail  
9.2.1 Design Requirements  
8 shows the design parameters for this application example.  
8. Design Parameters  
DESIGN PARAMETER  
Input voltage, VIN  
EXAMPLE VALUE  
12 V  
Undervoltage lockout set point, VINUVLO  
Maximum load current, IOUT  
Current limit, ILIM  
10.8 V  
12 A  
15 A  
Transient overcurrent blanking interval (tITIMER  
)
2 ms  
Load capacitance, COUT  
1.4 mF  
10 Ω  
Load at start-up, RL(SU)  
Output voltage ramp time, TdVdt  
Maximum ambient temperature, TA  
20 ms  
70 °C  
版权 © 2018–2020, Texas Instruments Incorporated  
31  
 
TPS25982  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
Typical Application: Standby Power Rail Protection in Datacenter Servers (接下页)  
8. Design Parameters (接下页)  
LDSTRT handshake delay, tLDSTRT  
Retry delay, tRETRY_DLY  
60 ms  
100 ms  
4
No. of retries, NRETRY  
9.2.2 Detailed Design Procedure  
9.2.2.1 Device Selection  
This design example considers a 12-V system operating voltage with a tolerance of ±10 %. The rated load  
current is 12 A. If the current exceeds 15 A, then the device must allow overload current for 2-ms interval before  
breaking the circuit and then restart. Accordingly, the TPS259824O variant is chosen. (Refer to Device  
Comparison Table for device options.) Ambient temperatures may range from 20 °C to 70 °C. The load has a  
minimum input capacitance of 1.4 mF and start-up resistive load of 10 Ω. The downstream load is turned on only  
after the PG signal is asserted.  
9.2.2.2 Setting the Current Limit Threshold: RILIM Selection  
The RILIM resistor at the ILIM pin sets the overload current limit, whose value can be calculated using 公式 12.  
1460  
RILIM W =  
(
)
ILIM  
( )  
A - 0.11  
(12)  
For ILIM = 15 A, RILIM value is calculated to be 98.05 . Choose the closest available standard value: 100 , 1%.  
Refering to the Electrical Characteristics table, it can be verified that the minimum current limit across  
temperature for RILIM value of 100 is 12.85 A, which is higher than the nominal rated load current (12 A),  
thereby ensuring stable operation under normal conditions.  
9.2.2.3 Setting the Undervoltage Lockout Set Point  
The undervoltage lockout (UVLO) trip point is adjusted using the external voltage divider network of RVL1 and  
RVL2 connected between IN, EN/UVLO and GND pins of the device. The resistor values required for setting the  
undervoltage are calculated using 公式 13.  
VUVLO(R) x (RVL1+ RVL2)  
RVL2  
VINUVLO =  
(13)  
For minimizing the input current drawn from the power supply, TI recommends to use higher values of resistance  
for RVL1 and RVL2. However, leakage currents due to external active components connected to the resistor string  
can add error to these calculations. So, the resistor string current, IRVL12 must be 20 times greater than the  
leakage current (IENLKG).  
From the device electrical specifications, UVLO rising threshold VUVLO(R) = 1.2 V. From design requirements,  
VINUVLO = 10.8 V. First choose the value of RVL1 = 1 Mand use 公式 13 to calculate RVL2 = 125 k.  
Use the closest standard 1% resistor values: RVL1 = 1 MΩ, and RVL2 = 125 kΩ  
9.2.2.4 Choosing the Current Monitoring Resistor: RIMON  
Voltage at IMON pin VIMON is proportional to the output load current. This can be connected to an ADC of the  
downstream system for monitoring the operating condition and health of the system. The RIMON must be selected  
based on the maximum load current and the maximum IMON pin voltage at full-scale load current. The maximum  
IMON pin voltage must be selected based on the input voltage range of the ADC used or the value suggested in  
VIMON(Max) Recommended Values, whichever is lower. RIMON is set using 公式 14.  
VIMONmax(V)  
RIMON(W) =  
-6  
IOUTmax(A)ì 246 ì10  
(14)  
For ILIM = 15 A and considering the operating range of ADC to be 0 V to 3.3 V, RIMON can be calculated as  
32  
版权 © 2018–2020, Texas Instruments Incorporated  
 
 
 
 
TPS25982  
www.ti.com.cn  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
3.3  
15ì 246 ì10  
RIMON =  
= 894  
-6  
(15)  
Selecting RIMON value less than shown in 公式 15 ensures that ADC limits are not exceeded for maximum value  
of load current. Choose closest available standard value: 887 Ω, 1 %.  
9.2.2.5 Setting the Output Voltage Ramp Time (TdVdt  
)
For a successful design, the junction temperature of device must be kept below the absolute maximum rating  
during both dynamic (start-up) and steady state conditions. Dynamic power stresses often are an order of  
magnitude greater than the static stresses, so it is important to determine the right start-up time and in-rush  
current limit required with system capacitance to avoid thermal shutdown during start-up with and without load.  
The required ramp-up capacitor CdVdt is calculated considering the two possible cases (see Case 1: Start-Up  
Without Load: Only Output Capacitance COUT Draws Current and Case 2: Start-Up With Load: Output  
Capacitance COUT and Load Draw Current)  
9.2.2.5.1 Case 1: Start-Up Without Load: Only Output Capacitance COUT Draws Current  
During start-up, as the output capacitor charges, the voltage drop as well as the power dissipated across the  
internal FET decreases. The average power dissipated in the device during start-up is calculated using 公式 16  
P
D(INRUSH) = 0.5 x VIN x IINRUSH  
(16)  
Where IINRUSH is the inrush current and is determined by 公式 17  
V
IN  
I
INRUSH = COUT  
ì
T
dVdt  
(17)  
公式 16 assumes that the load does not draw any current (apart from the capacitor charging current) until the  
output voltage has reached its final value.  
9.2.2.5.2 Case 2: Start-Up With Load: Output Capacitance COUT and Load Draw Current  
When the load draws current during the turn-on sequence, there is additional power dissipated. Considering a  
resistive load during start-up RL(SU), load current ramps up proportionally with increase in output voltage during  
TdVdt time. 公式 18 shows the average power dissipation in the internal FET during charging time due to resistive  
load.  
2
1
V
IN  
≈ ’  
PD(LOAD)  
=
×
∆ ÷  
6
R
L(SU)  
« ◊  
(18)  
公式 19 gives the total power dissipated in the device during start-up  
PD(STARTUP) = PD(INRUSH) + PD(LOAD)  
(19)  
The power dissipation, with and without load, for selected start-up time must not exceed the start-up thermal  
shutdown limits as shown in Thermal Shutdown Plot During Start-up  
版权 © 2018–2020, Texas Instruments Incorporated  
33  
 
 
 
 
 
 
 
TPS25982  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
200  
100  
50  
TPS259827x  
TPS259822x/23x/24x  
30  
20  
10  
5
3
2
1
0.5  
2
3
4
5
6 7 8 10 20  
Power Dissipation (W)  
30 40 50 70 100  
D002  
53. Thermal Shutdown Plot During Start-up  
For the design example under discussion, the output voltage has to be ramped up in 20 ms, which mandates a  
slew-rate of 0.6 V/ms for a 12 V rail.  
The required CdVdt capacitance on dVdt pin to set 0.6 V/ms slew rate can be calculated using 公式 20  
4600  
CdVdt pF =  
= 7666 pF  
(
)
SR V / ms  
(
)
(20)  
The dVdt capacitor is subjected to typically VIN+ 4 V during startup. The high voltage bias leads to a drop in the  
effective capacitor value. So, it is suggested to choose 20% higher than the calculated value, which gives 9.2 nF.  
Choose closest 10% standard value: 10 nF  
The 10 nF CdVdt capacitance sets a slew-rate of 0.46 V/ms and output ramp time TdVdt of 26 ms.  
The inrush current drawn by the load capacitance COUT during ramp-up can be calculated using 公式 21  
12 V  
I
INRUSH = 1.4 mFì  
= 0.65 A  
26 ms  
(21)  
(22)  
The inrush power dissipation can be calculated using 公式 22  
PD(INRUSH) = 0.5 x 12 x 0.65 = 3.9 W  
For 3.9 W of power loss, the thermal shutdown time of the device must be greater than the ramp-up time TdVdt to  
ensure a successful start-up. 53 shows the start-up thermal shutdown limit. For 3.9 W of power, the shutdown  
time is approximately 100 ms. So it is safe to use 26 ms as the start-up time without any load on the output.  
The additional power dissipation when a 10-Ω load is present during start-up is calculated using 公式 23  
1
122  
10  
≈ ’  
PD(LOAD)  
=
ì
= 2.4W  
∆ ÷  
6
« ◊  
(23)  
(24)  
The total device power dissipation during start-up can be calculated using 公式 24  
PD(STARTUP) = 3.9 + 2.4 = 6.3 W  
From Thermal Shutdown Plot During Start-up, the thermal shutdown time for 6.3 W is approximately 40 ms. It is  
safe to have 30% margin to allow for variation of system parameters such as load, component tolerance, and  
input voltage. So it is well within acceptable limits to use the 10 nF for CdVdt capacitor with start-up load of 10 Ω.  
When COUT is large, there is a need to decrease the power dissipation during start-up. This can be done by  
increasing the value of the CdVdt capacitor. A spreadsheet tool TPS25982xx Design Calculator available on the  
web can be used for iterative calculations.  
34  
版权 © 2018–2020, Texas Instruments Incorporated  
 
 
 
 
 
 
TPS25982  
www.ti.com.cn  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
9.2.2.6 Setting the Load Handshake (LDSTRT) Delay  
To indicate a successful start-up, the load circuit must provide a handshake signal to TPS25982 by pulling down  
the LDSTRT pin within the time set by the capacitor CLDSTRT on the LDSTRT pin. Once the PG asserts, the  
device sources 2-μA current into CLDSTRT. For a successful handshake, the load circuit must pull-down the  
LDSTRT pin before CLDSTRT charges up to 1.2 V.  
For the design requirement of 60-ms handshake delay, use 公式 25 to calculate CLDSTRT  
tLDSTRT  
60ms  
1.2V  
CLDSTRT = ILDSTRT ì  
= 2mA ì  
= 0.1mF  
VLDSTRT  
(25)  
Choose closest available standard value: 0.1 µF, 10 %.  
9.2.2.7 Setting the Transient Overcurrent Blanking Interval (tITIMER  
)
For the design example under discussion, overcurrent transients are allowed for 2-ms duration. This blanking  
interval can be set by selecting appropriate capacitor CITIMER from ITIMER pin to ground. The value of CITIMER to  
set 2 ms for tITIMER can be calculated using 公式 26.  
tITIMER (ms)  
CITIMER (nF) =  
= 4.255 nF  
0.47  
(26)  
Choose closest available standard value: 4.7 nF, 10 %.  
9.2.2.8 Setting the Auto-Retry Delay and Number of Retries  
The time delay between retries can be programmed by selecting capacitor CRETRY_DLY on RETRY_DLY pin. The  
value of CRETRY_DLY to set a 100-ms auto-retry delay can be calculated using 公式 27.  
tRETRY_DLY (ms)  
46.83  
CRETRY_DLY (pF) =  
- 4 pF = 2131.38 pF  
(27)  
Choose closest available standard value: 2.2 nF, 10 %.  
The number of auto-retry attempts can be set by a capacitor CNRETRY on the NRETRY pin using 公式 28  
4ìCNRETRY (pF)  
CRETRY_DLY (pF) + 4 pF  
NRETRY =  
(28)  
For this design example, the requirement is to retry 4 times after the device shuts down due to a fault. Since, the  
number of auto-retries can be adjusted in discrete steps as explained in Fault Response , choose CNRETRY such  
that NRETRY is less than 4. Use 公式 29 to calculate CNRETRY  
.
NRETRY ì CRETRY_DLY (pF) + 4 pF  
(
)
< 2204 pF  
CNRETRY (pF) <  
4
(29)  
Choose closest available standard value: 2.2 nF, 10 %.  
版权 © 2018–2020, Texas Instruments Incorporated  
35  
 
 
 
 
 
TPS25982  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
9.2.3 Application Curves  
COUT = 1.4 mF  
CdVdt = 10 nF  
RL(SU) = Open  
COUT = 1.4 mF  
CdVdt = 10 nF  
RL(SU) = 10 Ω  
54. Hot-Plug Start-Up Without Load on Output - dVdt  
55. Hot-Plug Start-Up With Load on Output - dVdt  
Limited  
Limited  
RILIM = 100 Ω  
CITIMER = 4.7 nF  
RILIM = 100 Ω  
CITIMER = 4.7 nF CRETRY_DLY = 2.2 nF,  
CNRETRY = 2.2 nF  
57. Circuit Breaker - Auto-Retry 4 Times With Retry  
56. Circuit Breaker With Transient Overcurrent Blanking  
Delay of 100 ms  
Interval of 2 ms  
36  
版权 © 2018–2020, Texas Instruments Incorporated  
TPS25982  
www.ti.com.cn  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
RILIM = 100 Ω  
58. Output Hard Short-Circuit While ON  
RILIM = 100 Ω  
59. Output Hard Short-Circuit While ON (Zoomed In)  
60. Power-Up With Short-Circuit on Output  
61. Power-Up With Short-Circuit on Output - Auto-Retry  
4 Times With Retry Delay of 100 ms  
CLDSTRT = 0.1 μF  
62. Successful Load Handshake (LDSTRT)  
CLDSTRT = 0.1 μF  
63. Unsuccessful Load Handshake (LDSTRT)  
版权 © 2018–2020, Texas Instruments Incorporated  
37  
TPS25982  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
9.3 System Examples  
9.3.1 Optical Module Power Rail Path Protection  
Optical modules are commonly used in high-bandwidth data communication systems such as Optical Networking  
equipment, Enterprise/Data-Center Switches and Routers. Several variants of optical modules are available in  
the market, which differ in the form-factor and the data speed support (Gbit/s). Of these, the popular variant  
Double Dense Quad Small Form-factor Pluggable (QSFP-DD) module supports speeds up to 400 Gbit/s. In  
addition to the system protection during hot-plug events, the other key requirement for optical module is the tight  
voltage regulation. The optical module uses 3.3 V supply and requires voltage regulation within ±5 % for proper  
operation.  
A typical power tree of such system is shown in 64. The optical line card consists of DC-DC converter,  
protection device (eFuse) and power supply filters. The DC-DC converter steps-down the 12 V to 3.3 V and  
maintains the 3.3 V rail within ±2 %. The power supply filtering network uses ‘LC’ components to reduce high  
frequency noise injection into the optical module. The DC resistance of the inductor ‘L’ causes voltage drop of  
around 1.5 % which leaves us with a voltage drop budget of just 1.5 % (3.3 V * 1.5% = 50 mV) across the  
protection device. Considering a maximum load current of 5.5 A per module, the maximum ON-resistance of the  
protection device should be less than 9 m. TPS25982 eFuse offers ultra-low ON-resistance of 2.7 m(typical)  
and 4.5 m(maximum, across temperature), thereby meeting the target specification with additional margin to  
spare and simplifying the overall system design.  
VIN  
12V  
3.3V  
VOUT  
IN  
OUT  
VccTx  
VccRx  
DC-DC  
eFuse  
LDSTRT  
QSFP  
Module  
Hot Plug / Unplug  
Vcc  
GND  
ModPrsL  
Optical Line Card  
64. Power Tree Block Diagram of a Typical Optical Line Card  
As shown in 64, ModPrsL signal acts as a handshake signal between the line card and the optical module.  
ModPrsL is always pulled to ground inside the module. When the module is hot-plugged into the host “Optical  
Line Card” connector, the ModPrsL signal pulls down the LDSTRT pin and enables the TPS25982 eFuse to  
power the module. This ensures that power is applied on the port only when a module is plugged in and  
disconnected when there is no module present.  
38  
版权 © 2018–2020, Texas Instruments Incorporated  
 
TPS25982  
www.ti.com.cn  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
System Examples (接下页)  
TPS259822O  
VOUT  
VIN  
IN  
OUT  
3.3V  
LDSTRT  
RPG  
100KΩ  
EN/UVLO  
NRETRY  
PG  
IMON  
CL  
CIN  
CNRETRY  
0.1µF  
OPEN  
RL  
RETRY_DLY  
dVdt  
10µF  
B520C-13-F  
CLDSTRT  
0.1µF  
GND ITIMER  
ILIM  
RIMON  
CdVdt  
1910Ω  
CRETRY_DLY  
OPEN  
3.3nF  
RILIM  
210Ω  
CITIMER  
15nF  
65. TPS259822O Configured for a 3.3-V Power Rail Path Protection in Optical Module  
9.3.1.1 Design Requirements  
9 shows the design parameters for this example.  
9. Design Parameters  
DESIGN PARAMETER  
Input voltage, VIN  
EXAMPLE VALUE  
3.3 V  
3.7 V  
± 5 %  
5.5 A  
7 A  
Overvoltage lockout, VOVP  
Maximum voltage drop in the path  
Maximum load current, IOUT  
Current limit, ILIM  
Transient overcurrent blanking interval (tITIMER  
)
6 ms  
10 µF  
85 °C  
Yes  
Load capacitance, COUT  
Maximum ambient temperature, TA  
Module present detection, ModPrsL  
Retry delay, tRETRY_DLY  
200 µs  
4
No. of retries, NRETRY  
9.3.1.2 Device Selection  
Optical modules are very sensitive to supply voltage variations and thus require input overvoltage protection.  
TPS259822O variant from TPS25982 family is selected to set overvoltage protection at 3.7 V. TPS259822O  
allows overcurrents for a user specified blanking interval tITIMER before breaking the circuit path. In this use case,  
tITIMER is set for 6 ms interval.  
9.3.1.3 External Component Settings  
By following similar design procedure as outlined in Detailed Design Procedure, the external component values  
are calculated as below  
RILIM = 210 to set 7-A current limit  
CITIMER = 15 nF to set fault blanking time of 6 ms  
RIMON = 1910 to set maximum IMON pin voltage VIMON within ADC range of 3.3 V  
CdVdt capacitance is chosen as 3.3 nF  
Leave RETRY_DLY and NRETRY pins OPEN to set minimum auto-retry delay of 200 μs and number of  
retries to 4  
版权 © 2018–2020, Texas Instruments Incorporated  
39  
 
TPS25982  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
9.3.1.4 Voltage Drop  
10 shows the power path voltage drop (%) due to the eFuse in QSFP modules of different power classes.  
10. Voltage Drop across TPS25982 on QSFP Module Power Rail  
POWER CLASS  
MAXIMUM POWER  
CONSUMPTION PER MODULE  
(W)  
MAXIMUM LOAD CURRENT (A) TYPICAL VOLTAGE DROP (%)  
1
2
3
4
5
6
7
8
1.5  
3.5  
7
0.454  
1.06  
2.12  
2.42  
3.03  
3.63  
4.24  
5.45  
0.037  
0.087  
0.174  
0.2  
8
10  
12  
14  
18  
0.248  
0.3  
0.347  
0.446  
9.3.1.5 Application Curves  
66. Output Voltage Profile When Optical Module is  
67. Output Voltage Profile When Optical Module is  
Inserted  
Plugged Out  
40  
版权 © 2018–2020, Texas Instruments Incorporated  
 
TPS25982  
www.ti.com.cn  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
68. Circuit Breaker With Transient Overcurrent Blanking  
69. Overload Response and Recovery  
Interval of 6 ms; Device Restarts in Current Limit Mode  
70. Overvoltage Cut-off at 3.7 V with TPS259822O  
71. Overvoltage Protection Response and Recovery  
Device  
with TPS259822O Device  
9.3.2 Input Protection for 12-V Rail Applications: PCIe Cards, Storage Interfaces and DC Fans  
TPS25982 eFuse provides inrush current management and also protects the system from most common faults  
such as undervoltage, overvoltage and overcurrents. The combination of high current support along with low ON-  
resistance makes TPS25982 eFuse an ideal protection solution for PCIe cards, Storage Interfaces and DC Fan  
loads. The external component values can be calculated by following the design procedure outlined in Detailed  
Design Procedure. Alternatively, a spreadsheet design tool TPS25982xx Design Calculator is available for  
simplified design efforts.  
版权 © 2018–2020, Texas Instruments Incorporated  
41  
TPS25982  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
10 Power Supply Recommendations  
The TPS25982 devices are designed for a supply voltage range of 2.7 V VIN 24 V. TI recommends an input  
ceramic bypass capacitor higher than 0.1 μF if the input supply is located more than a few inches from the  
device. The power supply must be rated higher than the set current limit to avoid voltage droops during  
overcurrent and short-circuit conditions.  
10.1 Transient Protection  
In the case of a short circuit and overload current limit when the device interrupts current flow, the input  
inductance generates a positive voltage spike on the input, and the output inductance generates a negative  
voltage spike on the output. The peak amplitude of voltage spikes (transients) is dependent on the value of  
inductance in series to the input or output of the device. Such transients can exceed the absolute maximum  
ratings of the device if steps are not taken to address the issue. Typical methods for addressing transients  
include:  
Minimize lead length and inductance into and out of the device.  
Use a large PCB GND plane.  
Use a Schottky diode across the output to absorb negative spikes.  
Use a low value ceramic capacitor CIN = 0.001 μF to 0.1 μF to absorb the energy and dampen the transients.  
The approximate value of input capacitance can be estimated using 公式 30.  
LIN  
VSPIKE(Absolute) = VIN + ILOAD x  
CIN  
where  
VIN is the nominal supply voltage  
ILOAD is the load current  
LIN equals the effective inductance seen looking into the source  
CIN is the capacitance present at the input  
(30)  
Some of the applications may require the addition of a Transient Voltage Suppressor (TVS) to prevent transients  
from exceeding the absolute maximum ratings of the device. A typical circuit implementation with optional  
protection components (a ceramic capacitor, TVS and Schottky diode) is shown in 72.  
TPS25982  
IN  
OUT  
12V  
3.3V  
LDSTRT  
1MO  
100kO  
100O  
EN/UVLO  
NRETRY  
PG  
IMON  
220uF  
0.1uF  
RETRY_DLY  
dVdt  
1uF  
56pF  
56pF  
137kO  
GND ITIMER  
ILIM  
511O  
3.3nF  
4.7nF  
100O  
72. Typical Circuit Implementation With Optional Protection Components  
42  
版权 © 2018–2020, Texas Instruments Incorporated  
 
 
TPS25982  
www.ti.com.cn  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
10.2 Output Short-Circuit Measurements  
It is difficult to obtain repeatable and similar short-circuit testing results. The following contribute to variation in  
results:  
Source bypassing  
Input leads  
Board layout  
Component selection  
Output shorting method  
Relative location of the short  
Instrumentation  
The actual short exhibits a certain degree of randomness because it microscopically bounces and arcs. Ensure  
that configuration and methods are used to obtain realistic results.  
Do not expect to see waveforms exactly like the waveforms in this data sheet because  
every setup is different.  
版权 © 2018–2020, Texas Instruments Incorporated  
43  
TPS25982  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
The IN Exposed Thermal Pad is used for Heat Dissipation. Connect to as much copper area as possible  
using an array of thermal vias. The via array also helps to minimize the voltage gradient across the VIN pad  
and facilitates uniform current distribution through the internal FET, which improves the current sensing and  
monitoring accuracy.  
For all applications, TI recommends a ceramic decoupling capacitor of 0.01 μF or greater between IN and  
GND terminals. For hot-plug applications, where input power-path inductance is negligible, this capacitor can  
be eliminated or minimized.  
The optimal placement of the decoupling capacitor is closest to the IN and GND terminals of the device. Care  
must be taken to minimize the loop area formed by the bypass-capacitor connection, the IN terminal, and the  
GND terminal of the IC.  
High current carrying power path connections must be as short as possible and must be sized to carry at  
least twice the full-load current. It is recommended to use a minimum trace width of 50 mil for the OUT power  
connection.  
The GND terminal is the reference for all internal signals and must be isolated from any bounce due to large  
switching currents in the system power ground plane. It is recommended to connect the device GND to a  
signal ground island on the board, which in turn is connected to the system power GND plane at one point.  
Locate the support components for the following signals close to their respective connection pins - ILIM,  
IMON, ITIMER, RETRY_DLY, NRETRY and dVdT with the shortest possible trace routing to reduce parasitic  
effects on the respective associated functions. These traces must not have any coupling to switching signals  
on the board.  
The ILIM pin is highly sensitive to capacitance and TI recommends to pay special attention to the layout to  
maintain the parasitic capacitance below 30 pF for stable operation.  
Use short traces on the RETRY_DLY and NRETRY pins to ensure the auto-retry timer delay and number of  
auto-retries is not altered by the additional parasitic capacitance on these pins.  
Protection devices such as TVS, snubbers, capacitors, or diodes must be placed physically close to the  
device they are intended to protect. These protection devices must be routed with short traces to reduce  
inductance. For example, TI recommends a protection Schottky diode to address negative transients due to  
switching of inductive loads, and it must be physically close to the OUT pins.  
Use proper layout and thermal management techniques to ensure there is no significant steady state thermal  
gradient between the two thermal pads on the IC. This is necessary for proper functioning of the device  
overtemperature protection mechanism and successful startup under all conditions.  
Obtaining acceptable performance with alternate layout schemes is possible; the Layout Example is intended  
as a guideline and shown to produce good results from electrical and thermal standpoint.  
44  
版权 © 2018–2020, Texas Instruments Incorporated  
TPS25982  
www.ti.com.cn  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
11.2 Layout Example  
PCB via to Bottom Layer  
VIN Plane (Top Layer)  
Blind PCB via to Inner Layer  
VOUT Plane (Top Layer)  
> 50 mils  
*
*
*
*
Signal GND (Top Layer)  
Power GND Plane (Top Layer)  
* Optional components for suppressing transients induced while  
switching current through inductive elements at input/output  
73. TPS25982 Example PCB Layout  
版权 © 2018–2020, Texas Instruments Incorporated  
45  
TPS25982  
ZHCSIW7B OCTOBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
TPS259824OEVM 电子保险丝评估板》  
TPS259827LEVM 电子保险丝评估板》  
TPS25982xx 设计计算器》  
12.1.1.1 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
11. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
工具和软件  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
TPS259822L  
TPS259823L  
TPS259824L  
TPS259827L  
TPS259822O  
TPS259823O  
TPS259824O  
TPS259827O  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
46  
版权 © 2018–2020, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS259822LNRGER  
TPS259822LNRGET  
TPS259822ONRGER  
TPS259822ONRGET  
TPS259823LNRGER  
TPS259823LNRGET  
TPS259823ONRGER  
TPS259823ONRGET  
TPS259824LNRGER  
TPS259824LNRGET  
TPS259824ONRGER  
TPS259824ONRGET  
TPS259827LNRGER  
TPS259827LNRGET  
TPS259827ONRGER  
TPS259827ONRGET  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
TP2598  
22LN  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
TP2598  
22LN  
TP2598  
22ON  
TP2598  
22ON  
TP2598  
23LN  
TP2598  
23LN  
TP2598  
23ON  
TP2598  
23ON  
TP2598  
24LN  
TP2598  
24LN  
TP2598  
24ON  
TP2598  
24ON  
TP2598  
27LN  
TP2598  
27LN  
TP2598  
27ON  
250  
RoHS & Green  
TP2598  
27ON  
(1) The marketing status values are defined as follows:  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS259822LNRGER  
TPS259822LNRGET  
TPS259822ONRGER  
TPS259822ONRGET  
TPS259823LNRGER  
TPS259823LNRGET  
TPS259823ONRGER  
TPS259823ONRGET  
TPS259824LNRGER  
TPS259824LNRGET  
TPS259824ONRGER  
TPS259824ONRGET  
TPS259827LNRGER  
TPS259827LNRGET  
TPS259827ONRGER  
TPS259827ONRGET  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
3000  
250  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
12.4  
12.5  
12.4  
12.5  
12.4  
12.5  
12.4  
12.5  
12.4  
12.5  
12.4  
12.5  
12.4  
12.5  
12.4  
12.5  
4.35  
4.35  
4.35  
4.35  
4.35  
4.35  
4.35  
4.35  
4.35  
4.35  
4.35  
4.35  
4.35  
4.35  
4.35  
4.35  
4.35  
4.35  
4.35  
4.35  
4.35  
4.35  
4.35  
4.35  
4.35  
4.35  
4.35  
4.35  
4.35  
4.35  
4.35  
4.35  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS259822LNRGER  
TPS259822LNRGET  
TPS259822ONRGER  
TPS259822ONRGET  
TPS259823LNRGER  
TPS259823LNRGET  
TPS259823ONRGER  
TPS259823ONRGET  
TPS259824LNRGER  
TPS259824LNRGET  
TPS259824ONRGER  
TPS259824ONRGET  
TPS259827LNRGER  
TPS259827LNRGET  
TPS259827ONRGER  
TPS259827ONRGET  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
RGE  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
3000  
250  
338.0  
205.0  
338.0  
205.0  
338.0  
205.0  
338.0  
205.0  
338.0  
205.0  
338.0  
205.0  
338.0  
205.0  
338.0  
205.0  
355.0  
200.0  
355.0  
200.0  
355.0  
200.0  
355.0  
200.0  
355.0  
200.0  
355.0  
200.0  
355.0  
200.0  
355.0  
200.0  
50.0  
33.0  
50.0  
33.0  
50.0  
33.0  
50.0  
33.0  
50.0  
33.0  
50.0  
33.0  
50.0  
33.0  
50.0  
33.0  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGE 24  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4204104/H  
PACKAGE OUTLINE  
RGE0024M  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
B
A
0.475  
0.275  
PIN 1 INDEX AREA  
4.1  
3.9  
0.29  
0.19  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 2.7 0.1  
4X 2.5  
(0.2) TYP  
7
12  
SEE TERMINAL  
DETAIL  
EXPOSED  
THERMAL PAD  
6
13  
26  
25  
0.85 0.1  
(0.925)  
SYMM  
(0.625)  
1.45 0.1  
1
18  
0.29  
0.19  
24X  
24  
19  
0.1  
0.05  
C A B  
SYMM  
PIN 1 ID  
(OPTIONAL)  
0.475  
0.275  
24X  
2X 0.5  
4223975/B 03/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGE0024M  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2.7)  
SYMM  
24  
19  
24X (0.575)  
24X (0.24)  
1
18  
(0.625)  
(1.45)  
25  
26  
(1.1)  
TYP  
(R0.05)  
TYP  
SYMM  
(3.825)  
(0.925)  
TYP  
(0.15)  
TYP  
20X (0.5)  
(0.85)  
13  
6
(
0.2) TYP  
VIA  
7
12  
6X (1.1)  
(3.825)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223975/B 03/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGE0024M  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X (1.188)  
4X (0.694)  
19  
24  
24X (0.575)  
1
25  
18  
24X (0.24)  
2X  
(1.3)  
(R0.05) TYP  
2X  
(0.625)  
SYMM  
(3.825)  
26  
2X  
(0.925)  
2X  
(0.76)  
20X (0.5)  
13  
6
METAL  
TYP  
7
12  
SYMM  
(3.825)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 25  
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223975/B 03/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS259827ONRGET

具有精确负载电流监测和可调节瞬态故障管理功能的 2.7V 至 24V、2.7mΩ、15A 电子保险丝 | RGE | 24 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25985

具有准确、快速电流监测器的 4.5V 至 16V、0.59mΩ、80A 可堆叠紧凑型电子保险丝

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS259850RQPR

具有准确、快速电流监测器的 4.5V 至 16V、0.59mΩ、80A 可堆叠紧凑型电子保险丝 | RQP | 26 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25990

具有数字遥测控制器的 2.9V 至 16V、0.79mΩ、60A 电子保险丝

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25A

Optional constant current charger

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOTAL-POWER

TPS25A-10

Optional constant current charger

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOTAL-POWER

TPS25A-11

Optional constant current charger

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOTAL-POWER

TPS25A-12

Optional constant current charger

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOTAL-POWER

TPS25A-13

Optional constant current charger

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOTAL-POWER

TPS25A-14

Optional constant current charger

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOTAL-POWER

TPS25A-15

Optional constant current charger

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOTAL-POWER

TPS25A-17

Optional constant current charger

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOTAL-POWER